
B
R

IC
S

R
S

-02-37
A

ger
etal.:

A
S

ym
m

etric
A

pproach
to

C
om

pilation
and

D
ecom

pilation

BRICS
Basic Research in Computer Science

A Symmetric Approach to
Compilation and Decompilation

Mads Sig Ager
Olivier Danvy
Mayer Goldberg

BRICS Report Series RS-02-37

ISSN 0909-0878 August 2002

Copyright c© 2002, Mads Sig Ager & Olivier Danvy & Mayer
Goldberg.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/37/

A Symmetric Approach to

Compilation and Decompilation

Mads Sig Ager and Olivier Danvy

BRICS ∗

Dept. of Computer Science
University of Aarhus †

Mayer Goldberg

Dept. of Computer Science
Ben Gurion University ‡

August 2002

Abstract

Just as an interpreter for a source language can be turned into a compiler
from the source language to a target language, we observe that an inter-
preter for a target language can be turned into a compiler from the target
language to a source language. In both cases, the key issue is the choice
of whether to perform an evaluation or to emit code that represents this
evaluation.

We substantiate this observation with two source interpreters and two
target interpreters. We first consider a source language of arithmetic
expressions and a target language for a stack machine, and then the λ-
calculus and the SECD-machine language. In each case, we prove that the
target-to-source compiler is a left inverse of the source-to-target compiler,
i.e., that it is a decompiler.

In the context of partial evaluation, the binding-time shift of going
from a source interpreter to a compiler is classically referred to as a Fu-
tamura projection. By symmetry, it seems logical to refer to the binding-
time shift of going from a target interpreter to a compiler as a Futamura
embedding.

To Neil Jones, for his 60th birthday.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {mads,danvy}@brics.dk

‡Be’er Sheva 84105, Israel.
E-mail: gmayer@cs.bgu.ac.il

1

Contents

1 Introduction 4

2 Arithmetic expressions and a stack machine 5
2.1 Staged specification of the source language 5

2.1.1 The core semantics . 5
2.1.2 A code-generation instantiation: source identity 6

2.2 Staged specification of the target language 6
2.2.1 The core semantics . 7
2.2.2 A code-generation instantiation: target identity 7

2.3 Interpretation and compilation for the source language 8
2.3.1 An evaluation instantiation: source interpretation 8
2.3.2 A code-generation instantiation: source compilation (ver-

sion 1) . 9
2.3.3 A code-generation instantiation: source compilation (ver-

sion 2) . 9
2.4 Interpretation and compilation for the target language 10

2.4.1 An evaluation instantiation: target interpretation 11
2.4.2 A code-generation instantiation: target compilation . . . 11

2.5 Properties . 12
2.5.1 Total correctness of the source compiler 13
2.5.2 Partial correctness of the target compiler 16
2.5.3 Left inverseness . 17

2.6 Summary . 19

3 Lambda-terms and the SECD machine 20
3.1 Staged specification of the source language 20

3.1.1 The core semantics . 21
3.1.2 A code-generation instantiation: source identity modulo

renaming . 22
3.2 Staged specification of the target language 23
3.3 Interpretation and compilation for the source language 23

3.3.1 An evaluation instantiation: source interpretation 23
3.3.2 A code-generation instantiation: source compilation (ver-

sion 1) . 24
3.3.3 A code-generation instantiation: source compilation (ver-

sion 2) . 25
3.4 Interpretation and compilation for the target language 26

3.4.1 An evaluation instantiation: target interpretation 26
3.4.2 A code-generation instantiation: target compilation . . . 26

3.5 Properties . 28
3.5.1 Total correctness of the source compiler 29
3.5.2 Partial correctness of the target compiler 29
3.5.3 Left inverseness . 29

3.6 Summary . 34

2

4 Related work 34
4.1 Compilation and decompilation 34

4.1.1 Construction . 34
4.1.2 Correctness . 35
4.1.3 Derivation . 36

4.2 Partial evaluation . 36
4.2.1 The first Futamura projection for compiling 37
4.2.2 The first Futamura projection for decompiling 37

4.3 Parsing . 37

5 Conclusion 38

A Factorized version of the processor for the SECD-machine lan-
guage 39

3

1 Introduction

Intuitions run strong when it comes to connecting interpreters and compilers,
be it by calculation [51], by derivation [47,61] or by partial evaluation [7,11,18–
20,31,38,39,42–44]. These intuitions have provided a fertile ground for two-level
languages [56] and code generation [8,59,60,62]. Common to these approaches is
the idea, in two-level programs, of shifting from a semantic model to a syntactic
model in order to generate code: Rather than performing an evaluation in a
source-language interpreter, one emits target-language code that represents this
evaluation, as in a compiler.

We observe that this binding-time shift directly applies to decompiling:
Rather than performing an evaluation in a target-language interpreter, one can
emit source-language code that represents this evaluation, as in a decompiler.

In the rest of this article, we illustrate both instances of this binding-time
shift with a source language of arithmetic expressions and a target language for a
stack machine (Section 2), and then with the λ-calculus and the SECD-machine
language (Section 3). We stage each language processor as a core semantics, rep-
resented as an ML functor, and as interpretations, represented as ML structures.
This staging corresponds to the factorized semantics of Jones and Nielson [41].
We show how instantiating each functor with elementary evaluation functions
yields an interpreter and how instantiating it with elementary code-generating
functions yields a compiler:

language
processor

~~}}
}}

}}
}}

}}
}}

}}
}}

}}

��@
@@

@@
@@

@@
@@

@@
@@

@@

binding-time
shift

<<

interpreter compiler

In one case, the compiler maps a source program to a target program, and in
the other, it maps a target program to a source program:

source
program

source-to-target
compiler

++

source
interpreter

��8
88

88
88

88
88

88
88

88
88

8

target
program

target-to-source
compiler

kk

target
interpreter

����
��

��
��

��
��

��
��

��
��

result

4

In each of Sections 2 and 3, we formally prove that the target-to-source compiler
is a left inverse of the source-to-target compiler, i.e., that it is a decompiler.

2 Arithmetic expressions and a stack machine

We consider a simplified source language of arithmetic expressions and a sim-
plified target language for a stack machine. It is straightforward to extend both
languages with more arithmetic operators.

2.1 Staged specification of the source language

The source language is as follows.

structure Source

= struct

datatype exp = LIT of int

| PLUS of exp * exp

type program = exp

end

2.1.1 The core semantics

Recursive traversal of programs in the source language can be expressed gener-
ically as follows, using an ML functor. In this functor, the function process

implements the fold function associated with the data type of the source lan-
guage [6,16]. This fold function is parameterized by a structure of type INTEGER,
which packages two types and a collection of operators corresponding to each
constructor of the data type.

signature INTEGER

= sig

type integer

type result

val lit : int -> integer

val plus : integer * integer -> integer

val compute : integer -> result

end;

signature SOURCE_PROCESSOR

= sig

type result

val process : Source.program -> result

end

5

functor Make_source_processor (structure I : INTEGER)

: SOURCE_PROCESSOR

= struct

type result = I.result

fun process p

= let fun walk (Source.LIT n)

= I.lit n

| walk (Source.PLUS (e1, e2))

= I.plus (walk e1, walk e2)

in I.compute (walk p)

end

end

2.1.2 A code-generation instantiation: source identity

As an example of the use of Make source processor, this functor can be instan-
tiated to obtain the identity transformation over source programs. To this end,
we specify a structure of type INTEGER containing a syntactic representation of
integers. In this structure, integer is defined as the type of source expressions,
result as the type of source programs, and the operators as the corresponding
code-generating functions:

structure Integer_source_syntax : INTEGER

= struct

type integer = Source.exp

type result = Source.program

fun lit n

= Source.LIT n

fun plus (e1, e2)

= Source.PLUS (e1, e2)

fun compute e

= e

end

structure Source_identity

= Make_source_processor (structure I = Integer_source_syntax)

2.2 Staged specification of the target language

A target program is a list of instructions for a stack machine:

structure Target

= struct

datatype instr = PUSH of int

| ADD

type program = instr list

end

6

2.2.1 The core semantics

Recursive traversal of programs in this language can be expressed generically
as follows, again using an ML functor. In this functor, the function process

implements the fold function associated with the target data type. This fold
function is parameterized by a structure of type TARGET PARAMETERS, which pack-
ages two types and a collection of operators corresponding to each constructor
of the data type.

signature TARGET_PARAMETERS

= sig

type computation

type result

val terminate : computation

val push : int * computation -> computation

val add : computation -> computation

val compute : computation -> result

end

signature TARGET_PROCESSOR

= sig

type result

val process : Target.program -> result

end

functor Make_target_processor (structure P : TARGET_PARAMETERS)

: TARGET_PROCESSOR

= struct

type result = P.result

fun process p

= let fun walk nil

= P.terminate

| walk ((Target.PUSH n) :: is)

= P.push (n, walk is)

| walk (Target.ADD :: is)

= P.add (walk is)

in P.compute (walk p)

end

end

2.2.2 A code-generation instantiation: target identity

As in Section 2.1.2, Make target processor can be instantiated to obtain the
identity transformation over target programs by defining computation as the
type of lists of target instructions, result as the type of target programs, and
the operators as the corresponding code-generating functions:

7

structure Target_parameters_identity : TARGET_PARAMETERS

= struct

type computation = Target.instr list

type result = Target.program

val terminate = nil

fun push (n, is)

= (Target.PUSH n) :: is

fun add is

= Target.ADD :: is

fun compute is

= is

end

structure Target_identity

= Make_target_processor (structure P = Target_parameters_identity)

2.3 Interpretation and compilation for the source language

We instantiate Make source processor into an interpreter for the source language
and into a compiler from the source language to the target language.

2.3.1 An evaluation instantiation: source interpretation

It is straightforward to instantiate the functor of Section 2.1.1 to obtain an
interpreter. To this end, we define a structure of type INTEGER containing a se-
mantic representation of integers. In this structure, both integer and result are
defined as the type int, and the operators as the standard arithmetic operators:

structure Integer_semantics : INTEGER

= struct

type integer = int

type result = int

fun lit n

= n

fun plus (n1, n2)

= n1 + n2

fun compute n

= n

end

We can now instantiate the functor of Section 2.1.1 to obtain an interpreter
for the source language:

structure Source_int

= Make_source_processor (structure I = Integer_semantics)

8

For example, applying Source int.process to the source program

PLUS (PLUS (LIT 10, LIT 20), PLUS (LIT 30, LIT 40))

yields the integer 100.
Compared to the identity instantiation of Section 2.1.2, rather than choosing

a syntactic model and emitting source-language code, we choose a semantic
model and carry out evaluation. The two instantiations illustrate a simple
binding-time shift.

2.3.2 A code-generation instantiation: source compilation (version 1)

It is also straightforward to instantiate Make source processor to obtain a com-
piler to the target language. To this end, we implement a binding-time shift of
going from an interpreter to a compiler with another structure of type INTEGER

containing a syntactic representation of integers. In this structure, integer is
defined as the type of lists of target instructions, result as the type of target
programs, and operators as first-order code-generating functions:

structure Integer_target_syntax1 : INTEGER

= struct

type integer = Target.instr list

type result = Target.program

fun lit n

= [Target.PUSH n]

fun plus (is1, is2)

= is1 @ is2 @ [Target.ADD]

fun compute is

= is

end

structure Source_cmp1

= Make_source_processor (structure I = Integer_target_syntax1)

For example, applying Source cmp1.process to the source program

PLUS (PLUS (LIT 10, LIT 20), PLUS (LIT 30, LIT 40))

yields the following target program:

[PUSH 10, PUSH 20, ADD, PUSH 30, PUSH 40, ADD, ADD]

2.3.3 A code-generation instantiation: source compilation (version 2)

We can also instantiate Make source processor to obtain a less trivial but equiv-
alent compiler that uses an accumulator instead of concatenating intermediate
lists of instructions. To this end, we define yet another structure of type INTEGER

containing a syntactic representation of integers. In this structure, integer is
defined as a transformer of lists of target instructions, result as the type of
target programs, and the operators as second-order code-generating functions:

9

structure Integer_target_syntax2 : INTEGER

= struct

type integer = Target.instr list -> Target.instr list

type result = Target.program

fun lit n

= (fn is => (Target.PUSH n) :: is)

fun plus (c1, c2)

= (fn is => c1 (c2 (Target.ADD :: is)))

fun compute c

= c nil

end

In passing, let us stress the relation between Version 1 and Version 2 of the
compiler with the following equivalent definition of Version 2, using a curried
version of list construction and function composition instead of list construction
and list concatenation, respectively:

structure Integer_target_syntax2’ : INTEGER

= struct

type integer = Target.instr list -> Target.instr list

type result = Target.program

fun cons x

= (fn xs => x :: xs)

fun lit n

= cons (Target.PUSH n)

fun plus (c1, c2)

= c1 o c2 o (cons Target.ADD)

fun compute c

= c nil

end

Either of Integer target syntax2 or Integer target syntax2’ can be used to
obtain a compiler from the source language to the target language:

structure Source_cmp2

= Make_source_processor (structure I = Integer_target_syntax2)

structure Source_cmp2’

= Make_source_processor (structure I = Integer_target_syntax2’)

2.4 Interpretation and compilation for the target language

A target program is processed using a stack. This process is partial in that it
expects the stack to be well-formed. We make it total in ML using an option

type:

datatype ’a option = NONE

| SOME of ’a

10

When interpreting programs, the stack contains integers. According to the
binding-time shift of going from an interpreter to a compiler, when compiling
programs, the stack should contain representations of integers. We thus further
parameterize the parameters of the target-language processor by a structure of
type INTEGER:

functor Make_target_parameters (structure I : INTEGER)

: TARGET_PARAMETERS

= struct

type computation = I.integer list -> I.integer list option

type result = I.result option

val terminate = (fn s => SOME s)

fun push (n, c)

= (fn s => c ((I.lit n) :: s))

fun add c

= (fn (x2 :: x1 :: xs) => c ((I.plus (x1, x2)) :: xs)

| _ => NONE)

fun compute c

= (case c nil

of (SOME (x :: nil)) => SOME (I.compute x)

| _ => NONE)

end

2.4.1 An evaluation instantiation: target interpretation

It is straightforward to instantiate Make target parameters to obtain the target
parameters for an interpreter. To this end, we use the semantic representation
of the integers specified in Section 2.3.1:

structure Target_parameters_semantics

= Make_target_parameters (structure I = Integer_semantics)

We can now instantiate the functor of Section 2.2.1 to obtain an interpreter
for the target language:

structure Target_int

= Make_target_processor (structure P = Target_parameters_semantics)

For example, applying Target int.process to the target program

[PUSH 10, PUSH 20, ADD, PUSH 30, PUSH 40, ADD, ADD]

yields the optional integer SOME 100.

2.4.2 A code-generation instantiation: target compilation

It is also straightforward to instantiate Make target parameters to obtain the
target parameters for a compiler to the source language. To this end, we use
the syntactic representation of the integers specified in Section 2.1.2:

11

structure Target_parameters_source_syntax

= Make_target_parameters (structure I = Integer_source_syntax)

We can now instantiate the functor of Section 2.2.1 to obtain a compiler
from the target language to the source language:

structure Target_cmp

= Make_target_processor (structure P = Target_parameters_source_syntax)

For example, applying Target cmp.process to the target program

[PUSH 10, PUSH 20, ADD, PUSH 30, PUSH 40, ADD, ADD]

yields the following optional source program:

SOME (PLUS (PLUS (LIT 10, LIT 20), PLUS (LIT 30, LIT 40)))

2.5 Properties

We successively consider the total correctness of the source compiler with respect
to the source interpreter and the target interpreter, the partial correctness of the
target compiler with respect to the target interpreter and the source interpreter,
and the left inverseness of the source compiler and of the target compiler:

source
program

source
compiler

++

source
interpreter

��8
88

88
88

88
88

88
88

88
88

8

target
program

target
compiler

kk

target
interpreter

����
��

��
��

��
��

��
��

��
��

result

In particular, we prove that the target compiler is a left inverse of the source
compiler and therefore that it is a decompiler.

Terminology and notation:

• Source int.process is the process function of the functor Make source processor

of Section 2.1.1 instantiated with the structure Integer semantics of Sec-
tion 2.3.1. We refer to the corresponding walk function as w s int (for
“walk function of the source interpreter”).

12

• Source cmp2.process is the process function of the functor Make source processor

of Section 2.1.1 instantiated with the structure Integer target syntax2 of
Section 2.3.3. We refer to the corresponding walk function as w s cmp (for
“walk function of the source compiler”).

• Target int.process is the process function of the functor Make target processor

of Section 2.2.1 instantiated with the structure Target parameters semantics

of Section 2.4.1. We refer to the corresponding walk function as w t int

(for “walk function of the target interpreter”).

• Target cmp.process is the process function of the functor Make target processor

of Section 2.2.1 instantiated with the structure Target parameters source syntax

of Section 2.4.2. We refer to the corresponding walk function as w t cmp

(for “walk function of the target compiler”).

All the functions above are pure and total, i.e., they are side-effect free and
they always terminate, since they only use primitive recursion (the process

functions in the functors Make source processor and Make target processor are
fold functions).

We reason equationally on the ML syntax of the interpreters and compilers,
using observational equivalence. We say that two expressions e1 and e2 are
observationally equivalent, which we write as

e1 ∼= e2

whenever evaluating e1 and e2 in the same context yield the same result. Our
equational reasoning involves unfolding function calls, which is sound for pure
and total functions.

2.5.1 Total correctness of the source compiler

The compiler is correct if composing Target int.process and Source cmp.process

yields the same function as Source int.process. We use the following lemma as
a stepping stone for proving this correctness.

Lemma 1 For all ML values e : Source.exp, is : Target.instr list, and s

: int list, the following observational equivalence holds:

w t int (w s cmp e is) s ∼= w t int is ((w s int e) :: s).

Proof: The proof is by structural induction on the source syntax.

Base case: Source.LIT n

For all ML values is : Target.instr list and s : int list, we want to
show the following observational equivalence:

w t int (w s cmp (Source.LIT n) is) s
∼= w t int is ((w s int (Source.LIT n)) :: s)

We proceed by unfolding function calls:

13

w t int (w s cmp (Source.LIT n) is) s
∼= (unfolding w s cmp)
w t int (Integer target syntax2.lit n is) s
∼= (unfolding Integer target syntax2.lit)
w t int ((fn is => ((Target.PUSH n) :: is)) is) s
∼= (function application)
w t int ((Target.PUSH n) :: is) s
∼= (unfolding w t int)
Target parameters semantics.push (n, w t int is) s
∼= (unfolding Target parameters semantics.push)
(fn s => w t int is ((Integer semantics.lit n) :: s)) s
∼= (function application)
w t int is ((Integer semantics.lit n) :: s)
∼= (unfolding Integer semantics.lit)
w t int is (n :: s)

Conversely,

w t int is ((w s int (Source.LIT n)) :: s)
∼= (unfolding w s int)
w t int is ((Integer semantics.lit n) :: s)
∼= (unfolding Integer semantics.lit n)
w t int is (n :: s)

Induction case: Source.PLUS (e1, e2)

For all ML values is : Target.instr list, s : int list, and for ML val-
ues e1 : Source.exp and e2 : Source.exp satisfying the induction hypoth-
esis, we want to show the following observational equivalence:

w t int (w s cmp (Source.PLUS (e1, e2)) is) s
∼= w t int is ((w s int (Source.PLUS (e1, e2))) :: s)

Again, we proceed by unfolding function calls:

w t int (w s cmp (Source.PLUS (e1, e2)) is) s
∼= (unfolding w s cmp)
w t int (Integer target syntax2.plus (w s cmp e1, w s cmp e2) is) s
∼= (unfolding Integer target syntax2.plus)
w t int ((fn is => w s cmp e1 (w s cmp e2 (Target.ADD :: is))) is) s
∼= (function application)
w t int (w s cmp e1 (w s cmp e2 (Target.ADD :: is))) s
∼= (induction hypothesis on e1)
w t int (w s cmp e2 (Target.ADD :: is)) ((w s int e1) :: s)
∼= (induction hypothesis on e2)
w t int (Target.ADD :: is) ((w s int e2) :: (w s int e1) :: s)
∼= (unfolding w t int)

14

Target parameters semantics.add (w t int is)

((w s int e2) :: (w s int e1) :: s)
∼= (unfolding Target parameters semantics.add)
(fn (x2 :: x1 :: xs)

=> w t int is (Integer semantics.plus (x1, x2) :: xs)

|

=> NONE)

((w s int e2) :: (w s int e1) :: s)
∼= (function application)
w t int is (Integer semantics.plus ((w s int e1), (w s int e2)) :: s)
∼= (unfolding Integer semantics.plus)
w t int is (((w s int e1) + (w s int e2)) :: s)

Conversely,

w t int is ((w s int (Source.PLUS (e1, e2))) :: s)
∼= (unfolding w s int)
w t int is ((Integer semantics.plus (w s int e1, w s int e2)) :: s)
∼= (unfolding Integer semantics.plus)
w t int is (((w s int e1) + (w s int e2)) :: s)

�

Theorem 1 For ML values sp : Source.program, the following observational
equivalence holds:

Target int.process (Source cmp2.process sp) ∼= SOME (Source int.process sp).

Proof: For all ML values sp : Source.program and tp : Target.program, the
following observational equivalences holds:

Source int.process sp
∼= (unfolding Source int.process)
Integer semantics.compute (w s int sp)
∼= (unfolding Integer semantics.compute)
w s int sp

Source cmp2.process sp
∼= (unfolding Source cmp2.process)
Integer target syntax2.compute (w s cmp sp)
∼= (unfolding Integer target syntax2.compute)
w s cmp sp nil

Target int.process tp
∼= (unfolding Target int.process)
Target parameters semantics.compute (w t int tp)
∼= (unfolding Target parameters semantics.compute)
case w t int tp nil

of (SOME (x :: nil)) => SOME (Integer semantics.compute x)

| => NONE

15

For all ML values sp : Source.program we therefore have to prove that the
following observational equivalence holds:




case w t int (w s cmp sp nil) nil

of (SOME (x :: nil))

=> SOME (Integer semantics.compute x)

|

=> NONE




∼= SOME (w s int sp)

This observational equivalence, however, follows from Lemma 1. Indeed, for
all ML values e : Source.exp, nil : Target.instr list, and s : int list, the
observational equivalence of Lemma 1 reads as

w t int (w s cmp e nil) nil ∼= w t int nil ((w s int e) :: nil)

In particular,

w t int nil ((w s int e) :: nil)
∼= (unfolding w t int)
Target parameters semantics.terminate ((w s int e) :: nil)
∼= (unfolding Target parameters semantics.terminate)
(fn s => SOME s) ((w s int e) :: nil)
∼= (function application)
SOME ((w s int e) :: nil)

Since source programs are expressions and target programs are lists of instruc-
tions,

case w t int (w s cmp sp nil) nil

of (SOME (x :: nil)) => SOME (Integer semantics.compute x)

| => NONE
∼= (using the observational equivalence just above in context)
case SOME ((w s int sp) :: nil)

of (SOME (x :: nil)) => SOME (Integer semantics.compute x)

| => NONE
∼= (reducing the case expression)
SOME (Integer semantics.compute (w s int sp))
∼= (unfolding Integer semantics.compute)
SOME (w s int sp)

which concludes the proof. �

2.5.2 Partial correctness of the target compiler

As in Section 2.5.1, the compiler is correct if composing Source int.process and
Target cmp.process yields the same function as Target int.process. The issue,
however, is more murky here because not all values of type Target.program are
well-formed programs, as indicated by the option type in Section 2.4. Such ill-
formed target programs are the reason why Target int.process and Target cmp.

16

process may yield NONE. On the other hand, it is a corollary of Theorem 1 that
compiling a source expression yields a well-formed target program and that
interpreting a well-formed target program yields SOME n, for some integer n.

We leave the issue of partial correctness aside, and instead we turn to proving
that the target compiler is a left inverse of the source compiler.

2.5.3 Left inverseness

We use the following lemma as a stepping stone for proving that Target cmp.process

is a left inverse of Source cmp2.process for all source expressions.

Lemma 2 For all ML values e : Source.exp, is : Target.instr list, and s

: Source.exp list, the following observational equivalence holds:

w t cmp (w s cmp e is) s ∼= w t cmp is (e :: s).

Proof: The proof is by structural induction on the source syntax.

Base case: Source.LIT n

For all ML values is : Target.instr list and s : Source.exp list, we
want to show the following observational equivalence:

w t cmp (w s cmp (Source.LIT n) is) s
∼= w t cmp is ((Source.LIT n) :: s)

We proceed by unfolding function calls:

w t cmp (w s cmp (Source.LIT n) is) s
∼= (unfolding w s cmp)
w t cmp (Integer target syntax2.int n is) s
∼= (unfolding Integer target syntax2.int)
w t cmp ((fn is => ((Target.PUSH n) :: is)) is) s
∼= (function application)
w t cmp ((Target.PUSH n) :: is) s
∼= (unfolding w t cmp)
Target parameters source syntax.push (n, w t cmp is) s
∼= (unfolding Target parameters source syntax.push)
(fn s => w t cmp is ((Integer source syntax.lit n) :: s)) s
∼= (function application)
w t cmp is ((Integer source syntax.lit n) :: s)
∼= (unfolding Integer source syntax.lit)
w t cmp is ((Source.LIT n) :: s)

Induction case: Source.PLUS (e1, e2)

For all ML values is : Target.instr list, s : Source.exp list, and for
all ML values e1 : Source.exp and e2 : Source.exp satisfying the induc-
tion hypothesis, we want to show the following observational equivalence:

w t cmp (w s cmp (Source.PLUS (e1, e2)) is) s
∼= w t cmp is ((Source.PLUS (e1, e2)) :: s)

17

Again, we proceed by unfolding function calls:

w t cmp (w s cmp (Source.PLUS (e1, e2)) is) s
∼= (unfolding w s cmp)
w t cmp (Integer target syntax2.plus (w s cmp e1, w s cmp e2) is) s
∼= (unfolding Integer target syntax2.plus)
w t cmp ((fn is => w s cmp e1 (w s cmp e2 (Target.ADD :: is))) is) s
∼= (function application)
w t cmp (w s cmp e1 (w s cmp e2 (Target.ADD :: is))) s
∼= (induction hypothesis on e1)
w t cmp (w s cmp e2 (Target.ADD :: is)) (e1 :: s)
∼= (induction hypothesis on e2)
w t cmp (Target.ADD :: is) (e2 :: e1 :: s)
∼= (unfolding w t cmp)
Target parameters source syntax.add (w t cmp is) (e2 :: e1 :: s)
∼= (unfolding Target parameters source syntax.add)
(fn (x2 :: x1 :: xs)

=> w t cmp is ((Integer source syntax.plus (x1, x2)) :: xs)

|

=> NONE)

(e2 :: e1 :: s)
∼= (function application)
w t cmp is ((Integer source syntax.plus (e1, e2)) :: s)
∼= (unfolding Integer source syntax.plus)
w t cmp is ((Source.PLUS (e1, e2)) :: s)

�

Theorem 2 For all ML values sp : Source.program, the following observa-
tional equivalence holds:

Target cmp.process (Source cmp2.process sp) ∼= SOME sp.

Proof: For all ML values sp : Source.program and tp : Target.program, the
following observational equivalences holds:

Source cmp2.process sp
∼= (unfolding Source cmp2.process)
Integer target syntax2.compute (w s cmp sp)
∼= (unfolding Integer target syntax2.compute)
w s cmp sp nil

Target cmp.process tp
∼= (unfolding Target cmp.process)
Target parameters source syntax.compute (w t cmp tp)
∼= (unfolding Target parameters source syntax.compute)
case w t cmp tp nil

of (SOME (x :: nil)) => SOME (Integer source syntax.compute x)

| => NONE

18

For all ML values sp : Source.program, we therefore have to prove that the
following observational equivalence holds:




case w t cmp (w s cmp sp nil) nil

of (SOME (x :: nil))

=> SOME (Integer source syntax.compute x)

|

=> NONE




∼= SOME sp

This observational equivalence, however, follows from Lemma 2. Indeed, for
all ML values e : Source.exp, nil : Target.instr list, and nil : Source.exp

list, the observational equivalence of Lemma 2 reads as

w t cmp (w s cmp e nil) nil ∼= w t cmp nil (e :: nil)

In particular,

w t cmp nil (e :: nil)
∼= (unfolding w t cmp)
Target parameters source syntax.terminate (e :: nil)
∼= (unfolding Target parameters source syntax.terminate)
(fn s => SOME s) (e :: nil)
∼= (function application)
SOME (e :: nil)

Since source programs are expressions and target programs are lists of instruc-
tions,

case w t cmp (w s cmp sp nil) nil

of (SOME (x :: nil)) => SOME (Integer source syntax.compute x)

| => NONE
∼= (using the observational equivalence just above in context)
case SOME (sp :: nil)

of (SOME (x :: nil)) => SOME (Integer source syntax.compute x)

| => NONE
∼= (reducing the case expression)
SOME (Integer source syntax.compute sp)
∼= (unfolding Integer source syntax.compute)
SOME sp

which concludes the proof. �

2.6 Summary

We have systematically parameterized a source-language processor and a target-
language processor and instantiated them into identity transformations, inter-
preters, and compilers. We also have shown that the target compiler is a left-
inverse of the source compiler, and thus a decompiler.

19

Most of our instantiations hinge on a particular representation of integers—
syntactic or semantic. The exception is the identity transformation over target
programs, in Section 2.2.2, which hinges on a syntactic instantiation of target
parameters. We can, however, instantiate Make target parameters with either of
the syntactic interpretations of the integers in Sections 2.3.2 or 2.3.3:

structure Target_parameters_target_syntax1

= Make_target_parameters (structure I = Integer_target_syntax1)

structure Target_parameters_target_syntax2

= Make_target_parameters (structure I = Integer_target_syntax2)

We can now instantiate the functor of Section 2.2.1:

structure Target_identity1

= Make_target_processor (structure P = Target_parameters_target_syntax1)

structure Target_identity2

= Make_target_processor (structure P = Target_parameters_target_syntax2)

In this instantiation, the target program is processed with a stack and each com-
ponent is mapped to a representation of an integer in either Integer target syntax1

or Integer target syntax2, i.e., to target code. The instantiation yields a process

function of type Target.program -> Target.program option. This process func-
tion reflects the partial correctness mentioned in Section 2.5.2 in that it maps
any well-formed target program p into SOME p and all the other target programs
into NONE.

Overall, we have shown that just as specializing a source-language processor
can achieve compilation to a target language, specializing a target-language pro-
cessor can achieve decompilation to a source language. This observation is very
simple, but the authors have not seen it stated elsewhere. For example, spe-
cific efforts have been dedicated to decompiling compiled arithmetic expressions,
independently of their interpretation, compilation, and execution [13, 14, 49].

3 Lambda-terms and the SECD machine

In this section we show that the symmetric approach to compilation and decom-
pilation scales to an expression language with binding, namely the λ-calculus.
We consider Henderson’s version of the SECD machine [35, 46, 53].

3.1 Staged specification of the source language

The source language is the untyped λ-calculus with integers and a plus operator.
A program is a closed term.

structure Source

= struct

type ide = string

20

datatype term = LIT of int

| PLUS of term * term

| VAR of ide

| LAM of ide * term

| APP of term * term

type program = term

end

3.1.1 The core semantics

Recursive traversal of programs in this language can be expressed generically
using an ML functor as in Section 2.1.

signature SOURCE_PARAMETERS

= sig

type computation

type result

val lit : int -> computation

val plus : computation * computation -> computation

val var : int -> computation

val lam : computation -> computation

val app : computation * computation -> computation

val compute : computation -> result

end

signature SOURCE_PROCESSOR

= sig

type result

val process : Source.program -> result

end

functor Make_source_processor (structure P : SOURCE_PARAMETERS)

: SOURCE_PROCESSOR

= struct

type result = P.result

fun process p

= let fun walk (Source.LIT n) xs

= P.lit n

| walk (Source.PLUS (t1, t2)) xs

= P.plus (walk t1 xs, walk t2 xs)

| walk (Source.VAR x) xs

= P.var (Index.establish (x, xs))

| walk (Source.LAM (x, t)) xs

= P.lam (walk t (x :: xs))

| walk (Source.APP (t0, t1)) env

= P.app (walk t0 env, walk t1 env)

in P.compute (walk p nil)

end

end

21

In order to account for bindings, the walk function threads a lexical environment
xs. This environment is extended for each λ-abstraction and consulted for each
occurrence of a variable. The lexical offset of each occurrence of a variable is
established using Index.establish. (Given two ML values x : Source.ide and
xs : Source.ide list where x occurs, applying Index.establish to x and xs

yields the index of the first occurrence of x in xs.)

3.1.2 A code-generation instantiation: source identity modulo re-
naming

As an example of the use of Make source processor, this functor can be instan-
tiated as follows to obtain the identity transformation over source programs,
modulo renaming. To this end, we define a structure of type SOURCE PARAMETERS

where computation is a mapping from a list of identifiers to a source term,
result is the type of source programs, and the operators are the corresponding
code-generating functions:

structure Source_parameters_identity : SOURCE_PARAMETERS

= struct

type computation = Source.ide list -> Source.term

type result = Source.program

fun lit n

= (fn xs => Source.LIT n)

fun plus (c1, c2)

= (fn xs => Source.PLUS (c1 xs, c2 xs))

fun var i

= (fn xs => Source.VAR (Index.fetch (xs, i)))

fun lam c

= (fn xs => let val x = "x" ^ Int.toString (length xs)

in Source.LAM (x, c (x :: xs))

end)

fun app (c0, c1)

= (fn xs => Source.APP (c0 xs, c1 xs))

fun compute c

= c nil

end

structure Source_identity

= Make_source_processor (structure P = Source_parameters_identity)

Fresh identifiers are needed to construct source λ-abstractions. We obtain them
from the current de Bruijn level. These fresh identifiers are grouped in a list
xs in the reverse order of their declaration. For each λ-abstraction, the list is
extended, and for each occurrence of a variable, the corresponding fresh identifier
is fetched using Index.fetch. (Given two values i : int and xs : Source.ide

list, applying Index.fetch to xs and i fetches the corresponding identifier in
xs.) A computation is a mapping from lists of fresh identifiers to source terms.

22

For example, the source term

LAM ("a", LAM ("b", APP (APP (LAM ("x", VAR "x"),

LAM ("y", VAR "y")),

APP (VAR "a", VAR "b"))))

is mapped into the following source term:

LAM ("x0", LAM ("x1", APP (APP (LAM ("x2",VAR "x2"),

LAM ("x2",VAR "x2")),

APP (VAR "x0",VAR "x1"))))

3.2 Staged specification of the target language

A target program is a list of instructions for the SECD machine [35]:

structure Target

= struct

datatype instr = PUSH of int

| ADD

| ACCESS of int

| CLOSE of instr list

| CALL

type program = instr list

end

Unlike the other interpreters considered in this article, the SECD machine is
not directly defined by induction over the structure of target programs. For the
sake of familiarity, we follow the canonical definition to write the target-language
interpreter in Section 3.4.1. (Therefore, we stay away from the gymnastics of
using a functor implementing a recursive descent, as in Appendix A.)

3.3 Interpretation and compilation for the source language

We instantiate Make source processor into an interpreter for the source language
and into a compiler from the source language to the target language.

3.3.1 An evaluation instantiation: source interpretation

In order to instantiate the functor of Section 3.1.1 to obtain a call-by-value
interpreter for the source language, we define a data type of values containing
integers and functions from values to values. The computation type is then
defined to be a mapping from environments, represented by lists of values, to
values. The result type is defined to be values.

structure Source_parameters_std : SOURCE_PARAMETERS

= struct

datatype value = INT of int

| FUN of value -> value option

23

type computation = value list -> value option

type result = value option

fun lit n

= (fn vs => SOME (INT n))

fun plus (c1, c2)

= (fn vs => (case (c1 vs, c2 vs)

of (SOME (INT n1), SOME (INT n2))

=> SOME (INT (n1 + n2))

| (_, _)

=> NONE))

fun var i

= (fn vs => SOME (Index.fetch (vs, i)))

fun lam c

= (fn vs => SOME (FUN (fn v => c (v :: vs))))

fun app (c0, c1)

= (fn vs => (case (c0 vs, c1 vs)

of (SOME (FUN f), SOME v)

=> f v

| _

=> NONE))

fun compute c

= c nil

end

structure Source_int

= Make_source_processor (structure P = Source_parameters_std)

For example, applying Source int.process to the source program

APP (APP (LAM ("a", LAM ("b", VAR "a")), LIT 10), LIT 20)

yields the optional value SOME (INT 10).

3.3.2 A code-generation instantiation: source compilation (version 1)

It is also straightforward to instantiate Make source processor to obtain a com-
piler for the source language, by defining both computation and result as lists of
instructions, and by defining the operators as first-order code-generating func-
tions, as in Section 2.3.2:

structure Source_parameters_cogen1 : SOURCE_PARAMETERS

= struct

type computation = Target.instr list

type result = Target.program

fun lit n

= [Target.PUSH n]

fun plus (is1, is2)

= is1 @ is2 @ [Target.ADD]

24

fun var n

= [Target.ACCESS n]

fun lam is

= [Target.CLOSE is]

fun app (is0, is1)

= is0 @ is1 @ [Target.CALL]

fun compute is

= is

end

structure Source_cmp1

= Make_source_processor (structure P = Source_parameters_cogen1)

The resulting compiler is a subset of Henderson’s compiler for the SECD ma-
chine [35].

3.3.3 A code-generation instantiation: source compilation (version 2)

As in Section 2.3.3, we can also instantiate Make source processor to obtain a
less trivial but equivalent compiler that uses an accumulator instead of concate-
nating intermediate lists of instructions. To this end, we define computation as
a transformer of lists of instructions, result as a program, and the operators as
second-order code-generating functions:

structure Source_parameters_cogen2 : SOURCE_PARAMETERS

= struct

type computation = Target.instr list -> Target.instr list

type result = Target.program

fun lit n

= (fn is => (Target.PUSH n) :: is)

fun plus (f1, f2)

= (fn is => f1 (f2 (Target.ADD :: is)))

fun var n

= (fn is => (Target.ACCESS n) :: is)

fun lam f

= (fn is => (Target.CLOSE (f nil)) :: is)

fun app (f1, f2)

= (fn is => f1 (f2 (Target.CALL :: is)))

fun compute f

= f nil

end

structure Source_cmp2

= Make_source_processor (structure P = Source_parameters_cogen2)

For example, applying Source cmp2.process to the source program

APP (APP (LAM ("a", LAM ("b", VAR "a")), LIT 10), LIT 20)

yields the following target program

[CLOSE [CLOSE [ACCESS 1]], PUSH 10, CALL, PUSH 20, CALL]

25

3.4 Interpretation and compilation for the target language

We now turn to defining an interpreter and a compiler for SECD machine code.
As already mentioned, for clarity, we refrain from factoring the two definitions
through an ML functor. Instead, we present each of them on its own.

3.4.1 An evaluation instantiation: target interpretation

The interpreter for the target language is a scaled-down version of Henderson’s
interpreter [35], which is itself an implementation of the SECD machine [46,53].
As before, given two ML values e : ’a list and i : int, applying Index.fetch

to e and i fetches the corresponding entry in e.

structure Target_int

= struct

datatype value = INT of int

| CLOSURE of Target.instr list * value list

(* process : Target.program -> value option *)

fun process p

= let fun walk (v :: nil, e, nil, nil)

= SOME v

| walk (v :: nil, e, nil, (s’, e’, c’) :: d)

= walk (v :: s’, e’, c’, d)

| walk (s, e, (Target.PUSH n) :: c, d)

= walk ((INT n) :: s, e, c, d)

| walk ((INT n2) :: (INT n1) :: s, e, Target.ADD :: c, d)

= walk ((INT (n1 + n2)) :: s, e, c, d)

| walk (s, e, (Target.ACCESS i) :: c, d)

= walk ((Index.fetch (e, i)) :: s, e, c, d)

| walk (s, e, (Target.CLOSE c’) :: c, d)

= walk ((CLOSURE (c’, e)) :: s, e, c, d)

| walk (a :: (CLOSURE (c’, e’)) :: s, e, Target.CALL :: c, d)

= walk (nil, a :: e’, c’, (s, e, c) :: d)

| walk (_, _, _, _)

= NONE

in walk (nil, nil, p, nil)

end

end

For example, applying Target int.process to the target program

[CLOSE [CLOSE [ACCESS 1]], PUSH 10, CALL, PUSH 20, CALL]

yields the optional value SOME (INT 10).

3.4.2 A code-generation instantiation: target compilation

We obtain a compiler for the target language by instrumenting the SECD ma-
chine to build source terms (on the stack) instead of calculating values. Fresh

26

identifiers are needed to construct residual λ-abstractions, and we obtain them
by threading an integer.

structure Target_cmp

= struct

type value = Source.term

(* process : Target.program -> value option *)

fun process p

= let fun walk (v :: nil, e, nil, nil, g)

= SOME v

| walk (t :: nil, x :: e, nil, (s’, e’, c’) :: d, g)

= walk (Source.LAM (x, t) :: s’, e’, c’, d, g)

| walk (s, e, (Target.PUSH n) :: c, d, g)

= walk ((Source.LIT n) :: s, e, c, d, g)

| walk (t2 :: t1 :: s, e, Target.ADD :: c, d, g)

= walk ((Source.PLUS (t1, t2)) :: s, e, c, d, g)

| walk (s, e, (Target.ACCESS i) :: c, d, g)

= walk ((Source.VAR (Index.fetch (e, i))) :: s, e, c, d, g)

| walk (s, e, (Target.CLOSE c’) :: c, d, g)

= let val x = "x" ^ Int.toString g

in walk (nil, x :: e, c’, (s, e, c) :: d, g+1)

end

| walk (t1 :: t0 :: s, e, Target.CALL :: c, d, g)

= walk ((Source.APP (t0, t1)) :: s, e, c, d, g)

| walk (_, _, _, _, _)

= NONE

in walk (nil, nil, p, nil, 0)

end

end

• PUSH n and ADD: Pushing a number and adding two numbers implement
the binding-time shift between an interpreter and a compiler: instead of
treating the integers numerically, we treat them symbolically.

• CALL: Both the function and the argument occur on the stack; we construct
the corresponding residual application and we store it on the stack.

• CLOSE c’: We residualize c’ into the body of a λ-abstraction in an envi-
ronment with a fresh identifier x. When residualization completes (second
clause in the definition of walk), x is available in the environment to man-
ufacture the complete λ-abstraction, which we store on the stack.

For example, applying Target cmp.process to the target program

[CLOSE [CLOSE [ACCESS 1]], PUSH 10, CALL, PUSH 20, CALL]

yields the following optional source program:

SOME (APP (APP (LAM ("x0", LAM ("x1", VAR "x0")), LIT 10), LIT 20))

27

3.5 Properties

As in Section 2.5, we successively consider the total correctness of the source
compiler with respect to the source interpreter and the target interpreter, the
partial correctness of the target compiler with respect to the target interpreter
and the source interpreter, and the left inverseness of the source compiler and
of the target compiler:

source
program

source
compiler

++

source
interpreter

��8
88

88
88

88
88

88
88

88
88

8

target
program

target
compiler

kk

target
interpreter

����
��

��
��

��
��

��
��

��
��

result

In particular, we prove that the target compiler is a left inverse of the source
compiler and therefore that it is a decompiler.

Terminology and notation:

• Source int.process is the process function of the functor Make source

processor of Section 3.1.1 instantiated with the structure Source parameters

std of Section 3.3.1. We refer to the corresponding walk function as w s int

(for “walk function of the source interpreter”).

• Source cmp2.process is the process function of the functor Make source

processor of Section 3.1.1 instantiated with the structure Source parameters

cogen2 of Section 3.3.3. We refer to the corresponding walk function as
w s cmp (for “walk function of the source compiler”).

• Target int.process is the process function of the structure Target int of
Section 3.4.1. We refer to the corresponding walk function as w t int (for
“walk function of the target interpreter”).

• Target cmp.process is the process function of the structure Target cmp of
Section 3.4.2. We refer to the corresponding walk function as w t cmp (for
“walk function of the target compiler”).

Among the functions above, Source cmp2.process (and thus w s cmp) and Target

cmp.process (and thus w t cmp) are pure and total. They are pure because they
have no side effects, and they terminate because they recursively traverse finite
source and target programs.

As in Section 2.5, we reason equationally on the ML syntax of the interpreters
and compilers, using observational equivalence.

28

3.5.1 Total correctness of the source compiler

Theorem 3 For all ML values sp : Source.program, the following observa-
tional equivalence holds:

Target int.process (Source cmp2.process sp)
∼= SOME (Source int.process sp).

The proof of this theorem (i.e., of the correctness of Henderson’s compiler for
the SECD machine) is more involved than the proof of Theorem 1 and is beyond
the scope of the present article. Therefore we omit it.

3.5.2 Partial correctness of the target compiler

The situation is the same as in Section 2.5.2, i.e., not all values of type Target.

program are well-formed programs, as indicated by the option type in Sec-
tion 3.4.1 and Section 3.4.2. As in Section 2.5.2, we leave the issue of partial
correctness aside, and instead we turn to proving that the target compiler is a
left inverse of the source compiler.

3.5.3 Left inverseness

In this section we prove that Target cmp.process is a left inverse of Source cmp2.

process modulo α-renaming. Our proof uses structural induction on source
terms, and therefore we need to treat open terms together with their environ-
ment:

• the environment of a term, in the source compiler, is a list of identifiers;

• the environment of a term, in the target compiler, is a list of identifiers,
all distinct.

We therefore relate the terms together with their environments as follows.

Definition 1 (Left equivalence) For all ML values t : Source.term, xs :

Source.ide list containing the identifiers free in t in reverse order of their dec-
laration, t’ : Source.term, and e : Source.ide list with the same length as xs

and containing distinct identifiers, we say that t and t’ are left-equivalent with
respect to xs and e whenever the relation

〈t, xs〉 ≈ 〈t’, e〉

is satisfied. This relation is defined inductively as follows:

n ∼= n’

〈LIT n, xs〉 ≈ 〈LIT n’, e〉
〈t1, xs〉 ≈ 〈t1’, e〉 〈t2, xs〉 ≈ 〈t2’, e〉

〈PLUS (t1, t2), xs〉 ≈ 〈PLUS (t1’, t2’), e〉

29

Index.fetch (e, Index.establish (x, xs)) ∼= x’

〈VAR x, xs〉 ≈ 〈VAR x’, e〉
〈t, x :: xs〉 ≈ 〈t’, x’ :: e〉

〈LAM (x, t), xs〉 ≈ 〈LAM (x’, t’), e〉
〈t0, xs〉 ≈ 〈t0’, e〉 〈t1, xs〉 ≈ 〈t1’, e〉

〈APP (t0, t1), xs〉 ≈ 〈APP (t0’, t1’), e〉
For closed terms that contain no λ-abstractions, left equivalence reduces to
structural equality. For all closed terms, left equivalence implies α-equivalence.

In Lemma 3 and Theorem 4, we use left equivalence to establish left inverse-
ness.

Lemma 3 For all ML values t : Source.term, xs : Source.ide list contain-
ing all the identifiers free in t, e : Source.ide list with the same length as
xs and containing fresh (and all distinct) identifiers, s : Source.term list, c :

Target.instr list, d : (Source.term list * Source.ide list * Target.instr

list) list, and g : int, there exist two ML values t’ : Source.term and g’ :

int such that the following conjunction holds:

〈t, xs〉 ≈ 〈t’, e〉 ∧ w t cmp (s, e, w s cmp t xs c, d, g)
∼= w t cmp (t’ :: s, e, c, d, g’).

Proof: The proof is by structural induction on the source syntax.

Base case: LIT n

For all ML values xs : Source.ide list, e : Source.ide list with the
same length as xs and containing fresh (and all distinct) identifiers, s :

Source.term list, c : Target.instr list, d : (Source.term list * Source.

ide list * Target.instr list) list, and g : int, we want to show that
the following conjunction holds:

〈LIT n, xs〉 ≈ 〈LIT n, e〉 ∧ w t cmp (s, e, w s cmp (LIT n) xs c, d, g)
∼= w t cmp ((LIT n) :: s, e, c, d, g’)

for some ML value g’ : int.

The left conjunct holds by definition of ≈. As for the right conjunct,

w t cmp (s, e, w s cmp (LIT n) xs c, d, g)
∼= (unfolding w s cmp)
w t cmp (s, e, Source parameters cogen2.lit n c, d, g)
∼= (unfolding Source parameters cogen2.lit)
w t cmp (s, e, (fn is => (PUSH n) :: is) c, d, g)
∼= (function application)
w t cmp (s, e, (PUSH n) :: c, d, g)
∼= (unfolding w t cmp)
w t cmp ((LIT n) :: s, e, c, d, g)

30

Induction case: PLUS (t1, t2)

For all ML values xs : Source.ide list containing all the identifiers free
in t1 and t2, e : Source.ide list with the same length as xs and contain-
ing fresh (and all distinct) identifiers, s : Source.term list, c : Target.

instr list, d : (Source.term list * Source.ide list * Target.instr

list) list, and g : int, we want to show that the following conjunction
holds:

〈PLUS (t1, t2), xs〉 ≈ 〈PLUS (t1’, t2’), e〉
∧

w t cmp (s, e, w s cmp (PLUS (t1, t2)) xs c, d, g)
∼= w t cmp ((PLUS (t1’, t2’)) :: s, e, c, d, g’’)

for some ML value g’’ : int and for all ML values t1 : Source.term

and t1’ : Source.term satisfying the induction hypothesis and for all ML
values t2 : Source.term and t2’ : Source.term satisfying the induction
hypothesis.

The left conjunct holds because of the induction hypotheses and by defi-
nition of ≈. As for the right conjunct,

w t cmp (s, e, w s cmp (PLUS (t1, t2)) xs c, d, g)
∼= (unfolding w s cmp)
w t cmp (s, e, w s cmp (Source parameters cogen.plus

(w s cmp t1 xs, w s cmp t2 xs) c, d, g)
∼= (unfolding Source parameters cogen2.plus)
w t cmp (s, e, (fn is =>

w s cmp t1 xs (w s cmp t2 xs (ADD :: is))) c, d, g)
∼= (function application)
w t cmp (s, e, w s cmp t1 xs (w s cmp t2 xs (ADD :: c)), d, g)
∼= (induction hypothesis on t1, for some ML value g’ : int)
w t cmp (t1’ :: s, e, w s cmp t2 xs (ADD :: c), d, g’)
∼= (induction hypothesis on t2, for some ML value g’’ : int)
w t cmp (t2’ :: t1’ :: s, e, ADD :: c, d, g’’)
∼= (unfolding w t cmp)
w t cmp ((PLUS (t1’, t2’)) :: s, e, c, d, g’’)

Base case: VAR x

For all ML values xs : Source.ide list containing x, e : Source.ide list

with the same length as xs and containing fresh (and all distinct) iden-
tifiers, s : Source.term list, c : Target.instr list, d : (Source.term

list * Source.ide list * Target.instr list) list, and g : int we want
to show that the following conjunction holds:

〈VAR x, xs〉 ≈ 〈VAR x’, e〉 ∧ w t cmp (s, e, w s cmp (VAR x) xs c, d, g)
∼= w t cmp ((VAR x’) :: s, e, c, d, g’)

for some ML values x’ : Source.ide and g’ : int.

31

We reason equationally:

w t cmp (s, e, w s cmp (VAR x) xs c, d, g)
∼= (unfolding w s cmp)
w t cmp (s, e, Source parameters cogen.var

(Index.establish (x, xs)) c, d, g)
∼= (unfolding Source parameters cogen2.var)
w t cmp (s, e, (fn is =>

(ACCESS (Index.establish (x, xs))) :: is) c, d, g)
∼= (function application)
w t cmp (s, e, ((ACCESS (Index.establish (x, xs))) :: c), d, g)
∼= (unfolding w t cmp)
w t cmp ((VAR (Index.fetch (e, Index.establish (x, xs)))) :: s, e, c,

d, g)

There are no unbound identifiers in source programs and by assumption
all identifiers are accounted for in xs. Since xs and e have the same length,
there exists an ML value x’ : Source.ide in e satisfying

Index.fetch (e, Index.establish (x, xs)) ∼= x’

Given this x’, by definition of ≈,

〈VAR x, xs〉 ≈ 〈VAR x’, e〉

holds and furthermore the following observational equality holds:

w t cmp ((VAR (Index.fetch (e, Index.establish (x, xs)))) :: s, e,

c, d, g)
∼= w t cmp ((VAR x’) :: s, e, c, d, g)

Induction case: LAM (x, t)

For all ML values xs : Source.ide list containing all the identifiers free
in t, e : Source.ide list with the same length as xs and containing fresh
(and all distinct) identifiers, s : Source.term list, c : Target.instr list,
d : (Source.term list * Source.ide list * Target.instr list) list, and
g : int we want to show that the following conjunction holds:

〈LAM (x, t), xs〉 ≈ 〈LAM (x’, t’), e〉
∧

w t cmp (s, e, w s cmp (LAM (x, t)) xs c, d, g)
∼= w t cmp (LAM (x’, t’) :: s, e, c, d, g’)

for some ML value g’ : int and for all ML values t : Source.term and
t’ : Source.term satisfying the induction hypothesis.

32

We reason equationally:

w t cmp (s, e, w s cmp (LAM (x, t)) xs c, d, g)
∼= (unfolding w s cmp)
w t cmp (s, e, Source parameters cogen2.lam (w s cmp t (x :: xs)) c,

d, g)
∼= (unfolding Source parameters cogen2.lam)
w t cmp (s, e, (fn is =>

(CLOSE (w s cmp t (x :: xs) nil)) :: is) c, d, g)
∼= (function application)
w t cmp (s, e, (CLOSE t (w s cmp (x :: xs) nil)) :: c, d, g)
∼= (unfolding w t cmp)
w t cmp (nil, x’ :: e, w s cmp t (x :: xs) nil, (s, e, c) :: d, g+1)

where x’ = "x" ^ Int.toString g and is a fresh identifier.
∼= (induction hypothesis on t since xs’ and e’ have the same length,

for some ML value t’ : Source.term satisfying
〈t, x :: xs〉 ≈ 〈t’, x’ :: e〉 for some ML value g’ : int)

w t cmp (t’ :: nil, x’ :: e, nil, (s, e, c) :: d, g’)
∼= (unfolding w t cmp)
w t cmp (LAM (x’, t’) :: s, e, c, d, g’)

By induction hypothesis on t, 〈t, x :: xs〉 ≈ 〈t’, x’ :: e〉 holds, and
therefore 〈LAM (x, t), x :: xs〉 ≈ 〈LAM (x’, t’), x’ :: e〉 also holds, by
definition of ≈.

Induction case: APP (t0, t1)

This case is similar to the PLUS case above.
�

Theorem 4 For each ML value sp : Source.program, there exists an ML value
sp’ : Source.program that is α-equivalent to sp and that satisfies the following
observational equivalence:

Target cmp.process (Source cmp2.process sp) ∼= SOME sp’.

Proof: For all ML values sp : Source.program and tp : Target.program, the
following observational equivalences hold:

Source cmp2.process sp
∼= (unfolding Source cmp2.process)
Source cmp2.compute (w s cmp sp nil)
∼= (unfolding Source cmp2.compute)
w s cmp sp nil nil

Target cmp.process tp
∼= (unfolding Target cmp.process)
w t cmp (nil, nil, tp, nil, 0)

33

For all ML values sp : Source.program, we therefore have to prove the fol-
lowing observational equivalence:

w t cmp (nil, nil, w s cmp sp nil nil, nil, 0) ∼= SOME sp’

for a program sp’ that is α-equivalent to sp. This observational equivalence,
however, follows from Lemma 3. Indeed, for all ML values t : Source.term that
are closed nil : Source.ide list, nil : Source.term list, nil : Target.instr

list, nil : (Source.term list * Source.ide list * Target.instr list) list,
and 0 : int, Lemma 3 reads as

〈t, nil〉 ≈ 〈t’, nil〉 ∧ w t cmp (nil, nil, w s cmp t nil nil, nil, 0)
∼= w t cmp (t’ :: nil, nil, nil, nil, g’)

for some ML values t’ : Source.term and g’ : int. Therefore t and t’ are
left-equivalent. Since t is a closed term, t’ is a closed term too, i.e., a program.
Since they are left-equivalent, they are also α-equivalent.

Finally,

w t cmp (t’ :: nil, nil, nil, nil, g’)
∼= (unfolding of w t cmp)
SOME t’

and the result follows. �

3.6 Summary

We have shown that the symmetric approach to compilation and decompilation
scales to the λ-calculus and the SECD-machine language. We have not seen
this approach to decompilation described elsewhere. For example, specific efforts
have been dedicated to decompiling terms for abstract machines in the literature,
independently of interpreting them and of compiling them [32,34].

4 Related work

This section situates our symmetric approach to compilation and decompilation
with respect to compilation, decompilation, partial evaluation, and parsing.

4.1 Compilation and decompilation

We consider in turn the construction, correctness, and derivation of compilers
and decompilers.

4.1.1 Construction

Compilation and decompilation technologies have been around for over five
decades. While many authors note that compilation is an inverse of decom-
pilation [17, 33], in practice these technologies have evolved independently.

34

The area of compilation is well established and well mapped today, with a
number of subdivisions—e.g., syntactic analysis, semantic analysis, and code
generation. In contrast, the area of decompilation is not in the main stream
and it is less well defined and less well-mapped. The general problem of de-
compilation is known to be unsolvable [17,28,36,37], or requiring “human”, i.e.,
“manual” intervention.

In general, writing a real decompiler is an engineering challenge which is doc-
umented comprehensively at 〈http://www.program-transformation.org/twiki/
bin/view/Transform/DeCompilation〉.

In an imperative setting, the strategy is to establish control-flow and data-
flow graphs to build high-level constructs [17]. For an example closer to our work
here, Proebsting and Watterson decompile Java expressions by symbolically
executing JVM instructions [57].

In a logical setting, decompiling by executing compiled programs is a stan-
dard technique that directly builds on a relational specification such as the one
in Section 4.1.2 [12, 15].

4.1.2 Correctness

In their work on the lambda-sigma calculus [34], Hardin, Maranget, and Pagano
consider a compiler to Cardelli’s functional abstract machine and the corre-
sponding compiler, and they prove an inverseness property. Similarly, in their
work on strong reduction [32], Grégoire and Leroy also consider a compiler and
the corresponding decompiler. We are not aware of any other work addressing
inverseness properties for a compiler and a decompiler. Also, we are aware of
only few semantic approaches to decompilation, including Mycroft’s type-based
strategy and Katsumata and Ohori’s proof-directed strategy [45, 54, 55].

Since McCarthy and Painter’s first correctness proof of a compiler [50], cor-
rectness proofs for compilers typically use structural induction on the source syn-
tax. Alternatively to defining two functions Source cmp.process and Target cmp.

process, however, one can define a relation ∼ between source and target pro-
grams. For example, for the arithmetic expressions of Section 2, one can define
the following relation between source expressions and lists of target instructions:

Source.LIT n ∼ [Target.PUSH n]

e1 ∼ is1 e2 ∼ is2

Source.PLUS (e1, e2) ∼ is1 @ is2 @ [Target.ADD]

This specification is the relational counterpart of the compiler of Section 2.3.2
and proving properties about it is done relationally.

In general, compilation and decompilation form yet another example of
Galois connections in computer science, as outlined by Melton, Schmidt, and
Strecker [52]. Indeed in general the image of each transformation is a sublan-
guage over which the composition of the two transformations acts as the identity,
whereas it acts as a normalizer for programs in the annulus. The two examples
presented here do not illustrate this normalization, but adding let expressions

35

to the arithmetic expressions of Section 2 is enough to make it appear: target
programs are decompiled into source programs where all the let expressions have
been lifted out. More concretely, if the source language is

datatype exp = LIT of int

| PLUS of exp * exp

| LET of ide * exp * exp

| VAR of ide

then the source sublanguage of normal forms is

datatype operation_nf = LIT_nf of int

| VAR_nf of ide

| PLUS_nf of operation_nf * operation_nf

datatype exp_nf = LET_nf of ide * operation_nf * exp_nf

| BODY_nf of operation_nf

Another way to illustrate normalization by compilation and decompilation
is to consider an optimizing compiler—e.g., one that includes constant propa-
gation, constant folding, and common sub-expression elimination. In principle,
the decompiler yields a correspondingly optimized source program, if one is ex-
pressible in the source language. The issue then is that of completeness. The
phenomenon could be referred to as normalization by staged evaluation, in ref-
erence to normalization by evaluation [5, 9, 21–24,30].

4.1.3 Derivation

Much literature has been devoted to deriving a compiler from an interpreter,
up to and including undergraduate textbooks [1,25]. We single out Morris’s 700
follow-up paper for its observation that massaging a λ-interpreter can yield a
compiler for the SECD machine [53] and Wand’s article Deriving target code as
a representation of continuation semantics for its compelling title that precisely
characterizes the binding-time shift of going from evaluation to code genera-
tion [60].

In principle decompilation could be achieved by program inversion over a
compiler [2, 29]. Abramov, Glück, and Klimov have recently reported ongoing
efforts in this direction [3].

Our work is a study of a simultaneous derivation of a compiler and decom-
piler. The two are related by left-inverseness properties (Theorems 2 and 4).
The relations between the compiler, the decompiler, and the two interpreters
for the source and target languages are given by the the standard commuting
diagram displayed in Section 1.

4.2 Partial evaluation

In some sense, we are doing offline partial evaluation by hand. In particu-
lar, the factorizations into functors and structures of our language processors
manifest a binding-time separation between the static (compile-time) and the

36

dynamic (run-time) components of the language—what Lee refers to as macro-
and micro-semantics [47] and as identified by Jones and Muchnick [40]. Given an
unfactorized language processor, the binding-time analysis of an offline partial
evaluator could achieve this binding-time division provided the language pro-
cessor is well-written [38]. Specialization then corresponds to the instantiation
of a functor with a code-generating structure.

Specializing interpreters is a popular application of partial evaluation, one
that was discovered by Futamura in the early 1970s [26, 27].

4.2.1 The first Futamura projection for compiling

Given an interpreter for a defined language written in a defining language and
given a program written in the defined language, specializing the interpreter
with respect to the program gives a residual program written in the defining
language. In conjunction with a self-applicable partial evaluator, the first Fu-
tamura projection has been a major source of inspiration in the area of partial
evaluation [39,43].

In practice, specializing an interpreter with respect to a program yields a
residual program that includes all the idiosyncrasies of the interpreter. For ex-
ample, the residual program shown in Futamura’s original article reveals that his
interpreter represents environments as association lists [26, page 390]. Against
this backdrop, the notion of Jones-optimality has been developed [48, 58].

4.2.2 The first Futamura projection for decompiling

In principle, the first Futamura projection directly applies for decompiling, given
an interpreter for a target language written in a source language and given a
program written in the target language. In practice, specializing this interpreter
with respect to this program does give a residual program written in the source
language but this residual program in general includes all the idiosyncrasies of
the interpreter. In that sense, decompiling using the first Futamura projection
is far from Jones-optimal.

In contrast, doing partial evaluation by hand as we do here gives us some
extra flexibility regarding the target language in which to express residual pro-
grams, up to the point of left inverseness. For symmetry, it seems logical to
refer to our methodology as a Futamura embedding.

4.3 Parsing

In some sense, and as agreed upon in the decompilation community, decompiling
arithmetic expressions in reverse Polish form is akin to parsing [10]. More gen-
erally, a parser generator such as Yacc makes it possible to generate a compiler
as well as an interpreter. A Yacc user parameterizes the core parsing engine by
semantic actions, and these semantic actions can either carry out computations
and construct intermediate results or they can build abstract-syntax trees. In

37

that sense, we could use Yacc to decompile and to interpret arithmetic expres-
sions in reverse Polish notation and also to decompile and to interpret programs
for the SECD machine.

5 Conclusion

At the heart of turning an interpreter into a (front-end) compiler, there is a
binding-time shift: Where the interpreter performs an evaluation, the compiler
emits code representing this evaluation. In this article, we have shown how
this binding-time shift can be used not only to construct a compiler from a
source language to a target language but also to construct a compiler from a
target language to a source language. We have treated two examples and we
have proven that in each case the target compiler is a left inverse of the source
compiler—i.e., formally, that the target compiler is a decompiler.

The source languages we have considered are a canonical language of expres-
sions and its functional extension, the λ-calculus. Independently, we have also
considered several other languages of expressions:

• a source language of boolean expressions, a target language of conditional
expressions, and a compiler that implements short-cut boolean evaluation;

• a language of expressions with block structure and the language of a
register-stack machine, as in Section 4.1.2; and

• another abstract machine for the λ-calculus.

In each case, we were able to apply the methodology of specifying each lan-
guage processor with a functor implementing the corresponding fold function
and instantiating this functor into an interpreter (with elementary evaluation
functions) or a compiler (with elementary code-generation functions). To this
end, we took advantage of the correspondence between source expressions and
expressible values in functional languages. For imperative languages, however,
it seems unavoidable to use some form of control-flow graph, as in traditional
decompilation. At any rate, the methodology is not an end in itself; we see it
as a systematic means to explore the binding-time shift between an interpreter
and a (de)compiler.

Acknowledgments: We are grateful to Neil Jones for his generous inspira-
tion, both direct and indirect, which includes coining the term ‘binding-time
shift’. This article has also benefited from comments by anonymous reviewers,
by the editors of the Festschrift, and by Kenichi Asai, Robert Glück, Julia L.
Lawall, Karoline Malmkjær, Lasse R. Nielsen, Henning Korsholm Rohde, and
Ulrik P. Schultz. Thanks are also due to Jon Erickson, from Dr. Dobb’s Journal,
for a timely communication with the second author in March 2002.

This work was partly carried out while the third author was visiting BRICS.

38

A Factorized version of the processor for the
SECD-machine language

signature TARGET_PROCESSOR

= sig

type value

val push : int -> value

val add : value * value -> value

val lookup : value list * int -> value

val close : (value * (value list * value list * Target.instr list) list

-> value) -> value

val call : value * value * (value -> value) -> value

end

functor Make_target_processor (structure S : TARGET_PROCESSOR)

= struct local open Target in

exception CORE_DUMPED

fun process p

= let fun exec (v :: nil) e nil nil

= v

| exec (v :: nil) e nil ((s’, e’, c’) :: d)

= exec (v :: s’) e’ c’ d

| exec s e ((PUSH n) :: c) d

= exec ((S.push n) :: s) e c d

| exec (n1 :: n2 :: s) e (ADD :: c) d

= exec ((S.add (n1, n2)) :: s) e c d

| exec s e ((ACCESS i) :: c) d

= exec ((S.lookup (e, i)) :: s) e c d

| exec s e ((CLOSE c’) :: c) d

= exec ((S.close (fn (a, d)

=> (exec nil (a :: e) c’ d))) :: s) e c d

| exec (a :: f :: s) e (CALL :: c) d

= S.call (f, a, fn r => exec (r :: s) e c d)

| exec _ _ _ _

= raise CORE_DUMPED

in exec nil nil p nil

end

end end

39

References

[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure
and Interpretation of Computer Programs. The MIT Press, Cambridge,
Massachusetts, 1985.

[2] Sergei M. Abramov and Robert Glück. The universal resolving algorithm:
inverse computation in a functional language. In Roland Backhouse and
José N. Oliveira, editors, Mathematics of Program Construction. Proceed-
ings, volume 1837 of Lecture Notes in Computer Science, pages 187–212.
Springer-Verlag, 2000.

[3] Sergei M. Abramov, Robert Glück, and Yury Klimov. Faster answers
and improved termination in inverse computation of non-flat languages.
Technical report, Program Systems Institut, Russian Academy of Sciences,
Pereslavl-Zalessky, March 2002 2002.

[4] Mads Sig Ager, Olivier Danvy, and Mayer Goldberg. A symmetric approach
to compilation and decompilation (extended version). Technical Report
BRICS RS-02-37, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, August 2002.

[5] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip Scott.
Normalization by evaluation for typed lambda calculus with coproducts. In
Joseph Halpern, editor, Proceedings of the Sixteenth Annual IEEE Sympo-
sium on Logic in Computer Science, pages 203–210, Boston, Massachusetts,
June 2001. IEEE Computer Society Press.

[6] Roland Carl Backhouse, Patrik Jansson, Johan Jeuring, and Lambert G.
L. T. Meertens. Generic programming: an introduction. In S. Doaitse
Swierstra, Pedro Rangel Henriques, and José N. Oliveira, editors, Advanced
functional programming, Third International School, number 1608 in Lec-
ture Notes in Computer Science, pages 28–115, Braga, Portugal, September
1998. Springer-Verlag.

[7] Guntis Barzdins. Mixed computation and compiler basis. In Dines Bjørner,
Andrei P. Ershov, and Neil D. Jones, editors, Partial Evaluation and Mixed
Computation, pages 15–26. North-Holland, 1988.

[8] Alan Bawden. Quasiquotation in Lisp. In Olivier Danvy, editor, Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, Technical report BRICS-NS-99-1, University
of Aarhus, pages 4–12, San Antonio, Texas, January 1999. Available online
at http://www.brics.dk/~pepm99/programme.html.

[9] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization
by evaluation. In Bernhard Möller and John V. Tucker, editors, Prospects
for hardware foundations (NADA), number 1546 in Lecture Notes in Com-
puter Science, pages 117–137. Springer-Verlag, 1998.

40

[10] M. N. Bert and L. Petrone. Decompiling context-free languages from their
Polish-like representations. Calcolo, XIX(1):35–57, March 1982.

[11] Anders Bondorf. Compiling laziness by partial evaluation. In Simon L.
Peyton Jones, Guy Hutton, and Carsten K. Holst, editors, Functional Pro-
gramming, Glasgow 1990, Workshops in Computing, pages 9–22, Glasgow,
Scotland, 1990. Springer-Verlag.

[12] Jonathan Bowen. From programs to object code and back again using
logic programming: Compilation and decompilation. Journal of Software
Maintenance: Research and Practice, 5(4):205–234, 1994.

[13] Peter J. Brown. Re-creation of source code from reverse Polish. Software—
Practice and Experience, 2:275–278, 1972.

[14] Peter J. Brown. More on the re-creation of source code from reverse Polish.
Software—Practice and Experience, 7(8):545–551, 1977.

[15] Kevin A. Buettner. Fast decompilation of compiled Prolog clauses. In
Ehud Y. Shapiro, editor, Proceedings of the third international conference
on logic programming, number 225 in Lecture Notes in Computer Science,
pages 663–670, London, United Kingdom, July 1986. Springer-Verlag.

[16] Rod M. Burstall and Peter J. Landin. Programs and their proofs: An alge-
braic approach. In B. Meltzer and D. Michie, editors, Machine Intelligence,
volume 4, pages 17–43. Edinburgh University Press, 1969.

[17] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, Faculty
of Information Technology, Queensland University of Technology, Brisbane,
Australia, July 1994.

[18] Charles Consel and Olivier Danvy. Static and dynamic semantics process-
ing. In Robert (Corky) Cartwright, editor, Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, pages
14–24, Orlando, Florida, January 1991. ACM Press.

[19] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[20] Charles Consel and Siau-Cheng Khoo. Semantics-directed generation of a
Prolog compiler. Science of Computer Programming, 21:263–291, 1993.

[21] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. Mathematical Structures in Computer Science, 7:75–
94, 1997.

41

[22] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Tor-
ben Æ. Mogensen, and Peter Thiemann, editors, Partial Evaluation – Prac-
tice and Theory; Proceedings of the 1998 DIKU Summer School, number
1706 in Lecture Notes in Computer Science, pages 367–411, Copenhagen,
Denmark, July 1998. Springer-Verlag.

[23] Olivier Danvy, Morten Rhiger, and Kristoffer Rose. Normalization by eval-
uation with typed abstract syntax. Journal of Functional Programming,
11(6):673–680, 2001.

[24] Andrzej Filinski. Normalization by evaluation for the computational
lambda-calculus. In Samson Abramsky, editor, Typed Lambda Calculi and
Applications, 5th International Conference, TLCA 2001, number 2044 in
Lecture Notes in Computer Science, pages 151–165, Kraków, Poland, May
2001. Springer-Verlag.

[25] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages. The MIT Press and McGraw-Hill, 1991.

[26] Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computation,
12(4):381–391, 1999. Reprinted from Systems · Computers · Controls 2(5),
1971.

[27] Yoshihiko Futamura. Partial evaluation of computation process, revisited.
Higher-Order and Symbolic Computation, 12(4):377–380, 1999.

[28] R. Stockton Gaines. On the translation of machine language programs.
Communications of the ACM, 8(12):736–741, 1965.

[29] Robert Glück and Andrei V. Klimov. Metacomputation as a tool for formal
linguistic modeling. In R. Trappl, editor, Cybernetics and Systems Research
’94, volume 2, pages 1563–1570, Singapore, 1994. World Scientific.

[30] Mayer Goldberg. Gödelization in the λ-calculus. Information Processing
Letters, 75(1-2):13–16, 2000.

[31] Carsten K. Gomard and Neil D. Jones. Compiler generation by partial
evaluation. In G. X. Ritter, editor, Information Processing ’89. Proceedings
of the IFIP 11th World Computer Congress, pages 1139–1144. IFIP, North-
Holland, 1989.

[32] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong
reduction. In Simon Peyton Jones, editor, Proceedings of the 2002 ACM
SIGPLAN International Conference on Functional Programming, Pitts-
burgh, Pennsylvania, September 2002. ACM Press. To appear.

[33] Maurice H. Halstead. Machine Independent Computer Programming. Spar-
tan Books, Washington, D.C., 1962.

42

[34] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime
systems within the lambda-sigma calculus. Journal of Functional Pro-
gramming, 8(2):131–172, 1998.

[35] Peter Henderson. Functional Programming – Application and Implementa-
tion. Prentice-Hall International, 1980.

[36] R. Nigel Horspool and Nenad Marovac. An approach to the problem of
detranslation of computer programs. The Computer Journal, 23(3):223–
229, 1980.

[37] Barron C. Housel and Maurice H. Halstead. A methodology for machine
language decompilation. In Proceedings of the 27th ACM Annual Confer-
ence, pages 254–260, 1974.

[38] Neil D. Jones. What not to do when writing an interpreter for special-
isation. In Olivier Danvy, Robert Glück, and Peter Thiemann, editors,
Partial Evaluation, number 1110 in Lecture Notes in Computer Science,
pages 216–237, Dagstuhl, Germany, February 1996. Springer-Verlag.

[39] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice-Hall International, Lon-
don, UK, 1993. Available online at http://www.dina.kvl.dk/~sestoft/
pebook/.

[40] Neil D. Jones and Steven S. Muchnick. Some thoughts towards the design
of an ideal language. In Susan L. Graham, editor, Proceedings of the Third
Annual ACM Symposium on Principles of Programming Languages, pages
77–94. ACM Press, January 1976.

[41] Neil D. Jones and Flemming Nielson. Abstract interpretation: a semantics-
based tool for program analysis. In The Handbook of Logic in Computer
Science. North-Holland, 1992.

[42] Neil D. Jones and David A. Schmidt. Compiler generation from deno-
tational semantics. In Neil D. Jones, editor, Semantics-Directed Compiler
Generation, number 94 in Lecture Notes in Computer Science, pages 70–93,
Aarhus, Denmark, 1980. Springer-Verlag.

[43] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9–50, 1989.

[44] Jesper Jørgensen. Generating a compiler for a lazy language by partial
evaluation. In Andrew W. Appel, editor, Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Programming Languages, pages
258–268, Albuquerque, New Mexico, January 1992. ACM Press.

43

[45] Shin-ya Katsumata and Atsushi Ohori. Proof-directed de-compilation of
low-level code. In David Sands, editor, Proceedings of the Tenth European
Symposium on Programming, number 2028 in Lecture Notes in Computer
Science, pages 352–366, Genova, Italy, April 2001. Springer-Verlag.

[46] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[47] Peter Lee. Realistic Compiler Generation. The MIT Press, 1989.

[48] Henning Makholm. On Jones-optimal specialization for strongly typed lan-
guages. In Walid Taha, editor, Proceedings of the First Workshop on Se-
mantics, Applications, and Implementation of Program Generation (SAIG
2000), number 1924 in Lecture Notes in Computer Science, pages 129–148,
Montréal, Canada, September 2000. Springer-Verlag.

[49] William May. A simple decompiler – recreating source code without token
resistance. Dr. Dobb’s Journal, 50:50–52, June 1988.

[50] John McCarthy and James Painter. Correctness of a compiler for arith-
metic expressions. In J. T. Schwartz, editor, Proceedings of the 1967 Sympo-
sium in Applied Mathematics, Vol. 19, Mathematical Aspects of Computer
Science, pages 33–41. American Mathematical Society, Providence, Rhode
Island, 1967.

[51] Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen University,
Nijmegen, The Netherlands, 1992.

[52] Austin Melton, David A. Schmidt, and George Strecker. Galois connections
and computer science applications. In David H. Pitt et al., editors, Category
Theory and Computer Programming, number 240 in Lecture Notes in Com-
puter Science, pages 299–312, Guildford, UK, September 1986. Springer-
Verlag.

[53] Lockwood Morris. The next 700 formal language descriptions. Lisp and
Symbolic Computation, 6(3/4):249–258, 1993.

[54] Alan Mycroft. Type-based decompilation (or program reconstruction via
type reconstruction). In S. Doaitse Swierstra, editor, Proceedings of the
Eighth European Symposium on Programming, number 1576 in Lecture
Notes in Computer Science, pages 208–223, Amsterdam, The Netherlands,
March 1999. Springer-Verlag.

[55] Alan Mycroft, Shin-ya Katsumata, and Atsushi Ohori. Comparing type-
based and proof-directed decompilation. In Peter Aiken and Elizabeth
Burd, editors, Proceedings of the Working Conference on Reverse Engi-
neering, Stuttgart, Germany, 2001. http://reengineer.org/wcre2001/.

44

[56] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1992.

[57] Todd A. Proebsting and Scott A. Watterson. Krakatoa: Decompilation in
Java (does bytecode reveal source?). In Steve Vinoski, editor, Proceedings of
the Third USENIX Conference on Object-Oriented Technologies (COOTS),
pages 185–197, Portland, Oregon, June 1997. The USENIX Association.

[58] Walid Taha, Henning Makholm, and John Hughes. Tag elimination and
Jones-optimality. In Olivier Danvy and Andrzej Filinski, editors, Programs
as Data Objects, Second Symposium, PADO 2001, number 2053 in Lecture
Notes in Computer Science, pages 257–275, Aarhus, Denmark, May 2001.
Springer-Verlag.

[59] Peter Thiemann. Combinators for program generation. Journal of Func-
tional Programming, 9(5):483–525, 1999.

[60] Mitchell Wand. Deriving target code as a representation of continuation
semantics. ACM Transactions on Programming Languages and Systems,
4(3):496–517, 1982.

[61] Mitchell Wand. From interpreter to compiler: a representational deriva-
tion. In Harald Ganzinger and Neil D. Jones, editors, Programs as Data
Objects, number 217 in Lecture Notes in Computer Science, pages 306–324,
Copenhagen, Denmark, October 1985. Springer-Verlag.

[62] Zhe Yang. Language Support for Program Generation: Reasoning, Imple-
mentation, and Applications. PhD thesis, Computer Science Department,
New York University, New York, New York, August 2001.

45

Recent BRICS Report Series Publications

RS-02-37 Mads Sig Ager, Olivier Danvy, and Mayer Goldberg.A Sym-
metric Approach to Compilation and Decompilation. August
2002. 45 pp. Appears in Mogensen, Schmidt and Sudbor-
ough, editors,The Essence of Computation: Complexity, Analy-
sis, Transformation, LNCS 2556, 2002, pages 296–331.

RS-02-36 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part II: Administrative Reductions. August
2002. 9 pp. To appear in theJournal of Functional Program-
ming. This report supersedes the earlier BRICS report RS-01-
40.

RS-02-35 Patricia Bouyer. Timed Automata May Cause Some Troubles.
August 2002. 44 pp.

RS-02-34 Morten Rhiger. A Foundation for Embedded Languages. Au-
gust 2002. 29 pp.

RS-02-33 Vincent Balat and Olivier Danvy. Memoization in Type-
Directed Partial Evaluation. July 2002. 18 pp. To appear in
Batory and Consel, editors,ACM SIGPLAN/SIGSOFT Confer-
ence on Generative Programming and Component Engineering,
GPCE ’02 Proceedings, LNCS, 2002.

RS-02-32 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
On Obtaining Knuth, Morris, and Pratt’s String Matcher by Par-
tial Evaluation. July 2002. 43 pp. To appear in Chin, editor,
ACM SIGPLAN ASIAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, ASIA-PEPM ’02 Pro-
ceedings, 2002.

RS-02-31 Ulrich Kohlenbach and Paulo B. Oliva.Proof Mining: A Sys-
tematic Way of Analysing Proofs in Mathematics. June 2002.
47 pp.

RS-02-30 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2002.

RS-02-29 Christian N. S. Pedersen and Tejs Scharling.Comparative
Methods for Gene Structure Prediction in Homologous Se-
quences. June 2002. 20 pp.

