
B
R

IC
S

R
S

-02-49
N

ygaard
&

W
inskel:

H
O

P
LA

—
A

H
igher-O

rder
P

rocess
Language

BRICS
Basic Research in Computer Science

HOPLA—A Higher-Order Process Language

Mikkel Nygaard
Glynn Winskel

BRICS Report Series RS-02-49

ISSN 0909-0878 December 2002

Copyright c© 2002, Mikkel Nygaard & Glynn Winskel.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/49/

HOPLA—A Higher-Order Process Language

Mikkel Nygaard Glynn Winskel

BRICS∗ Computer Laboratory
University of Aarhus University of Cambridge

Abstract

A small but powerful language for higher-order nondeterministic
processes is introduced. Its roots in a linear domain theory for concur-
rency are sketched though for the most part it lends itself to a more
operational account. The language can be viewed as an extension of
the lambda calculus with a “prefixed sum”, in which types express
the form of computation path of which a process is capable. Its oper-
ational semantics, bisimulation, congruence properties and expressive
power are explored; in particular, it is shown how it can directly en-
code process languages such as CCS, CCS with process passing, and
mobile ambients with public names.

1 Introduction

We present an economic yet expressive language for higher-order nondeter-
ministic processes that we discovered recently in developing a domain theory
for concurrent processes. The language can be given a straightforward oper-
ational semantics, and it is this more operational account we concentrate on
in the paper.

The language is typed. The type of a process describes the possible
(shapes of) computation paths (or runs) the process can perform. Compu-
tation paths may consist simply of sequences of actions but they may also
represent the input-output behaviour of a process. A typing judgement

x1 : P1, . . . , xk : Pk ` t : Q

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

means that a process t yields computation paths in Q once processes with
computation paths in P1, . . . , Pk are assigned to the variables x1, . . . , xk re-
spectively. The types P are built using a “prefixed sum,” products, function
spaces and recursive definition. It is notable that although we can express
many kinds of concurrent processes in the language, the language itself does
not have many features typical of process calculi built-in, beyond that of a
nondeterministic sum and prefix operations.

In general, the language allows processes to be copied and discarded arbi-
trarily. In particular, the language will allow us to write terms which take a
process as argument, copy it and then set those copies in parallel composition
with each other. However some operations are by nature linear in certain
arguments. Linearity, detected in the denotational semantics, translates into
the property of preserving nondeterministic sums.

The operations associated with the prefix-sum type constructor are cen-
tral to the expressiveness of the language. A prefix-sum type has the form
Σα∈Aα.Pα; it describes computation paths in which first an action β ∈ A is
performed before resuming as a computation path in Pβ. The association
between an initial action β and ensuing type Pβ is deliberate; performing an
action should lead to a unique type. The prefix sum is associated with prefix
operations taking a process t of type Pβ to β.t of type Σα∈Aα.Pα, as well as
a prefix match [u > β.x ⇒ t], where u has prefix-sum type, x has type Pβ

and t generally involves the variable x. The term [u > β.x ⇒ t] matches
u against the pattern β.x and passes the results of successful matches for
x on to t. More precisely, prefix match is linear in the argument u so that
the possibly multiple results of successful matches are nondeterministically
summed together.

The language supports an operational semantics and bisimulation. It is
expressive and, as examples, it is easy to translate CCS, a form of CCS
with process passing, and mobile ambients with public names into the lan-
guage. The translated languages inherit bisimulation. Linearity plays a role
in deriving traditional expansion laws for the translations.

The reader may like to look ahead to the operational treatment of the
language in Sects. 3–6 for a fuller description. These sections are essentially
self-contained, with references to the account in Sect. 2 of the denotational
semantics of the language, and how it arose from a process model of Gi-
rard’s linear logic, only to highlight the correspondence to the operational
semantics.

2

2 Denotational semantics

2.1 Presheaf Models

Let P be a small category. The category of presheaves over P, written P̂, is the
category [Pop,Set] with objects the functors from Pop (the opposite category)
to the category of sets and functions, and maps the natural transformations
between them. In our applications, the category P is thought of as consisting
of computation-path shapes where a map e : p → q expresses how the path
p is extended to the path q. A presheaf X ∈ P̂ specifies for a typical path p
the set X(p) of computation paths of shape p, and acts on e : p → q to give
a function X(e) saying how paths of shape q restrict to paths of shape p. In
this way a presheaf can model the nondeterministic branching of a process.
For more information of presheaf models, see [14, 4].

A presheaf category has all colimits and so in particular all sums (co-
products); for any set I, the sum Σi∈IXi of presheaves Xi over P has a
contribution Σi∈IXi(p), the disjoint union of sets, at p ∈ P. The empty sum
is the presheaf ∅ with empty contribution at each p. In process terms, a sum
of presheaves represents a nondeterministic sum of processes.

2.2 A Linear Category of Presheaf Models

Because the presheaf category P̂ is characterised abstractly as the free colimit
completion of P we expect colimit-preserving functors to be useful. Define the
category Lin to consist of small categories P, Q, . . . with maps F : P → Q

the colimit-preserving functors F : P̂ → Q̂. Lin can be understood as a
categorical model of classical linear logic, with the involution of linear logic,
P⊥, given by Pop. The tensor product of P and Q is given by the product of
small categories, P×Q, and the function space from P to Q by Pop ×Q. On
objects P and Q, products (written P&Q) and coproducts are both given by
P+Q, the sum of categories P and Q; the empty category O is a zero object.
While rich in structure, Lin does not support all operations associated with
process languages; since all maps are linear (i.e.. colimit-preserving), when
applied to the inactive process ∅, the result will be ∅. So, in particular, a
prefix operation cannot be interpreted as a map of Lin.

There are (at least) two reasonable responses to this: One is to move to a
model of affine-linear logic where maps are allowed to ignore their arguments
in giving non-trivial output. One such model is the category Aff , where
maps are connected-colimit preserving functors. In [18] we used the category
Aff to interpret an expressive affine-linear process language. Unfortunately,
its operational semantics is proving difficult, and has not yet been extended

3

to higher order.
This leads us to consider a second answer. Following the discipline of

linear logic, suitable nonlinear maps are obtained as linear maps whose do-
main is under an exponential. As for the exponential ! of linear logic, there
are many possible choices—see [18]. One is to interpret !P as the finite-
colimit completion of P. With this understanding of !P, it can be shown that
P̂ with the inclusion functor !P → P̂ is the free filtered colimit completion
of !P—see [15]. It follows that maps !P → Q in Lin correspond, to within

isomorphism, to continuous (i.e., filtered colimit preserving) functors P̂ → Q̂.

2.3 A Cartesian Closed Category of Presheaf Models

Define Cts to be the category consisting of small categories P, Q, . . . as
objects and morphisms F : P → Q the continuous functors F : P̂ → Q̂; they
compose as functors. Clearly Lin is a subcategory of Cts, one which shares
the same objects. We have

Cts(P, Q) ' Lin(!P, Q)

for all small categories P, Q. The category Cts is the coKleisli category of the
comonad based on finite-colimit completions.1 The unit of the corresponding
adjunction is given by maps copy : P → !P of Cts, used to interpret prefixing
below. We can easily characterize those maps in Cts which are in Lin:

Proposition 2.1 Suppose F : P̂ → Q̂ is a functor which preserves filtered
colimits. Then, F preserves all colimits iff F preserves finite coproducts.

In other words a continuous map is linear iff it preserves sums.
There is an isomorphism

!(P & Q) ∼= !P × !Q

making Cts cartesian closed; this immediately allows us to interpret the
simply-typed lambda calculus with pairing in Cts. Products P & Q in Cts
are given as in Lin but now viewing the projections as continuous functors.
The function space P → Q is given by (!P)op × Q.

The category Cts does not have coproducts. However, we can build a
useful sum in Cts with the help of the coproduct of Lin and !. Let (Pα)α∈A

be a family of small categories. Their prefixed sum,

Σα∈Aα.Pα ,

1We are glossing over 2-category subtleties as ! is really a pseudo functor.

4

is based on the coproduct in Lin given by Σα∈A!Pα with corresponding in-
jections inβ : !Pβ → Σα∈Aα.Pα, for β ∈ A. The injections

β.(−) : Pβ → Σα∈Aα.Pα

in Cts, for β ∈ A, are defined to be the compositions β.(−) = inβ ◦ copy. As
the notation suggests, β.(−) is used to interpret prefixing with β.

The construction above satisfies a property analogous to the universal
property of a coproduct. Suppose Fα : Pα → Q are maps in Cts for all
α ∈ A. Then, within Lin, we find a mediating map

F : Σα∈Aα.Pα → Q

determined to within isomorphism such that

F ◦ α.(−) ∼= Fα

for all α ∈ A. Since Lin is a subcategory of Cts, the mediating map F
also belongs to Cts, but here it is not uniquely determined, not even up to
isomorphism. Therefore, the prefixed sum is not a coproduct in Cts, but the
linearity of the mediating map is just what we need for interpreting prefix
match. Consider a prefix match term [u > β.x ⇒ t] where t denotes a map
Fβ : Pβ → Q. We interpret it as the mediating map obtained for Fβ together
with constantly ∅ maps Fα : Pα → Q for α ∈ A different from β, applied to
the denotation of u.

2.4 Rooted Presheaves and Operational Semantics

The category !P has an initial element ⊥, given by the empty colimit, and a
presheaf over !P is called rooted if it has a singleton contribution at ⊥—see
[14]. As an example, the denotation of β.t with t closed is rooted. We can
decompose any presheaf X over !P as a sum of rooted presheaves Σi∈X(⊥)Xi,
each Xi a presheaf over !P. This is the key to the correspondence between the
denotational semantics and the operational semantics of Sect. 4. Judgements

t
β−−→ t′, with t of prefix-sum type Σα∈Aα.Pα and β ∈ A, in the operational

semantics will express that copy [[t′]] is a rooted component of [[t]] restricted to

!Pβ . In fact, derivations of transitions t
β−−→ t′ will be in 1-1 correspondence

with such components.

5

3 A Higher-Order Process Language

The types of the language are given by the grammar

P, Q ::= Σα∈Aα.Pα | P → Q | P & Q | P | µj
~P .~P .

P is drawn from a set of type variables used in defining recursive types; µj
~P .~P

abbreviates µjP1, . . . , Pk.(P1, . . . , Pk) and is interpreted as the j-component,
for 1 ≤ j ≤ k, of the “least” solution (given by a suitable ω-colimit in the
category of small categories and functors) to the defining equations P1 =
P1, . . . , Pk = Pk, in which the expressions P1, . . . , Pk may contain the Pj ’s.

We shall write µ~P .~P as an abbreviation for the k-tuple with j-component
µj

~P .~P.
The constructions of Cts form the basis of a syntax of terms:

t, u ::= x | rec x.t | Σi∈Iti | α.t | [u > α.x ⇒ t] | λx.t | t u | (t, u) | fst t | snd t

In a nondeterministic sum term, Σi∈Iti, the indexing set I may be an arbi-
trary set; we write t1+· · · +tk for a typical finite sum and ∅ when I is empty.
The variable x in the match term [u > α.x ⇒ t] is a binding occurrence and
so binds later occurrences of the variable in the body t. We shall take for
granted an understanding of free and bound variables, and substitution on
raw terms.

Let P1, . . . , Pk, Q be closed type expressions and assume that the variables
x1, . . . , xk are distinct. A syntactic judgement x1 : P1, . . . , xk : Pk ` t : Q

can be interpreted as a map P1 & · · · & Pk → Q in Cts. We let Γ range over
environment lists x1 : P1, . . . , xk : Pk, which we may treat as finite maps from
variables to closed type expressions. The term formation rules are:

Γ(x) = P

Γ ` x : P

Γ, x : P ` t : P

Γ ` rec x.t : P

Γ ` tj : P all j ∈ I

Γ ` Σi∈Iti : P

Γ ` t : Pβ β ∈ A

Γ ` β.t : Σα∈Aα.Pα

Γ ` u : Σα∈Aα.Pα Γ, x : Pβ ` t : Q β ∈ A

Γ ` [u > β.x ⇒ t] : Q

Γ, x : P ` t : Q

Γ ` λx.t : P → Q

Γ ` t : P → Q Γ ` u : P

Γ ` t u : Q

Γ ` t : P Γ ` u : Q

Γ ` (t, u) : P & Q

Γ ` t : P & Q

Γ ` fst t : P

Γ ` t : P & Q

Γ ` snd t : Q

Γ ` t : Pj[µ~P .~P/~P]

Γ ` t : µj
~P .~P

Γ ` t : µj
~P .~P

Γ ` t : Pj [µ~P .~P/~P]

We have a syntactic substitution lemma:

6

Lemma 3.1 Suppose Γ, x : P ` t : Q and Γ ` u : P. Then Γ ` t[u/x] : Q.

The semantic counterpart essentially says that the denotation of t[u/x] is the
functorial composition of the denotations of t and u.

4 Operational Semantics

With actions given by the grammar

a ::= α | u 7→ a | (a,−) | (−, a) ,

the operational rules below define a transition semantics for closed, well-
formed terms:

t[rec x.t/x]
a−−→ t′

rec x.t
a−−→ t′

tj
a−−→ t′

Σi∈Iti
a−−→ t′

j ∈ I

α.t
α−−→ t

u
α−−→ u′ t[u′/x]

a−−→ t′

[u > α.x ⇒ t]
a−−→ t′

t[u/x]
a−−→ t′

λx.t
u 7→a−−−−→ t′

t
u 7→a−−−−→ t′

t u
a−−→ t′

t
a−−→ t′

(t, u)
(a,−)−−−−→ t′

u
a−−→ u′

(t, u)
(−,a)−−−−→ u′

t
(a,−)−−−−→ t′

fst t
a−−→ t′

t
(−,a)−−−−→ t′

snd t
a−−→ t′

In the rule for lambda-abstraction, we must have x : P ` t : Q and ` u : P

for some P, Q.
To show that the rules are type-correct, we assign types to actions a using

a judgement of the form P : a : P′. Intuitively, after performing the action a,
what remains of a computation path in P is a computation path in P′. For
β ∈ A we take Σα∈Aα.Pα : β : Pβ and inductively

` u : P Q : a : P′

P → Q : u 7→ a : P′
P : a : P′

P & Q : (a,−) : P′
Pj[µ~P .~P/~P] : a : P′

µj
~P .~P : a : P′

—with a symmetric rule for (−, a). Notice that in P : a : P′, the type P′ is
unique given P and a.

Proposition 4.1 Suppose ` t : P. If t
a−−→ t′ then P : a : P′ and ` t′ : P′.

7

We interpret P : a : P′ as a map P → !P′ of Lin by letting the judge-
ment for β above denote restriction to !Pβ , and inductively interpreting
u 7→ a, (a,−), (−, a) as the denotation of a precomposed with the map given
by application to [[u]], and first and second projections, respectively. The
rules are then sound in the sense that if t

a−−→ t′ then (identifying a term
with its denotation) copy t′ is a rooted component of a(t). In fact, there is a
1-1 correspondence between derivations with conclusion t

a−−→ t′, for some t′,
and the rooted components of a(t), so the rules are also complete.

As a side-remark, the operational rules incorporate evaluation in the fol-
lowing sense: Let values v be given by v ::= α.t | λx.t | (t, u). Then we can
define a nondeterministic evaluation-relation ⇓ such that

Proposition 4.2 If d is a derivation of t
a−−→ t′, then there is a value v such

that t ⇓ v and v
a−−→ t′ by a subderivation of d.

5 Equivalences

After introducing some notation regarding relations, we explore four stan-
dard notions of equivalence for our language. A relation R between typing
judgements is said to respect types if, whenever R relates

Γ1 ` t1 : P1 and Γ2 ` t2 : P2 ,

we have syntactic identities Γ1 ≡ Γ2 and P1 ≡ P2. Below, all our relations
will respect types, so we’ll often suppress the typing information, writing just
t1 R t2.

Suppose Γ is an environment list

x1 : P1, . . . , xk : Pk .

A Γ-closure is a substitution [~u/~x] such that for 1 ≤ j ≤ k, ` uj : Pj.
If R relates only closed terms, we write Ro for its open extension, relating
Γ ` t1 : P and Γ ` t2 : P if for all Γ-closures [~u/~x] we have t1[~u/~x] R t2[~u/~x].

We’ll write Rc for the restriction of a type-respecting relation R to closed
terms.

For a type-respecting relation R we write R also for the induced relation
on actions, given as the least congruence on actions so that u1 7→ a R u2 7→ a
if u1 R u2.

8

5.1 Bisimulation

A type-respecting relation R on closed terms is a bisimulation [19, 21] if the
following holds. If t1 R t2, then

1. if t1
a−−→ t′1, then t2

a−−→ t′2 for some t′2 such that t′1 R t′2;

2. if t2
a−−→ t′2, then t1

a−−→ t′1 for some t′1 such that t′1 R t′2.

Bisimilarity, ∼, is the largest bisimulation.

Theorem 5.1 Bisimilarity is a congruence.

Proof. We use Howe’s method [11] as adapted to a typed setting by Gordon
[9]. In detail, we define the precongruence candidate ∼̂ as follows:

x ∼o w

x ∼̂ w

t ∼̂ t′ rec x.t′ ∼o w

rec x.t ∼̂ w

tj ∼̂ t′j all j ∈ I Σi∈It
′
i ∼o w

Σi∈Iti ∼̂ w

t ∼̂ t′ α.t′ ∼o w

α.t ∼̂ w

t ∼̂ t′ u ∼̂ u′ [u′ > α.x ⇒ t′] ∼o w

[u > α.x ⇒ t] ∼̂ w

t ∼̂ t′ λx.t′ ∼o w

λx.t ∼̂ w

t ∼̂ t′ u ∼̂ u′ t′ u′ ∼o w

t u ∼̂ w

t ∼̂ t′ u ∼̂ u′ (t′, u′) ∼o w

(t, u) ∼̂ w

t ∼̂ t′ fst t′ ∼o w

fst t ∼̂ w

t ∼̂ t′ snd t′ ∼o w

snd t ∼̂ w

Following Howe we now have: (i) ∼̂ is reflexive; (ii) ∼̂ is operator respecting;
(iii) ∼o⊆∼̂; (iv) if t ∼̂ t′ and t′ ∼o w then t ∼̂ w; (v) if t ∼̂ t′ and u ∼̂ u′

then t[u/x] ∼̂ t′[u′/x] whenever the substitutions are well-formed; (vi) since
∼ is an equivalence relation, the transitive closure ∼̂+ of ∼̂ is symmetric,
and therefore, so is ∼̂+

c .
Now we just need to show that ∼̂c is a simulation, because then ∼̂+

c is a
bisimulation by (vi), and so ∼̂+

c ⊆∼. In particular, ∼̂c⊆∼. By (i) and (v), it
follows that ∼̂⊆∼o, and so by (iii), ∼̂=∼o. Hence, ∼ is a congruence because
it is an equivalence relation and by (ii) it is operator respecting.

We prove that ∼̂c is a simulation by induction on the derivations of the
operational semantics and using (iv-v). In fact, we need an induction hy-
pothesis slightly stronger than one might expect:

if t1 ∼̂c t2 and t1
a1−−→ t′1, then for all a2 with a1 ∼̂c a2 we have

t2
a2−−→ t′2 for some t′2 such that t′1 ∼̂c t′2.

By (i), a ∼̂c a for all actions a, from which it follows that ∼̂c is a simulation.
2

9

Proposition 5.2 The following pairs of closed, well-formed terms are bisim-
ilar:

1. rec x.t ∼ t[rec x.t/x]

2. [α.u > α.x ⇒ t] ∼ t[u/x]
3. [β.u > α.x ⇒ t] ∼ ∅ if α 6= β
4. [Σi∈Iui > α.x ⇒ t] ∼ Σi∈I [ui > α.x ⇒ t]
5. [u > α.x ⇒ Σi∈Iti] ∼ Σi∈I [u > α.x ⇒ ti]

6. (λx.t) u ∼ t[u/x]
7. λx.(t x) ∼ t
8. λx.(Σi∈Iti) ∼ Σi∈I(λx.ti)
9. (Σi∈Iti) u ∼ Σi∈I(ti u)

10. fst(t, u) ∼ t
11. snd(t, u) ∼ u
12. t ∼ (fst t, snd t)
13. (Σi∈Iti, Σi∈Iui) ∼ Σi∈I(ti, ui)
14. fst(Σi∈Iti) ∼ Σi∈I(fst ti)
15. snd(Σi∈Iti) ∼ Σi∈I(snd ti)

In each case t1 ∼ t2, we can prove that the identity relation extended by the
pair (t1, t2) is a bisimulation, so the correspondence is very tight, as is to be
expected since in the denotational semantics, we have [[t1]] ∼= [[t2]].

Proposition 5.3 Let t1, t2 be closed terms of type P → Q. The following
are equivalent:

1. t1 ∼ t2;

2. t1 u ∼ t2 u for all closed terms u of type P;

3. t1 u1 ∼ t2 u2 for all closed terms u1 ∼ u2 of type P.

5.2 Applicative Bisimulation

A type-respecting relation R on closed terms is an applicative bisimulation
[1] if the following holds:

1. If ` t1 R t2 : Σα∈Aα.Pα, we have

(a) if t1
β−−→ t′1, then t2

β−−→ t′2 for some t′2 such that ` t′1 R t′2 : Pβ;

(b) if t2
β−−→ t′2, then t1

β−−→ t′1 for some t′1 such that ` t′1 R t′2 : Pβ.

2. If ` t1 R t2 : P → Q then for all ` u : P we have ` t1 u R t2 u : Q.

10

3. If ` t1 R t2 : P & Q then ` fst t1 R fst t2 : P and ` snd t1 R snd t2 : Q.

4. If ` t1 R t2 : µj
~P .~P then ` t1 R t2 : Pj[µ~P .~P/~P].

Applicative bisimilarity, ∼A, is the largest applicative bisimulation. We have

Proposition 5.4 Bisimilarity and applicative bisimilarity coincide.

Proof. Since ∼ is a congruence, it follows that ∼ is an applicative bisimula-
tion, and so ∼⊆∼A. Conversely, we can show that ∼A is a bisimulation by
structural induction on (typing derivations of) actions a, and so ∼A⊆∼. 2

5.3 Higher Order Bisimulation

A type-respecting relation R on closed terms is a higher order bisimulation
[23] if the following holds: If t1 R t2, then

1. if t1
a1−−→ t′1, then t2

a2−−→ t′2 for some a2, t
′
2 such that a1 R a2 and

t′1 R t′2;

2. if t2
a2−−→ t′2, then t1

a1−−→ t′1 for some a1, t
′
1 such that a1 R a2 and

t′1 R t′2.

Higher order bisimilarity, ∼H , is the largest higher order bisimulation.

Proposition 5.5 Bisimilarity and higher order bisimilarity coincide.

Proof. Clearly, bisimilarity is a higher order bisimulation so that ∼⊆∼H . For
the converse, we observe that the proof of Theorem 5.1 goes through if we
replace ∼ by ∼H , and so ∼H is a congruence. It then follows by structural
induction on actions a that ∼H is a bisimulation, so that ∼H⊆∼. 2

5.4 Contextual Equivalence

Let the type 1 be given as •.O where O is the empty prefixed sum. If ` t : 1
we’ll write t

•−−→ if there exists a t′ such that t
•−−→ t′. Two terms Γ ` t1 : P

and Γ ` t2 : P are said to be contextually equivalent [16, 8] if C(t1)
•−−→ iff

C(t2)
•−−→ for all contexts C such that C(t1), C(t2) are closed and have type

1.
The following two terms can be shown contextually equivalent:

t1 ≡ α.∅ + α.β.∅ and t2 ≡ α.β.∅.

However, they are clearly not bisimilar, so contextual equivalence fails to
take account of the nondeterministic branching of processes.

11

6 Examples

The higher-order language is quite expressive as the following examples show.

6.1 CCS

As in CCS [21], let N be a set of names and N̄ the set of complemented names
{n̄ | n ∈ N}. Let l range over labels L = N ∪ N̄ , with complementation
extended to L by taking ¯̄n = n, and let τ be a distinct label. We can then
specify a type P as

P = τ.P + Σn∈Nn.P + Σn∈N n̄.P .

Below, we let α range over L ∪ {τ}. The terms of CCS can be expressed in
the higher-order language as the following terms of type P:

[[x]] ≡ x [[rec x.P]] ≡ rec x.[[P]]
[[α.P]] ≡ α.[[P]] [[Σi∈IPi]] ≡ Σi∈I [[Pi]]
[[P |Q]] ≡ Par [[P]] [[Q]] [[P \ S]] ≡ ResS [[P]]
[[P [f]]] ≡ Relf [[P]]

Here, Par : P → (P → P), ResS : P → P, and Relf : P → P are abbreviations
for the following recursively defined processes:

Par ≡ rec p.λx.λy.Σα[x > α.x′ ⇒ α.(p x′ y)] +
Σα[y > α.y′ ⇒ α.(p x y′)] +
Σl[x > l.x′ ⇒ [y > l̄.y′ ⇒ τ.(p x′ y′)]]

ResS ≡ rec r.λx.Σα6∈(S∪S̄)[x > α.x′ ⇒ α.(r x′)]
Relf ≡ rec r.λx.Σα[x > α.x′ ⇒ f(α).(r x′)]

Proposition 6.1 If P
α−−→ P ′ is derivable in CCS then [[P]]

α−−→ [[P ′]] in the
higher-order language.

Conversely, if [[P]]
a−−→ t′ in the higher-order language, then a ≡ α and

t′ ≡ [[P ′]] for some α, P ′ such that P
α−−→ P ′ according to CCS.

It follows that the translations of two CCS terms are bisimilar in the general
language iff they are strongly bisimilar in CCS.

We can recover the expansion law for general reasons. Write P |Q for the
application Par P Q, where P and Q are terms of type P. Suppose

P ∼ ΣαΣi∈I(α)α.Pi and Q ∼ ΣαΣj∈J(α)α.Qj .

12

Using Proposition 5.2 items 1 and 6, then items 2-4, we get

P |Q ∼ Σα[P > α.x′ ⇒ α.(x′|Q)] +
Σα[Q > α.y′ ⇒ α.(P |y′)] +
Σl[P > l.x′ ⇒ [Q > l̄.y′ ⇒ τ.(x′|y′)]]

∼ ΣαΣi∈I(α)α.(Pi|Q) +
ΣαΣj∈J(α)α.(P |Qj) +
ΣlΣi∈I(l),j∈J(l̄)τ.(Pi|Qj) .

6.2 Higher-Order CCS

In [10], Hennessy considers a language like CCS but where processes are
passed at channels C; the language can be seen as an extension of Thomsen’s
CHOCS [23]. For a translation into our language, we follow Hennessy in
defining types that satisfy the equations

P = τ.P + Σc∈Cc!.C + Σc∈Cc?.F C = P & P F = P → P .

We are chiefly interested in the parallel composition of processes, ParP,P

of type P & P → P. But parallel composition is really a family of mutu-
ally dependent operations also including components such as ParF,C of type
F & C → P to say how abstractions compose in parallel with concretions
etc. All these components can be tupled together in a product and parallel
composition defined as a simultaneous recursive definition whose component
at P & P → P satisfies

P |Q = Σα[P > α.x ⇒ α.(x|Q)] +
Σα[Q > α.y ⇒ α.(P |y)] +
Σc[P > c?.f ⇒ [Q > c!.p ⇒ τ.((f fst p)| snd p)]] +
Σc[P > c!.p ⇒ [Q > c?.f ⇒ τ.(snd p|(f fst p))]] ,

where, e.g., P |Q abbreviates ParP,P (P, Q). In the summations c ∈ C and α
ranges over c!, c?, τ .

The bisimulation induced on higher-order CCS terms is perhaps the one
to be expected; a corresponding bisimulation relation is defined like an ap-
plicative bisimulation but restricted to the types of processes P, concretions
C, and abstractions F.

6.3 Mobile Ambients with Public Names

We can translate the Ambient Calculus with public names [2] into the higher-
order language, following similar lines to the process-passing language above.
Assume a fixed set of ambient names n, m, . . . ∈ N . Following [3], the syntax

13

of ambients is extended beyond processes (P) to include concretions (C) and
abstractions (F):

P ::= ∅ | P |P | rep P | n[P] | in n.P | out n.P | open n!.P |
τ.P | mvin n!.C | mvout n!.C | open n?.P | mvin n?.F | x

C ::= (P, P) F ::= λx.P .

The notation for actions departs a little from that of [3]. Here some ac-
tions are marked with ! and others with ?—active (or inceptive) actions are
marked by ! and passive (or receptive) actions by ?. We say actions α and β
are complementary iff one has the form open n! or mvin n! while the other
is open n? or mvin n? respectively. Complementary actions can synchronise
together to form a τ -action. We adopt a slightly different notation for con-
cretions ((P, R) instead of 〈P 〉R) and abstractions (λx.P instead of (x)P) to
make their translation into the higher-order language clear.

Types for ambients are given recursively by (n ranges over N):

P = τ.P + Σnin n.P + Σnout n.P + Σnopen n!.P + Σnmvin n!.C +
Σnmvout n!.C + Σnopen n?.P + Σnmvin n?.F

C = P & P F = P → P .

The eight components of the prefixed sum in the equation for P correspond to
the eight forms of ambient actions τ , in n, out n, open n!, mvin n!, mvout n!,
open n? and mvin n?. We obtain the prefixing operations as injections into
the appropriate component of the prefixed sum P.

Parallel composition is really a family of operations, one of which is a
binary operation between processes but where in addition there are parallel
compositions of abstractions with concretions, and even abstractions with
processes and concretions with processes. The family of operations

(−|−) : F & C → P, (−|−) : F & P → F, (−|−) : C & P → C,
(−|−) : C & F → P, (−|−) : P & F → F, (−|−) : P & C → C

are defined in a simultaneous recursive definition:

Processes in parallel with processes:

P |Q = Σα[P > α.x ⇒ α.(x|Q)] + Σα[Q > α.y ⇒ α.(P |y)] +
Σn[P > open n!.x ⇒ [Q > open n?.y ⇒ τ.(x|y)]] +
Σn[P > open n?.x ⇒ [Q > open n!.y ⇒ τ.(x|y)]] +
Σn[P > mvin n?.f ⇒ [Q > mvin n!.p ⇒ τ.((f fst p)| snd p)]] +
Σn[P > mvin n!.p ⇒ [Q > mvin n?.f ⇒ τ.(snd p|(f fst p))]] .

Abstractions in parallel with concretions: F |C = (F fst C)| snd C.

14

Abstractions in parallel with processes: F |P = λx.((F x)|P).

Concretions in parallel with processes: C|P = (fst C, (snd C|P)).

The remaining cases are given symmetrically. Processes P , Q of type P will—
up to bisimilarity—be sums of prefixed terms, and by Proposition 5.2, their
parallel composition satisfies the obvious expansion law.

Ambient creation can be defined recursively in the higher-order language:

m[P] = [P > τ.x ⇒ τ.m[x]] +
Σn[P > in n.x ⇒ mvin n!.(m[x], ∅)] +
Σn[P > out n.x ⇒ mvout n!.(m[x], ∅)] +
[P > mvout m!.p ⇒ τ.(fst p|m[snd p])] +
open m?.P + mvin m?.λy.m[P |y] .

The denotations of ambients are determined by their capabilities: an ambi-
ent m[P] can perform the internal (τ) actions of P , enter a parallel ambient
(mvin n!) if called upon to do so by an in n-action of P , exit an ambient n
(mvout n!) if P so requests through an out n-action, be exited if P so requests
through an mvout m!-action, be opened (open m?), or be entered by an am-
bient (mvin m?); initial actions of other forms are restricted away. Ambient
creation is at least as complicated as parallel composition. This should not
be surprising given that ambient creation corresponds intuitively to putting
a process behind (so in parallel with) a wall or membrane which if unopened
mediates in the communications the process can do, converting some actions
to others and restricting some others away. The tree-containment structure
of ambients is captured in the chain of open m?’s that they can perform.

By the properties of prefix match (Proposition 5.2, items 2-4), there is
an expansion theorem for ambient creation. For a process P with P ∼
ΣαΣi∈I(α)α.Pi, where α ranges over atomic actions of ambients,

m[P] ∼ Σi∈I(τ)τ.m[Pi] +
ΣnΣi∈I(in n)mvin n!.(m[Pi], ∅) +
ΣnΣi∈I(out n)mvout n!.(m[Pi], ∅) +
Σi∈I(mvout m!)τ.(fst Pi|m[snd Pi]) +
open m?.P + mvin m?.(λy.m[P |y]) .

15

7 Discussion

Matthew Hennessy’s work on domain models of concurrency [10] is analogous
to the domain theory we describe; our use of presheaf categories, functor
categories of the form [Pop,Set] for a category P, is mirrored in Hennessy’s
work by domains of the form [Pop, 2] for a partial order P (here 2 is the
partial order 0 < 1). In this sense Hennessy’s work anticipates the path-
based domain theory used here.

Flemming Nielson’s Typed Parallel Language (TPL) [17] is essentially a
juxtaposition of value-passing CCS and simply-typed lambda calculus. Our
language gains considerably in simplicity by integrating evaluation and tran-
sition semantics. The focus of TPL is a static type system in which processes
are assigned a representation of their possible future communication possi-
bilities, with no notion of causality. In contrast, our type system (which is
also static) reflects that the capabilities of a process may change over time.

Andrew Gordon uses transition semantics and bisimulation to reason
about the lambda calculus [9]. Our transitions correspond roughly to those of
Gordon’s “active” types, integrating evaluation and observation. “Passive”
types include function space, for which Gordon uses transitions of the form

t
@u−−−→ t u (where, in our notation, t has type P → Q and u has type P).

Such transitions have no counterpart in our semantics, because they would
destroy the correspondence between derivations in the operational semantics
and rooted components in the presheaf model.

Every presheaf category possesses a notion of bisimulation, derived from
open maps [13, 14]. Open maps are a generalization of functional bisimu-
lations, or zig-zag morphisms, known from transition systems. Presheaves
over P are open-map bisimilar iff there is a span of surjective open maps
between them. The maps of Lin and Aff preserve open maps and so open-
map bisimulation [7, 4], giving congruence results for free when a process
language is interpreted in these categories. Interestingly, although the op-
erational bisimulation of Park/Milner is a congruence for the higher-order
language, maps of Cts need not preserve open maps. This suggests that one
should look at other notions of open map; in fact, as shown in [7], to every
comonad T on Lin there is a corresponding notion of “T -open map”, and
thus a notion of “T -bisimulation”. In the case of the exponential !, the corre-
sponding !-bisimulation degenerates into isomorphism, but there are models
where !-bisimulation and open-map bisimulation coincide, and one may hope
to recover operational bisimulation as !-bisimulation for some choice of ex-
ponential (or expose it as a union of such bisimulations). In fact, it appears
that the correspondence between the denotational and operational semantics
can be proved abstractly, depending only on properties of the prefixed sum,

16

so that it holds also for other choices of exponential.
The language has no distinguished invisible action τ , so there is the is-

sue of how to support more abstract operational equivalences such as weak
bisimulation, perhaps starting from [5].

Work is in progress on extending the idea of prefixed sum to include name-
generation as in Milner’s π-calculus. The π-calculus already has a presheaf
semantics [6] but it has not been extended to higher order (see [22] for an
operational extension). We hope to be able to link up with the work on the
ν-calculus by Pitts and Stark [20] and Jeffrey and Rathke [12].

Acknowledgments. We thank the encyclopaedic Andy Pitts for helpful
advice. Part of this paper was prepared during a pleasant visit of MN to
DISI—the people there are thanked for their hospitality.

References

[1] S. Abramsky. The lazy lambda calculus. In D. Turner (ed): Research Topics
in Functional Programming. Addison-Wesley, 1990.

[2] L. Cardelli and A. D. Gordon. Anytime, anywhere. Modal logics for mobile
ambients. In Proc. POPL’00.

[3] L. Cardelli and A. D. Gordon. A commitment relation for the ambient
calculus. Note. October 6th, 2000.

[4] G. L. Cattani. Presheaf Models for Concurrency. BRICS Dissertation Series
DS-99-1, 1999.

[5] G. L. Cattani, M. Fiore, and G. Winskel. Weak bisimulation and open maps.
In Proc. LICS’99.

[6] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the π-calculus.
In Proc. CTCS’97, LNCS 1290.

[7] G. L. Cattani and G. Winskel. Profunctors, open maps and bisimulation.
Manuscript, 2000.

[8] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients.
In Proc. FoSSaCS’99.

[9] A. D. Gordon. Bisimilarity as a theory of functional programming. In Proc.
MFPS’95, ENTCS 1.

17

[10] M. Hennessy. A fully abstract denotational model for higher-order processes.
Information and Computation, 112(1):55–95, 1994.

[11] D. J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124(2):103–112, 1996.

[12] A. Jeffrey and J. Rathke. Towards a theory of bisimulation for local names.
In Proc. LICS’99.

[13] A. Joyal and I. Moerdijk. A completeness theorem for open maps. Annals
of Pure and Applied Logic, 70:51–86, 1994.

[14] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Infor-
mation and Computation, 127:164–185, 1996.

[15] G. M. Kelly. Basic concepts of enriched category theory. London Math. Soc.
Lecture Note Series 64, CUP, 1982.

[16] J. H. Morris. Lambda-Calculus Models of Programming Languages. PhD
thesis, MIT, December 1968.

[17] F. Nielson. The typed λ-calculus with first-class processes. In Proc.
PARLE’89, LNCS 366.

[18] M. Nygaard and G. Winskel. Linearity in process languages. In Proc.
LICS’02.

[19] D. Park. Concurrency and automata on infinite sequences. In Proc. 5th GI
Conference, LNCS 104, 1981.

[20] A. M. Pitts and I. D. B. Stark. Observable properties of higher order func-
tions that dynamically create local names, or: What’s new? In Proc.
MFCS’93, LNCS 711.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[22] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1992.

[23] B. Thomsen. A calculus of higher order communicating systems. In Proc.
POPL’89.

18

Recent BRICS Report Series Publications

RS-02-49 Mikkel Nygaard and Glynn Winskel. HOPLA—A Higher-
Order Process Language. December 2002. 18 pp. Appears
in Brim, Jan čar, Křetı́nský and Antonı́n, editors, Concurrency
Theory: 13th International Conference, CONCUR ’02 Proceed-
ings, LNCS 2421, 2002, pages 434–448.

RS-02-48 Mikkel Nygaard and Glynn Winskel.Linearity in Process Lan-
guages. December 2002. 27 pp. Appears in Plotkin, editor,
Seventeenth Annual IEEE Symposium on Logic in Computer
Science, LICS ’02 Proceedings, 2002, pages 433–446.

RS-02-47 Zolt́an Ésik. Extended Temporal Logic on Finite Words and
Wreath Product of Monoids with Distinguished Generators. De-
cember 2002. 16 pp. To appear in6th International Conference,
Developments in Language Theory, DLT ’02 Revised Papers,
LNCS, 2002.

RS-02-46 Zolt́an Ésik and Hans Leiß. Greibach Normal Form in Alge-
braically Complete Semirings. December 2002. 43 pp. An ex-
tended abstract appears in Bradfield, editor,European Associ-
ation for Computer Science Logic: 16th International Workshop,
CSL ’02 Proceedings, LNCS 2471, 2002, pages 135–150.

RS-02-45 Jesper Makholm Byskov. Chromatic Number in Time
O(2.4023n) Using Maximal Independent Sets. December 2002.
6 pp.

RS-02-44 Zolt́an Ésik and Zoltán L. Németh. Higher Dimensional Au-
tomata. November 2002. 32 pp. A preliminary version appears
under the title Automata on Series-Parallel Biposetsin Kuich,
Rozenberg and Salomaa, editors,5th International Conference,
Developments in Language Theory, DLT ’01 Revised Papers,
LNCS 2295, 2001, pages 217–227. This report supersedes the
earlier BRICS report RS-01-24.

RS-02-43 Mikkel Christiansen and Emmanuel Fleury. Using IDDs for
Packet Filtering. October 2002. 25 pp.

RS-02-42 Luca Aceto, Jens A. Hansen, Anna Inǵolfsdóttir, Jacob
Johnsen, and John Knudsen. Checking Consistency of Pedi-
gree Information is NP-complete (Preliminary Report). October
2002. 16 pp.

