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Deriving Bisimulation Congruences:
2-categories vs precategories

Vladimiro Sassone Pawet SobaskKi
University of Sussex University of Aarhus
Abstract

G-relative pushoutsGRPOs) have recently been proposed by
the authors as a new foundation for Leifer and Milner's approach
to deriving labelled bisimulation congruences from reduction sys-
tems. This paper develops the theory@GRPOs further, arguing
that they provide a simple and powerful basis towards a compre-
hensive solution. As an example, we constrG&POs in a cat-
egory of ‘bunches and wirings.” We then examine the approach
based on Milner’s precategories and Leifer’s functorial reactive
systems, and show that it can be recast in a much simpler way into
the 2-categorical theory @RPOs.

Introduction

It is increasingly common for foundational calculi to be presente@-as
duction systemsStarting from their common ancestor, thecalculus,

most recent calculi consist of a reduction system together with a contex-
tual equivalence (built out of basic observations, viz. barbs). The strength
of such an approach resides in its intuitiveness. In particular, we need not
invent labels to describe the interactions between systems and their pos-
sible environments, a procedure that has a degree of arbitrariness (cf.

*Research supported bpisCo: Semantic Foundations of Distributed Computa-
tion’, EU IHP ‘Marie Curie’ contract HPMT-CT-2001-00290, aB®RICS, Basic Re-
search in Computer Science, funded by the Danish National Research Foundation.



early and late semantics of timecalculus) and may prove quite complex
(cf. [5, 4, 3, 1]).

By contrast, reduction semantics suffer at times by their lack of com-
positionality, and have complex semantic theories because of their con-
textual equivalences. Labelled bisimulation congruences baséa on
belled transition system(&TS) may in such cases provide fruitful proof
techniques; in particular, bisimulations provide the power and manage-
ability of coinduction, while the closure properties of congruences pro-
vide for compositional reasoning.

To associate an LTS with a reduction system involves synthesising
a compositional system of labels, so that silent moves-@stions) re-
flect the original reductions, labels describe potential external interac-
tions, and all together they yield a LTS bisimulation which is a congru-
ence included in the original contextual reduction equivalence. Proving
bisimulation is then enough to prove reduction equivalence.

Sewell [19] and Leifer and Milner [13, 11] set out to develop a theory
to perform such derivations using general criteria; a meta-theatgrof-
ing bisimulation congruencesThe basic idea behind their construction
is to use contexts as labels. To exemplify the idea, in a CCS-like calculus
one would for instance derive a transition

—la

Q
aP » P |Q

because terna.P in context— | a.Q reacts to becom® | Q; in other
words, the context is a trigger for the reduction.

The first hot spot of the theory is the selection of the right triggers to
use as labels. The intuition is to take only tlseriallest contexts which
allow a given reaction to occur. As well as reducing the size of the LTS,
this often makes the resulting bisimulation equivalence finer. Sewell’s
method is based on dissection lemmas which provide a deep analysis of a
term’s structure. A generalised, more scalable approach was later devel-
oped in [13], where the notion of “smallest” is formalised in categorical
terms as aelative-pushou{RPOs). Both theories, however, do not seem
to scale up to calculi with non triviadtructural congruencesAlready
in the case of the monoidal rules that govern parallel composition things
become rather involved.

The fundamental difficulty brought about by a structural congruence
= is that working up ta= gives up too much information about terms
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for the RPO approach to work as expected. RPOs do not usually exist
in such cases, because the fundamental indication of exactly which oc-
currences of a term constructor belong to the redex becomes blurred. A
very simple, yet significant example of this is the categduy of bunch
contexts [13], and the same problems arise in structures such as action
graphs [14] and bigraphs [15].

In [17] we therefore proposed a framework in which term structure is
not explicitly quotiented, but the commutation of diagrams (i.e. equality
of terms) is taken up tee. Precisely, to give a commuting diagram=
sqone exhibits a prooft of structural congruence, which we represent
as a 2-cell (constructed from the rules generatingnd closed under all

contexts).

K— ]

qp o |r

mT> n
Since such proofs are naturally isomorphisms, we were led to consider
G-categories, i.e., 2-categories where all 2-cells are iso, and initiated the
study of G-relative pushoutsGRPOSs), as a suitable generalisation of
RPOs from categories te-categories.

The purpose of this paper is to continue the development of the theory
of GRPOs. We aim to show that, while replacing RPOs at little further
complication (cf. 82 and 83 GRPOs significantly advance the field by
providing a convenient solution to simple, yet important problems (cf. 84
and 85). The theory a6RPOs promises indeed to be a natural founda-
tion for a meta-theory of ‘deriving bisimulation congruences.’

This paper presents two main technical results in support of our claims.
Firstly, we prove that the case of the already mentioned catdgjomyof
bunch contexts, problematic for RPOs, can be treated in a natural way
using GRPOs. Secondly, we show that the notions of precategory and
functorial reactive system can be dispensed with in favour of a simpler
GRPO-based approach.

The notion ofprecategoryis proposed in [11, 12] to handle the ex-
amples of Leifer in [11], Milner in [15] and, most recently, of Jensen
and Milner in [7]. It consists of a category appropriately decorated by
so-called Support setswhich identifies syntactic elements so as to keep
track of them under arrow composition. Alas, such supported structures



are no longer categories — arrow composition is partial — which makes
the theory laborious, and bring us away from the well-known world of
categories and their theory. The intensional information recorded in pre-
categories, however, allows one to generate a category “above” where
RPOs exist, as opposed to the category of interest “below'Csayhere

they do not. The category “above” is related@ovia a well-behaved
functor, used to map RPOs diagrams from the category “abov€’, to
where constructing them would be impossible. These structures take the
name offunctorial reactive systemand give rise to a theory to generate

a labelled bisimulation congruences developed in [11].

The paper presents a technique for mapping precategoresategories
so that the LTS generated usiBiRPOs is the same as the LTS generated
using the above mentioned approach. The translation derives from the
precategory’s support information a notion of homomorphism, specific
to the particular structure in hand, which constitutes the 2-cells of the de-
rived G-category. We claim that this yields an approach mathematically
more elegant and considerably simpler than precategories; besides gen-
eralising RPOs directhlGRPOs seem to also remove the need for further
notions.

Structure of the paper. In 82 we review definitions and results pre-
sented in [17]; 83 shows that, analogously to the 1-dimensional case,
trace and failures equivalence are congruences provided that eBRRfDs
exist. In 84, we show that the category of bunch contexts is naturally a 2-
category wher6&RPOs exist; 85 shows how precategories are subsumed
by our notion ofGRPOs. The exposition ends with a few concluding re-
marks; 81 recalls basic notions of 2-categories, and can be safely skipped
by those readers acquainted with the standard notations.

This paper is a version of [18] extended with proofs.

1 Preliminaries

Throughout the paper we assume a moderate knowledge of category the-
ory and related terminology. In this section we fix notations and recall the
basic elements and 2-categories. For a thorough introduction the reader
is referred to [9]



We useOrd to denote the category of finite ordinals. We assume that
Ord has chosen coproducts, namely the reader’s favourite definition of
ordinal addition®. For any finite sex, let ord x) be the finite ordinal of
the same cardinality artg: x — ord(x) be a chosen isomorphism. There
is an equivalence of categories Set; — Ord. On objects it sendsto
ord(x), on morphisms : x — ytot,ft,1: ord(x) — ord(y).

A 2-categoryC is a category whose homsets are categories and, cor-
respondingly, whose composition maps are functors. Explicitly, a 2-
categoryB consists of the following.

e A class ofobjects XY, Z,....

e For anyX,Y € C, a categoryC(X,Y). The objectsC(X,Y) are
called 1-cells or simply arrows, and denoted y. Y — X. Its
morphisms are calle@-cells are writtena: f = g: X — Y and
drawn as

Composition inC(X,Y) is denoted by and referred to asverti-
cal composition. Identity 2-cells are denoted by: f = f.

e ForeachX,Y,Zthereis afunctor: C(X,Y) xC(Y,Z) — C(X,Z),
the so-calledhorizontal composition, which we often denote by
mere juxtaposition. Horizontal composition is associative and ad-
mits 14, as identities.

As a notation, we writexf andga for, respectivelyals andl1qa.

We follow the convention that horizontal composition binds tighter than
vertical composition.

In 2-categories, the order of composition of 2-cells is not important.
This is a consequence of the horizontal composition being functorial
and can be axiomatised with the so calfedidle-four interchange law
for f,f'.f": A—Bandg,d,g": B— Canda: f = ', a’: f' =
B:g=d andp’: d = g’ we havef'a’«Ba = (B'«B)(a’ea). As a
consequence, given a diagram of 2-cells, there is at most one way to
compose them and obtain a composite 2-cell. This primitive operation is
sometimes referred to aasting



Two objectsC, D of a 2-categoryC are equivalentwhen there are
arrowsf :C—D,g: D — Cand 2-cellsx : idc = gf, 3: fg=idp. We
refer tof andg as equivalences.

2 Reactive Systems anGRPOs

Lawvere theories [10] provide a canonical way to recast term algebras as
categories. FOX a signature, the (free) Lawvere theoryXDrsayCs, has
the natural numbers for objects and a morphisim — n, for t an-tuple
of mholed terms. Composition is substitution of terms into holes.
Generalising from term rewriting systems Gg, Leifer and Milner
formulated a definition ofeactive systerfiL3], and defined a technique
to extract labelled bisimulation congruences from them.
In order to accommodate calculi with non trivial structural congru-
ences, as explained in the Introduction, we refine their approach as fol-
lows.

Definition 2.1. A G-categoryis a 2-category where all 2-cells are iso-
morphisms.

A G-category is a thus a category enriched o8ethe category of
groupoids.

Definition 2.2. A G-reactive systent consists of
1. aG-categoryC,

2. a subcategor® of reactive contextsit is required to be closed
under 2-cells to be and composition-reflecting,

3. adistinguished objette C,
4. asetofpairR CJcccC(1,C) x C(1,C) called thereaction rules

The reactive contexts are those contexts inside which evaluation may
occur. By composition-reflecting we mean thi € D impliesd and
d’ € D, while the closure property means that givka D andp: d = d’
in C impliesd’ € D. The reaction relation—> is defined by taking

a—-=>dr ifthere exists(l,r), d e D anda: dl = a.
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As illustrated by the diagram below, this represents the fact that, up to
structural congruence is the left-hand sidé of a reduction rule in a

reaction contexdl.
Il\

C—F5—C

The notion oflGRPO formalises the idea of a context being the “small-
est” that enables a reaction inGareactive system, and is a conservative
2-categorical extension of Leifer and Milner RPOs [13] (cf. [17] for a
precise comparison).

For readers acquainted with 2-dimensional category th&RpOs
are defined in Definition 2.3. This is followed by an elementary presen-
tation in Proposition 2.4 taken from [17].

Definition 2.3 (GRPOS). Letp: ca=- db: W — Z be a 2-cell (see dia-
gram below) in a-categoryC. A G-relative pushouf{GRPO) forp is a
bipushout [8] of the pair or arrow&, 1) : ca— c and(b,p):ca—din
the pseudo-slice catego€y/Z.

Y 1)

Proposition 2.4. Let C be aG-category. A candidateRPO forp: ca=-
dbas in diagram (1) is a tuplR, e, f,g,B,y, ) such thadbegBeya=p
— cf. diagram ).

Z
T g

’V‘""\W% (||) (iii )

(i)
A GRPO forp is a candidate which satisfies a universal property. Namely,
for any other candidatérR, €, f'.d',p,y,d) there exists a quadruple
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(h,,p, 1) whereh: R— R, ¢: € = heandy: hf = f’ — cf. diagram
(i) — andt: g’h = g — diagram iii ) — which makes the two candidates
compatible in the obvious way, i.e.

teegdey =y  FegUer =5  ybehBeda=p.

Such a quadruple, which we shall refer tonasdiating morphisgmust
beessentially uniqueNamely, for any other mediating morphisii, ¢’, ¢/, t/)
there must exist aniquetwo cell&: h — h’ which makes the two medi-
ating morphisms compatible, i.e.:

Eeed =0 Y=y  Tegf=t

Observe that whereas RPOs are defined up to isomorpGiRROs
are defined up to equivalence (since they are bicolimits).

The definition below plays an important role in the following devel-
opment.

Definition 2.5 (GIPO). Diagram (1) of Definition 2.3 is said to beGx
idem-pushout(GIPO) if (Z,c,d,idz,p, 1¢, 1q) is its GRPO.

The next two lemmas explain the relationships betweB#Os and
GIPOs.

Lemma 2.6 GIPOs from GRPOS). If (Z,c,d,u,a,n, ) is aGRPO for
(i) below, as illustrated in (ii), then (iii) is &IPO.

A d

/ \ L LINN / \
X G Z<d-Y

21\ /b

\ / AL
W
(i) (i) (iii )
Lemma 2.7 GRPOs from GIPOSs). If square (iii) above is &IPO, (i)

has aGRPO, and(Z,c,d,u,a,n, ) is a candidate for it as shown in (ii),
then(Z,c,d,u,a,n, ) is aGRPO for (i).

The following lemmas from [17] state the basic propertieSBPOs.



Lemma 2.8. Suppose that diagrafii) below has &GRPO.

u—=2-v—2-w Uu—2—v
bl a ld B lg bl Bae fa ‘ge
X C Y i Z X f—c> Z

(i) (i)
1. If both squares i) areGIPOs then the rectangle @j is aGIPO;

2. If the left square and the rectangle(gfareGIPOs then so is the
right square.

Lemma 2.9. Suppose that diagrafi) below is aGIPO.

Z 7 d
TN / N G\Y
A AN

(i) (it) (iii))
Then the regions obtained by pasting the 2-cel{g)rand(iii)) areGIPOs.

The previous lemma in particular implies that the following definition
of labelled transition system derived fromGareactive system is well
defined.

Definition 2.10 (LTS). For C aG-reactive system whose underlying cat-
egoryC is aG-category, defin&TS(C) as follows:

e the stateTS(C) are iso-classes of arrovis: | — X in C;

e there is a transitiora] HLTN [&] if there exists a 2-celp, a rule
(I,ry € R, andd € D with @ = dr and such that the diagram below
is aGIPO.

FE
X p Y
é{\|/|

(2)



Henceforward we shall abuse notation and leave out the square brackets
when writing transitions; ie. we shall write simpkyL> a instead of

&) > [2l].

Categories can be seen as a disoBtategories (the only 2-cells are
identities). Using this observation, ea@lconcepts introduced above re-
duces to the corresponding 1-categorical concept. For instaeiRP&®
in a category is simply a RPO.

3 Congruence Results foilGRPOs

The fundamental property that endows the LTS derived from a reduction
system with a bisimulation which is a congruence is the following notion.

Definition 3.1 (RedexGRPOSs). A G-reactive systent is said tohave
redex GRPOsif every square (2) in its underlying-categoryC with |
the left-hand side of a reaction ruler) € R, andd € D has aGRPO.

In particular, the main theorem of [17] is as follows.

Theorem 3.2 (cf. [17]). Let C be a reactive system whose underlying
G-categoryC has redexGRPOs. The largest bisimulation on GTS(C)
is a congruence.

The next three subsections complement this result by proving the ex-
pected corresponding theorems for trace and failure semantics, and by
lifting them to the case of weak equivalences. Theorems and proofs in
this section follow closely [11], as they are meant to show G¢RPOs
are as viable a tool as RPOs are.

3.1 Traces Preorder

Trace semantics [16] is a simple notion of equivalence which equates
processes if they can engage in the same sequences of actions. Even
though it lacks the fine discriminating power of branching time equiv-
alences, viz. bisimulations, it is nevertheless interesting because many
safety properties can be expressed as conditions on sets of traces.

We say that a sequendeg- - - f,, of labels of GTS(C) is a trace oh if

afip. . g
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for someay,...,an. The trace preordefy is then defined aa <y b if
all traces ofa are also traces d.

Theorem 3.3 (Trace Congruence) < is a congruence.

Proof. Assumea < b. We prove thata < cb for all contextsc € C.
Suppose that

ca= a_lly a_za_nl; a_n+1~
We first prove that there exist a sequence;jferl,....n,

g Gi
P RN

|
li ai G i fi
J $ P J
. % . % .

wherea; =a, ¢1 =c, ¢1=d{, & =Ga;, and each square isglPO1

The ith induction step proceeds as follows. _Sira;ei> a1, there
existsy: ficiay = dil;, for some(l;,ri) € R andd; € D, with g1 = dir;.
SinceC has redexGIPOs (cf. Definition 3.1), this can be split in two
GIPOs: a;: gigy = dil; andBi: fici = d/g; (cf. diagram above). Take
a+1 = dirj, and the induction hypothesis is maintained. In particular, we
obtained a trace

a=ai—» &P an:1
that, in force of the hypothesia < b must be matched by a corre-
sponding trace ob. This means that, for=1,..,n, there exisiGIPOs
al: gibi = el/, for some(l{,r{) € R ande € D, once we také 1 to be
er{. We can then paste each of suHPOs together witlfs; : fici = d/g;
obtained above and, using Lemma 2.8, conclude that there@R€ds
ficibi = dfel/, as in the diagram below.

bi G
.. N

J o éi B lfi which means cibii>di’e1ri’.
1

1Since the fact is not likely to cause confusion, we make no notational distinction
between the arrows @ (e.g. inGRPOs diagrams) and the states and labeI&(C),
where the latter are iso-classes of the former.

11



As cb = c1by, in order to construct a trac = by —2» -~ " p b, g
and complete the proof, we only need to verify thatifer 1,...,n, we
have thater{ = ¢ 1bi+1. This follows at once, ag1 = d/ andbj1 =
er|. O

3.2 Failures Preorder

Failure semantics [6] enhances trace semantics with limited branch-inspecting
power. More precisely, failure sets allow the testing of when processes
renounce the capability of engaging in certain actions.

Formally, fora a state ofcTS(C), afailure of ais a pair(fy - - - fn, X),
wheref;--- f, andX are respectively a nonempty sequence and a set of
labels, such that:

o f1---fhis atrace of, a_tip ...y an+1;
e a,. 1, the final state of the trace, stable i.e.an. 1 A ;
e an, 1 refuses Xi.e.an, 1 2 forall xe X.

The failure preorderss is defined as <; b if all failures of a are also
failures ofb.

Theorem 3.4 (Failures Congruence) < is a congruence.

Proof. Assumea < b to prove thata <; cb for all contextsc € C. The
proof extends the previous one of Theorem 3.3.
Let (f1--- fy,X), n> 0, be a failure ofca. We proceed exactly as

above to determine a matching tracle= b; iy Ty bni1. In
addition, we contextually need to prove tlhat 1 is stable and refuses,
exploiting the corresponding hypothesisan ;.

First, we claim thah, 1 is stable. In fact, were it not, it would follow
from c,1(=d},) € D that alsoay; 1 = Chi18n+1 —>, which is impossi-
ble, sincea, 1 is stable. Secondlg, 1 refuses both

Y ={g | there exists &IPO &y: X1 = dg, for xe X} and
Z ={g | there exists a 2-cetly: dg=- Cny1, ford € D},

which can be seen as follows. df..1 —3» for g € Y, then there exists
aGIPOa: gani1 = d'l, for some rule(l,r), which could be pasted to-
gether withdg to yield aGIPO xcnt1an4+1 = dd'l, which is impossible

12



since it means thain, 1 <, for x € X. Similarly, if an,1 —2 for
g € Z, pasting the correspondir@PO with g4, we see thadn, 1 —>,
contradicting the hypothesis that, ; is stable.

If follows then from the hypothesis <; b thatb,, 1 is stable and refuses
Y UZ. Itis then easy to complete the proof by transferring stability and
X-refusal tobpy1. First, suppose thdd, ;1 —&>. This means that there
exists a 2-celtl = b, 1. SinceC has redexcRPOs, we can factar,; 1
out and obtain from this @RPOsa : gb,, 1 = d’l together with a 2-cell
d”’g = cn.1. But this would mean thdi, 1 —2», for g € Z, which is a
contradiction. B
Suppose finally thalb,, 1 =, for x € X. Again, by definition of the
transition relation, and exploiting the existence of re@#POs, we find
GRPOSsXG,1 = d’g andgbn.1 = d’l, which mean thab,1 -3, for
gevy.

O

3.3 Weak Equivalences

Theorems 3.2, 3.3, and 3.4 can be extended to weak equivalences, as
outlined below.

f
For f a label of GTS(C) define aweak transition a—» b to be

a mixed sequence of transitions and reductians—>*— »—>* b,
Observe that this definition essentially identifies silent transitions in the
LTS with reductions. As a consequence, care has to be taken to avoid
interference with transitions™%» synthesised frorsRPOs and labelled

by an equivalence. These transitions have essentially the same meaning
as silent transitions (i.e. no context involved in the reduction), and must
therefore be omitted in weak observations. This lead to consider the
following definitions.

Definition 3.5 (Weak Traces and Failures).A sequencdy - - - f, of non-
equivalencédabels ofGTS(C) is a weak trace od if

fl fn
a—>»a---an-1—>"»an

for someay, . ..,a,. The weak trace preorder is then defined accordingly.
A weak failureof ais a pair(fy--- fn,X), wheref; --- f, andX are
respectively a sequence and a senhoh-equivalencéabels, such that

13



f1--- fn Is @ weak trace o& reaching a final state which is stable and
refusesX. The weak trace preorder is defined accordingly.

Definition 3.6 (Weak Bisimulation). A symmetric relatiors onGTS(C)
is a weak bisimulation if for alh S b

f
a— »a fnotanequivalence, impligs— b witha S b';
a—p>a impliesb—p* b witha S b'.

Using the definitions above Theorems 3.2, 3.3, and 3.4 can be lifted,
respectively, to weak traces, failures and bisimulation.

It is worth remarking that the congruence results, however, only hold
for contextsc € D, as it is well known that non reactive contexts (i.e.
thosec whereca—> cb does not follow froma —> b, as e.g. the
CSS context = cp+ —) do not preserve weak equivalences. Alternative
definitions of weak bisimulations are investigated in [11], and they are
applicablemutatis mutandiso GRPOs.

4 Bunches and Wires

The category of “bunches and wires” was introduced in [13] as a skeletal
algebra of shared wirings, abstracting over the notionashesn, e.g.,
thetcalculus. Although elementary, its structure is complex enough to
lack RPOs.

A bunch context of typeng — my consists of an ordered set ok
trees of depth 1 containing exactty holes. Leaves are labelled from an
alphabeK .

Definition 4.1. The category obunch contextBung has

e objects the finite ordinals, denote®, my, ...

e arrows are bunch contexts= (X, charroot): mgp — my, whereX
is a finite carrier, rootmp+ X — my is a surjective function linking
leaves K) and holesfy) to their roots (), and char X — K is
a leaf labelling function.

Composingcy: mp — My andcy : My — mp means filling thany, holes of
c1 with themy trees ofcy. Formally,cico is (X, root chan where

X = Xo+ X, root= root; (roofp+idy, ), char= [chap,chag],

14



where+ and [, _] are, resp., coproduct and copairing. Identities are
(0,!,id) : mgp — M.

A homomorphismof bunch contextp : ¢ = ¢’: mg — my is a func-
tion p: X — X’ which respects root and char, i.e. rgot= root and
chafp = char. An isomorphism is a bijective homomorphism. Isomor-
phic bunch contexts are equated, making composition associative and
Bung a category.

A bunch context: mg — m; can be depicted as a stringrof nonempty
multisets orK + my, with the proviso that elemenigy must appear ex-
actly once in the string. In the examples, we represent elemenig as
numbered holes.

As we mentioned before, RPOs do not exisBung. Indeed, con-
sider(i) below together with the two candidat@$ and(iii) . It is easy to
show that these have no common “lower bound” candidate.

{K%‘ 'Yl} {KV w 3 (K, / 'Y !
{K 17_}
{-1} {-1} —1HKEKH—1
{k A} k A k A
0

(i) (i) (iii)

The point here is that by taking the arrowsRxing up to isomorphism

we lose information aboultowbunch contexts equal each other. Diagram
(), for instance, can be commutative in two different ways:Khe the
bottom left part may corresponds either to the one in the bottom right
or to the one in the top right, according to whether we rééd—1} or
{—1,K} for the top rightmost arrow. In order to track this information
we endowBung with its natural 2-categorical structure.

Definition 4.2. The 2-category of bunch contex@sin has:
e objects the finite ordinals (cf. §1), denoted, my, ...

e arrowsc = (x,charroot): mgp — my consist of a finite ordinax,
a surjective function rootmy & x — my and a labelling function
char:x — K.

15



e 2-cellsp are isomorphisms between bunches’ carriers.

Composition of arrows and 2-cells is defined in the obvious way. Notice
that since® is associative, composition Bun is associative. Therefore
Bun is aG-category.

Replacing the carrier sét with a finite ordinalx allows us to avoid
the unnecessary burden of working in a bicategory, which would arise
because sum on sets is only associative up to isomorphism. Observe
that this simplification is harmless since the set theoretical identity of the
elements of the carrier is irrelevant. We remark, however@GrROs are
naturally a bicategorical notion and would pose no particular challenge
in bicategories.

Theorem 4.3. BunhasGRPOs.

Proof. In the following, we use only the fact thBun is an extensive [2]
category with pushouts.

Suppose that we have an isomorphic 2-pelca=- dl as illustrated
below:

Using p and the injections into the chosen coproducOird (which
are unlabelled below), we take four pullbacks obtaining the following
diagram. Due to the extensivity @rd, all the outside arrows are co-
product injections.

Yo, h X 2 Xa
Cll o J/ o la]_
Xe—XaPBXe =X DXg +— XD Xg +— Xa
o 1 T2
Xc, . Xd 3 Xap
1 2

Using the morphisms from the diagram above as building blocks, we
can construct bijectiong: Xec — X, ® Xc,, 0: Xa, B Xe, — Xg andf: Xa @
Xe; — X @ Xa, SUCh that

X B O.LD X, XaBPY=P. 3)
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Let root, and rooj, be the morphisms makin@ below

/9\

rooty ®Xcq roota2 M —C1— My «ax— Np

— et

my

| BXa.
Mo B Xa B Xo, TR Mo @ X @ Xay - 31 @ Xa,

My D X,

root,
(i) (if)
into a pushout diagram. We can define ¢hachag, and chag, in the

obvious way.
Now consider the diagram below:

mo®p roof SXa,

My D Xa B Xe; —— Mo B X D Xa, Mp D Xa,
" Mo®X ©da q
Mo®XaeT M Mee2
ro0t HXcy ”b@xa@xcwrrb@xl@x%mw@xd
rooty ®X{ ($) Jroord
M & Xey Tmaoc M S Xe roote M.

Region (1) can be verified to be commutative using (3) while region
(¥) commutes sincg is a homomorphism. Using the pushout prop-
erty, we get a unique function: my — mz. Thus we define rog} =
[h,root:i]: my@xe, — mg. Itis easy to verify that this function is surjec-
tive, indeed, using rogt: m &x, — My we get a functiofiroots,, Xe,] : M &
Xc — My @ Xg, such that

My D Xe
[roote, ,xcz]l

is commutative. Thus surjectivity follows from the surjectivity of root

We shall verify tha3: cia — ayl, y: ¢ — cpc1 andd: cra — d are
homomorphisms. Because of the definition of ghathag, and chag,
it is clear that each of the functions preserves the character. Notice that

17



diagram(i) implies thatf3 preserves the roots. The commutativity of the
diagrams below can be checked by examining the injectioms; pkc, ,
Xe, andmy, Xa,, Xc, respectively.

e}
My & Xe 2% 1y @ X, @ X, M & Xay 5 Xc, 228 1ty @ xg
root{ Jrootc1 DXe, roota, @xczl lrootd
Ms root, My © X, My © X, 4“001% m3

Thus(ii) is a a candidate for the region.

Suppose thatms,r,st,f',y,d) is another candidate. A diagram
chase shows that

X —2 Xs D X > X
i2] l
Xr B % i
Yyt
Xc — Xa@Xe 5 X DXd

Thus there is an injective functidn x; — X, satisfyingy ~ti> = cok
andd'i> = dik.

Take the pullback

Xy — %

l !
j X DX
W

XCZ C—2>Xc

It is easy to verify thak, i, Xe, L X IS a coproduct diagram. Let
=[],k Xu®X — X,
By the definition oft,

Xr ¢ Xe, D Xu
l y! y Xe BT l
Xr D X Xc Xey D Xey — X P Xu DX
Xa, X v Xs
5 51 l

Xay ©T
Xap D Xu DX — Xay D Xc,

18



the composites at the bottom of the two rectangles above are the identity
on the second injection(). Therefore, one can find functiogsand
such that the regions are pullbacks. They are iso, being the pullbacks
of isos. The commutativity of these pullback diagrams impliesxfab
T.O0®x.Y =y(0), &.WD X X, DT~ = 8. These two equations together
with the equations which defingin terms off3, y, d andf’, v, give
X SYPBOXXa® O =B (T).

The following diagram is commutative,

roof Gxa,

Mo @ Xa ® Xe; ™8 Mo @ X @ Xa, 2 Mo @ Xa,

roof] ©Xa, Xy L
Mo & Xa & X, & X0 5 o B B Xap © Xy 5 M  Xa, Xy
100ty G, B} () T Lmeay

00Xy x| MO My B X B —— Mo @ X B Xy M B Xs

rook &xr | Mo €3] I s irootS
MOXy ——MBX, DXy ——— M B X mg

Mmoo roof;

region (f) sincef’ is a homomorphism. We obtali: my — ms. Let
root, = [I, f]: my& u— ms wheref is the composite

med— root

1
Xu—=MDX; DXy — MOX — Mp
or equivalently (using the previous diagram)

Xu — M B Xa, B Xy 2 %o @ X6 228 .

The diagrams below are commutative, and either implies tha, ieot

surjective.
roots, exy rooty, eXy
My B Xe; B Xy —— My DXy My B Xa, B Xy —— My B Xy
ml@q;—ll Jrootu m2®llJJ JroonJ
moX ———— s My B Xg ——— M

roof; roofs

Define chay in the obvious way. Then: my — ms is a bunch context.
The above diagrams imply thét r — uc; andy: uay — s are homo-
morphisms. To see that tu — ¢z is a homomorphism, notice that the
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region below is commutative

My DXe, BT
% ™ @ % B XDy © o, B Xu BX T B Xe, B X,
rOOTcJ/ root, EBX{ roofe, GBXuGBth Jrootcl OXe,
Me oo M OX oo M OXDX — = M DX,

with the two left rectangles commutative singeand ¢ are homomor-
phisms. Using((), the top row is equal toy ¢ y. Using the fact that
y is a homomorphism, and the surjectivity of the marked arrow in the
above diagram, we conclude that rgotry © T = root . root, ®x. Thus
(u,¢,W, 1) is a mediating morphism.

Now for any other mediating morphisio/, v, ¢’, y/) notice thatd’
andy/ are uniquely determined hy. It can be checked that=1t: x, @
X = Xy @ % Is the identity on the second projection; using a property
of extensive categories [2] we get a uniqgue homomorplgism, — Xy
such that’ & ©x = T. O

Example 4.4.Lety: 2 — 2 be the function taking &> 2 and 2— 1. We
give below on the right theRPOs for the squares on the left.

1 1
{K>_1} rYl} {K;_l/"]\r&;l}
{_li_Z}
_ K1 _
1 1}{K}2{ H—1 1

1/V 1
Y
k {K} {K} {K}
0 0
1 1
{K,/ {K.~1} {%Tl} {K,~1}
1 1 1 {—1} 1 {1} 1
{K} {K} {K} {K}

0 0

5 2-categories vs precategories

Other categories which, besid8sing, lack RPOs include the closed
shallow action contextfl1, 12] andbigraph context$15, 7]. The so-
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lution adopted by Leifer [12] and later by Milner [15] is to introduce a
notion of awell-supported precategoyyhere the algebraic structures

at hand are decorated by finite “support sets.” The result is no longer
a category — since composition of arrows is defined only if their sup-
ports are disjoint — but from any such precategory one can generate two
categories which jointly allow the derivation of a bisimulation congru-
ence via dunctorial reactive systeniThese categories are the so-called
track category, where support information is built into the objects, and
the support quotientategory, where arrows are quotiented by the sup-
port structure. The track category has enough RPOs and is mapped to the
support quotient category via a well-behavfadctor, so as to transport
RPOs adequately.

In this section we present a translation from precategoriésdategories.
The main result shows that the LTS derived using precategories and func-
torial reactive systems is identical to the LTS derived ushiRPOs. We
begin with a brief recapitulation of the definitions from [12].

Definition 5.1. A precategoryA consists of the same data as a category.
The composition operatoris, however, a partial function which satisfies

1. forany arrowf : A— B, idgof andf oida are defined and gb f =
f= foidA;

2. foranyf:A—B,g:B—C,h:C— D, (hog)o f is defined iff
ho(go f) is defined and thethog)o f =ho(go f).

Definition 5.2. Let Set; be the category of finite sets. well sup-
ported precategorys a pair (A, |—|), where A is a precategory and
| — | : Arr A — Sets is the so-called support function, satisfying:

1. go f is defined iff|g|N|f| = 0, and ifgo f is defined thengo f| =
glU[f];
2. |ida| = 0.

For anyf : A— B and any injective functiop in Set; the domain of
which containg f| there exists an arrow- f : A— B called thesupport
translationof f by p. The following axioms are to be satisfied.

1. p-ida=ida; 4. p-(gof)=p-gop-f;
2. idjg-f =1 5. (p1opo)- f=p1-(po- f);
3. polf|=p1|f|impliespg- f =p1-f; 6. |p-f|=p|f].
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We illustrate these definitions giving a precategorical definition of
bunches and wiring (viz. §4).

Example 5.3 (Bunches).The precategory of bunch conteXsBun has
objects and arrows as Bung. However, differently fronBung, they are

not taken up to isomorphism here. The support ef (X, charroot) is

X. Compositioncico = (X, charroot): mp — mp of cp: mg — my and

c1: M — np is defined ifXgN Xy = 0 and, if so, we haveX = XgU Xj.
Functions char and root are defined in the obvious way. The identity
arrows are the same asBung. Given an injective functiop: X — Y,

the support translatiop- cis (pX, charp~1, root(idm, +p~1)). It is easy

to verify that this satisfies the axioms of precategories.

The definitions below recall the construction of the track and the sup-
port quotient categories from a well-supported precategory.

Definition 5.4. Thetrack of A is a categor;@ with
e oObjects: pair§A, M) whereA € A andM € Sets;
e arrows: (A;M) L (B,N) wheref: A— Bisin A, M C N and
|f| = N\M.

Composition of arrows is as iA. Observe that the definition df |
ensures that composition is total. We leave it to the reader to check that
the data defines a category (cf. [12]).

Definition 5.5. Thesupport quotientof A is a categoryC with
e Objects: as im;

e arrows:. equivalence classes of arrowsAgfwhere f andg are
equated if there exist a bijectiygesuch thap- f = g.

The support quotient is the category of interest, and it is the underly-
ing category of the reactive system under scrutiny.

Example 5.6 (Bunches).The support quotient o&-Bun is Buny.

There is an obvious functér: C — C, the support-quotienting func-
tor. Henceforward we suppose that the precatedgangas a distinguished
objectl. In the following we use the typewriter font for objects and ar-
rows of C. We make the notational convention that angndf in C are
such thaf (A) = AandF(f) = f.
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Definition 5.7 (The LTS). The LTSFLTS®(C) has
e States: arrowa: 0 — nin C;

e Transitions:a—= dr if and only if there exist, 1, c,d in C with
(F(1),r) €R, F(d) € D, and such that

TN
X v isan IPO.
a\I/I

It is proved in [12] that the support-quotienting functersatisfies
the properties required for the theory of functorial reactive systems [11,
12]. Thus, for instance, if the categofy has enough RPOs, then the
bisimulation onFLTS®(C) is a congruence.

All the theory presented so far can be elegantly assimilated into the
theory of GRPOs. In [12], Leifer predicted instead of precategories, one
could consider a bicategorical notion of RPO in a bicategory of supports.
This is indeed the case, withRPOs being the bicategorical notion of
RPO. However, working with ordinals for support sets we can avoid the
extra complications bicategories as in the casBuwof. It is worth notic-
ing, however, that a bicategory of supports as above anGib&tegory
define below would be biequivalent [20]. In the following, we make use
of a chosen isomorphistp: x — ord(x), as defined in 81.

Definition 5.8 (G-category of Supports). Given a well-supported pre-
categoryA, theG-category of support8 has

e Objects: as in;

e arrows: f: A— Bwheref: A— Bis an arrow ofA and|f| is an
ordinal;

e 2-cells:p: f = gfor p a “structure preserving” support bijection,
Le.p-f=ginA.

Composition is defined as follows. Givdn A — B andg: B — C,
gop f =i2-gopiy-f
where|f| L MHEIL] Jz |g| is the chosen coproduct diagram@nd.

Given an arrowf in A, we usef =t¢- f in B.
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The following theorem guarantees that the LTS generated is the same
as the one generated with the more involved theory of functorial reactive
systems.

Theorem 5.9. FLTS(A) = GTS(B).

Proof. Itis enough to present translations betwe#ROs inB and IPOs
in C which preserve the resulting label in the derived LTS. Suppose that
() below

N me e

(X, pisla)) (Yigl)

\/ p,lx/

(1) (ii)
is a GIPO. Then we claim thdti) above is an IPO (in the following
let N = |I| & |d]). Note that(ii) is commutative since is a structure-
preserving support bijection and theref@(@;-coij-a) =iz-doig-I.
Indeed, suppose thatR M), e, f,g) is a candidate foii). Then we
show that<R, €, fv, g.B,v, 6>. is a candidate fo(i), that is, we need to

definey, 3 andd so that their pasting composite yieldsind that each of
them is a structure-preserving bijection.
Let B represent the following composite

pil e

2l @ [& P22 Jpi-al Uleliz-1] U] 2 1] 1]

and similarly lety andd be respectively

i1teUi 2tg

e 2% |pia-c| = |goel = [elUlg] =" [g @ g

and
- ty tetgt _ iy
[flelol — [flulgl=Igo f|=lizod] —|d|
It is easy to check that the pastingyf3 andd yieldsp. We show thay

is a structure-preserving bijection, the argument for the other morphisms
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is similarly trivial. Sincepiz-c¢ = goewe have(iiteUistg)piz- ¢ = (isteU
ioty) -goeand soy-c=(go&.
Indeed,<R, €, ?, g,B,v, 6> is a candidate fofi). Thus there exists

h: Z — R and 2-cells (structure-preserving support bijectiopsg =
hc, ¢: hd= f andt: gh= id;

From the existence of we can deduce thag| = |g| = 0 and |h| =
0. Note thatt = id since there is only one endofunction énWe can
therefore also deriviel = N andg = g.

(R,N) (Z,N)

TN N
(X.ifal) == (Z,N) — (Voiall]) (RN) ——(Z,N)
(i) (ii)

We also get immediately thditi) above commutes. We show that the
left triangle of(i) commutes, the proof for the right one is similar. From
the definition ofGRPO, we have that id=1cegd « Yy = gd « y which then
implies thatp = y~1. Using the definition o, pioed ete = id Which is
the same as saying that the triangle is commutative.

Uniqueness i easily follows from essential uniquenesifwhich
is in this case the same as uniqueness since there is only one endofunction

on the0).
Going the other way, suppose tl{gtbelow

/(Z, N)r\d / \

L) (Y,M) \ /
a (I,K) |

0 "

is a RPO. Theii) is aGRPO where is

t Utd

Ao (g = Jalulel=Ijuld) 4 T d
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It is trivial to show that thap is structure-preservingp( (Co a) = do

I~). Now consider a candidat&, e, f,g,[,y,0) for (ii) above. Since the
pasting composite of, B andd yields p, we have that;lyli,-g =
ty10i2-g=g. LetV =N\|¢|. Lete =ty ti;-eand f' =t 13is - f.
Then it is easy but tedious to check tH&R,V) €, f’,d') is a candidate
for (i). By assumption, there exists an arrbw (Z,N) — (R,V) which
satisfieshc= €, hd = " andg’h = f’. This can be translated in the now
standard way into a mediating morphism¢, ), T) wheret is again the
unique endofunction on th& Uniqueness again follows. O

Example 5.10 (Bunches)The 2-category of supports of the precategory
A-Bun is Bun. Note that a “structure preserving” support bijection is a
bunch homomorphism. Indeed; (X,chatroot) — (X’,chaf,root) if

X" = pX, chaf = charp~! and root = root(id p~1) which is the same
as saying chat chaf p and root= root (id &p).

6 Conclusion

We have extended our theory GRPOs initiated in previous work in
order to strengthen existing techniques for deriving operational congru-
ences for reduction systems in the presence of non trivial structural con-
gruences. In particular, this paper has shown that previous theories can
be recast using-reactive systems andRPOs at no substantial addi-
tional complexity. Also, we proved that the theory is powerful enough
to handle the examples considered so far in the literature. Therefore, we
believe that it constitutes a natural starting point for future investigations
towards a fully comprehensive theory.

It follows from Theorem 5.9 thab-categories are at least as expres-
sive as well-supported precategories. A natural consideration is whether
a reverse translation may exist. We believe that this is not the case,
as generalz-categories appear to carry more information than precat-
egories.

Acknowledgement. The authors are indebted to the referees for their
helpful comments and suggestions.
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