
B
R

IC
S

R
S

-02-48
N

ygaard
&

W
inskel:

Linearity
in

P
rocess

Languages

BRICS
Basic Research in Computer Science

Linearity in Process Languages

Mikkel Nygaard
Glynn Winskel

BRICS Report Series RS-02-48

ISSN 0909-0878 December 2002

Copyright c© 2002, Mikkel Nygaard & Glynn Winskel.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/48/

Linearity in Process Languages

Mikkel Nygaard Glynn Winskel

BRICS∗ Computer Laboratory
University of Aarhus University of Cambridge

Abstract

The meaning and mathematical consequences of linearity (manag-
ing without a presumed ability to copy) are studied for a path-based
model of processes which is also a model of affine-linear logic. This
connection yields an affine-linear language for processes, automati-
cally respecting open-map bisimulation, in which a range of process
operations can be expressed. An operational semantics is provided
for the tensor fragment of the language. Different ways to make as-
semblies of processes lead to different choices of exponential, some of
which respect bisimulation.

1 Path-based models of processes

In distributed computation it can be hard or impossible for a process to
copy a process, while it is generally easy for a process to ignore another
process. For this reason an operation on processes associated with distributed
computation often has the following property: a computation path of the
process arising from the application of the operation to an input process has
resulted from at most one computation path of the input process. As we will
see, this property expresses that the operation is an affine linear map within
a model of linear logic, a fact which carries many consequences.

This article presents a model of processes based on computation paths
and so can make precise the sense in which many process operations are
associated with linear maps, investigates the consequences of linearity for
the important equivalence of bisimulation, and delineates the boundaries of
linearity with respect to one, fairly broad, mathematical model, in which
processes are represented as presheaves.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

Of course some process operations do involve sending and copying code,
which can give rise to maps which are not linear. The presheaf model exposes
how different degrees of copying lead to different kinds of nonlinear maps,
some respecting bisimulation, others not.

Consider processes which, like those of CCS [17] and CSP [10], can per-
form simple atomic actions, one at a time, among which might be actions of
synchronisation. An old idea is to represent the nondeterministic behaviour
of such a process as a “collection” of the computation paths it can perform.
The trace model [10] and tree model [16] of processes are based on different
ideas of what this means. A trace set of a process simply expresses whether
or not a finite sequence of actions, a trace, is possible for the process. A tree
expresses not only what paths are present but also how paths are subpaths,
or restrictions, of others, thus keeping track of nondeterministic branching.
This data, what paths are present and how they restrict to smaller paths,
is precisely that caught in a presheaf over a category in which the objects
are path shapes and the maps express how one path shape can extend to
another. In the category of all such presheaves we can view the tree as a
colimit of its paths—another kind of “collection” of its paths.

To illustrate the idea, suppose that actions are drawn from some alphabet
L, and consider processes whose computation paths have the shape of strings
of actions, so members of L∗. The substring ordering ≤ makes L∗ a partial
order, and so a category with an arrow from s to t precisely when s ≤ t.
A presheaf over L∗ is a functor from the opposite category (L∗)op, where
all the arrows are reversed, to the category of sets and functions Set. When
thinking of a presheaf X as representing a process, for a string s, the set X(s)
is the set of computation paths of shape s that the process can perform, and,
when s ≤ t, the function X(s, t) : X(t) → X(s) tells how paths of shape t
restrict to subpaths of shape s.

Suppose that we replace the category of sets used in the definition of
presheaves by the simple subcategory 2, consisting of the empty set, ∅, and
the singleton set, 1, with the only non-identity map being ∅ ⊆ 1. A functor
X from (L∗)op to 2 is the same as a monotonic function from the reverse order
(L∗)op to the order 2, so that if s ≤ t then X(t) ≤ X(s). When thinking of
X as representing a process, X(s) = 1 means that the process can perform
a path of shape s while X(s) = ∅ means that it can’t. If X(t) = 1 and s ≤ t,
then X(s) = 1. The functor X is a characteristic function for a trace set.

So trees and trace sets arise as variants of a common idea, that of rep-
resenting a process as a generalised characteristic function, in the form of a
functor from path shapes to measures of the extent to which the path shapes
can be realised by the process.

In what follows, we want to broaden computation paths to have more

2

general shapes than sequences of atomic actions, to allow actions to occur
concurrently in a computation path, and for individual actions to have a
more complicated structure. Later on, processes will be allocated types; the
type of a process will specify the kind of computation path shapes it can
perform.

2 Processes as presheaves

Let P be a small category. The category of presheaves over P, written P̂, is the
category [Pop,Set] with objects the functors from Pop to the category of sets,
and maps the natural transformations between them. In our applications, P
is thought of as consisting of computation-path shapes where a map e : p → q
expresses how p is extended to q.

A presheaf category has all limits and colimits given pointwise, at a par-
ticular object, by the corresponding limits or colimits of sets. In particular,
a presheaf category has all sums (coproducts) of presheaves; the sum Σi∈IXi

of presheaves Xi over P has a contribution Σi∈IXi(p), the disjoint union of
sets, at p ∈ P. The empty sum of presheaves is the presheaf ∅ with empty
contribution at each p ∈ P. In process terms, a sum of presheaves represents
a nondeterministic sum of processes.

2.1 A linear category of presheaf models

A category of presheaves, P̂, is accompanied by the Yoneda embedding, a
functor yP : P → P̂, which fully and faithfully embeds P in P̂. For every
object p of P, the Yoneda embedding yields yP(p) = P(−, p). Presheaves
isomorphic to images of objects of P under the Yoneda embedding are called
representables.

Via the Yoneda embedding we can regard P essentially as a full subcate-
gory of P̂. Moreover, P̂ is characterized (up to equivalence of categories) as
the free colimit completion of P. In other words, yP satisfies the universal
property that for any functor F : P → E , where E is a category with all co-
limits, there is a colimit-preserving functor G : P̂ → E , determined to within
isomorphism, such that F ∼= G ◦ yP—see e.g. [15], p. 43:

P
yP //

F

∼=

&&LLLLLLLLLLLLL P̂

G

��

E

3

The proof rests on the fact that any presheaf is a colimit of representables.
We will use an “inner product” notation and describe G above as F · −.

In particular, we can take E to be a presheaf category Q̂. As the universal
property suggests, colimit-preserving functors between presheaf categories
are useful. Define the category Lin to consist of small categories P, Q, . . .
with maps G : P → Q the colimit-preserving functors P̂ → Q̂.

By the universal property, colimit-preserving functors G : P̂ → Q̂ cor-
respond to within isomorphism to functors F : P → Q̂, and such functors
are in 1-1 correspondence with profunctors F̄ : P −7→ Q. Recall that the
category of profunctors from P to Q, written Prof(P, Q), is the functor cate-

gory [P×Qop,Set], which clearly equals the category of presheaves ̂Pop × Q,

and is isomorphic to the functor category [P, Q̂]. We thus have the chain of
equivalences:

Lin(P, Q) ' [P, Q̂] ∼= Prof(P, Q) = ̂Pop × Q .

The more symmetric, relational presentation via profunctors exposes an invo-
lution central in understanding Lin as a categorical model of classical linear
logic. The involution of linear logic, P⊥, on an object P, is given by Pop;
clearly presheaves over Pop ×Q correspond to presheaves over (Qop)op ×Pop,
showing how maps G : P → Q correspond to maps G⊥ : Qop → Pop in Lin.
The tensor product of P and Q is given by the product of small categories
P × Q and the function space from P to Q by Pop × Q. On objects P and
Q, products (written P & Q) and coproducts are both given by P + Q, the
disjoint juxtaposition of P and Q. As for the exponential ! of linear logic,
there’s room for choice—see Section 7.

Linear maps preserve colimits. The colimit of the empty diagram is ∅, to
be thought of as a nil process, which is unable to perform any computation
path. So linear maps, unlike many process operations, always send the nil
process to the nil process. We could extend to maps from !P to Q, for objects
P and Q in Lin, but by the properties of the exponential, this would allow
arbitrary copying of the argument process. All we often need is to allow
maps to ignore their arguments and this can be got much more cheaply, by
moving to a model of affine linear logic.

2.2 An affine-linear category of presheaf models

Many operations associated with process languages do not preserve sums,
so arbitrary colimits. Prefixing operations only preserve connected colimits,
that is, colimits of nonempty connected diagrams. Prefixing operations derive
from the functor b−c : P̂ → P̂⊥. The category P⊥ comprises P together with

4

a new initial object ⊥. The functor b−c adjoins a “root” to a presheaf X in

P̂ in the sense that bXc(p) is a copy of X(p) for any p in P, while bXc(⊥) is
a singleton set {∗}, the new root being ∗; the restriction maps are extended

so that restriction to ⊥ sends elements to ∗. A map from X to Y in P̂ is sent
to its obvious extension from bXc to bY c in P̂⊥. Presheaves that to within
isomorphism can be obtained as images under b−c are called rooted [12].

Proposition 2.1 Any presheaf Y in P̂⊥ has a decomposition as a sum of
rooted presheaves Y ∼= Σi∈Y (⊥)bYic, where, for i ∈ Y (⊥), the presheaf Yi in

P̂ is, to within isomorphism, given as

Yi(p) = {x ∈ Y (p) | (Y !p)x = i}
where !p is the unique arrow ⊥ → p in P⊥.

Intuitively, thinking of presheaves as processes, the presheaves Yi, where
i ∈ Y (⊥), in the decomposition of Y are those processes that Y can become
after performing the initial action ⊥.

The strict Yoneda embedding jP : P⊥ → P̂, sends ⊥ to ∅ and elsewhere
acts like yP. The presheaf category P̂ with jP is a free connected-colimit
completion of P⊥. Together they satisfy the universal property that for any
functor F : P⊥ → E , where E is a category with all connected colimits, there
is a connected-colimit preserving functor F † : P̂ → E , determined to within
isomorphism, such that F ∼= F † ◦ jP:

P⊥
jP //

F

∼=

&&MMMMMMMMMMMMM P̂

F †
��

E
The central observation on which the proof relies is that any presheaf over P
is a connected colimit of representables (images under yP) together with ∅,
the empty presheaf.

The universal property suggests the importance of connected-colimit pre-
serving functors. Define Aff to be the category consisting of small categories
P, Q, . . . , with maps G : P → Q the connected-colimit preserving functors
P̂ → Q̂. It has Lin in which the maps preserve arbitrary colimits as a subcat-
egory, one which shares the same objects. We can easily characterise those
maps in Aff which are in Lin:

Proposition 2.2 Suppose G : P̂ → Q̂ is a functor which preserves connected
colimits. The following properties are equivalent: (i) G preserves all colimits;
(ii) G preserves all coproducts (sums); (iii) G is strict, i.e., G(∅) = ∅.

5

Because P̂ is the free connected-colimit completion of P⊥, we obtain the
equivalence Aff(P, Q) ' [P⊥, Q̂], and consequently the equivalence

Aff(P, Q) ' Lin(P⊥, Q) .

The equivalence is part of an adjunction between Aff and Lin regarded as
2-categories, in which the 2-cells are natural transformations. We can easily
extend lifting to a 2-functor (−)⊥ : Aff → Lin; for G : P → Q in Aff , the

functor G⊥ : P⊥ → Q⊥ in Lin takes Y ∈ P̂⊥ with decomposition Σi∈Y (⊥)bYic
to G⊥(Y) = Σi∈Y (⊥)bG(Yi)c. Lifting restricts to a 2-comonad on Lin with
Aff as its coKleisli category. The comonad (−)⊥ has turned the model of
linear logic Lin into a model Aff of affine linear logic (where the tensor unit
is terminal).

2.3 Bisimulation

Bisimulation between presheaves is derived from the notion of open map
between presheaves [11, 12].

A morphism h : X → Y , between presheaves X, Y over P, is open iff for
all morphisms e : p → q in P⊥, any commuting square (on the left below)
can be split into two commuting triangles (on the right):

jP(p)
x //

jP(e)
��

X

h

��

jP(q) y
// Y

jP(p)
x //

jP(e)
��

X

h

��

jP(q) y
//

z

==

Y

That the square commutes means that the path h ◦ x in Y can be extended
via e to a path y in Y . That the two triangles commute means that the path
x can be extended via e to a path z in X which matches y.

Open maps are a generalisation of functional bisimulations, or zig-zag
morphisms, known from transition systems [12]. Presheaves in P̂ are bisimilar
iff there is a span of open maps between them.1

The preservation of connected colimits by a functor between presheaf
categories is sufficient to ensure that it preserves open maps and bisimulation.

Proposition 2.3 [8] Let G : P̂ → Q̂ be any connected-colimit preserving
functor between presheaf categories. Then G preserves open maps and open-
map bisimulation.

1We have chosen here to develop the definition of open map from the strict Yoneda
embedding rather than the Yoneda embedding. Maps between presheaves are open w.r.t.
strict Yoneda iff they are surjective and open w.r.t. Yoneda.

6

3 Constructions for path orders

The constructions in Aff below form the basis of a denotational semantics of
the affine-linear process language presented in Section 4. The types and open
terms of that language will be interpreted, respectively, as objects and arrows
of Aff . Actually, only the full subcategory of path orders, small partial order
categories, is needed, and we’ll simplify the discussion accordingly, treating
denotations of types as though they were just partial orders. (In fact, all the
constructions can be imitated for a domain analogue of presheaf categories,
in which Set is replaced by 2 and processes denote trace sets—see Section 1
and [19].)

3.1 Sums and fixed points

Each path order P is associated with (nondeterministic) sum operations, a
map Σ : &i∈I P → P in Aff taking a tuple 〈Xi〉i∈I to the sum (coproduct)

Σi∈IXi in P̂. The empty sum yields ∅ ∈ P̂. Finite sums, of size k, are
typically written as X1 + · · · + Xk.

For path orders P and Q, the category Aff(P, Q), being equivalent to
̂(P⊥)op × Q, has all colimits and in particular all ω-colimits. Any operation

G : Aff(P, Q) → Aff(P, Q) which preserves connected colimits will have a
fixed point fix G : P → Q, a map in Aff . We will build up the denotation
of fixed points out of composition in Aff . The composition G ◦ F of maps
F in Aff(P, Q) and G in Aff(Q, R), being got as the application G(F (−)),
preserves connected colimits in the argument F and colimits in G.

3.2 Tensor

The tensor product P�Q of path orders P, Q is given by the set (P⊥×Q⊥)\
{(⊥,⊥)}, ordered coordinatewise.

Let F : P → P′ and G : Q → Q′. We define F � G : P � Q → P′ � Q′

as the extension (cf. Section 2.2) H† of a functor H : (P � Q)⊥ → P̂′ � Q′.
Notice that (P�Q)⊥ ∼= P⊥×Q⊥ and so we can define H : P⊥×Q⊥ → P̂′ � Q′

by taking
(H(p, q))(p′, q′) = bF (jPp)c(p′) × bG(jQq)c(q′)

for p ∈ P⊥, q ∈ Q⊥ and (p′, q′) ∈ P′ � Q′.
The unit for tensor is the empty path order O. Objects X ∈ P̂ correspond

to maps X̃ : O → P sending ∅ to X. Given X ∈ P̂ and Y ∈ Q̂ we define

X � Y ∈ P̂ � Q to be the element pointed to by X̃ � Ỹ : O → P � Q.

7

3.3 Function space

The function space of path orders P (Q is given by the product of partial
orders (P⊥)op × Q.

We have the following chain of isomorphisms:

P � Q (R = ((P � Q)⊥)op × R
∼= (P⊥)op × (Q⊥)op × R ∼= P ((Q (R) .

So that ̂P � Q (R ∼= ̂P ((Q (R). Thus there is a 1-1 correspondence
curry from maps P � Q → R to maps P → (Q (R) in Aff ; its inverse
is called uncurry . We obtain application, app : (P (Q) � P → Q, as
uncurry(1P(Q).

We shall write t u for the application of t of type P (Q to u of type P.
The ability to curry justifies the formation of terms λx.t of type P (Q by
lambda abstraction where t of type Q is a term with free variable x of type
P.

3.4 Products

The product of path orders P & Q is given by the disjoint union of P and Q.

An object of P̂ & Q can be identified with a pair (X, Y), with X ∈ P̂ and

Y ∈ Q̂, which provides the projections π1 : P & Q → P and π2 : P & Q → Q.
More general, not just binary, products &i∈I Pi with projections πj , for j ∈ I,
are defined similarly. From the universal property of products, a collection
of maps Fi : P → Pi, for i ∈ I, can be tupled together to form a unique map
〈Fi〉i∈I : P → &i∈I Pi with the property that πj ◦ 〈Fi〉i∈I = Fj for all j ∈ I.
The empty product is given by O and as the terminal object is associated
with unique maps !P : P → O, constantly ∅, for any path order P.

Because there are empty presheaves we can define maps in Lin from
products to tensors of path orders. For instance, in the binary case, σ :
P & Q → P � Q in Lin is specified by (X, Y) 7→ (X � ∅) + (∅ � Y). The
composition of such a map with the diagonal map of the product, viz.

δP : P diag−−→ P & P σ−→ P � P

takes X to (X � ∅) + (∅ � X) and gives a weak form of diagonal map.
Analogously, one can define general weak diagonal maps δPk : P → P�· · ·�P
in Lin from P to k copies of P tensored together. Weak diagonal maps allow
the same argument to be used in several different, though incompatible, ways.

8

3.5 Prefixed sums

The category Aff does not have coproducts (since all constant functors are
maps of Aff there can be no initial object, so empty coproduct). However,
we can build a useful sum in Aff with the help of the coproduct of Lin and
lifting. Let Pα, for α ∈ A, be a family of path orders. As their prefixed
sum, Σα∈AαPα, we take the disjoint union of the path orders Pα⊥, over the
underlying set

⋃
α∈A{α}×Pα⊥; the latter path order forms a coproduct in Lin

with the obvious injections inβ : Pβ⊥ → Σα∈AαPα, for β ∈ A. The injections
β : Pβ → Σα∈AαPα in Aff , for β ∈ A, are defined to be the compositions
β = inβb−c. Finite prefixed sums are written α1P1 + · · ·+ αkPk.

This construction is not a coproduct in Aff . However, it does satisfy a
weaker property analogous to the universal property of a coproduct. Suppose
Fα : Pα → Q are maps in Aff for all α ∈ A. Then, there is a mediating
map F : Σα∈AαPα → Q in Lin determined to within isomorphism such that
F ◦ α = Fα for all α ∈ A.

Suppose that the family of maps Fα : Pα → Q, with α ∈ A, has the
property that each Fα is constantly ∅ whenever α ∈ A is different from β
and that Fβ is H : Pβ → Q. Write H@β : Σα∈AαPα → Q for a choice of
mediating map in Lin.

If a term t of type Q with free variable x of type Pβ denotes H : Pβ → Q
in Aff and u is of type Σα∈AαPα, then we shall write [u > β x ⇒ t] for
H@β(u). This construction “tests” or matches u against the pattern β x and
passes the results of successful matches for x on to t; the possibly multiple
results of successful matches are then summed together.

Because prefixed sum is not a coproduct we do not have that tensor dis-
tributes over prefixed sum. However there is a map dist : Q � Σα∈AαPα →
Σα∈Aα(Q � Pα) in Aff , expressing a form of distributivity, given as the ex-
tension H† of the functor

H : Q⊥ × (Σα∈AαPα)⊥ → ̂Σα∈Aα(Q � Pα)
H(q, (α, p)) = yΣα∈Aα(Q�Pα)(α, (q, p)), H(q,⊥) = ∅ .

3.6 Recursive type definitions

In modelling a process language like CCS but where processes are passed at
channels a ∈ A, we require the “least” path orders that satisfy the following
equations:

P = τP + Σaa!C + Σaa?F C = P � P F = P (P .

We can solve such recursive equations for path orders by several techniques,
ranging from the sophisticated method of [7], providing inductive and coin-

9

ductive characterisations, to simple methods essentially based on inductive
definitions. Paralleling [14], path orders under the order

P E Q ⇐⇒ P ⊆ Q and (∀p, p′ ∈ P. p ≤P p′ ⇐⇒ p ≤Q p′)

form a (large) cpo with respect to which all the constructions we have just
seen can be made Scott continuous. Solutions to equations like those above
are then obtained as (simultaneous) least fixed points.

4 An affine-linear language for processes

Assume that path orders are presented using the constructions with the fol-
lowing syntax:

T ::= O | T1 � T2 | T1 (T2 | T1 & T2 | Σα∈AαTα |
P | µjP1, . . . , Pk.(T1, . . . , Tk)

All the constructions have been met earlier with the exception of the notation
for recursively defined path orders. P is drawn from a set of variables used in
the recursive definition of path orders; µjP1, . . . , Pk.(T1, . . . , Tk) stands for
the j-component (1 ≤ j ≤ k) of the least solution to the defining equations

P1 = T1 , . . . , Pk = Tk ,

in which the expressions T1, . . . , Tk may contain the Pj ’s. We’ll write µ~P .~T as
an abbreviation for the k-tuple with j-component µjP1, . . . , Pk.(T1, . . . , Tk),
and confuse a closed expression for a path order with the path order itself.

The operations of Section 3 form the basis of a syntax of terms:

t, u, · · · ::=
x, y, z, . . . | (Variables)
∅ | Σi∈Iti | (Sums of terms)
rec x.t | (Recursive definition)
λx.t | t u | (Abstraction and application)
α t | [u > α x ⇒ t] | (Injections and match for prefixed sums)
(t, u) | [u > (x,−) ⇒ t] |

[u > (−, x) ⇒ t] | (Pairing and match for products)
t � u | [u > x � y ⇒ t] (Tensor operation and match)

The syntax will be subject to typing and linearity constraints. The language
is similar to that in [1], being based on a form of pattern matching. Accord-
ingly, variables like x in the match [u > α x ⇒ t] are binding occurrences

10

and bind later occurrences of the variable in the body t. We shall take for
granted an understanding of free and bound variables, and substitution on
raw terms.

Let P1, . . . , Pk, Q be closed expressions for path orders and let the vari-
ables x1, . . . , xk be distinct. A syntactic judgement x1 : P1, . . . , xk : Pk ` t : Q
stands for a map

Jx1 : P1, . . . , xk : Pk ` t : QK : P1 � · · · � Pk → Q

in Aff . We shall typically write Γ, or ∆, for an environment list x1 :
P1, . . . , xk : Pk and most often abbreviate the denotation to P1�· · ·�Pk

t−→ Q,
or even Γ t−→ Q. When the environment list is empty, the corresponding ten-
sor product is the empty path order O.

An affine-linear language will restrict copying and so substitutions of a
common term into distinct variables. The counterpart in the model is the
absence of a suitable diagonal map from objects P to P�P. Consider a term
t(x, y), with its free variables x and y shown explicitly, for which

x : P, y : P ` t(x, y) : Q ,

corresponding to a map P�P t(x, y)−−−→ Q in Aff . This does not generally entail
that x : P ` t(x, x) : Q—there may not be a corresponding map in Aff , for
example if t(x, y) = x�y. There is however a condition on how the variables
x and y occur in t which ensures that the judgement x : P ` t(x, x) : Q holds
and that it denotes the map in Aff obtained as the composition

P δP−→ P � P t(x, y)−−−→ Q

—using the weak diagonal map seen earlier in Section 3.4. Syntactically,
this is assured if the variables x and y are not crossed in t according to the
following definition:

Definition 4.1 Let t be a raw term. Say a set of variables V is crossed in
t iff there are subterms of t of the form tensor t1 � t2, application (t1 t2), or
match [t1 > p ⇒ t2], for which t has free occurrences of variables from V
appearing in both t1 and t2.

The term-formation rules for the affine language are listed below alongside
their interpretations as constructors on morphisms, taking the morphisms
denoted by the premises to that denoted by the conclusion (cf. [2]).

11

Structural rules:

x : P ` x : P P 1P−→ P

∆ ` t : P

Γ, ∆ ` t : P

∆ t−→ P

Γ � ∆ !Γ � t−−−→ O � P ∼= P

Γ, x : P, y : Q, ∆ ` t : R

Γ, y : Q, x : P, ∆ ` t : R

Γ � P � Q � ∆ t−→ R

Γ � Q � P � ∆ ∼= Γ � P � Q � ∆ t−→ R

Recursive path orders:

Γ ` t : Tj [µ~P .~T/~P]

Γ ` t : µj
~P .~T

Γ ` t : µj
~P .~T

Γ ` t : Tj [µ~P .~T/~P]

The premise and conclusion are interpreted as the
same map because µj

~P .~T and Tj [µ~P .~T/~P] denote
equal path orders.

Sums of terms:

Γ ` ∅ : P Γ ∅−→ P

Γ ` ti : P for all i ∈ I

Γ ` Σi∈Iti : P

Γ ti−→ P for all i ∈ I

Γ 〈ti〉i∈I−−−→ &i∈I P Σ−→ P

Recursive definition:

Γ, x : P ` t : P {y, x} is not crossed in t for any y in Γ.

Γ ` rec x.t : P

Γ � P t−→ P

Γ fix G−−→ P

Here, with F : Γ → P the map G(F) : Γ → P is the composition

Γ δΓ−→ Γ � Γ 1Γ � F−−−−→ Γ � P t−→ P .

Abstraction and application:

Γ, x : P ` t : Q

Γ ` λx.t : P (Q

Γ � P t−→ Q

Γ curry t−−−→ P (Q

Γ ` t : P (Q ∆ ` u : P

Γ, ∆ ` t u : Q

Γ t−→ P (Q ∆ u−→ P

Γ � ∆ t � u−−→ (P (Q) � P app−−→ Q

12

Injections and match for prefixed sums:

Γ ` t : Pβ , where β ∈ A

Γ ` β t : Σα∈AαPα

Γ t−→ Pβ , where β ∈ A

Γ t−→ Pβ
β−→ Σα∈AαPα

Γ, x : Pβ ` t : Q , where β ∈ A ∆ ` u : Σα∈AαPα

Γ, ∆ ` [u > β x ⇒ t] : Q
Γ � Pβ

t−→ Q , where β ∈ A ∆ u−→ Σα∈AαPα

Γ � ∆ 1Γ � u−−−→ Γ � Σα∈AαPα
t@β ◦ dist−−−−−→ Q

Pairing and match for products:

Γ ` t : P Γ ` u : Q

Γ ` (t, u) : P & Q

Γ t−→ P Γ u−→ Q

Γ 〈t, u〉−−→ P & Q

Γ, x : P ` t : R ∆ ` u : P & Q

Γ, ∆ ` [u > (x,−) ⇒ t] : R

Γ � P t−→ R ∆ u−→ P & Q

Γ � ∆ 1Γ � (π1 ◦ u)−−−−−−−→ Γ � P t−→ R

Γ, x : Q ` t : R ∆ ` u : P & Q

Γ, ∆ ` [u > (−, x) ⇒ t] : R

Γ � Q t−→ R ∆ u−→ P & Q

Γ � ∆ 1Γ � (π2 ◦ u)−−−−−−−→ Γ � Q t−→ R

Tensor operation and match:

Γ ` t : P ∆ ` u : Q

Γ, ∆ ` t � u : P � Q

Γ t−→ P ∆ u−→ Q

Γ � ∆ t � u−−→ P � Q

Γ, x : P, y : Q ` t : R ∆ ` u : P � Q

Γ, ∆ ` [u > x � y ⇒ t] : R

Γ � P � Q t−→ R ∆ u−→ P � Q

Γ � ∆ 1Γ � u−−−→ Γ � P � Q t−→ R

Proposition 4.2 Suppose Γ, x : P ` t : Q. The set {x} is not crossed in t.

Exploiting the naturality of the various operations used in the semantic def-
initions, we can prove a general substitution lemma.

Lemma 4.3 (Substitution) Suppose Γ, x1 : P, . . . , xk : P ` t : Q and that
the set of variables {x1, . . . , xk} is not crossed in t. Suppose ∆ ` u : P where
the variables of Γ and ∆ are disjoint. Then, Γ, ∆ ` t[u/x1, . . . , u/xk] : Q
and, (suppressing the types for brevity)

Jt[u/x1, . . . , u/xk]K ∼= JtK ◦ (1Γ � (δPk ◦ JuK)) .

Note that in the case where k = 1, the lemma specialises to Jt[u/x]K ∼=
JtK ◦ (1Γ � JuK). A particular consequence is that linear application amounts
to substitution:

13

Lemma 4.4 If Γ ` (λx.t) u : Q, then Γ ` t[u/x] : Q and

JΓ ` (λx.t) u : QK ∼= JΓ ` t[u/x] : QK .

Similarly, we have the expected result for recursion:

Lemma 4.5 If Γ ` rec x.t : P, then Γ ` t[rec x.t/x] : P and

JΓ ` rec x.t : PK ∼= JΓ ` t[rec x.t/x] : PK .

The next lemma follows directly from the universal properties of prefixed
sum (the last property because the mediating map is in Lin):

Lemma 4.6 Properties of prefix match:

(i) JΓ ` [α u > α x ⇒ t] : QK ∼= JΓ ` t[u/x] : QK
(ii) JΓ ` [α u > β x ⇒ t] : QK ∼= ∅ if α 6= β

(iii) JΓ ` [Σi∈Iui > α x ⇒ t] : QK ∼= JΓ ` Σi∈I [ui > α x ⇒ t] : QK

General patterns It will be convenient for the examples of the next Sec-
tion to allow general patterns according to

p ::= x | α p | (p,−) | (−, p) | p � q

—with p being well-formed if all its variables are distinct. A match

[u > p ⇒ t]

is understood inductively as an abbreviation for a term in the affine-linear
language, according to

[u > x ⇒ t] ≡ (λx.t) u
[u > α p ⇒ t] ≡ [u > α x ⇒ [x > p ⇒ t]] x fresh

[u > (p,−) ⇒ t] ≡ [u > (x,−) ⇒ [x > p ⇒ t]] x fresh
[u > (−, p) ⇒ t] ≡ [u > (−, x) ⇒ [x > p ⇒ t]] x fresh
[u > p � q ⇒ t] ≡ [u > x � y ⇒ [x > p ⇒ [y > q ⇒ t]]] x, y fresh

We write
[u1 > p1, . . . , uk > pk ⇒ t]

as an abbreviation of

[u1 > p1 ⇒ [· · · [uk > pk ⇒ t] · · ·]] .

14

5 Examples

The affine-linear language is remarkably expressive, as the following examples
show. Having denotations in Aff , all operations expressible in the language
will automatically preserve open-map bisimulation.

5.1 CCS

As in CCS, assume a set of labels A, a complementation operation producing
ā from a label a, with ¯̄a = a, and a distinct label τ . We can specify the path
order P as

P = τP + Σa∈AaP .

Let α range over A ∪ {τ}. The CCS parallel composition can be defined as
the following term Par of type P ((P (P):

rec P.λx.λy.Σα[x > α x′ ⇒ α (P x′ y)] +
Σα[y > α y′ ⇒ α (P x y′)] +
Σa∈A[x > a x′, y > ā y′ ⇒ τ (P x′ y′)] .

The other CCS operations are easy to encode. Here, open-map bisimulation
coincides with strong bisimulation. We can recover the expansion law for
general reasons. Write X|Y for Par X Y with X, Y terms of type P. Suppose
X = ΣαΣi∈I(α)α Xi and Y = ΣαΣj∈J(α)α Yj. Using Lemmas 4.5 and 4.4, then
Lemma 4.6, we get

X|Y ∼= Σα[X > α x′ ⇒ α (x′|Y)] +
Σα[Y > α y′ ⇒ α (X|y′)] +
Σa∈A[X > a x′, Y > ā y′ ⇒ τ (x′|y′)]

∼= ΣαΣi∈I(α)α (Xi|Y) +
ΣαΣj∈J(α)α (X|Yj) +
Σa∈AΣi∈I(a),j∈J(ā)τ (Xi|Yj) .

In similar ways it is easy to express CSP and any parallel composition given
by a synchronisation algebra [20] in the affine-linear language.

5.2 A linear higher-order process language

Recall from Section 3.6 the path orders for processes, concretions and abstrac-
tions for a higher-order language. We are chiefly interested in the parallel
composition of processes, ParP,P, this time of the uncurried type P � P (P
for clarity. But parallel composition is really a family of mutually dependent
operations also including components such as ParF,C of type F � C (P

15

to say how abstractions compose in parallel with concretions etc. All these
components can be tupled together in a product using &, and parallel com-
position defined as a simultaneous recursive definition whose component at
P � P (P satisfies

P |Q = Σα[P > α x ⇒ α (x|Q)] +
Σα[Q > α y ⇒ α (P |y)] +
Σa[P > a? f, Q > a! (s � r) ⇒ τ ((f s)|r)] +
Σa[P > a! (s � r), Q > a? f ⇒ τ (r|(f s))] ,

where, e.g., P |Q abbreviates ParP,P (P � Q). In the summations a ∈ A and
α ranges over a!, a?, τ .

5.3 Mobile ambients with public names

We can translate the Ambient Calculus with public names [4] into the affine-
linear language, following similar lines to the linear process-passing language
above. Assume a fixed set of ambient names n, m, . . . ∈ N . Following [5],
the syntax of ambients is extended beyond just processes (P) to include
concretions (C) and abstractions (F):

P ::= ∅ | P |P | rep P | n[P] | in n P | out n P |
open n! P | τ P | mvin n! C | mvout n! C |
open n? P | mvin n? F | x

C ::= P � P
F ::= λx.P

The notation for actions departs a little from that of [5]. Here some actions
are marked with ! and others with ?—active (or inceptive) actions are marked
by ! and passive (or receptive) actions by ?. We say actions α and β are com-
plementary iff one has the form open n! or mvin n! while the other is open n?
or mvin n? respectively. Complementary actions can synchronise together
to form a τ -action. We adopt a slightly different notation for concretions
(P � R instead of 〈P 〉R) and abstractions (λx.P instead of (x)P) to make
their translation into the affine-linear language clear.

The usual conventions are adopted for variables. Terms are assumed to
be linear, in that a variable appears on at most one side of any parallel
compositions within the term, and subterms of the form rep P are closed.
A replication rep P is intended to behave as P | rep P so readily possesses a
recursive definition in the affine-linear language.

16

Suitable path orders for ambients are given recursively by:

P = τP + Σnin nP + Σnout nP + Σnopen n!P +
Σnmvin n!C + Σnmvout n!C + Σnopen n?P +
Σnmvin n?F

C = P � P
F = P (P

Here, n ranges over the set of names N . The eight components of the prefixed
sum in the equation for P correspond to eight forms of ambient actions: τ ,
in n, out n, open n!, mvin n!, mvout n!, open n?, and mvin n?. We obtain
the prefixing operations as injections into the appropriate component of the
prefixed sum P.

Parallel composition is really a family of operations, one of which is a
binary operation between processes but where in addition there are parallel
compositions of abstractions with concretions, and even abstractions with
processes and concretions with processes. The family of operations

(−|−) : F � C (P, (−|−) : C � F (P,
(−|−) : F � P (F, (−|−) : P � F (F,
(−|−) : C � P (C, (−|−) : P � C (C

are defined in a simultaneous recursive definition:

Processes in parallel with processes:

P |Q = Σα[P > α x ⇒ α (x|Q)] +
Σα[Q > α y ⇒ α (P |y)] +
Σn[P > open n! x, Q > open n? y ⇒ τ (x|y)] +
Σn[P > open n? x, Q > open n! y ⇒ τ (x|y)] +
Σn[P > mvin n? f, Q > mvin n! (s � r) ⇒ τ ((f s)|r)] +
Σn[P > mvin n! (s � r), Q > mvin n? f ⇒ τ (r|(f s))]

Abstractions in parallel with concretions: F |C = [C > s � r ⇒ (F s)|r]
Abstractions in parallel with processes: F |P = λx.((F x)|P)

Concretions in parallel with processes: C|P = [C > s � r ⇒ s � (r|P)]

The remaining cases are given symmetrically.
Presheaves X, Y over P will have decompositions into rooted components,

and by Lemma 4.6, their parallel composition satisfies the obvious expansion
law.

17

Ambient creation can be defined recursively in the affine-linear language:

m[P] = [P > τ x ⇒ τ m[x]] +
Σn[P > in n x ⇒ mvin n! (m[x] � ∅)] +
Σn[P > out n x ⇒ mvout n! (m[x] � ∅)] +
[P > mvout m! (s � r) ⇒ τ (s|m[r])] +
open m? P +
mvin m? λy.m[P |y] .

The denotations of ambients are determined by their capabilities: an ambi-
ent m[P] can perform the internal (τ) actions of P , enter a parallel ambient
(mvin n!) if called upon to do so by an in n-action of P , exit an ambient n
(mvout n!) if P so requests through an out n-action, be exited if P so requests
through an mvout m!-action, be opened (open m?), or be entered by an am-
bient (mvin m?); initial actions of other forms are restricted away. Ambient
creation is at least as complicated as parallel composition. This should not
be surprising given that ambient creation corresponds intuitively to putting
a process behind (so in parallel with) a wall or membrane which if unopened
mediates in the communications the process can do, converting some actions
to others and restricting some others away. The tree-containment structure
of ambients is captured in the chain of open m?’s that they can perform.

By the properties of prefix-match (Lemma 4.6), there is an expansion the-
orem for ambient creation. For X with decomposition X = ΣαΣi∈X(α)α Xi,
where α ranges over atomic actions of ambients,

m[X] ∼= Σi∈X(τ)τ m[Xi] +
ΣnΣj∈X(in n)mvin n! (m[Xj] � ∅) +
ΣnΣk∈X(out n)mvout n! (m[Xk] � ∅) +
Σl∈X(mvout m!)[Xl > s � r ⇒ τ (s|m[r])] +
open m?X +
mvin m?(λy.m[X|y]) .

5.4 Nondeterministic dataflow

The affine-linear language allows us to define processes of the kind encoun-
tered in treatments of nondeterministic dataflow. Define P recursively so
that P = aP + bP, consisting of streams (or sequences) of a’s and b’s.

The recursively defined process A : P (P selects and outputs a’s while
ignoring all b’s:

A = λx. [x > a x′ ⇒ a (A x′)] + [x > b x′ ⇒ A x′]

18

The recursively defined process F : P �P produces two identical, parallel
streams of a’s and b’s as output:

F = [F > z1 � z2 ⇒ (a z1) � (a z2) + (b z1) � (b z2)]

The recursively defined process S : P ((P � P) separates a stream of
a’s and b’s into two streams, the first consisting solely of a’s and the second
solely of b’s:

S = λx. [x > a x′, (S x′) > z1 � z2 ⇒ (a z1) � z2] +
[x > b x′, (S x′) > z1 � z2 ⇒ z1 � (b z2)]

A subcategory of Aff supports a “trace operation” to represent processes
with feedback loops (see [9]). The trace operation is, however, not definable in
the present affine-linear language. It can be shown that if the trace operation
of [9] were definable in the presheaf semantics, we could obtain (replacing
Set by 2) a compositional relational semantics of nondeterministic dataflow
with feedback, shown impossible by Brock&Ackerman [3].

6 Operational semantics

We now consider the tensor fragment of the affine-linear language, the frag-
ment obtained by leaving out product (for brevity) and function space (in
progress).

We employ the language of general patterns of Section 4. It can be given
semantics using judgements of the form

x1 : P1, . . . , xk : Pk p : P

with the xi distinct, interpreted as functors

(P1 � · · ·� Pk)⊥
p−→ P⊥

according to the rules (the rule identifying a recursive type with its unfolding
is omitted)

x : P x : P P⊥
1−→ P⊥

Π p : Pα α ∈ A

Π α p : Σα∈AαPα

Π⊥
p−→ Pα⊥ α ∈ A

Π⊥
binα pc−−−−→ (Σα∈AαPα)⊥

Π p : P Λ q : Q

Π, Λ p � q : P � Q

Π⊥
p−→ P⊥ Λ⊥

q−→ Q⊥
(Π � Λ)⊥

p × q−−−→ (P � Q)⊥

19

As there are no rules for weakening or exchange, the environment Π for which
Π p : P is given uniquely by p and P. We’ll only need the sub-language

p ::= α x | p � x | x � p .

Here, the interpretations map into non-⊥ elements and, accordingly, we may
view JΠ p : PK as a functor into P rather than P⊥. We obtain atomic paths
as images JΠ p : PK(⊥) ∈ P for which we’ll write

a ::= α ⊥ | a � ⊥ | ⊥ � a .

Conversely, for each a we may recover a pattern pa (unique up to variable
names) by replacing all ⊥’s of a with distinct variables. We let atomic paths
stand for patterns and write

P1 � · · ·� Pk a : P

if x1 : P1, . . . , xk : Pk pa : P. Notice that (P1 � · · · � Pk)⊥, uniquely given
by a and P, is isomorphic to the path order above a ∈ P. We’ll write α for
α ⊥.

Given P1 � · · · � Pk a : P and ` t : P, we may restrict J` t : PK to
(P1 � · · · � Pk)⊥ by applying the map a∗ : P → (P1 � · · · � Pk)⊥ of Lin
got by composition as X 7→ X(a−). (More generally, we may compose a∗

with the maps of Aff interpreting open terms, so making sense of (semantic)
expressions like a∗t when P′ a : P and Γ ` t : P.) Identifying t with its
denotation, we see that a∗t is a presheaf over a lifted path order and therefore
has a decomposition as a sum of rooted presheaves by Proposition 2.1. It
turns out that each rooted component has the form bt′c for a denotation t′ of
a term of type P1 � · · ·�Pk. Judgements t a−→ t′ in the operational semantics
will express that bt′c is a rooted component of a∗t. In fact, derivations of
transitions t a−→ t′ will be in 1-1 correspondence with components of the
decomposition of a∗t.

The operational semantics is informed by isomorphisms saying how to
find the rooted components of a∗t. As an example we have the isomorphisms
on the left below, suggesting the rules on the right:

β∗(α t) ∼=
{
btc if α = β

∅ if α 6= β α t α−→ t

a∗Σi∈Iti ∼= Σi∈Ia
∗ti

tj
a−→ t′

Σi∈Iti
a−→ t′

j ∈ I

These rules are for closed terms. In the semantics

a∗[u > x � y ⇒ t] ∼= [u > x � y ⇒ a∗t] ,

20

which suggests that we let t (an open term) take an a-transition in the “envi-
ronment” u > x � y. Syntactically, environments e are lists of such matches.
An environment “exports” a set of variables; the empty environment exports
the empty set, while e, u > x � y exports what e exports, except the free
variables of u, plus x and y. We may formalise this using a judgement

e ` x1 : P1, . . . , xk : Pk

(with the xi distinct) which denotes the same presheaf over P1 � · · ·� Pk as
[e ⇒ x1 � · · · � xk]. A term t in environment e will be written e Z⇒ t. For
e ` Γ, ∆ and Γ ` t : P, we give the judgement

` e Z⇒ t : P; ∆

the same denotation as the term [e ⇒ t�x1 � · · ·�xk] where the xi are now
the variables exported by e but not free in t.

Incorporating such environments, the operational rules are:

e1 Z⇒ u a � ⊥−−−→ e′1 Z⇒ u′

e1, u > x � y, e2 Z⇒ x a−→ e′1, u′ > x � y, e2 Z⇒ x

e1 Z⇒ u ⊥ � a−−−→ e′1 Z⇒ u′

e1, u > x � y, e2 Z⇒ y a−→ e′1, u′ > x � y, e2 Z⇒ y

e Z⇒ tj
a−→ e′ Z⇒ t′

e Z⇒ Σi∈Iti
a−→ e′ Z⇒ t′

j ∈ I
e Z⇒ t[rec x.t/x] a−→ e′ Z⇒ t′

e Z⇒ rec x.t a−→ e′ Z⇒ t′

e Z⇒ α t α−→ e Z⇒ t

e Z⇒ u α−→ e′ Z⇒ u′ e′ Z⇒ t[u′/x] a−→ e′′ Z⇒ t′

e Z⇒ [u > α x ⇒ t] a−→ e′′ Z⇒ t′

e Z⇒ t a−→ e′ Z⇒ t′

e Z⇒ t � u a � ⊥−−−→ e′ Z⇒ t′ � u

e Z⇒ u a−→ e′ Z⇒ u′

e Z⇒ t � u ⊥ � a−−−→ e′ Z⇒ t � u′

e, u > x � y Z⇒ t a−→ e′, u′ > x � y Z⇒ t′

e Z⇒ [u > x � y ⇒ t] a−→ e′ Z⇒ [u′ > x � y ⇒ t′]

In the last-mentioned rule, the variables x and y are implicitly renamed to
avoid overshadowing of exported variables in the environment e, u > x � y.
The rules are well-typed:

Lemma 6.1 Assume ` e Z⇒ t : P; ∆. If e Z⇒ t a−→ e′ Z⇒ t′ then P′ a : P and
` e′ Z⇒ t′ : P′; ∆.

21

An ordinal size measure can be defined on terms in environments in such
a way that transitions are accompanied by a decrease in size if we replace
general recursion by finite unfoldings. Building on this fact, we can prove
the main result below which says that rooted components correspond to
derivations. It is proved by well-founded induction using an order based on
the size measure. The induction hypothesis says that for ` e Z⇒ t : P; ∆ and
P′ a : P with ~x ≡ x1 � · · · � xk any subset of the variables in ∆, we have
(a �⊥)∗[e ⇒ t �~x] ∼= Σdb[e′ ⇒ t′ � ~x]c where d ranges over derivations with
conclusion of the form e Z⇒ t a−→ e′ Z⇒ t′.

Theorem 6.2 Assume ` t : P and P′ a : P. Then a∗t ∼= Σdbt′c where the
sum is over all derivations d with conclusion Z⇒ t a−→ Z⇒ t′.

As the operational semantics stands it gives an interleaving model of the
tensor fragment. We have been able to represent the definable presheaves of
the tensor fragment as event structures, a representation in which the tensor
operation denotes the simple parallel composition of event structures got by
juxtaposition; elements of definable presheaves correspond to finite configu-
rations of the event-structure representation, with restriction in the presheaf
matched by restriction to a subconfiguration in the event structure [18]. We
are currently working on exhibiting the operational semantics as a transition
system with independence [20] in order to strengthen the correspondence
with the presheaf semantics begun in Theorem 6.2.

7 Nonlinearity

Of course code can be copied, and this may lead to maps which are not
linear. According to the discipline of linear logic, nonlinear maps from P to
Q are introduced as linear maps from !P to Q—the exponential ! applied to
P allows arguments from P to be copied and discarded freely.

In the domain model of linear logic (see Section 3) !P can be taken to
be the finite-join completion of P. Then, the nonlinear maps in the coKleisli
category of ! correspond to Scott continuous functions. A close analogue
for presheaf models is to interpret !P as the finite-colimit completion of P.
Note that now !P is a category, and no longer just a partial order. With
this understanding of !P, it can be shown that P̂ with the inclusion func-
tor !P → P̂ is the free filtered-colimit completion of !P—see [13]. It follows
that maps !P → Q in Lin correspond, to within isomorphism, to continuous
(i.e., filtered-colimit preserving) functors P̂ → Q̂. But, unfortunately, con-

tinuous functors from P̂ to Q̂ need not send open maps to open maps. This

22

raises the question of whether other choices of exponential fit in better with
bisimulation.

Bear in mind the intuition that objects of P correspond to the shapes of
computation path a process, represented as a presheaf in P̂, might perform.
An object of !P should represent a computation path of an assembly of pro-
cesses each with computation-path shapes in P—the assembly of processes
can then be a collection of copies of a process, possibly at different states.
If we take !P to be the finite-colimit completion of P, an object of !P, as a
finite colimit, would express how paths coincide initially and then branch.
One way to understand this object as a computation path of an assembly
of processes is that the assembly of processes is not fixed once and for all.
Rather the assembly grows as further copies are invoked, and these copies
can be made of processes after they have run for a while. The copies can
then themselves be run and the resulting processes copied. In this way, by
keeping track of the origins of copies, we can account for the identifications
of sub-paths.

This intuition suggests exploring other less liberal ways of copying, e.g.
without being able to copy after some initial run. We will discover candidates
for exponentials !P based on computation-path shapes of simple assemblies
of processes, ones built out of indexed families. We start with an example.

7.1 An example

Since both sum and tensor preserve open maps, the functor copy taking a
presheaf X over P to the presheaf

copy(X) = 1 + X + X2 + · · · + Xk + · · ·
over !P = 1 + P + P2 + · · · + Pk + · · ·

will preserve open maps. Here the superscripts abbreviate repeated ap-
plications of tensor in Lin. So Pk is the product of k copies of the par-
tial order P, in which the objects are k-tuples of objects of P—in partic-
ular, 1 is the partial order consisting solely of the empty tuple called 1
above. The presheaf Xk comprises k copies of X tensored together, so that
Xk〈p1, . . . , pk〉 = X(p1) × · · · × X(pk).

By supplying “coefficients” we can obtain various nonlinear maps. An
appropriate form of polynomial is given by a functor F : !P → Q̂, which
splits up into a family of functors Fk : Pk → Q̂ , for k ∈ ω. We can extend
F to a functor F [−] = F · copy(−) : P̂ → Q̂. For X ∈ P̂,

F [X] = F0 + F1 · X + F2 · X2 + · · · + Fk · Xk + · · ·

23

Because F · − is colimit-preserving it preserves open maps. So does copy.
Hence F [−] preserves open maps.

Note, that the original polynomial F is not determined to within isomor-
phism by the functor F [−] it induces. (We can only hope for such uniqueness
if we restrict to polynomials which are symmetric, i.e., such that Fk

∼= Fk ◦π
for all permutations π of the k arguments.)

We write Poly(P, Q) for the functor category [!P, Q̂] of polynomials from
P to Q. To compose polynomials F ∈ Poly(P, Q) and G ∈ Poly(Q, R) we
first define F ! ∈ Poly(P, !Q) by taking F !〈p1, . . . , pn〉〈q1, . . . , qk〉 to be

Σµ〈s1,...,sk〉=〈p1,...,pn〉Fs1q1 × · · · × Fskqk ,

when 〈p1, . . . , pn〉 ∈ !P and 〈q1, . . . , qk〉 ∈ !Q. The operation µ : !!P → P
flattens, by concatenation, a tuple 〈s1, . . . , sk〉 of tuples sr = 〈sr1, . . . , srmr〉,
for 1 ≤ r ≤ k, down to a tuple

µ〈s1, . . . , sk〉 = 〈s11, . . . , s1m1 , . . . , sk1, . . . , skmk
〉 .

So, the sum is indexed by all ways to partition 〈p1, . . . , pn〉 into tuples
〈s1, . . . , sk〉. Now, we can define the composition of polynomials to be G◦F =
G · (F !−) ∈ Poly(P, R). At 〈p1, . . . , pn〉 in !P, G ◦ F 〈p1, . . . , pn〉 equals

Σµ〈s1,...,sk〉=〈p1,...,pn〉Gk · Fs1 × · · · × Fsk ,

with Fs1 × · · · × Fsk〈q1, . . . , qk〉 = Fs1q1 × · · · × Fskqk. This composition
is only defined to within isomorphism; polynomials form a bicategory Poly,
rather than a category.

Note that !O = 1. In the special case where F : !O → Q̂, so that F
merely points to a presheaf X in Q̂, the composition G ◦ F of a polynomial
G : !Q → R̂ with the polynomial F is isomorphic to G[X]. So certainly
compositions of this form preserve open maps and bisimulation.

More generally, the polynomials in Poly(P, Q) and Poly(Q, R) corre-
spond to presheaves over (!P)op × Q and (!Q)op × R, respectively. So under
this correspondence polynomials are related by open maps and bisimulation.
It can be shown that the composition of polynomials in general preserves
open maps between polynomials.

However, the present interpretation of ! fails as a candidate for the expo-
nential of linear logic because Poly is not cartesian-closed in any reasonable
sense. There is an isomorphism of categories

Poly(R, P & Q) ∼= Poly(R, P) ×Poly(R, Q) ,

24

natural in R in Lin, showing the sense in which P&Q, given by juxtaposition,
remains a product in the bicategory of polynomials. There is also clearly an
isomorphism of functor categories

[!P × !Q, R̂] ∼= [!P, ̂(!Q)op × R] .

But, in general, !(P & Q) and !P× !Q are not isomorphic, so that (!Q)op ×R
is not a function space for the polynomials with respect to − & −. The
difficulty boils down to a lack of symmetry in the current definition of !P,
where tuples like 〈p1, . . . , pk〉 and its permutations 〈pπ(1), . . . , pπ(k)〉 are not
necessarily related by any maps. Nor for that matter, are there any maps
from a tuple 〈p1, . . . , pk〉 to a larger tuple 〈p1, . . . , pk, . . . , pm〉, even though
intuitively the larger tuple would be a path of a larger assembly of processes,
so arguably an extension of the smaller tuple in which further copies have
been invoked.

To allow different kinds of polynomial, polynomials which can take ac-
count of the symmetry there exists between different copies and also permit
further copies to be invoked as needed, we broaden the picture.

7.2 General polynomials

The example suggests that we take assemblies of processes to be families
where we can reindex copies, precisely how being prescribed in U, a subcat-
egory of sets in which the maps are the possible reindexings. A U-family of
a category A comprises 〈Ai〉i∈I where i ∈ I, with I an object of U, index
objects Ai in A. A map of families (f, e) : 〈Ai〉i∈I → 〈A′

j〉j∈J consists of
a reindexing function f : I → J in U and e = 〈ei〉i∈I , a family of maps
ei : Ai → A′

f(i) in A. With the obvious composition we obtain FU(A), the
category of U-families.

Imitating the example, we define the category of polynomials from P
to Q, PolyU(P, Q), to be the functor category [FU(P), Q]. Under sufficient
conditions, that U is small, has a singleton and dependent sum (a functor
Σ : FU(U) → U collapsing any family of sets in U to a set in U), we can
compose polynomials in the manner of the coKleisli construction. For this
we need a “distributive law” converting a family of presheaves into a presheaf
over families of paths. It can be shown that provided all the maps in U
(the possible reindexings) are injective, composition of polynomials preserves
open maps and bisimulation. If U contains the empty set, we can specialise
composition, as in the example, to obtain a functor F [−] : P̂ → Q̂ from F in
PolyU(P, Q).

The example is now seen as the special case in which U consists of subsets,
possibly empty, of positive natural numbers {1, . . . , n} with identities as the

25

only maps. In the special case in which U is the full subcategory of Set
consisting of the empty set and a singleton, polynomials amount to functors
P⊥ → Q̂ so to maps in Aff . If we take U to be I (finite sets with injections),
or B (finite sets with bijections), we can repair an inadequacy in the example;
then, FU(P & Q) and FU(P) × FU(Q) are isomorphic, so that we obtain a
function space for the polynomials with respect to the product −&−. Both
FI and FB are good candidates for the exponential !—they also behave well
w.r.t. bisimulation.

There is a fly in the ointment however. The complete mathematical
story, in which one would see the polynomials as maps in a coKleisli con-
struction, uses bicategories and at least pseudo (co)monads on a biequivalent
2-category. At present this theory, even the definitions, are not sufficiently
developed (though remedial work has started with Martin Hyland and John
Power).

Acknowledgements A good deal of the background for this work was de-
veloped with Gian Luca Cattani for his PhD [6]. Discussions with Martin
Hyland and John Power have played a crucial role in the work on nonlinearity.

References

[1] S. Abramsky. Computational interpretation of linear logic. Tech. Report
90/20, Dept. of Computing, Imperial College, 1990.

[2] T. Braüner. An Axiomatic Approach to Adequacy. BRICS Dissertation
Series DS-96-4, 1996.

[3] J. Brock and W. Ackerman. Scenarios: A model of non-determinate com-
putation. In Proc. of Formalization of Programming Concepts. LNCS 107,
1981.

[4] L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile
Ambients. In Proc. POPL’00.

[5] L. Cardelli and A. D. Gordon. A Commitment Relation for the Ambient
Calculus. Note, 2000.

[6] G. L. Cattani. Presheaf Models for Concurrency. BRICS Dissertation Series
DS-99-1, 1999.

[7] G. L. Cattani, M. Fiore, and G. Winskel. A Theory of Recursive Domains
with Applications to Concurrency. In Proc. of LICS ’98.

26

[8] G. L. Cattani, A. J. Power, and G. Winskel. A categorical axiomatics for
bisimulation. In Proc. of CONCUR’98, LNCS 1466, 1998.

[9] T. Hildebrandt, P. Panangaden, and G. Winskel. Relational semantics of
nondeterministic dataflow. In Proc. of CONCUR’98, LNCS 1466, 1998.

[10] C. A. R. Hoare. A model for communicating sequential processes. Tech.
Report PRG-22, University of Oxford Computing Lab., 1981.

[11] A. Joyal and I. Moerdijk. A completeness theorem for open maps. Annals
of Pure and Applied Logic, 70:51–86, 1994.

[12] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Infor-
mation and Computation, 127:164–185, 1996.

[13] G. M. Kelly. Basic concepts of enriched category theory. London Math. Soc.
Lecture Note Series 64, CUP, 1982.

[14] K. G. Larsen and G. Winskel. Using information systems to solve recursive
domain equations effectively. LNCS 173, 1984.

[15] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer-
Verlag, 1992.

[16] A. R. G. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.

[17] A. R. G. Milner. Communication and concurrency. Prentice Hall, 1989.

[18] M. Nygaard. Towards an Operational Understanding of Presheaf Models.
Progress report, University of Aarhus, 2001.

[19] G. Winskel. A Linear Metalanguage for Concurrency. In Proc. AMAST’98,
LNCS 1548, 1998.

[20] G. Winskel and M. Nielsen. Models for Concurrency. In Handbook of Logic
in Computer Science, Volume 4, OUP, 1995

27

Recent BRICS Report Series Publications

RS-02-48 Mikkel Nygaard and Glynn Winskel.Linearity in Process Lan-
guages. December 2002. 27 pp. Appears in Plotkin, editor,
Seventeenth Annual IEEE Symposium on Logic in Computer
Science, LICS ’02 Proceedings, 2002, pages 433–446.

RS-02-47 Zolt́an Ésik. Extended Temporal Logic on Finite Words and
Wreath Product of Monoids with Distinguished Generators. De-
cember 2002. 16 pp. To appear in6th International Conference,
Developments in Language Theory, DLT ’02 Revised Papers,
LNCS, 2002.

RS-02-46 Zolt́an Ésik and Hans Leiß. Greibach Normal Form in Alge-
braically Complete Semirings. December 2002. 43 pp. An ex-
tended abstract appears in Bradfield, editor,European Associ-
ation for Computer Science Logic: 16th International Workshop,
CSL ’02 Proceedings, LNCS 2471, 2002, pages 135–150.

RS-02-45 Jesper Makholm Byskov. Chromatic Number in Time
O(2.4023n) Using Maximal Independent Sets. December 2002.
6 pp.

RS-02-44 Zolt́an Ésik and Zoltán L. Németh. Higher Dimensional Au-
tomata. November 2002. 32 pp. A preliminary version appears
under the title Automata on Series-Parallel Biposetsin Kuich,
Rozenberg and Salomaa, editors,5th International Conference,
Developments in Language Theory, DLT ’01 Revised Papers,
LNCS 2295, 2001, pages 217–227. This report supersedes the
earlier BRICS report RS-01-24.

RS-02-43 Mikkel Christiansen and Emmanuel Fleury. Using IDDs for
Packet Filtering. October 2002. 25 pp.

RS-02-42 Luca Aceto, Jens A. Hansen, Anna Inǵolfsdóttir, Jacob
Johnsen, and John Knudsen. Checking Consistency of Pedi-
gree Information is NP-complete (Preliminary Report). October
2002. 16 pp.

RS-02-41 Stephen L. Bloom and Zolt́an Ésik. Axiomatizing Omega and
Omega-op Powers of Words. October 2002. 16 pp.

RS-02-40 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. A
Note on an Expressiveness Hierarchy for Multi-exit Iteration.
September 2002. 8 pp.

