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The powerdomain of indexed valuations

This is an extended version of a paper appearing in proceeding of LICS 02

Daniele Varacca
BRICS- University of Aarhus, Denmark
Computer Laboratory - University of Cambridge, UK
varacca@brics.dk

September 2, 2002

Abstract

This paper is about combining nondeterminism and probabilities. We
study this phenomenon from a domain theoretic point of view. In domain
theory, nondeterminism is modeled using the notion of powerdomain, while
probability is modeled using the powerdomain of valuations. Those two
functors do not combine well, as they are. We define the notion of power-
domain of indexed valuations, which can be combined nicely with the usual
nondeterministic powerdomain. We show an equational characterization of
our construction. Finally we discuss the computational meaning of indexed
valuations, and we show how they can be used, by giving a denotational
semantics of a simple imperative language.

Contents

1 Introduction 2

*Basic Research in Computer Scieneaviv.brics.dk ),
funded by the Danish National Research Foundation.



2 Indexed valuations in the category of sets 6

2.1 Definition . . . .. .. ... . e 6
2.2 Equational characterization . . . . .. ... ... ....... 13

3 The construction of Tix and Mislove in the category of sets 17

4 Indexed valuations in the category of continuous domains 21
4.1 Definition . . . ... . 21
4.2 Equational characterization . . . . .. ... ... ... .... 24
4.3 Adistributive law (categorically) . . .. . ... .. ... .. .. 29
4.4 Adistributive law (equationally) . . . ... ... ... ... ... 35

5 The Construction of Tix and Mislove 39

6 Semantics of programs 39
6.1 Theoperationalmodel . ... ... ................ 40
6.2 Asimpleimperative language . . .... . .. ... .. ... .. 41
6.3 Denotational semantics for the finite fragment . ..... . . . .. 46
6.4 Denotational semantics for the full language . ...... . . ... 48
6.5 Denotational semantics using Tix-Mislove . . . . . . . ... ... 50

7 Future Work 53

1 Introduction

Nondeterminism and probability are computational effects whose semantics has
been thoroughly studied. The combination of the two appears to be essential in
giving models for concurrent processes [Var85, Han91, SL95]. Denotationally,
nondeterminism is handled by the notion of powerdomain functor in a suitable
category of domains [Plo83], while probabilistic behavior is handled by the pow-
erdomain of valuations [Jon90, Kir93]. They happen to be monads, thus fitting
the general idea, introduced by Moggi, of monads as models for computational
effects [Mog91].

A general way for combining two monads is by definingliatributive law
[Bec69]. Suppose we have two monadsn”, u7), (S, n°, 1) on some category.
A distributive lawof S overT is a natural transformatiah: ST—T'S satisfying
the following axioms:



o doiST = Trf
e doSnT =nTs
o do ST = TS 0dS o Sd
o doSuT = TS o TdodT

With a distributive law we can define a monad on the fun@tér
if d: ST—TS is a distributive law, ther{T'S, n"n®, (1" 1) o TdS) is a
monad.

Now, let(P, n*, 1) be the finite nonempty powerset monad, &id,", ")
be the finite probability distribution monad in the categBilyT. If we want to
build some kind of “combined” monad, we have to face the following obstacle:

Proposition 1.1. There is no distributive law df over P.

Proof: The idea for this proof is due to Gordon PlotkinAssume that/ :
V P— PV is a distributive law. Consider the s&t := {a,b,c,d}. TakeZ :=
$0tapy T 30¢cay € VP(X). We try to find out what? := dx (Z) is.

LetY := {a,b}. Consider:

a = a
b — b
f: X=Y f: e a
 d — b
( a — a
/- ’ b — b
ff:X-Y f: e b
( d — a.
Consider the naturality diagram fgr
=2 R
VP(f)I IPV(f)
dy —=>5.
Y

1personal communication.



One of the unit laws for tells us thatS := dy(dy) = {d,,0,}. Therefore,
considering the functorial action @fl/, we must have that

0+ RC{pd.+ (1 —p)d.|pel0,1]}U{gd+ (1 —q)da|qe0,1]}

Consider the same diagram fff

This tells us that
0#RC{pda+(1—p)oalp €l0,1]}U{g%+(1—¢)0|qel0,1]}.

Combining these pieces of information we conclude tRahust be a nonempty
subset of 6, y, dc, da }-
Now let Z := {a, c}. Consider

a — a
pixez gt
d — c
Let us look at the naturality diagram fgf":
=
VP(f”)I 1PV(f”)
300y + 300y = T

SinceT = PV (f")(R), thenT must be a nonempty subset of,, J.}. But the

other unit law ford tells us thatl’ = d(30;} + 30;;) = {30, + 3.} Contradic-

tion. O
A very similar argument can be applied to prove the dual

Proposition 1.2. There is no distributive law aP overV'.



Similar statements are true for the corresponding monads in the category of
continuous domains and continuous functi@®NT. If P is some powerdo-
main monad and’ is the powerdomain of valuations monad, then there is no
distributive law between them.

Let us look at the reason for this phenomenon. The monads above arise as
free algebras for suitable equational theories. In such cases a categorical distribu-
tive law amounts to an equational distributive law between the operators of the
theories. In our case we would like to distribute the probabilistic choice over the
nondeterministic one. Assume thaj is a probabilistic choice operatast +, B
is choosingA with probability p and B with probability (1 — p). This operator
satisfiesd +, A = A. Now if A, B, C' are sets, we would like that:

A+,(BUC)=(A+,B)U(A+,0C).
But if this law has to be true, then

{z,y} ={z,y} +p {o,y} = {z,y, 2 +py,y +p z}

which is a contradiction.

Morally the proof of proposition 1.1 relies on the latv+, A = A. Dually
the proof of proposition 1.2 relies on the lavu A = A. It would be interest-
ing to investigate more in details the relations between categorical and equational
distributive laws, although it might already have been done, and | am simply not
aware of it.

The equationz,y} = {z,y,z +, y,y +, £} suggests a possible solution to
this difficulty. Tix [Tix99] and Mislove [Mis00], independently, define the notion
of geometrically convex powerdoméaky-,;, which cannot be applied to arbitrary
continuous domains, but to continuous d-cones only. Mor&ly, (X) is the set
of all convexsubsets ofX'. The binary operatar is interpreted as union followed
by convex closure. The compositidpy,, o V is proved to have the universal
property that makes it a monad.

Our solution amounts to defining the notioninflexed valuatiorfiunctorZ)V .
Indexed valuations are similar to usual valuations but they do not satisfy
A = A. ltis possible to define a distributive law between the uguandzZ) .
We perform this construction both in the category of sets and in the category of
continuous domains.

As in the case of andV, the functorZV is freely generated by an (in)equa-
tional theory.



Besides their categorical justification, indexed valuations have a computa-
tional meaning, which we present by giving semantics to an imperative language
containing both random assignment and nondeterministic choice. The operational
semantics is given in terms of alternating transition systems. Such systems come
equipped with a notion of scheduler for resolving the nondeterminism. In the
literature there are two notions of scheduler: deterministic and probabilistic. Us-
ing indexed valuations, we give a denotational semantics which is adequate with
respect to deterministic schedulers. A semantics in terms of the Tix-Mislove con-
struction, instead, is adequate with respect to probabilistic schedulers.

2 Indexed valuations in the category of sets

We perform our construction in the category of sets and functions. We define
the indexed valuation functor and the distributive law. The notions introduced in
this section will also be necessary when we work in the category of continuous
domains.

2.1 Definition

We need some preliminary definitions.
Definition 2.1. A discrete valuatiorfDV) on a setX is a function
v:X — RV :=0,+00].

Given a discrete valuatianon X, we define itsiorm|v| as

V=S (@) = suprc,x 3 v(@).

rzeX zeF

ForY C X we also put

yey

The supportSupp(v) of a DV v is defined as

Supp(v) == v 1(]0, +o0]) = {z € X | v(z) > 0} .



As far as | know this notion, although straightforward, does not have a standard
name in the literature. The name “discrete valuations” comes from the fact that
they are valuations on the discrete topology (see section 4.1). In [JLYO01] discrete
valuations taking values i), +oo[ are calledveightings

We denote the set of discrete valuations'oty V (X).

Definition 2.2. A discrete valuatiomw is adiscrete partial probability distribution
if |v| < 1. A discrete valuatiomw is afinite valuationif Supp(v) is finite.

Partial probability distributions are sufficient for semantics of probabilistic
processes. Nevertheless, we choose to deal with the more general notion of valu-
ation, because the corresponding equational theory is nicer while the other funda-
mental properties are the same [Kir93].

We now introduce the main new concept.

Definition 2.3. Let X be a set. Arnindexed discrete valuatiofiDV) on X is a
pair (Ind, Prob) wherelnd : I — X is a function and’rob is a discrete valuation
on /, for some sef.

Notice that we do not require th&td be injective. This is indeed the main
point of this construction: we want to divide the probability of an element among
its indexes. One possible interpretation is that indexek i@present computa-
tions, while elements ok represent observations.

We shall also writer; for Ind(i) andp; for Prob(:). An indexed discrete
valuation¢ := (Ind, Prob) will also be denoted ag;, p;)icr-

We are now going to define an equivalence relation on the class of IDV'’s. Itis
the transitive closure of two simpler equivalence relations.

Definition 2.4. We set
(Sl?z',pi)ief ~1 (Z/j,CIj)jeJ
if and only if there exists a bijectioh : / — J such that

V’LE[yh(Z) =z;,
Vi e I. An() = Di -

This says that two IDV’s are equivalent up to renaming of the indexes. If we
interpret indexes as computations, we may say that we do not care about the iden-
tity of a single computation. We only care of how many different computations
there are, and how they relate to observations.

Given an IDV(z;, p;)ier, letly :={i € I | p; = 0}.
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Definition 2.5. We set
(%Wi)ie] ~2 (Z/j, CIj)jeJ
if and only if
I \ ]0 — J \ J() B

This says that only indexes in the support matter. Intuitively, computations
with probability O do not happen, so we may as well ignore them.

Definition 2.6. The equivalence relatiox is the transitive closure of; o ~s.

¢, From now on we will use the term “indexed discrete valuations” to denote
equivalence classes under
Given a setX and an infinite cardinal numberwe define the setV,,(X) as
follows:
IV (X) == A{(xs, pi)ict]~ | Card(I) < a} .

In particular/ V4, (X) is the set of indexed discrete valuations whose indexing set
is finite. Its elements are called indexed finite valuations. For simplicity, we shall
write I'V for IV, .

The construction above can be extended to a funttor SET — SET as
follows. If f : X — Y then

IV (f)([(zi, pi)ierl~) = [(f (@), pi)ier]~ -

It is easy to check that this construction is well defined (i.e. does not depend on
the representative). The functby extends to a monad, with the following unit
and multiplication (we drop the mention of equivalence classes to simplify the
reading):

X = IV(X),
iy (@) = (2, Daepy 5
py IVIV(X)) — IV(X),

X (((iy, Dis)iserss ™ )aea) = (T4, ¢;) jer

where
J = |+ ]>\7 q]‘:pjﬂ}\if]‘EI)\.
AEA



To simplify the definition ofu, recall that an IDV is in fact an equivalence
class. We can therefore assume that= I for every\ € A because we can
always reindex and add indexes with probability 0. Therefore

((xz‘,\apix)i)\el,\a 77>\)A6A ~ ((x?,p?)ief, 7T>\))\€A .

And
Mg(v (((xf\ap?)iela 7T>\))\6A) = (%-A, WAP?)(i,A)ezxA .

Proposition 2.7. The triple(1V, 7"V, ') defined above is a monad.

Proof: It is easy to check that, i are well defined and are natural transfor-
mations. Let us now check the defining diagrams:

1.
V(X)

] N

IVA(X)—— IV (X)

nx

IV (nx) (i, p)ier) = (23, Vsegeys Pi)iers
MX(((«%’@', 1)*6{*}7]91')1'61) = (% 1pi)(i,*)€[><{*} ~ (l’z',pz')iel .

IV(X

e

IV(X) < IVX(X

nrvix) (@ pi)ier) = (@i, pi)ier, 1)sesy;
MX(((l’i,pi)ieh 1)*6{*}) = (ﬂfi, 1pi)(*,i)€{*}><l ~ (xiapi)iel .
V(X)X 2 rv2(x)
IV(MX)l l/“X
IV2(X) —— IV(X)



px o 1V () (5 ier, )i e ) =
= px (((xg’l7pg’lré)(i,j)efxwQl)leL)
= (xg’lapg’lré%)(i,j,l)elixL
= MXx (((xg’lapg’l)ielaréQl)(j,l)eJxL)
= px o vy (@ P Yier jer aier)
Notice that we make essential use of the fact that indexed valuations are defined
as equivalence classes.
Recall that the monad on the nonempty finite powerset furieisrdefined as

follows:
ny : X — P(X),

0" (x) = {z};
py : P(P(X)) — P(X),
pe(S) =Js.
We define a distributive law of indexed valuations over powerset.

Theorem 2.8.Let IV : SET — SET be as above, ané : SET — SET be
the covariant nonempty finite powerset monad. Then

d:IVoP — PolV
dx (Si,pi)icr == {(h(?),pi)ict |h : I — X, h(i) € S;}
is a distributive law.

Proof: We first notice (omitting the easy proof) thais well defined. Then
we have to show that is a natural transformation.

X IV(P(X)) -2 P(IV(X))
ft IV(P(f))l lP(IV(f))
Yy  IV(P(Y)) 2> PIV(Y))

10



Take a functionf : X — Y. Take= € IV (P(X)), E = (S;,pi)ic;- We have
IV(P(f))(E) = (f(Si): pi)ier- Then

dy (f(Si), pi)ier = {(W (i), pi)icr | W - T =Y, W(i) € f(S;)} = A.
On the other hand consider
PUV(D) ({(h@). pidier | h: 1 — X, h(i) € S}) .
This is equal to
{(F(h(i)),pi)ics | h: T — X, h(i) € S;} = B.

We have to show that = B. ClearlyB C A, just leth’ = f o h. Take now an
element(h' (i), p;)icr Of A. This means that'(i) = f(z;) for somez; € S;. For
everysS;, we select one sucty and then we defing(i) = z;. Thus we have

(f(h(0)), pi)ier = (W'(3), pi)ier

so that(h/ (i), p;)ic; belongs toB.
Now we have to check the four diagrams characterizing the distributive law:

1,
N
IVP - PIV
= {(=, )*e{*}|$€5}-
2.

/\

IVP PIV

dX(({xi}vpi)iEI) { ),pi)ier | h: I — X, h(i) € {xl}}
{ Li, Pi ze[}

11



wive2L rvprv A prviv
MIVP\L l/PMIV

IVP PIV

d

Let X := (E,\aﬂ'/\))\e/\ S [V([V(P(X))), WhereE/\ = (SiA7pi>\)i>\€I)\-
As before we can assume thit = I for every\ € A. Thereforez, =
(SX,p))icr. We have that

:U“g(/X) (X) = (Si)\ap?ﬂ-)\)(i,k)ele .
If we applydx to this term we get
{(h(i, N), P\ nerxa | hi I x A — X, h(i,\) € S5}} = A.
Consider now V' (dx)(&X). Itis
(dx(EN): Tr)ren

where

dx(Zx) = {(P*(0),p)ier | P 1 T — X, WA(i) € S}} .
Now applyd;y(x). We get
{(H()\),W)\)AEA |H A — ]V(X), H()\) € dx(EA)} =B.

The functionH is choosing an element iy (=,). We can think ofH as
choosing a functiom* : I — X, h*(i) € S?. Therefore we can equiva-
lently defineB as follows:

B = {((HN@@),pier, mrea [H : A — (I — X), HN)(@) € S}} .
Now we have to show that the flattening (throyghY) of every valuation

in B gives a valuation iM, and that every valuation iA can be obtained
flattening a valuation irB. We have

px ((HN @), p)ier, m)rea) = (HN@), pimaier -

Now it is enough to observe that “uncurryingf we getam : [ x A —
X, satisfyingh(i,\) € S*. SoP(ul))(B) C A. The other inclusion is
obtained by “currying’h to getH.

12



IVPP—— PIVP—— PPIV
vuP l l,ﬁfv

IV P PIV

d

Remember that{ (S) = US. LetX := (Si, pi)ics € IV(P(P(X))). We
have that
]V ,lLX USzapz ZEI

If we applydy to this term we get

{(h()pz)zel|h ]_>Xh US}—A
Consider nowlpx)(X). Itis
{(W(@),pi)ier | W : T — P(X), W(i) €S} =

The functionh’ is choosing an set i§; for everyi. Now two steps in one.
First step: we apply’(dx) to D and we obtain a s&t of sets of valuations.
Second step: we flatteri to a setB of valuations defined as:

{(W'(@),pi)ier | W' : 1T — X, B"(i) € W' (i), W' : I — P(X), K (i) € S;} .

We claim thatA = B. Clearly B C A because)”(i) € |JS;. But also
A C B. We buildh’ as follows: for everyi we chooseS; € S; such that
h(i) € S;. Thenh” = h does the job.

L]
It then follows that the functoP o IV is endowed with a monad structure.

2.2 Equational characterization

We now define two operations on indexed discrete valuations, which will allow us
to characterizdV as a free algebra.

Definition 2.9. Let v := (Ind, Prob) = (x;,p;)icr and¢ = (Ind’, Prob’) =
(vj,q)jes be IDV’s on X . Assume thaf N J = { (this is not restrictive, because
we can always reindex).

We definer @ ¢ to be(Ind U Ind’, Prob U Prob’). Forp € RT we definepy
to be(z;, pp;)icr. With 0 we denote the IDV whose indexing set is empty.

13



Note, in particular, thatr & (1 — p)v % v.
Consider the following equational theory:

A®B=DB® A

Ao (B C)=(A®B)a®C;
A 0= A4

0A =0;
1A = A
p(A® B) = pA® pB p € R¥;
p(gA) = (p9)A p,q € RT.

These axioms are almost the ones defininga cone[Tix99]. The only
difference is that we drop the axiofp + ¢) A = (pA @ qA).

N o o0 bk~ 0w Db P

Definition 2.10. A real quasi-conéis a model for the equational theory (1)—(7).
Proposition 2.11. The indexed finite valuations are the free real quasi-cone.

Proof: For any setX,, itis clear that/ V' (X') with the operations defined above
is a quasi-cone. Le&p be a quasi-cone and I¢t: X — @ a function. We have to
show that there is a unique quasi-cone homomorpHismV/ (X) — @ such that
f(x,1) = f(x). The homomorphism condition forces us to define

xzupz i€l — @pz xz .
el

Associativity, commutativity, and the twiblaws guarantee that the definition does

not depend on the representative fof, p;);c;. The unit law guarantees that

f(x,1) = f(z). The homomorphism condition for the sum (abjdis obvious,

while for the scalar product we have to use the laws (6) and (7). O
Recall that a semilattice is a model of the following theory.

8. AUB=DBUA4;
9. AU(BUYC)=(AYB)UYC,;

2This name is provisional: suggestions will be appreciated

14



10. AU A=A.

It is well known that the finite nonempty powerset is the free semilattice.

The universality of these constructions gives rise to adjunctions, which in turn
give rise to monads. It is rather straightforward to check that they are the ones
defined in section 2.1.

Consider now the combined equational theory (1)—(10) augmented with the
following axioms.

11. p(A U B) = pA J pB;
12. A (BUCO)=(A®B)J(Aa ).

Notice that (11)—(12) express equationally that the probabilistic operators dis-
tribute over the nondeterministic one.

Theorem 2.12. The monad o o IV obtained via the categorical distributive
law defined above is the free algebra for the equational theory (1)—(12).

Proof: First we show thaf’ o IV is left adjoint to the forgetful functor. Let’s
start by observing tha?(/V (X)) is indeed a model of (1)—(12), where is in-
terpreted as union, addition and scalar multiplications are the standard extensions
to subsets of the corresponding operationslinX ), andQ is the singleton of the
empty indexed valuation. Now |} be a model of (1)—(12), and I¢t: X — Q) be
a function. We have to show that there is a unique funcfionP(1V (X)) — Q
which respects the operations and such at:, 1)} = f(x). The homomor-
phism condition forces us to define

T, pi)icr} = @pif(xi) ;

el

FA) = 7.
veEA

Laws (1)—(4) again guarantee that the definition in the first line does not de-
pend on the representative far;, p;);c;. Laws (8),(9) guarantee that the second
line is well defined. The law (5) guarantees tfiétx, 1)} = f(x). The function
respects the sum (arty because of law (12). It respects the product because of
laws (6),(7),(11). It respects the union because of law (10).

Notice that the unit of the adjunction is jugtny .

15



We have to show that this monad generated by this adjunction is the same as
the monad generated by the distributive law. The functor and the unit are the same.
Instead of showing that the multiplication is the same, we equivalently show that
the Kleisli extension operators are the same.

Let f : X — P(IV(Y)) be a function. Consider a finite set of discrete
valuationsA € P(IV(X)). SinceA is finite it is not restrictive to assume that all
its elements are indexed by the samelse&io we can write

A= {(af,p))icr | p € R},
with the convention that for two different o’ the corresponding valuations are
different. Analogously, we write
F@f) ={]". " Vjes o™ € S}

with a similar convention as above for any fixédp), and also assuming that the
St are all disjoint. Again it is not restrictive to assume that all the valuations are
indexed by the same sét

We want to evaluatg’(A), the Kleisli extension of the monad generated by
the universal property:

F({@t e lpe RY) = | Pwifar) .
pER €l
Now it can be proved by induction on the sizeldhat
B r{w" ¢ )es o™ € S}
i€l

- {(y;'cp(i)’pqup(i))(j,i)eJxl |k T — USW, k(i) € SW} ,

el
Therefore:

f({(xfapf)iel | p e R})
= {(yfp(i)>prfp(i))(j,i)eJxl kP T — U St kP(i) € S p € R} )

el

Let's now look atf(A), the Kleisli extension of the monad obtained via the
distributive law.
71 ({t, )| p € RY)

16



= uPpulV o Pd]V({(f@f),pf)z‘el lpe R}>

_ MPMW({{(hp(i),pf)ie[ (B2 T — IV(Y), k(i) € f(22)}]p € R})

By the conventions we have assumed, choosing an elemgfit:fn is the same
as choosing a’* ¢ S%”, therefore it is equivalent to think df* as a function
W I —J,.; 5™, k(i) € S»*. Then we can continue the chain of equalities

= uPuW<{{((y§LP(“, ;" D jer Pier | W0 T — | JS™, kP(i) € S }p € R})

el

= uP<{{(yfp(”,pfqy(”)u,i)em [he L — (]S, hP(i) € S} |p e R})
i€l
= {(y;'lp(z)apfq;?p(l))(j,i)eJxl |hP I — U SU, hP(i) € S™.p € R} :
i€l
O

If we see finite indexed valuations and finite sets as (equivalence classes of)
terms we can give a syntactic interpretation of the categorical distributive law:
it takes a term where there are no probabilistic operators inside a hondetermin-
istic one and transforms it into a term where all the nondeterministic operators
have been pushed outside. In other words we interpret the equations (11)—(12) as
rewriting rules, from left to right.

3 The construction of Tix and Mislove in the cate-
gory of sets

Another possibility for combining nondeterminism and probability is the one sug-
gested in [Tix99, Mis00]. Those works are only concerned with DCPO's. In this
section we perform a similar construction in the cated®igT .

Definition 3.1. A real coné
13. (p+q)A = pA® qAp,q € RY.

We callRCONE the category of real cones and homomorphisms.

30ur definition is the one used in [Kir93]. The definition in [Tix99] is slightly different.

17



If X is a set, the set of finite valuations ov&r (denote byl (X)) can be
endowed with a real cone structure, the operations being defined pointwise. It is
easy to verify that

Proposition 3.2. The finite valuations are the free real cone.

Definition 3.3. A subsetX of a real cone isonvexif for everyz,y € X,p €
[0, 1], we havepr @ (1 — p)y € X. Given a setX, its convex closureX is the
smallest convex set containing. A convex setX is finitely generatedf there
exists a finite sefX, such thatX = X,,. Given a finite sef, elementsr;,i € I
of a real cone and nonnegative real numbers € I such thaty ., p; = 1, the
elementd, ., p;z; is said to be @onvex combinatioaf the z;.

The following result is standard.

Proposition 3.4. For a setX, we have thafX is the set of convex combinations
of elements oK.

Definition 3.5. For a real cone Z we define
Pry(Z) ={Y C Z|Y convex, finitely generatgd
We define

pY ={pylyeY},

eYaY ={yoy|lyeY,y eV}

e 0= {)\z.0};
e YUY =YUY' ={pyo(1-p)y[pel0,1,yeY,y eV}

Definition 3.6. A real cone-semilatticés a model for the theory (1)—(13). The
corresponding category is call&CS.

Proposition 3.7. The operatorPr,,; with the operations as above defines a functor
RCONE — RCS which is left adjoint of the forgetful functor.

Proof: First we have to show that the operations are well defined and that
satisfy the axioms. I, Y’ are convex, itis easy to show thadt, Y ¢ Y'Y U Y
are convex. IfY;, Yy are finite generators far, Y’ thenpY is a finite generator
for pY, Yo @Y, is a finite generator foY & Y’ andY, UYj is a finite generator for
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Y U Y’. As for the axioms the only nontrivial ones are (12)-(13): here is where
convexity is needed.

Then we have to show the universal property characterizing freeness. For
every real cone&Z and real cone-semilatticE and real cone homomorphisfn:
X — H, there exists a uniquBRCS-morphismf : Pry(Z) — H such that
f({z}) = f(2). Now for everyY € Pr)(Z) letY; be one of its finite generators,

then B
FvV)y=UY f).

yeYD

The homomorphism condition implies uniqueness. We have to show that this
function is well defined and that it is indeed an homomorphism. First we need to
show that the definition does not depend on the chosen finite generator.

Lemma 3.8. Let H be a real cone-semilattice, |&f, Z, be finite subsets df . If
Yy = %y, thenHYb = HZO

Proof: We prove this for the simple case whérg = {y,v'}, Zo = {z,2'}.
The general case can be proved in a similar way. We want to prove that =
z J 2. We will prove thaty Uy = y Uy U 2z U 2’ (which, by symmetry, im-
plies our result). Note that, from the assumption;’ must be convex combina-
tions ofy, yy’. The statement is thus a consequence of the following proposition.

Proposition 3.9. In a real cone-semilattice, i) is a convex combination of, 3/
then
yUy =ydy w.

Proof: Letw = py & (1 — p)y’. Then
yuy =pyvy)e(l-plyvy)

=y Yy Gpyo (1 -py) Yy e (1 -py).
The statement of the proposition follows from

Lemma 3.10.In a semilattice, ift =z U 2’ U 2", thenz = 2z J 2.

Proof:
rUr =z U Ud=xurs ur" =2
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The combination of the two adjunctions
SET _L RCONE_L RCS

gives rise to a monad IRET. Let’s look concretely at its Kleisli extension.
Takef : X — Pry(V(Y)), sayf(z) = B,. We have that the Kleisli exten-
sionft: Pry(V(X)) — Pry(V(Y)) is defined as

i) =4 > ¢@)B,.

fEAQ reX
We will need the following

Proposition 3.11.

FIA) =D @B, ={D>_¢@hx)|h: X = V(Y),h(z) € By, € € A}

(eAxzeX zeX
Proof: Let’s call

o V= Uger > rex §(7)Ba;
hd U = Uger erx g(l‘)Bma

o W= UgeA > vex §(7) By

Remember thaly = V.
ClearlyV C W. MoreoverlV is convex:

pY_E@h()+(1—p) > &) (2)

zeX zeX
=Y pE(@)h(z) + (1 = p)¢(2)h'(z) .
zeX
Defines” = pé + (1 — p)¢' € A, andh(z) = é’fg;h(x) + (125)(5)(“) W(zx). Since

B, is convex , thert”(z) € B,. (If ¢"(z) = 0 thenh”(x) can be set equal to any
element ofB,.) We have

§"(2)h"(z) = p§(x)h(x) + (1 = p)§' () (z) .
ThereforelU C .

For the other direction tak®_ _ , £(z)h(x). We know thaty = . p;&; with
& € Ay. SO

S e@h@) = 33 pé@he) = S p Y Gla)h()

rxeX xeX 1 7 reX
which is a convex combination of elementsiof O
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4 Indexed valuations in the category of continuous
domains

4.1 Definition

To give semantics to languages with recursion we work in a category of domains.
We shall recall briefly the domain theoretic notions we need. For a more detailed
treatment, the suggested reference is [AJ94].

In every DCPO ampproximatiorrelation< is definable (also known agay-
belowrelation). We say that < yif y C | || Z = 32 € Z.2 C 2. A subsetB
of a DCPOD is abasisif everyz € D is the directed lub of the elements Bf
that are way-below. A DCPO with a basis is called@ntinuous domain

An example of a continuous domain(iR+, <). Its way-below relation is

p<qiff (p<qorp=0).

A basis ofR+ is Q.
The properties of the way-below relation éhsuggest the following defini-
tion.

Definition 4.1. A relation < on a setX is anAB-relationif it is transitive and
satisfies the finite interpolation property: for everyCy;, X and for everyr
X,F<z= 3Jye X. F <y <z Thestructurd X, <) is called anabstract
basis

A preorder is also an abstract basis. For AB-relations we shall use the same
terminology as for preorders. We therefore speak of monotonic functions, lower
sets, directed sets, and so on. In particular we recall thatlead is a lower
directed set. The set of ideals &f is called/dl(X). For anyz € X the set
t(x):=x ] :={y|y < x}isanideal The structufddi(X), C) is a continuous
domain with basig(X). It is called theideal completiorof X. Conversely ifD
is a continuous domain with basis then(B, <) is an abstract basis whose ideal
completion is isomorphic t@. Notice that directedness implies the following
property, that we caltoundednessif 7 is and ideal of( X, <), then for every
x € 7 there existg’ € 7 such thatr < 2.

Let (X, <) be an abstract basi$),C) be a (not necessarily continuous)
DCPO, andf : X — D be a function mapping: to C (“monotonic”). The
function f* : Idl(X) — D defined as

P = f@)

zel

21



is continuous. Notice that in generfil(.(z)) # f(z). If (X, <), (Y, <) are two
abstract bases andjfif: X — Y is a monotonic function, we define tle&tension
ext(f) to be the continuous functiamo f)* : Idl(X) — IdI(Y).

We conclude this quick introductory part with the definition of the powerdo-
main of valuations.

Definition 4.2. A continuous valuationn a topological spacgX;, ) is a function
v : 7 — RT satisfying:

e (Strictness)
v(0) = 0;

¢ (Monotonicity)
UCV=v{U)<vV),

¢ (Modularity)
v(U)+v(V)=v(UUV)+vUNV),

¢ (Continuity) whenevey7 is a directed subset of

V(UJ) =sup v(U) .

UeJg

For eachr € X, the functionn, such that

m(U)Z{(l) i;g

is a continuous valuation and it is callpdint valuation. Asimplevaluation is
a linear combination of point valuations (the addition and scalar multiplication
being defined pointwise). A continuous valuation on a DCP@s a continu-
ous valuation on its Scott topology. The 3&tD) of continuous valuations on
D ordered pointwise is again a DCPO.Iis a continuous domain/(D) is a
continuous domain with basis the set of simple valuations.

Now we introduce the new concepts. (IX, <) is an abstract basis then we
can define a relatiorx on IV (X) in such a way that/V'(X), <) is an abstract
basis:

Definition 4.3. For (x;, p;)icr, (Y5, ¢j)jes € IV(X)
(xhpi)iEI < (yJ7QJ)j€J
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if and only if there exists a partial surjective functign J — I, s.t.
TrG) < ¥j>

pi K Z%‘-

)=t

We call such arf awitnessfor the relation.

There are three reasons for this choice. Firstly, this definition is an “indexed”
version of the splitting lemma of [Jon90]. Secondly, it has an interesting com-
putational interpretation. To explain this we need the notion of scheduler for a
probabilistic-nondeterministic operational model, which we shall present in sec-
tion 6.1. Finally, this definition corresponds to an inequational theory that allows
us to match equational and categorical distributive laws, as we did in the category
of sets.

Proposition 4.4. (IV(X), <) is an abstract basis.

Proof: To show transitivity we show that if is a witness for(x;, p;)icr <
(vj,q;)jes andg is a witness fo(y;, ¢;) jes < (21, 71)ier thenf o g is a witness for
(i, pi)ier < (z1,71)1c- Clearly it is surjective.

® o0 < Yeu) < 2. And < is transitive.

© Di KX p()=i 4 K Dopiy=i 2og=i 1 = 2a(f(g(t)=i 1"

We have now to show the finite interpolation property. It is enough to consider
the cases for whichZ’| = 0,2. We leave to the reader the cadd = 0. Let
(24, pi)iers (Yj, q5)jes < (z1,7m)ier With witnessesf and g. For everyl € L
consider the sef; := {x,(l) |l € L} U{y,(l) |l € L}. Itis finite. Since
f, g are witnessing functions, we haye < z;.. Since(X, <) is an abstract basis,
there exists a; such thatZ; < z; < z

Lets := >, ., r. Suppose first < +oo. Let2se be the minimum among all

the numbers
Zﬁ — Dis Z’f’l —4qj -
f()=i g()=j

Consider(z;, (1 — €)r;)ic. The identity function orl. is a witness for(z;, (1 —
G)TZ)ZEL < (217 Tl)lEL while f) g are witnesses fqm'hpi)ieh (yj7 QJ)]EJ = (lea (]-_
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G)Tl)leLi

2(1—6)7“1 —pi = ZT’Z — € ZTZ —Ppi

=i =i f=i
- (v —e<zn)—pi
F)=i leL

= Z r | — se—p;
f(h)=i

> Zrl —2se —p; > 0.
f)=i

The cases = +oo is similar. OJ

Definition 4.5. If D is a continuous domain with basi letZ)V (D) be the ideal
completion of(/V(B), <). Its elements are calléddexed valuations

For every indexed finite valuationm := (b;, p;);c; Over B, we can define a
simple valuation/* as follows. ConsideX := {b;|i € I}. Then define* :=
> _ic1 Pih,- FOr every open subseét of D we definev(U) := v*(U)

Every indexed valuatiom € ZV (D) defines a continuous valuatioi: if L
is a directed set of indexed finite valuations, and i | |' L, then for every open
O C D, we define*(0) := sup, ., V' (O).

Moreover, all valuations can be obtained this way.

Proposition 4.6.[Var0O1] Let )V be Jones’ powerdomain of valuations functor. The
function(—)* : ZV(D) — V(D) is a continuous surjection, natural iD.

4.2 Equational characterization

We are going to characterize indexed valuations as a free construction. Recall the
equational theory (1)—(7) of section 2.2. We add only one more axiom, which
corresponds to definition 4.3 of the AB-relation on indexed finite valuations.

e HV: (p+ q)AC (pA®qA)

Definition 4.7. A continuous quasi-conie a structuré D, C, &, ®) such that
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e (D,C)is acontinuous domain;
e &: D x D — Discontinuous;
e ©:[0,+00] x D — D is continuou$
e axioms (1)—(7) + (HV) are satisfied.

Let CONT be the category of continuous domains, @@ ONT be the
category of continuous quasi-cones and continuous homomorphisms. (In fact,
in what follows, we will always mention bases. Theref@®NT will be the
category of abstract bases and continuous functions between their completions.
This is clearly equivalent to the category as defined above. Similar considerations
apply to all the other categories we will define.)

Proposition 4.8. The operatorZ) defined in the previous section extends to a
functorCONT — QCONT which is left adjoint to the forgetful functor.

Proof: First we show that whe® is in CONT thenZV (D) is indeed in
QCONT. By constructionZV(D) is a continuous domain. We have to define
the operations. We put

eI J ={zvdylvel,ye T} l;
o pI ={pzx|x €T}
e 0=1{(, )ico}-

Such operations are well defined and they satisfy the axioms. In particular
(HV) follows from the roundedness of the ideals and the following lemma.

Lemma4.9.1f v < £ andp < ¢1 + g2 thenpr < ¢1€ & ¢€.

Proof: Letv := (a;, pi)ier, & := (bj,7;)jes. Sincer < &, by definition there
existsf : J — I, s.t..
af(j) <<B bj ;

P Y Ty

fG)=i

4The symbolo is used here for clarity. Everywhere else the scalar multiplication is denoted
simply by juxtaposition of its arguments.
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We want to prove thatr < ¢:£ @ ¢§, i.e. that.

(@i ppi)ier < (bj, qirj) Gpyesxqi,2; -
We need a functiorf’ : J x {1,2} — I, s.t.:
L apgr <p by,

Define f” as follows: f'(j, k) := f(j). First f' is clearly surjective. Secondly, the
expression (1) is obviously satisfied. As for (2) notice first hat< (¢ + ¢2)pi;
sincep; < - ;=i 7y thenfork = 1,2 gup; < 324 akrj- SO(@1 + @2)ps <

2 (=i D3 T 2o ()= B3 = Dopry=s D75 T 2o g0y 9275 = 2 (g = T
LlLemma

The operations are continuous. The scalar multiplication is also continuous in
the first argument. To prove that, take an idéa ZV (D). We want to prove that

UpI =qZ,
p<q

that is for everyy, we haver € ¢Z if and only if there exisp < ¢ s.t. v € pZ.
The “if” direction follows from monotonicity of the scalar multiplication, which
in turn follows from the fact thapyY < ¢Y & 0Y = ¢Y. It remains the other
inclusion.

Consider the casg < ~o (the other being similar). Take € ¢Z. By rounded-
ness there i’ € ¢Z s.t.v < /. We leave to the reader to prove that there exists
esuch thav < (1 — €)¢,. Butv' € ¢Z, thereforev € (1 —€)qZ.

The nature of the AB-relation allows us to observe

Lemma 4.10. With the definitions above we have
o pl(bi,pi)ier 1] = (bisppi)ier | ;
o (bi,pi)ier | ®},0))jes 1= [(bis pi)ier & (b, D)) jes] | -
To prove this the key observation is the following:

Proposition 4.11. If
(bi, pi)ier < (cj,45)jer
then for everyj there exist; < c; andq; < ¢; such that

(bis pi)ier = (¢}, d})jer = (¢ a5)jer -
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The proof of this proposition is already contained in the proof of proposition

Now we show the universal property, which proves both ffdtis a func-

tor and that is left adjoint: for every continuous functipn D — £ where& €
QCONT there is a uniqug’ : ZV(D) — & (in the categorfQCONT) s.t.

D
IV(D)-->¢&

wheren(d) = {(b,p)seq | b < d, p < 1}. (The assignment — ¢' is continu-
ous.)

Take the restriction of to Bp. It has a unique homomorphic extensign

IV(Bp) — £. Defined by

y ((bal)*e{*}) = g(b);
9 ((bi, pi)ier) = @pig(bi>'

el

We claim thatj is monotonic, in the sense that,

Lemma 4.12.if v < &, theng(v) C g(¢).

Proof: (of the lemma) First suppose th@dt p).c(.; < (¢;,4;);es, and the the

witnessf for this is total. Thep < . ; ¢; =: ¢ and for everyj, b < ¢;. Notice
also thatp = >_._, Zp. Applying iteratively the inequation (HV), we can show
that:

Jjed ¢

7 ((b.p)eersy) = pg(0) D %pg@ .

jed

Then, by monotonicity of the operations andyof

D L) € Buasale) =7 ((es)se)

JjeJ JjeJ

Now suppos€b;, p;)ier < (¢, q;);es With again a total witnesg. Let J; =
f71(i). Clearly (b;, pi)sesy < (¢, ;) e, for everyi e I. Therefore

G ((bs, pi)setsy) ET((¢5,q5)5e0) -
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Notice that(b;, pi)icr = @,e;(bis pi)ery aNd (cj, ¢5)jes = Dicr(css 65)je-
Monotonicity of the sum, and the homomorphism conditioryomply that

g ((bi, pi)ier) EG((cj,q5)5e7) -

Finally, for the case wheré¢ is not total, letJ, be the domain off and./; be its
complement. Clearlyc;, q;)je; = (¢, ¢;)jes, @ (¢4, ;) e, - MoOreover.

G ((bs,pi)icr) ET((¢5,45)je) -

Equations (4)-(5) together with the monotonicity of the scalar multiplication im-
ply 0 C A. Therefore

And finally

9 ((bi, pi)ier) =G (b, pi)ier ® (, ) EG((c),5)jes) -

O(lemma)
Let us callg’ the extension of to ZV (D) (the ideal completion of 7V (Bp).)
We recall thay'(Z) := U;ez g(X). We know that the functiop' is continuous.
The continuity of the operations implies thgtis also an homomorphism. Thus it
is a morphism of the category. It remains to show t;ﬁé{(b, P)ee) |0 d, p <
1}) = g(d)

Now

{0 e b<dp<1}) = | | "7, p)egsy)

bd, p<1

= || Tpg®) =| |"pg(d) = g(d).
b<kd, p<1 p<1
The last two equalities being a consequence of the continuityafl of the scalar
multiplication.
In a similar way, using lemma 4.10, one can prove that in fact for every

IV(Bp), g(v) = g'(v 1.



To prove uniqueness, lét : 7V (D) — & be a continuous homomorphism
such that for everyl € D, h(n(d)) = g(d). Sinceh is an homomorphism, we
have that when for evert;, p;)icr € IV (Bp)

h((biupi>i€1 | ) = @pih(n(bz-)) = @pz’g(bi)

el icl

= g((bs, pi)icr) = g' ((bi; pi)ier 1)

Sinceh andg' coincide on the basis, they are equal.

We omit the straightforward proof that the assignmgnrt: ¢' is continuous.
O

Omitting the mention of the forgetful functor, we can say thatis a monad
in CONT. The unity?” : D — ZV(D) is defined as

The multiplicationy?’ : TV*(D) — ZV(D) is just the extension ofif) :
IV?(B) — IV(B) defined as in the categoBET.

Notice that the universal property of this construction shows also that it is
independent of the choice of the basiof D.

4.3 A distributive law (categorically)

Given a continuous domaif with basisB, consider the seP(B) of nonempty
finite subsets o3, endowed with the Hoare order:

X<Y=WweXyecYrKy.

It is known that(P(B), <) is a basis for the Hoare powerdomé&g (D).

With the usual abuse of notation, we say tRat has a monad structure in the
categoryCONT (in the sequel we writ@ for Pg).

To define a distributive law we need to give a family of continuous func-
tionsZV o P(D) — P o ZV(D). Remember that these functors are defined as
ideal completions of some abstract bases. Our approach is to define a (monotonic)
function between the bases and take the extension as our candidate. Consider the
functionag : IV(P(B)) — P(IV(B)):

ap((Si, pi)ier) = {(h(i), pi)ierl h : I — B, h(i) € S;} .
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Lemma 4.13. The functioruz preserves the abstract basis relation.

Proof: Take (S;,pi)ier < (1j,q;)jes. Let f : J — I be a witness for that.
Therefore:

L 2SS Zf(j):z‘Q(j);
* Spg) =T

The second formula is by definition equivalent to saying that for etexyS ;)
there existg € 7T} such that < c.
We have to prove that

{(h(i),pi)ier| b : I — B, h(i) € Si} < {(k(§),q))jes k= J — B, k(j) € T} .

We have to show that for evety : I — B,h(i) € S; there exist & : J —
B, k(j) € T; such that h(i), p;)ier < (k(j),4q;);es- How isk defined? For every
Js conS|derh(f( ). Itis an element ob(;). Therefore there exist somec 7}
with h(f(j)) < c. Letk(j) be one of such’s °. Now we claim thatf is a witness
of (h(i), pi)ier < (k(j),¢;)jes. We have already; < > ;_;q(j). And by
constructiom(f(j)) < k(j), so we are done. O
Notice that it is essential the way the AB-relation is defined. Had we used Egli-
Milner or Smyth AB-relation on finite sets, the statement of the lemma would not
be true.
Defineap to be the extension af.

Theorem 4.14.The familyap : ZV(P(D)) — P(ZV(D)) defined above is a
distributive law.

We prove naturality directly, relying on the naturality«f in the category of
sets. The proof is rather simple, but nevertheless we need some special notation.
Let D be a continuous domain with badis,. If Y € P(Bp) andif X C D,
we writeY <« X to meanvb € Y.3d € X suchthat < d. If X C D we will
write X | tomean{Y € P(Bp)|Y < X}.
If I is a finite set and for everiye I, d; € D,p; € R+, andb;, € Bp,q; € R
then we write(b;, ¢;)ic; < (d;, pi)ics to meanvi € 1.b; < d;,q; < p;. If Jis
any finite set, possibly different frod and if for everyj € J, b; € Bp, q; € RT,
then we write(b), ¢}) jes < (d;, pi)icr to mean that there i®;, ¢;)ier € IV (Bp)

5Since everything is finite, we do not even invoke the axiom of choice, take that, Zorn!
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suchthatd, ¢;)jes < (bi, @i)ier < (di, pi)icr- \We also write(d;, p;)icr | to mean
{(bia%’)iel e IV(Bp)|Vielb < d;,q < pi} le V(D).
Consistently we write

(Xi, pi)ier |
to mean
{(Yi, @i)ier € IV(P(Bp)) |V < Xi,q: < pi} | € IV(P(D))

and we write
{(@,p))ier | p € R} |
(assuming finiteness at) to mean
{f.a)ier | p € R} |, [Vp € RV, < df,qf <p[} | € P(ZV(D)).
We can extend proposition 4.11 and lemma 4.10 to this new notation.

Proposition 4.15. If
(bis pi)ier < (dj, q5)je 5
then for everyj there exist; € Bp, ¢; < ¢; andg; < g; such that
(bi, pi)ier < (C}a Q})jeJ < (Cj7 Qj)jeJ .

Lemma 4.16.1f d;, d’; € D foreveryi € I, j € J then:

p[<diapi)i61 l] = (diappi)iel 1

o (di,pi)ier | ©(d},0))jes 1= [(bi, pi)icr © (), 0))jes] |
If Y, Y’ are finite subsets ab then

oY | WY ' |[=(YUY')|.
Using lemma 4.16 we prove the following.

Lemma4.17.1f Zis any setand : Z — D is a function, then the homomorphic
extensionf : IV (P(Z)) — ZV(P(D)) is defined as

T (Vi pi)ier) = (fIYi], pi)ier | ;
andf: P(IV(Z)) — P(ZV(D)) is defined as
THE p)ierlpe RY) = {(f(2F),0))ier |p € R} |
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Now, let f : D — D’ be a continuous function. Consider the restrictiorf of
to Bp. First we prove that

Lemma 4.18.04((f[Y}],pi)i61 ! ) = ?(a((napi)iel))'

Bp [V(P(B))—“>P([V(B))
| | E
D TV(P(D)) —= P(IV(D))

Now

a((f[yi]api)iel l ) = { ((Zza%)zel) | Zi < flYi], @ < pz} !

:{{(h(i),qi)ie,m:[—wg h(i) € Z;} | Z; < [1Y; ]qz<<pz}l

— {(h(@),p)ics | I - T — D', h(i) € fVi]} | -
The first two equalities are true by definition. As for the last,Adie

{{(h(i)a%‘)iel\hi[HBD' i) € Zi} | Zi < fIYil, 4 <<pz}l

and letB be
{(h()pz)zel|h/ ]_)D, }l

TakeX € B. This means that for eveny € X there existqw : [ — D', h,(i) €
f1Y;] such thaty < (h, (i), p;)icr- We want to prove thak’ € 4. So we want to
prove that there exists a fami(y;) and afamlly(qz) such thatZ; < f[Vi], ¢ <
p; and for everyvy € X there exists:, : I — Bp/, k,(i) € Z; for whichv <
(ky(7),qi)icr. By proposition 4.15 we can fingg < p; and z;’ € Bp/ with
2¢ < hy(1) such thaty < (27,4 )icr < (ho(4),pi)icr. Let Z; .= {2/ |v € X}
and letq; = max,cx ¢¢. ClearlyZ; < f[Y;] andg; < p;. We deflnek (i) = z¥
and we are done.

The other inclusion is easier and it is left to the reader.

On the other hand

F(a((Yipier)) = 7({<h<i>,pi>m [hi 1= Bo,h(i) € Vi})

_{ pzzEI‘h ]_>BD7h2)€)/z}l
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Let C be this last set. The lemma is proved if we show that B. Recall that in
the proof of theorem 2.8 we have shown thi&h(i), p;)ic |2/ : I — D', h(i) €
fIYi]} = {(f(h(3)), pi)ier | h : I — Bp, h(i) € Y;}, so we are done.

To prove naturality now tak&€ < ZV(P(D)). We want to show that o
IV(P()IEZ) = PEV(f)) o 7).

D IV(P(D)) —*=P(IV(D))
f IV(P(f))l lP(IV(f))
D TV(P(D)) —= P(IV(D)).

We do that by a chain of equations

a(IV(P(f)(D)) = sup  a(J) by definition of«

JEIV(P(f))(T)

= sup a(J) by definition of P(ZV(f))
J<f(I),IeT

=supa(f(I)) by cofinality
I1eT

= sup f(a(l)) by lemma 4.18
1€

= sup f(H) by cofinality
H<a(l), I€T

= sup f(H) by definition ofa
Hea(T)

= P(IV(f))(a(T)) by definition of P(ZV(f))

0
To prove the other conditions we use the following fact:

Proposition 4.19. Consider domain®), D', D" with basesB, B’, B”. Take func-
tionsf: B — B’, g : B’ — B’ preserving the AB-relation. Then

ext(g) o ext(f) = ext(go f).

Thus if we prove the commutativity of a diagram in the category of abstract
basis and monotonic functions, this carries over to the diagram constituted by their
extensions.

Now we have to prove the commutativity of four diagrams. We start with
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Proposition 4.20.

IVoIVoPTVoPoIVEePoIVoTlV
Hl'vrpl lp#IV
IV o P o PolV.

We know that for every (abstract) badisthe following diagram commutes
(because it is essentially the diagram for the distributive law in the cat&3uE):

IV

IV(IV(P(B))) —2 . 1v(P(B))
IV(aB)l

IV(P(IV(B))) a
aIV(B)l

PUV(IV(B)) — o PUV(B)).

Lemma 4.21. Using the above notation we have
e ap = ext(ap);
* aryp) = ext(ary(p));
* [p(p) = ext(/l?fB));
o P(upy) = ext(P(ug));
o IV(ap) = ext(IV(ap)).

The first three equalities are true by definition, while some work is needed to
show the other two. It can be helpful to state a more general result

Proposition 4.22. Let D, D’ be continuous domains with basis B’. Let f :
B — B’ be a function preserving<. Then, using the above notation

eat(P(f)) = Pleat(f)), ext(IV(f)) = TV(ext(f)).

Lemma 4.21 together with lemma 4.13 and proposition 4.19 give us the proof
of proposition 4.20.
The proof of two of the other diagrams is similar. A bit different is the follow-

ing.
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Proposition 4.23.

P
VP wiv )

IVoP - PoTV

The difference is thay!V does not preserve the AB-relation. But it is not
difficult to check directly the commutativity of the diagram, using the definition
of the domains as ideal completions.

0

We therefore have a monad structure for the fungtoerZ) .

4.4 A distributive law (equationally)

Following [AJ94] we introduce the notion d@omain-algebra Let £ be an in-
equational theory on some signature. A continuous domain-algebi& i®mla
continuous domain together with a Scott-continuous operation for every symbol
in the signature satisfying the inequalitiesfin

The continuous quasi-cones defined above can be seen as domain-algebras.
We have to see the scalar multiplication as a collection of unary operations, one for
each positive real (andoo), and to require explicitly that the scalar multiplication
be continuous in the first argument. (Another possibility would be to define multi-
sorted domain algebras.)

An interesting theory on the signatufeJ } is the theory (8)—(10) of semilat-
tices augmented with:

e HP: AT AU B.

Its continuous domain-algebras are also called continuous join semi-lattices.
It is known thatP is the free continuous join semi-lattice. Similarly to what we
have observed in the categ®B¥T, we have the following result.

Definition 4.24. A continuous QCJ-algebres a continuous domain algebra over
the theory (1)—(12) + (HV) + (HP), with the extra requirement that the scalar
multiplication be continuous in the first argument.

Theorem 4.25.The monad orP? o 7V obtained from the distributive law is the
free continuous)CJ-algebra.
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Proof: The proof of this theorem follows the same line of the proof of theorem
4.8. First we prove the freeness®Bfo 7V, then we show the identity of the two
monads.

Proposition 4.26.If D is a continuous domain, théR(ZV (D)) € QCJ.

Proof: We define the operations iB(/V'(Bp)) as follows:

XoY = {vaglreX, Y},
pX = {pr|veX};
XUJY = XUuUY.

These operations are monotonic with respect tand all the equations dfq
are true inP(1V(Bp)). Moreover:

Proposition 4.27. With the notation used above, ¥ < X’ then for everyY’,
X <X UY. If X <X andp < ¢1 + g2 thenpX < ¢ X' & ¢ X'.

The first statement is obvious, from the definition of Hoare order. As for
the second, assumg& < X'. Taker € X. We want to show that there is
Ve qX' @ gpX suchthat < /. SinceX < X', there existg € X's.t.v < ¢&.

By lemma 4.9v < ¢1£ @ ¢:€. And for sureq:& @ g€ € 1 X' & g X' O

(Notice that this proof would not work, had we used the Egli-Milner or Smyth
order on finite sets).

Define the operations in the ideal completion as follows:

IaJ = {XeY |XeZLYeJ}];
pI = {pX|X€eT};
IYg = {XUuY|XeZYeJ}| .

Clearly these operations are well defined, continuous, and satisfy the equa-
tions. The inequatiof C 7 4 J follows fromX < X' — X < X' UY and
the roundedness of the ideals. The inequation+ p,)Z C p1Z @ poZ follows
fromp < ¢+ ¢, X < X' — pX < 1. X' ® X' and the roundedness of the
ideals. It remains to show the continuity of the scalar multiplication. Take an ideal
T € P(ZV(D)). We want to prove that

Upl':ql'.

p<q

36



that is for everyX, we haveX € ¢Z if and only if there exisp < ¢ s.t. X € pZ.
The “if” direction follows from the fact thapyY” < ¢Y ®0Y = ¢Y. It remains the
other inclusion.

Consider the case < oo (the other being similar). Tak& € ¢Z. If X =
(, )iep the statement holds. Otherwise, by roundedness the¥é &s¢Z s.t. X <
X'. So for everyy € X thereis¢ € X', v < £. Choose one sucf), for each
v. Everything is finite, so no axiom of choice is invoked. We leave to the reader
to proof that for every there exists, such thatr < (1 — ¢,)¢,. Definee to be
the minimum among all the numbets v € X (they are finitely many). Clearly
X < (1—-¢)X'. ButX’' € ¢Z, thereforeX € (1 — €)qZ. O

The following universal property holds.

Proposition 4.28. For every continuous function: D — £ where& € QCJ
there is a unique’ : P(ZV(D)) — & (in the categoryQCJ) s.t.

D
nl\\d\\
PIV(D)) 5 - =€,
wheren(d) = {(d, 1).e(} } |- The assignment— g' is continuous.
Proof: Take the restriction af to Bp. It has a unigue homomorphic extension
g: P(IV(Bp)) — &£. Defined by
G((0,Duegy) = 9(b);
G ((bi pi)ier) = sz‘g(bz‘) ;
1€l

9x) = Jaw).

veX

It can be shown that, i¥ < Y theng(X) C g(Y). Let us callg’ the extension
of gto P(ZV(D)) (the ideal completion of(1V (Bp)).) We recall thay'(Z) :=
L er g(X).

We know that the functiog' is continuous. The continuity of the operations
implies thatg' is also an homomorphism. Thus it is a morphism of the category.
It remains to show that'(n(d)) = g(d)

Now

o (Hb e b<d o<}y L) = [ "9({(bp)er})

b<d, p<1
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= | Tpe®) =[] pgld) =
b<kd, p<1 p<l1
The last two equalities are a consequence of the continuigyaoid of the scalar
multiplication.
Again the to prove uniqueness we notice thaX ) = ¢'(X |).

P(IV(Bp))

|

7?(IV(D))9—T - =&,

and again we omit the proof that the assignment ¢' is continuous.

It is clear the functor and the unit are the same. As for the multiplication, no-
tice that the multiplication generated by the freeness condition is the (continuous)
extension of the homomorphic extensieh: P o IV o Po IV — P o IV. The
multiplication of the monad generated by the distributive law/ig?Y o PaZV
which by proposition 4.19 and lemma 4.21 is equal to the continuous extension of
uP 'V o PalV. But we know thai” 'V o PalV = id, (as they are in fact the
multiplication of the composite monad BET), therefore also their extensions
coincide.

Let’s look at some useful properties. If we define

t: P(IV(B)) — P(IV(D))

as
L({(b?>p?)ief}) = {(bfap?)z‘el} !

it is not difficult to prove that

Proposition 4.29.

(AU B) =1(A) U «(B)
pA) = pu(A)
(A+ B) =u(A) @ «B)
0)=0
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5 The Construction of Tix and Mislove

In this section we only outline the results. More details will appear in the author’s
PhD thesis.

If instead of the axiom (HV) we had added the more standargt ¢)A =
(pA @ qA) (13), the resulting free construction would be the one of Tix and Mis-
love, which still includes the equational distributive laws, but without any corre-
sponding categorical distributive law.

Definition 5.1. [Tix99] A continuous d-conis a continuous quasi-cone satisfying
(p+q)A = pAdqA. The corresponding category is call@€CONE. A continu-

ous join TM-cones a continuous domain algebra for the theory (1)—(13)+(HP) for
which the scalar multiplication is continuous also in the first argument. The corre-
sponding category is calleddJTM A subsetX of a continuous d-cone onvex

if for every z, y € X and for everyp € [0, 1], we have thapz & (1 — p)y € X. If

H is a continuous d-cone, we define

Pry(H) :={X C H| X # 0, convex, Scott-closed

Tix calls this construction theonvex hoare powercon&Vith the sets ordered by
inclusion, the addition and multiplication defined (essentially) pointwise, and the
union defined as union followed by convex closure and by topological closure, we
have thatPr,,(H) is a continuous TM-cone.

Jones (and Kirch for our setting) showed that the powerdomain of valuations
functorV : CONT — CCONE is left adjoint of the forgetful functor. Tix in
her thesis showed that the func®r,,(H) : CCONE — CJTM is left adjoint
of the forgetful functor.

If B is a basis forD, finite valuations with the AB-relation induced by the
splitting lemma are a basis fof( D). If B is a basis for the continuous d-cofe
finite generated convex subsetsifvith a hoare-like AB-relation are a basis for
Pra(H).

6 Semantics of programs
We give an example of how to use the above constructions by giving semantics to

a simple imperative language with probabilistic and nondeterministic primitives.
First we introduce the operational model. We then introduce the language. We
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give operational and denotational semantics to the language, and we state an ad-
equacy theorem. Finally we compare briefly the computational meaning of our
semantics with the one obtained using Tix-Mislove.

In the sequel we shall writer;, p; );c; also to denote((z;, p;)ier) € ZV(X).
We will use this notation even whdnis not finite, to denote the lub of all its finite
“truncations”.

6.1 The operational model

Our operational model is similar to the probabilistic transition systems of [JLYO1].
Our presentation is inspired by the alternating model of [Han91].

Definition 6.1. A probabilistic (unlabeled) synchronisation tree (PST) on a set of
“states”S is a structurd Nodes, Arcs, labely, label p) where

o (Nodes, Arcs) is a tree;

e Nodes = N W P: there areNondeterministimodes andProbabilisticnodes;

Ares C (N x P)W (P x N): an arc connects only nodes of different kind;

labely : N — S: nondeterministic nodes are labeled by states;

labelp : ArcsN (P x N) — RT: arcs leaving probabilistic nodes are labeled
with probabilities;

Definition 6.2. A deterministic schedule$ for a PST is a functiorfs : N — P
such that iffs(n) = pthen(n, p) € Arcs.

A deterministi€ scheduler chooses for every nondeterministic node one of its
probabilistic sons.

Definition 6.3. A probabilistic schedule& for a PST is a functiorys : N —
P — R* such thatiffs(n)(p) # 0 then(n,p) € Arcs.

A probabilistic scheduler chooses for every deterministic node a discrete val-
uation over its sons. Notice that a deterministic scheduler can always be seen as a
probabilistic scheduler.

5This is the standard term used in literature. It is not a fortunate choice because what we mean
here is absence of probabilities. A better term coulddrtain
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The effect of a scheduler is to give a fully probabilistic model. A probabilistic
scheduler is, in practice, labeling with probabilities the arcs going out of a nonde-
terministic node. Once every arc is endowed with probabilities we can talk of the
probability of a path as the (possibly infinite) product of the probabilities of all its
components.

Using probabilistic automata and schedulers we can give another motivation
for our axiom (HV) and corresponding definition 4.3, which implies

1 1
5, C 16, + 14, .

Consider the example in figure 1. The figure represents two processes as proba-

P P
1 2

Figure 1: Processes

bilistic trees. The proceds; allows two different ways of resolving the nondeter-
minism. The corresponding probability distributions areandé. The process
P, allows four different ways of resolving the nondeterminism, two of which give
the probability distributiodé7 + 16. The process$, offers more opportunities,
so in a Hoare fashion, we consider it better tlian Formally this is implied by
16, C 50, + 50,

6.2 A simple imperative language

We present a small imperative languadgét has the following (abstract) syntactic
categories:

e integersNum, ranged over by:;
e |ocationsLoc, ranged over byX;

e finite probability distributions over integePsob, ranged over by;
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e arithmetical expressionsexp, ranged over by;
e boolean expressiorgexp, ranged over by;
e command<omm, ranged over by.
The (abstract) BNF for the last three syntactic categories are as follows:
ax:=n|X|at+ala—alaxa

b:u=true|false|a=ala<a|-b|bAb|bVD

c:= skip| X :=a| X :=x|¢c|
if b then c else ¢ |
while; bdoc (i€ N) |
while bdo ¢ | cor c.

We also need the notion state A state is a functiow : Loc — Num. We
call ¥ the set of states. We call any pait o) a configuration We denote the set
of all configurations byi’. The setl” is ranged over by,. To make the notation
more uniform we introduce (at the metalevel) the empty comnzande use it
with the following meaning:

(e,0) =0,

€GC=cie=c.

We extend consequently the notion of configuration so that a stista configu-
ration(c, o) wherec = .

The operational semantics for arithmetic and boolean expressions is as usual.
The operational semantics of configurations is given by a PST built using the rules
in table 1. It is intuitive how, using these rules, one can build a PST on the set of
(extended) configurations.

Now given a configuratiory := (¢, o) and a schedule§ for the PST7 ()
with initial state labeled by, we consider the set of finite non-extensible labeled
paths B(~, S) for the fully probabilistic tree obtained froffi(~y) via the action of
the schedule§. For everys € B(v,S) we define the probability of, I1(s), to be
the product of the probability labels in We defin€/(s) to be the label of the last
node ofs.

Definition 6.4. With ¢, o, S as above, we define

v(S,c,0)(0") = Z II(s) ;

I(s)=c'
s€B(e,0,S)
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(skip, a>;>a

x(n)

(X = x,0)(==0n/X] )nesupx)

(b, o) — false

(if b then ¢ else ¢, a>;><cl, o)

{c, O->(L%)iel

(corc, U)(i”ﬁ)z’e[

(b, o) — false

(while b do ¢, 0)——c

(b, o) — false

(while; b do ¢, 0)——0

(a,0) = n
(X = a,a>;>a[n/X]

(c, o—)(p—f>(ci, 0i))ier
<C; ¢, U) (L<Ci; Clv Ui))ie[

(b,0) — true

(if b then ¢ else ¢y, a>;><co, o)

"
(¢ o) (—>7j)jes

T
(cor d, o) (=) es

(b,0) — true

(while b do ¢, 0)——(c; while b do ¢, &)

(b,0) — true

(while;;; b do ¢, o) ——(c; while; b do ¢, o)

Table 1: Operational semantics
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Flskiplo = {(o,1)}
Fleoor c1]o = Fle]o U Fleo]o
FIX :=a]o = {(o[n/X],1)} wheren = [a]o

Fleo](o)  if [b]o = true
Fle](o)  if [b]o = false

F[if b then ¢ else ¢;]o = {
FIX =xlo = {(o[n/X], x(n))nesupp) }
Fles;ear]l = (Flal) o Fleo]

o,1)}  if [b]o = false

, {(
Flwhiley bdo c]jo = { {0} if [bJo = true

ile _ {(o,1)} if [b]o = false
Flwhilei, bdoclo = { Fle; while; bdo ¢](0)  if [b]o = true

Table 2. Denotational semantics for the finite fragment
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[[Co; Cl]]

[if b then ¢, else ¢i]o

[while, b do c]o

[while;; b do c]o

[while b do (]
where  &(f)(0)

n

n(cn/X]) wheren = [a]o

[e1]o Ufcolo

t({(o[n/X], x(n))nesuno })
[ea]" o [eo]

a a = true
(o) bjo = false

n(o a = false
0 blo = true

le; whlle bdoc](c) if [b]o = true

|x(
n(o a = false
(ffo bjo = true .

Lol
10"
{ if [b]o = false
(1

Table 3: Denotational semantics
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(S, c,0) = (I(s),11(5))seB(c,0.5) -

This definition is in accordance with the intuitive interpretation of indexed
valuations: here the indexes are the paths, and the indexing function is assigning
to every path its final state.

6.3 Denotational semantics for the finite fragment

We now give a denotational semantics in terms of indexed valuations. This se-
mantics is adequate with respect to deterministic schedulers: an indexed valuation
is in the denotation of a configuration if there is a deterministic scheduler which
realizes it.

For the finite fragment of the language we can work in the cate§&iY¥'.
The languagd.~ has the same syntax &sexcept that it does not include the
constructowhile b do c. The operational semantics bf is defined as fokL..

The denotational semantics

Fld: T — PUV())

is defined in table 2. The ID\o, p).c.} is denoted ago, p). Recall that the
Kleisli extension for the monaé o I'V is denoted by —)*. Its definition can be
found in section 2.2.

Theorem 6.5 (Adequacy).Letc be a command di.— andv be an indexed finite
valuation in/V(X). Thenv € F[c]o if and only if there exists a deterministic
schedulesS for 7 ({(c,0)) s.t.v ~ (S, ¢, o).

Proof: by well founded induction, the ordering being as follows. ketrt(c)
be the maximum tag in a while command occurring: if® if there are no while
commands). We say that < ¢; if (1) maxt(cy) < maxt(cy) orif (2) maxt(cy) =
maxt(cy) andeg is a subterm of;.

The nontrivial case is the sequential composition. Take a schedufer
(co; c1,0). Such anS can be thought of as a schedufgrfor (¢, o) together with
schedulersS, for (c,{(u)) for every finiteu € B({co, o), Sp). (In the sequel we
write B(cq, 0, S) for B({cy, o), S)).

By induction hypothesigi(u), II(u))ueB(co0s5,) € [colo and for everyu,
(1(t), I1(t) ) teB(er i(u),s.) € [e1]l(u). We have to show that

(1(5). T1(5)) seBteoier o) € [ea]'([eol o) -

46



Recalling the definition of T, it is enough to show that

(l(s)v H(S))SGB(Co;cLG,S) € [[Cl]]T ({ (l(u)v H(u))uEB(CO,a,So) }) .
Let us definé: : B(cp, 0,Sp) — IV (X) as

h(u) = (1(£), 11(1))teBer i) € [ea]l(w) -
Therefore by definition of T:

(1), MWL) wepeposy € lal'([eoo) -
teB(er () Sa)

Notice thata path € B(co; ¢1, 0, S) is the concatenation of a pathe B(cy, 0, Sy)
together with a path € B(cy,l(u), S,). Thus

(1), I(w)IL(®)) weBep.o50) =
teB(c1,l(u),Su)

= (I(5), 11(s)) seB(coier.0.5)
Viceversa suppos@;, p;)icr € [c1]'([co]o). Thenthereigo;, q;);cs € [colo
andh : J — IV (%), sayh(j) = (ol ,r]

J J

[c
)k €K such that
h(j) € 1]y

(04, pi)ier = (Ukjaqy‘rkj) j€J -
kjEKj

By induction hypothesis there a3, S; such that
(0, 45)jes = (1(w), (W) )ueB(eo..50)

(01,71 Der; = (L), T(1) )sesterop.5))
The first equation tells us that = B(cy, 0,8), 0; = l(u) andg; = II(u). The
second equation tells us that, = B(cy,(u), Sy) andrij = II(¢). This enables
us to rewrite the second as
(k7 yer, = (1), T(E) ) seber ) s.)
So

(O-ijanTij) jeJ — (l(t)7H(U)H(t)) ueB(co,0,S0) *
k;eK; teB(cr,l(u),Su)
As above, combining the schedulers we get a scheduserch that

iv(S, co; 1, 0) = (04, Di)ier -
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6.4 Denotational semantics for the full language

For the full language we work iI@ONT. We give a denotational semanticd.to
in terms of P(ZV(X)). Given a command df, we define its denotation

[c] : X — PEV(E)).
The definition is shown in table 3. Recall the behavioun o> — P(ZV(X)):
no) ={(e, D} | .

Again the symbo(—)' denotes the Kleisli extension for the morga ZV .
The adequacy theorem for the full language suffers the usual limitations due
to the structure of the Hoare powerdomain, which involves only Scott closed sets.

Theorem 6.6.Letc be a command df and letv € ZV(X). Thenv € []o iff for
every¢ such that < v there exists a schedul& for (¢, o) s.t.iv(S, ¢, o) 3 &.

We need some preliminary lemmas.
Observation 6.7.Letc be a command di—. Then[c]o = «(F[c]o).

Proof: By structural induction. Notice that the definitions fef andF[c] go
in parallel with each other.

Proposition 6.8. Let ¢ be a command oL.—. Thenv € [c]o iff there exists
V'€ Flco s.tov T (V).
Proof: By theorem 6.5 and the characterization of Hoare powerdomain.

Definition 6.9. Let ¢ be a command dit. Thenc® is the command we obtain by
substituting inc all the occurrences ofhile b do ¢’ with while; b do .

Clearlyc® is a command of.~, for everyi. Therefore we have:

Proposition 6.10. Let ¢ be a command dt and v be a finite indexed valuation
€ IV (X). For everyi we have:
1(v) € [¢]o iff there exists a schedule for (¢, o) s.t.iv(S, ¢, 0) I v.

Proof: Clearly a schedules$ for (c, o) restricts to a schedule; for (¢, o)
andv(S, ¢, o) J v(S;, ¥, o). On the contrary a scheduléy for (¢, o) can be
extended (possibly in many different ways) to a schedfiléor (¢, o), with the
same inequality as above. This together with Proposition 6.8 and Theorem 6.5,
gives us the statement. O
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Proposition 6.11. For everyc, o

sup[cP]o = [c]o .
ieN
Proof: By structural induction, using the continuity of the operators defining
the semantics. O
Coming to the proof of Theorem 6.6, we show the “only if” direction. For
v € [c]o there are two cases.

1. Thereis/ € F[c™]o for somei, such that C «(v'). Then we invoke the
Proposition 6.10, and we are done.

2. There is a net;, € [¢]o converging tov. By Proposition 6.8 it is not
restricting to assume tha, = (#;,) for somew;, € F[c?]o. Then we
have a net of schedule&, such thaty;, = iv(S;,, ¢V, 7).

Now if ¢ < v there is ak;, such that(iv(Sy,, ™, o)) I £&. Now we can
extendSy, to ansS for (c, o) with (iv(S,¢,0)) J .

For the “if” direction, suppose that for evefy< v there exists a scheduler
Se with iv(S, ¢, 0) 2 €. This is in fact equivalent to saying that for every< v
there exists a schedul&k with iv(S,c,0) > £. Therefore, for big enough
(iv(SE, ¢, 0)) 3 € (whereS; is the truncation o8 to 7 (¢, 7).

If for one of suchS;, we haveiv(S;, ¢, o) 3 v, thenw is in the denotation,
by proposition 6.8. Otherwise notice that theiallS;, ¢?, o) are in[c]o, then all
the¢ are in the denotation. By Scott closure which is the directed lub of thg
must be in the denotation. OJ

We cannot hope that there always exists a scheduler which attains the limit
valuation as the following example shows.

Let x be such that (0) = x(1) = 1/2. Assumeu # 0. Define

loop = while true do skip ;
c=Y :=0;7:=0;while Z =0do ¢ ;
co = (cq;if X <Y then Z :=aelse loop) or (Y :=Y +1);
cg=(W:=0;while W =0do (W =X =X+1).

Here there is no schedul&rwhich assigns probability 1 to a state whefe= a,
but we can get as close to this as we want.

49



Figure 2. A counterexample

6.5 Denotational semantics using Tix-Mislove

The main feature of our theorems is that they involve deterministic schedulers. A
semantics in terms of the Mislove-Tix functor is adequate with respect to proba-
bilistic schedulers.

Theorem 6.12 (Adequacy).Let ¢ be a command oL~ and v be an discrete
valuation inV'(X). Thenv € Flc]o if and only if there exists a probabilistic
scheduleiS for 7 ({c,0)) s.t.v = v(S, ¢, 0)

Proof: by well founded induction. Again the nontrivial case is the sequential
composition. Take a schedul&rfor (cy; c1, o). Such anS can be thought of as a
scheduleS, for {(cy, o) together with scheduless, for (¢, (u)) for every finite
u € B({co,0),Sp)-

By induction hypothesis(Sy, ¢y, o) € [co]o and for everyu, v(S,, c1,l(u)) €
[ea]i(w).

We have to show that

Ao Y T(s) € [er]([eolo) -
s€B(cp;c1,0,S)

Recalling the definition of T, it is enough to show that

Ao’ Z I(s) € [ea] ({v(So,c0,0)}) .

l(s)=0’
s€B(co;c1,0,S)
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Let us defingr : ¥ — V(X)) as

Moy = S Hw s, eno”).

T v(8So, co, o) (")
u€B(co,0,80)

Remember that, by definition:

> (u) = v(So, o, 0)(0”) .
l(u)=0"
u€B(co,0,80)

Therefore

IT(u) B
Z v(So, co, o) (a") L

I(u)=0"
u€B(co,0,50)

Since[c;Jo” is convex, therk(c”) € ([e1]o”). Therefore by proposition 3.11:

> 0(So, c0,0)(0")h(0") € [ea]" ({0(So,c0,0) }) -

U//EZ
But
Z 0(So, co, @) (0" V(0" (")
U//EZ
IT(u)
= Z Z H(U) Z m U(Su, c1, UII><J/>
o’'ex H(u)=0" l(u)=o" U(cs‘()7 Co, 0‘) (0- )
u€B(co,0,50) u€B(co,0,50)
| =
= Z Z H(U)’U(Su, . 0'”)(0'/)
"
o"€n l(u):UU U(S()’ CO’ 0) (U ) l(U):a'//
u€eB(co,0,50) u€B(co,0,850)
IT(u)
) H S’IL’ ) " !
Z Z v(8o, o, 0)(0”) Z (w)v(Sy, c1,0")(0")
oex l(u)=0" Nt

u€B(co,0,S0) u€B(co,0,80)
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=S| Y DwuS.c, o))

D l(u)=0"
u€B(co,0,80)

=) > I(u) > )

o’'es l(u)=c" I(t)=o’
u€B(co,0,80) teB(c1,0",Sy)

= > >, 0

u€B(co,0,80) l(t)=0o'
teB(c1,l(u),Su)

= > ),
i(s)=0c’
s€B(co;c1,0,S)

and the thesis is proved. For the last step, notice that aspatl(cy; ¢1, 0, S) is
the concatenation of a pathe B(cy, o, Sp) together with a pathe B(cy, l(u), S.).

Viceversa suppose that € [c¢;]T([co]o). Then there exist € [co]o and
h:¥ — V(X) such thati(c”) € [ci]e” andv = ) _, £(c”)h(c”). By induction
hypothesis the exist scheduleé$s, S, such thatt = v(Sy, co, o), andh(c”) =
v(S,, c1,0"). Similar to what we did with deterministic scheduler we combine
them to get a schedul&t such thatr = v(S, ¢o; ¢1,0). Notice that in this case
the combined scheduler has some memoryless character: it behaves the same for
every subtree rooted in a node labeled by a configurdtiprw”), regardless of
the previous history.

0
We can interpret the semantics in table 3 as being of the form

[[C]] Y — PTM(V(Z)) .

The adequacy result is similar to the previous one, but it speaks of probabilistic
schedulers.

Theorem 6.13.Let c be a command dt and let{ € V(X). Then¢ € [c]o iff
for everye > 0 there exists a probabilistic schedulsrfor (¢, o) s.t. v(S, ¢, 0) 3

(1—e).
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7 Future Work

We have shown that a distributive law exists between the Hoare powerdomain
and the Indexed Valuations. The question arises whether similar results hold for
the Plotkin and the Smyth powerdomain. We believe that each nondeterministic
powerdomain has its corresponding Indexed Valuation functor. The key is the
axiom (HV). If we omit it we get a theory whose free domain-algebra distributes
over the Plotkin powerdomain. If we replace it with

pPAGGALC (p+qA (SV)

we get a theory whose free domain-algebras distribute over the Smyth powerdo-
main. These ideas have to be studied and a computational meaning has to be found
for them.

It would be also interesting to find a concrete characterization of Indexed Val-
uations. In the category of sets they are but finite random variables. It seems
promising to generalize this setting to random variables on suitable measure spaces.
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