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A Note on an Expressiveness Hierarchy

for Multi-exit Iteration

Luca Aceto∗ Wan Fokkink† Anna Ingólfsdóttir∗‡

Abstract

Multi-exit iteration is a generalization of the standard binary Kleene
star operation that allows for the specification of agents that, up to bisim-
ulation equivalence, are solutions of systems of recursion equations of the
form

X1
def
= P1X2 + Q1

...

Xn
def
= PnX1 + Qn

where n is a positive integer, and the Pi and the Qi are process terms. The
addition of multi-exit iteration to Basic Process Algebra (BPA) yields a
more expressive language than that obtained by augmenting BPA with the
standard binary Kleene star. This note offers an expressiveness hierarchy,
modulo bisimulation equivalence, for the family of multi-exit iteration
operators proposed by Bergstra, Bethke and Ponse.

AMS Subject Classification (1991): 68Q15, 68Q70.
CR Subject Classification (1991): D.3.1, F.1.1, F.4.1.
Keywords and Phrases: Concurrency, process algebra, Basic Process
Algebra (BPA), multi-exit iteration, bisimulation, expressiveness.

1 Background

For the sake of completeness and readability, we begin by recalling the relevant
notions from [1] that will be needed in this note. The interested reader is referred
to op. cit. and [5] for motivation and further information.

We assume a non-empty alphabet A of atomic actions, with typical elements
a, b. The language BPAme∗(A) of terms over Basic Process Algebra (BPA) with
multi-exit iteration is defined inductively as follows:
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- each a ∈ A is a term;

- P + Q and P · Q are terms, if so are P and Q;

- (P1, ..., Pm)∗(Q1, ..., Qn) is a term, if so are P1, ..., Pm and Q1, ..., Qn for
some positive integers m and n.

We shall use P, Q, R (possibly subscripted and/or superscripted) to range over
BPAme∗(A). In writing terms over the above syntax, we shall always assume
that the operation · binds stronger than +. In the sequel the operation · will
often be omitted, so PQ denotes P ·Q. We shall use the symbol ≡ to stand for
syntactic equality of terms. For every natural number n, we shall write [n] in
lieu of {1, . . . , n}.

Apart from actions, the signature of the language BPAme∗(A) includes the
binary operations of alternative composition + and sequential composition ·
familiar from the theory of Basic Process Algebra [6, 4], and a variation on the
original binary version of the Kleene star operation [9], that will be referred
to as multi-exit iteration. For positive integers m and n, the process term
(P1, ..., Pm)∗(Q1, ..., Qn) stands for an agent whose behaviour is specified by the
following defining equation:

(P1, ..., Pm)∗(Q1, ..., Qn) = P1 · (P2, ..., Pm, P1)∗(Q2, ..., Qn, Q1) + Q1 .

In order to simplify notation in the presentation of the operational semantics
for BPAme∗(A), we shall use the notion of ‘vectors of processes’. A vector of
processes is a tuple (P1, ..., Pm), where m ≥ 0. We shall use ~Q, ~S to denote
such vectors of processes. In multi-exit iteration, the expressions at the left-
and right-hand sides of the star are non-empty vectors of processes. Enclosing
parentheses will always be omitted from vectors of length one, i.e., (P ) will be
written P .

The operational semantics for the language BPAme∗(A) is given by the la-
belled transition system

(
BPAme∗(A),

{
a→| a ∈ A

}
,
{

a→X | a ∈ A
})

,

where the transition relations a→ and the unary predicates a→X are, respec-
tively, the least subsets of BPAme∗(A)×BPAme∗(A) and BPAme∗(A) satisfying
the rules in Table 1. Intuitively, a transition P

a→ Q means that the system
represented by the term P can perform the action a, thereby evolving into Q.
The special symbol X stands for (successful) termination; therefore the inter-
pretation of the statement P

a→X is that the process term P can terminate by
performing a. Note that, for every term P , there is some action a for which
either P

a→ P ′ holds for some P ′, or P
a→X does.

Definition 1.1 The term P ′ is a derivative of P if P can evolve into P ′ by
zero or more transitions. A derivative P ′ of P is proper if P can evolve into
P ′ by performing at least one transition.
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a
a→X

P
a→X

P + Q
a→X

Q
a→X

P + Q
a→X

P
a→ P ′

P + Q
a→ P ′

Q
a→ Q′

P + Q
a→ Q′

P
a→X

P · Q a→ Q

P
a→ P ′

P · Q a→ P ′ · Q
P

a→X
(P, ~Q)∗(R, ~S) a→ ( ~Q, P )∗(~S, R)

P
a→ P ′

(P, ~Q)∗(R, ~S) a→ P ′ · ( ~Q, P )∗(~S, R)

R
a→X

(P, ~Q)∗(R, ~S) a→X
R

a→ R′

(P, ~Q)∗(R, ~S) a→ R′

Table 1: Transition Rules

Process terms are considered modulo bisimulation equivalence [10].

Definition 1.2 Two process terms P and Q are bisimilar, denoted by P ↔ Q,
if there exists a symmetric binary relation B on process terms which relates P
and Q, such that:

- if R B S and R
a→ R′, then there is a transition S

a→ S′ such that R′ B S′,

- if R B S and R
a→X, then S

a→X.

Such a relation B will be called a bisimulation. The relation ↔ will be referred
to as bisimulation equivalence.

Note that if P is bisimilar to Q, then every (proper) derivative of P is bisimilar
to some (proper) derivative of Q, and vice versa.

The transition rules in Table 1 are in the ‘path’ format of Baeten and Verhoef
[3]. Hence, bisimulation equivalence is a congruence with respect to all the
operations in the signature of BPAme∗(A).

Process terms in BPAme∗(A) are normed, which means that they are able
to terminate by embarking in a finite sequence of transitions. We call such a
sequence a termination trace. The norm of a process term P , denoted by |P |,
is the length of its shortest termination trace; this notion stems from [2]. Note
that bisimilar process terms have the same norm. The following lemma, which
is due to Caucal [8], is typical for normed processes, and will be useful in the
technical developments to follow.

Lemma 1.3 Let P, Q, R, S ∈ BPAme∗(A) be such that PQ ↔ RS. If |Q| = |S|,
then P ↔ R and Q ↔ S.

A technical tool we shall use below is a weight function g that associates a
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natural number to each process term. This is defined thus:

g(a) ∆= 0
g(P + Q) ∆= max{g(P ), g(Q)} + 1

g(PQ) ∆= max{g(P ), g(Q)}
g
(
(P1, ..., Pm)∗(Q1, ..., Qn)

) ∆= max{g(Pi), g(Qj) + 1 | i ∈ [m], j ∈ [n]} .

The basic property of this weight function that we shall need is expressed in the
lemma below (cf. [1, Lemma 3.5]).

Lemma 1.4 If P ′ is a derivative of P , then g(P ′) ≤ g(P ). Moreover, if

- P ≡ P1 + P2 for some terms P1 and P2, and P ′ is a proper derivative of
P , or

- P ≡ (P1, ..., Pm)∗(Q1, ..., Qn), for some terms Pi (i ∈ [m]) and Qj (j ∈
[n]), and P ′ is a proper derivative of some Qj,

then g(P ′) < g(P ).

2 An Expressiveness Hierarchy

As shown in [5], the addition of multi-exit iteration to BPA yields a language
that, modulo bisimulation equivalence, is strictly more expressive than that
obtained by augmenting BPA with the standard binary Kleene star. More pre-
cisely, it is proven ibidem that, in the presence of at least two actions, the process
(a, a)∗(a, b) cannot be expressed, modulo bisimulation equivalence, in ACP [4],
and a fortiori in BPA, enriched with the binary Kleene star (cf. Lemma 3.2.3 in
op. cit.).

Let us say that a term of the form (P1, . . . , Pm)∗(Q1, . . . , Qn) has n-exit
iteration. By analogy with the aforementioned result from [5], it was proved
in [1] that, in the presence of a non-empty set of actions, the sequence of k-
exit iteration operations induces a hierarchy of super-languages of BPA with a
strictly increasing expressive power modulo bisimulation equivalence. To this
end, it was shown in op. cit. that, for every positive integer k, the process

a∗(a, a2, . . . , ak+1)

cannot be specified using h-exit iteration with h ≤ k, modulo bisimulation
equivalence. (Cf. Corollary 4.5 in [1].)

In light of the above result, increasing the maximum number of exits allowed
in a multi-exit iteration increases the expressive power of the language modulo
bisimulation equivalence. Our aim in this note is to show that increasing the
maximum number of processes on the left-hand side of the star in a multi-exit
iteration also increases the expressive power of the language modulo bisimulation
equivalence.
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Notation 1 For every positive integer k, we write BPAk∗ for the set of terms
in the language BPAme∗(A) that may use multi-exit iteration operations whose
first argument is a non-empty vector of processes of length at most k.

For a positive integer i and action a, we write ai for the term obtained by
concatenating i copies of action a.

Our aim is to prove the following theorem:

Theorem 2.1 For every positive integer k, the process (a, a2, . . . , ak+1)∗a can-
not be expressed in the language BPAk∗ modulo bisimulation equivalence.

The remainder of this note will be devoted to a proof of the above result. To
this end, it is sufficient to establish the following special case of the statement
of our main result.

Proposition 2.2 For every positive integer k, the process (a, a2, . . . , ak+1)∗a
cannot be expressed, modulo bisimulation equivalence, as a term in the language
BPAk∗ of the form (P1, . . . , Ph)∗(Q1, . . . , Qm) with |Qj| = 1, for every j ∈ [m].

Indeed, using the above result, we can prove Theorem 2.1 thus:

Proof of Theorem 2.1: Assume, towards a contradiction, that there is a
term P in the language BPAk∗ that is bisimilar to (a, a2, . . . , ak+1)∗a. Assume,
furthermore, that P is a process with this property with minimum weight g(P ).
We proceed with the proof by analyzing the possible forms such a P may take.

It is easy to see that P can neither have the form a nor the form P1P2

for some processes P1 and P2. Indeed, this follows because bisimilar processes
have equal norm, but any process of the form P1P2 has norm at least two and
(a, a2, . . . , ak+1)∗a has norm one.

We claim that P cannot have the form (P1, . . . , Ph)∗(Q1, . . . , Qm) either.
To see this, note, first of all, that, by Proposition 2.2, P cannot have the form
(P1, . . . , Ph)∗(Q1, . . . , Qm), with |Qj | = 1 for every j ∈ [m]. If there is some
Qj (j ∈ [m]) whose norm is greater than one, then this Qj affords a transition
Qj

a→ Q′
j for some process Q′

j . It follows that, for some positive integer `,

(P1, . . . , Ph)∗(Q1, . . . , Qm) a`→ Q′
j .

Since the terms (P1, . . . , Ph)∗(Q1, . . . , Qm) and (a, a2, . . . , ak+1)∗a are bisimilar,
there is a derivative R of the latter term such that

(a, a2, . . . , ak+1)∗a a`→ R and Q′
j ↔ R .

As (a, a2, . . . , ak+1)∗a is easily seen to be a derivative of R, we have that Q′
j has a

derivative that is bisimilar to (a, a2, . . . , ak+1)∗a, and thus that Qj has a proper
derivative Q′ that is bisimilar to (a, a2, . . . , ak+1)∗a. By Lemma 1.4, the value of
g(Q′) is strictly smaller than g(P ). This contradicts our assumption that P was
a process with minimum weight in BPAk∗ that is bisimilar to (a, a2, . . . , ak+1)∗a.
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From the above reasoning, it follows that P can only have the form P1 + P2

for some processes P1 and P2. Since

(a, a2, . . . , ak+1)∗a an→ (a, a2, . . . , ak+1)∗a
(

n =
(k + 1)(k + 2)

2

)

and P ≡ P1 + P2 is bisimilar to (a, a2, . . . , ak+1)∗a, there is a process P ′ such
that

P
an→ P ′ and P ′ ↔ (a, a2, . . . , ak+1)∗a .

By Lemma 1.4, since P ′ is a proper derivative of P ≡ P1 + P2, the value of
g(P ′) is strictly smaller than g(P ). This contradicts our assumption that P was
a process with minimum weight in BPAk∗ that is bisimilar to (a, a2, . . . , ak+1)∗a.

It follows that no term in BPAk∗ can be bisimilar to (a, a2, . . . , ak+1)∗a,
which was to be shown. �
To complete the proof, we are therefore left to show Proposition 2.2. This result
is an immediate consequence of the second statement in the following lemma.

Lemma 2.3 Assume that Q1, . . . , Qm are processes with norm one. Then the
following statements hold:

1. For every positive integer i, if (P1, . . . , Ph)∗(Q1, . . . , Qm) is bisimilar to
(ai, R1, . . . , Rn)∗a (n ≥ 0), then

• P1 ↔ ai and

• (P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) ↔ (R1, . . . , Rn, ai)∗a.

2. For every k ≥ h ≥ 1, if (P1, . . . , Ph)∗(Q1, . . . , Qm) ↔ (a, a2, . . . , ak)∗a,
then h = k, and Pi ↔ ai for every i ∈ [k].

Proof: We prove the two statements separately.

• Proof of Statement 1. We consider two cases, depending on whether
i = 1 or not. In both cases of the proof, we use the fact that, as
(P1, . . . , Ph)∗(Q1, . . . , Qm) ↔ (ai, R1, . . . , Rn)∗a holds by assumption, P1

can perform an a-labelled transition and no transition labelled with ac-
tions different from a.

Assume that i = 1. Then P1 has no transitions of the form P1
a→ P ′

1.
Indeed, if P1

a→ P ′
1 holds, then so does

(P1, . . . , Ph)∗(Q1, . . . , Qm) a→ P ′
1(P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) . (1)

Since (P1, . . . , Ph)∗(Q1, . . . , Qm) ↔ (a, R1, . . . , Rn)∗a holds by assump-
tion, there is a transition

(a, R1, . . . , Rn)∗a a→ R

for some R such that

P ′
1(P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) ↔ R .
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The only candidate for this R is the term (R1, . . . , Rn, a)∗a. However, the
term (R1, . . . , Rn, a)∗a has norm one, whereas

|P ′
1(P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1)| ≥ 2 .

It follows that P ′
1(P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) cannot be bisimilar to

(R1, . . . , Rn, a)∗a, and thus that P1
a→X is the only transition afforded by

P1. We can now conclude that

– P1 ↔ a and
– (P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) ↔ (R1, . . . , Rn, a)∗a

both hold, which was to be shown.

Assume now that i is greater than 1. Reasoning as in the previous case,
it is not hard to see that P1 only affords transitions of the form P1

a→ P ′
1.

For every such transition, we have a transition of the form (1) out of
(P1, . . . , Ph)∗(Q1, . . . , Qm). These transitions can only be matched by the
transition

(ai, R1, . . . , Rn)∗a a→ ai−1(R1, . . . , Rn, ai)∗a

from (ai, R1, . . . , Rn)∗a. It follows that, for every term P ′
1 such that P1

a→
P ′

1, it holds that

P ′
1(P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) ↔ ai−1(R1, . . . , Rn, ai)∗a .

Since the terms (P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) and (R1, . . . , Rn, ai)∗a
have both norm one by the proviso of the lemma, Lemma 1.3 yields that

P ′
1 ↔ ai−1 and

(P2, . . . , Ph, P1)∗(Q2, . . . , Qm, Q1) ↔ (R1, . . . , Rn, ai)∗a .

To complete the proof for this case, note that since every term that can
be reached from P1 via an a-labelled transition is bisimilar to ai−1, from
our previous observations it follows that P1 is bisimilar to ai.

• Proof of Statement 2. Assume that k ≥ h ≥ 1 and

(P1, . . . , Ph)∗(Q1, . . . , Qm) ↔ (a, a2, . . . , ak)∗a .

Using statement 1 of the lemma repeatedly, we have that Pi ↔ ai for every
i ∈ [h], and

(P1, . . . , Ph)∗(Q`+1, . . . , Qm, Q1, . . . , Q`) ↔ (ah+1, . . . , ak, a1, . . . , a
h)∗a ,

where ` = h mod m.

If h < k, then statement 1 of the lemma would entail that

a ↔ P1 ↔ ah+1 ,

which is impossible because a ↔/ ah+1, as h ≥ 1. It follows that h = k
holds, and we are done.
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This completes the proof of the lemma. �
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