
B
R

IC
S

R
S

-02-35
P.B

ouyer:
T

im
ed

A
utom

ata
M

ay
C

ause
S

om
e

Troubles

BRICS
Basic Research in Computer Science

Timed Automata May Cause Some Troubles

Patricia Bouyer

BRICS Report Series RS-02-35

ISSN 0909-0878 August 2002

Copyright c© 2002, Patricia Bouyer.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/35/

Timed Automata May Cause Some Troubles

Patricia Bouyer∗

LSV – CNRS UMR 8643 & ENS de Cachan BRICS†– Aalborg University
61, Av. du Président Wilson Fredrik Bajers Vej 7E

94235 Cachan Cedex – France 9220 Aalborg Ø – Denmark
e-mail: bouyer@cs.auc.dk

Abstract

Timed automata are a widely studied model. Its decidability has been
proved using the so-called region automaton construction. This construc-
tion provides a correct abstraction for the behaviours of timed automata,
but it does not support a natural implementation and, in practice, algo-
rithms based on the notion of zones are implemented using adapted data
structures like DBMs. When we focus on forward analysis algorithms, the
exact computation of all the successors of the initial configurations does
not always terminate. Thus, some abstractions are often used to ensure
termination, among which, a widening operator on zones.

In this paper, we study in details this widening operator and the for-
ward analysis algorithm that uses it. This algorithm is most used and
implemented in tools like KRONOS and UPPAAL. One of our main results
is that it is hopeless to find a forward analysis algorithm, that uses such
a widening operator, and which is correct. This goes really against what
one could think. We then study in details this algorithm in the more gen-
eral framework of updatable timed automata, a model which has been
introduced as a natural syntactic extension of classical timed automata.
We describe subclasses of this model for which a correct widening oper-
ator can be found.

1 Introduction

Real-Time Systems. Since their introduction by Alur and Dill in [AD90,
AD94], timed automata are one of the most studied models for real-time sys-
tems. Numerous works have been devoted to the “theoretical” comprehen-
sion of timed automata: determinization [AFH94], minimization [ACD+92],

∗This work has been partly supported by the french project RNRT “Calife”.
†Basic Research in Computer Science (www.brics.dk), funded by the Danish National Re-

search Foundation.

1 Introduction 2

power of clocks [ACH94, HKWT95], power of ε-transitions [BDGP98], ex-
tensions of the model [DZ98, HRS98, CG00, BFH+01], logical characteriza-
tions [Wil94, HRS98],. . . have in particular been investigated. Practical as-
pects of the model have also been studied and several model-checkers are now
available (HYTECH1 [HHWT97], KRONOS2 [DOTY96], UPPAAL3 [LPY97]).
Timed automata afford to modelize many real-time systems and the existing
model-checkers have allowed to verify a lot of industrial case studies (see the
web pages of the tools or, for example, [HSLL97, TY98]).

Implementation of Timed Automata. The decidability of the timed au-
tomata model has been proved by Alur and Dill in [AD90, AD94]. It is based
on the construction of the so-called region automaton: it abstracts finitely
and in a correct way the behaviours of timed automata. However, in prac-
tice, such a construction is not implemented, because it does not support a
natural implementation, but algorithms glancing on-the-fly through the au-
tomaton are preferred. These algorithms are based on the notion of zones
and can be efficiently implemented using data structures like DBMs [Dil89]
and CDDs [BLP+99]. Among these algorithms are the forward analysis al-
gorithms that compute all the reachable configurations. However, the exact
forward computation does not always terminate. Abstractions have been pro-
posed to avoid this termination problems (see for example [DT98]) and they
are implemented in tools like KRONOS and UPPAAL.

Our contributions. In this paper, we study in details one of the abstractions
proposed in [DT98]. It consists in a widening operator that is applied to zones
to enforce the termination of the forward searching in the timed automaton.
The most important result is that, against what one can think, there is no way
to find a correct forward analysis algorithm for timed automata that uses this
widening operator.
We then consider the more general framework of updatable timed automata,
as defined in [BDFP00a]. This model is a syntactic extension of the classi-
cal timed automata coming from a model built for a communication protocol
in [BF99] and its decidability has been precisely settled in [BDFP00a]. We
then describe several subclasses of this model for which we can find a cor-
rect widening operator and thus a correct forward analysis algorithm. These
subclasses contain in particular all the timed automata that do not use com-
parisons between clocks. From this study, it appears that problems in the
correctness of the widening operator come only from the nature of the con-

1http://www-cad.eecs.berkeley.edu:80/�tah/HyTech/
2http://www-verimag.imag.fr/TEMPORISE/kronos/
3http://www.uppaal.com/

2 Implementation of Timed Automata, State of the Art 3

straints which are used in the automata, but not from the syntactic macros
that have been added in the updatable timed automata model.

Outline of the paper. The structure of the paper is the following: we first
recall some background on the implementation of timed automata and we de-
scribe the forward analysis algorithm that uses the widening operator we will
study (section 2) ; we then discuss the correctness of this algorithm and get
that, even if surprising, the algorithm is not correct in general (section 3) ;
we then present the updatable timed automata framework (section 4) and
we study very precisely the correctness of the widening operator (section 5) ;
we also propose an implementation of the algorithm for the subclasses of up-
datable timed automata for which a correct widening operator can be found
(section 5) ; we discuss some other methods for all the automata for which we
can not propose a correct widening operator ; we finally conclude with some
remarks (section 6).

Some technical proofs of this paper are presented in Appendix (page 42).

2 Implementation of Timed Automata, State of the Art

In this section, we present the basic notions for timed automata [AD90,
AD94], and we focus on implementation issues for this model. In particular,
we present an algorithm which is implemented in some tools.

2.1 Preliminaries

If Z is any set, let Z∗ be the set of finite sequences of elements in Z. We
consider as time domain T the set Q+ of non-negative rationals or the set
R+ of non-negative reals and Σ as a finite set of actions. A time sequence
over T is a finite non decreasing sequence τ = (ti)1≤i≤p ∈ T∗. A timed word
ω = (ai, ti)1≤i≤p is an element of (Σ × T)∗, also written as a pair ω = (σ, τ),
where σ = (ai)1≤i≤p is a word in Σ∗ and τ = (ti)1≤i≤p a time sequence in T∗

of same length.

2.1.1 Clock Valuations.

We consider a finite set X of variables, called clocks. A clock valuation over X
is a mapping v : X → T that assigns to each clock a time value. The set of
all clock valuations over X is denoted TX . Let t ∈ T, the valuation v + t is
defined by (v + t)(x) = v(x) + t, ∀x ∈ X. We also use the notation (αi)1≤i≤n

for the valuation v such that v(xi) = αi. For a subset C of X, we denote by
[C ← 0]v the valuation such that for each x ∈ C, ([C ← 0]v)(x) = 0 and for
each x ∈ X \ C, ([C ← 0]v)(x) = v(x).

2 Implementation of Timed Automata, State of the Art 4

2.1.2 Clock Constraints.

Given a set of clocks X, we introduce two sets of clock constraints over X.
The most general one, denoted by C(X), is defined by the following grammar:

ϕ ::= x ∼ c | x− y ∼ c | ϕ ∧ ϕ | true

where x, y ∈ X, c ∈ Q, ∼ ∈ {<,≤,=,≥, >}
We also use the proper subset of diagonal-free constraints where the compar-
ison between two clocks is not allowed. This set is denoted by Cdf (X) and is
defined by the grammar:

ϕ ::= x ∼ c | ϕ ∧ ϕ | true,

where x ∈ X, c ∈ Q and ∼ ∈ {<,≤,=,≥, >}
We write v |= ϕ when the clock valuation v satisfies the clock constraint ϕ.

A k-bounded clock constraint is a clock constraint that involves only constants
between −k and +k.

2.1.3 Timed Automata.

A timed automaton over T is a tuple A = (Σ, Q, T, I, F,X), where Σ is a
finite alphabet of actions, Q is a finite set of states, X is a finite set of clocks,
T ⊆ Q× [C(X)×Σ× 2X]×Q is a finite set of transitions, I ⊆ Q is the subset
of initial states and F ⊆ Q is the subset of final states.
A path in A is a finite sequence of consecutive transitions:

P = q0
ϕ1,a1,C1−−−−−→ q1 . . . qp−1

ϕp,ap,Cp−−−−−→ qp

where (qi−1, ϕi, ai, Ci, qi) ∈ T for each 1 ≤ i ≤ p.

The path is said to be accepting if it starts in an initial state (q0 ∈ I) and ends
in a final state (qp ∈ F). A run of the automaton through the path P is a
sequence of the form:

〈q0, v0〉 ϕ1,a1,C1−−−−−→
t1

〈q1, v1〉 . . .
ϕp,ap,Cp−−−−−→

tp
〈qp, vp〉

where τ = (ti)1≤i≤p is a time sequence and (vi)1≤i≤p are clock valuations
defined by: 


v0(x) = 0, ∀x ∈ X
vi−1 + (ti − ti−1) |= ϕi

vi = [Ci ← 0] (vi−1 + (ti − ti−1))

The label of the run is the timed word w = (a1, t1) . . . (ap, tp). If the path
P is accepting then the timed word w is said to be accepted by the timed
automaton. The set of all timed words accepted by A is denoted by L(A).

2 Implementation of Timed Automata, State of the Art 5

2.2 Practical Issues

For verification purposes, a fundamental question about timed automata is to
decide whether the accepted language is empty. This problem is called the
emptiness problem. A class of timed automata is said decidable if the emptiness
problem is decidable for this class. Note that this problem is equivalent to the
reachability problem which tests whether a state can be reached in a timed
automaton.

Alur and Dill proved in [AD90, AD94] that the emptiness problem is decidable
for timed automata. The proof of this result is based on a “region automaton
construction”. In practice, this construction is not implemented because it
does not support a natural implementation and it suffers from an enormous
combinatorics explosion. The idea of the region automaton is to construct a
finite simulation graph for the automaton based on an equivalence relation
(of finite index) defined on the clock valuations. Some works have been done
to reduce the size of this simulation graph by enlarging the equivalence re-
lation, see for example [ACD+92, YL97, TY01]. However, in practice, such
graphs are not constructed and on-the-fly zone algorithms glancing symboli-
cally through the graph are implemented. One of the advantages of these al-
gorithms is that they can easily be implemented using the Difference Bounded
Matrices data structure (DBM for short), initially proposed by [Dil89]. For
example, forward analysis algorithms (that is algorithms computing step-by-
step the successors of the initial configurations) [Alu99] are implemented in
tools like UPPAAL [BL96, LPY97] or KRONOS [BTY97, Daw97, Yov98]. The
forward analysis algorithm computing the exact set of successors does not al-
ways terminate; in [MP99], subclasses of classical timed automata, for which
termination is guaranteed, are proposed, but these classes are a bit restric-
tive. Different kinds of abstractions [DT98] are thus proposed to enforce the
termination, among which a widening operator on zones.

The aim of this paper is to study in details the widening operator proposed
in [DT98] and implemented in tools like KRONOS and UPPAAL. We will thus
now present the widening operator defined in [DT98] and describe the for-
ward analysis algorithm which uses this operator. This algorithm is imple-
mented in some tools for the verification of classical timed automata. We
also explain how this algorithm is implemented using the DBM data structure.
Note that this data structure, apart from being adapted to the implementation
of algorithms for timed automata, is very interesting in that it will be useful to
prove properties of timed automata.

2 Implementation of Timed Automata, State of the Art 6

2.3 A Forward Analysis Algorithm for Timed Automata

2.3.1 Zones.

A zone is a subset of Tn defined by a general clock constraint. Let k be a
constant. A k-bounded zone is a zone defined by a k-bounded clock constraint.
Let Z be a zone. The set of k-bounded zones containing Z is finite and not
empty (Tn is a k-bounded zone and contains Z), the intersection of these k-
bounded zones is a k-bounded zone containing Z, and is thus the smallest
one having this property. It is called the k-approximation of Z and is denoted
Approxk(Z).

Example 1 Consider the zone Z drawn with
on the figure beside: Z is defined by the clock
constraint

1 < x < 4 ∧ 2 < y < 4 ∧ x− y < 1.

Taking k = 2, the k-approximation of Z is
drawn adding the part ; it is defined by the
clock constraint

1 < x ∧ 2 < y ∧ x− y < 1.
0 1 2 4 x

1

2

4

y

2.3.2 The Algorithm.

Let A be a classical timed automaton. If e = (q
g,a,C:=0−−−−−−→ q′) is a transition of

A and if Z is a zone, then Post(Z, e) denotes the set [C ← 0](g ∩−→Z) where
−→
Z

represents the future of Z and is defined by

−→
Z = {v + t | v ∈ Z and t ≥ 0}

Post(Z, e) is the set of valuations which can be reached by waiting in the
current state, q, and then taking the transition e. We associate with A the
largest constant, k, appearing in A (i.e. the largest constant c such that there
is a constraint x ∼ c for some clock x or x − y ∼ c for some clocks x and y).
A maximal constant can be computed for each clock x (in a similar way), but
for our purpose, it does not change anything, the presentation would just be
a bit more complicated.

One of the forward analysis algorithms for classical timed automata uses the
k-approximation (cf section 2.3.1) as a widening operator. It is presented as
Algorithm 1 (q0 is the initial location of the automaton whereas Z0 represents
the initial zone, it is often the valuation where all the clocks are set to zero).

2 Implementation of Timed Automata, State of the Art 7

Algorithm 1 Algorithm using k-Approximations for Classical Timed Automata
TA-Algorithm (A:TA) {
Define k as the maximal constant appearing in A;
Visited := ∅; (* Visited stores the visited states *)
Waiting := {(q0,Approxk(Z0))};
Repeat
Get and Remove (q,Z) from Waiting;
If q is final
then {Return “Yes”;}
else {If there is no (q,Z’) ∈ Visited such that Z ⊆ Z’
then {Visited := Visited ∪ {(q,Z)};
Successor := {(q’,Approxk(Post(Z,e))) |
e transition from q to q’};
Waiting := Waiting ∪ Successor;}}
Until (Waiting = ∅);
Return “No”; }

We first point out that this algorithm terminates because there are finitely
many k-bounded zones and thus finitely many k-approximations of zones that
can be computed for each control state of the automaton. This algorithm com-
putes step-by-step an overapproximation of the set of reachable states and
tests whether this approximation intersects the set of final states. Thus, if the
answer of the algorithm is “No”, it is sure that no final state can be reached.
However, if the answer is “Yes”, it can a priori be the case that the overapprox-
imation intersects the set of final states whereas the exact set of reachable
states does not intersect this set. We will discuss in details the correctness of
Algorithm 1 in Section 3.

2.4 The Implementation: the DBM Data Structure

In order to implement Algorithm 1, an adapted data structure is needed to
represent the zones and this data structure must allow to test for inclusion of
zones and to compute easily the different operations used in the algorithm,
that is the intersection of two zones, the future of a zone, the image of a zone
by a reset and the k-approximation of a zone. Tools like UPPAAL or KRONOS

use the data structure proposed by Dill in [Dil89], the DBM data structure.
A detailed presentation of this data structure can be found in [CGP99] and
in [Ben02]. However, we will recall some basic properties of it because it will
be the core tool in the rest of the paper.

A difference bounded matrice (say DBM for short) for n clocks is an (n + 1)-

2 Implementation of Timed Automata, State of the Art 8

square matrice of pairs

(m;≺) ∈ V = (Z × {<,≤}) ∪ {(∞;<)}.

A DBM M = (mi,j,≺i,j)i,j=1...n defines the following subset of Tn (the clock
x0 is supposed to be always equal to zero, i.e. for each valuation v, v(x0) = 0):

{v : {x1, . . . , xn} −→ T | ∀ 0 ≤ i, j ≤ n, v(xi)− v(xj) ≺i,j mi,j}

where γ <∞ means that γ is some real (there is no bound on it).
This subset of Tn is a zone and will be denoted, in what follows, by JMK. Each
DBM on n clocks represents a zone of Tn. Note that several DBMs can define
the same zone.

Example 2 The zone defined by the equations x1 > 3 ∧ x2 ≤ 5 ∧ x1 − x2 < 4
can be represented by the two DBMs

 (0;≤) (−3;<) (∞;<)
(∞;<) (0;≤) (4;<)
(5;≤) (∞;<) (0;≤)


 and


 (∞;<) (−3;<) (∞;<)

(∞;≤) (∞;<) (4;<)
(5;≤) (∞;<) (0;≤)




Thus the DBMs are not a canonical representation of zones. Moreover, it isn’t
possible to test syntactically whether JM1K = JM2K. A normal form has thus
been defined for representing zones. Its computation uses the Floyd algorithm
and some syntactic rewritings (see [Dil89, CGP99] for a description of this
procedure). In what follows, we denote by φ(M) the normal form of M .
Before stating some very important properties of the normal form, we define
a total order on V in the following way: if (m;≺), (m′;≺′) ∈ V, then

(m;≺) ≤ (m′;≺′) ⇐⇒



m < m′

or
m = m′ and either ≺ = ≺′ or ≺′ = ≤ .

Of course, for each m ∈ Z, it holds that m < ∞. We define >, ≥ and < in a
natural way. These orders are extended to the DBMs in the following way: let
M = (mi,j;≺i,j)i,j=0...n and M ′ = (m′

i,j;≺′
i,j)i,j=0...n be two DBMs, then

M ≤M ′ ⇐⇒ for every i, j = 0 . . . n, (mi,j;≺i,j) ≤ (m′
i,j;≺′

i,j).

We can now state some (very useful) properties of normal forms. If M and M ′

are DBMs, then:

(i) JMK = Jφ(M)K and φ(M) ≤M ,

(ii) JMK ⊆ JM ′K ⇐⇒ φ(M) ≤M ′ ⇐⇒ φ(M) ≤ φ(M ′).

2 Implementation of Timed Automata, State of the Art 9

The last point expresses the fact that the test for inclusion of zones can be
checked syntactically on the normal forms of the DBMs (representing the
zones).
Normal forms of DBMs can be characterized in a natural way. If M =
(mi,j;≺i,j)i,j=0...n is a DBM such that JMK 6= ∅, then the two following prop-
erties are equivalent:

(i) M is in normal form,

(ii) for every i, j = 0 . . . n, for every real −mj,i ≺j,i r ≺i,j mi,j, there exists
a valuation v ∈ JMK such that v(xj) − v(xi) = r (still assuming that
v(x0) = 0).

This property expresses the fact that if a DBM is in normal form, then no
constraint of this DBM can be tightened using the Floyd algorithm.

The emptiness can be checked on the DBMs, even if they are not in normal
form. For this, we define an addition on the set V:

(m;≺) + (m′;≺′) = (m′′;≺′′)

where m′′ = m+m′ and ≺′′ is ≤ if both ≺ and ≺′ are ≤ and≺′′ is < otherwise.
Now, if M = ((mi,j;≺i,j)i,j) is a DBM, JMK = ∅ if and only if there exists a
negative cycle in M , which means that there exists a sequence of distinct
indices (i1, i2, . . . , il−1, il = i1) such that

(mi1,i2;≺i1,i2) + (mi2,i3;≺i2,i3) + · · ·+ (mil−1,il ;≺il−1,il) < (0;≤)

This condition will be used a lot in the remainder of the paper.

2.4.1 Computation of Some Operations on DBMs.

As we argued at the beginning of the section, the data structure used to repre-
sent zones must also be appropriate to compute the four operations on zones
that are used by Algorithm 1, namely future, intersection, image by resets and
k-approximation. These operations on DBMs are described nicely in [CGP99]
and [Ben02], here we recall them quickly.

Intersection. Assume that M = (mi,j ;≺i,j)i,j=1...n and M ′ = (m′
i,j;≺′

i,j

)i,j=1...n are two DBMs. Then, defining M ′′ = (m′′
i,j;≺′′

i,j)i,j=1...n by

(m′′
i,j;≺′′

i,j) = min((mi,j ;≺i,j), (m′
i,j ;≺′

i,j)) for all indices i, j = 1 . . . n.

We get that JM ′′K = JMK ∩ JM ′K. Note that it can be the case that M ′′ is not
in normal form, even if M and M ′ are in normal form.

3 Correctness Problems 10

Future. Assume that M = (mi,j;≺i,j)i,j=1...n is a DBM in normal form. We
define the DBM

−→
M = (m′

i,j ;≺′
i,j)i,j=1...n by:

{
(m′

i,j;≺′
i,j) = (mi,j;≺i,j) if j 6= 0

(m′
i,0;≺′

i,0) = (∞;<)
.

We get that J
−→
MK =

−−→
JMK and that the DBM

−→
M is in normal form.

Image by resets. Assume that M = (mi,j;≺i,j)i,j=1...n is a DBM in normal
form. We define the DBM Mxk:=0 = (m′

i,j;≺′
i,j)i,j=1...n by:




(m′
i,j ;≺′

i,j) = (mi,j;≺i,j) if i, j 6= k

(m′
k,k;≺′

k,k) = (m′
k,0;≺′

k,0) = (m′
0,k;≺′

0,k) = (0;≤)
(m′

i,k;≺′
i,k) = (mi,0;≺i,0) if i 6= k

(m′
k,i;≺′

k,i) = (m0,i;≺0,i) if i 6= k

We get that JMxk:=0K = [xk ← 0]JMK and that the DBM Mxk:=0 is in normal
form.

k-approximation. Assume that M = (mi,j;≺i,j)i,j=1...n is a DBM in normal
form. We define the DBM Mk = (m′

i,j;≺′
i,j)i,j=1...n by:




(m′
i,j;≺′

i,j) = (mi,j;≺i,j) if − k ≤ mi,j ≤ k

(m′
i,j;≺′

i,j) = (∞;<) if mi,j > k

(m′
i,j;≺′

i,j) = (−k;<) if mi,j < −k

We get that JMkK = Approxk(JMK), but Mk is not in normal form.

Combining all these constructions, if e is a transition of the form q
g,a,C:=0−−−−−−→ q′

and if M is a DBM representing a zone Z, using what precedes, it is easy
to compute a DBM which represents the zone Approxk([C ← 0](g ∩ −→Z)) =
Approxk(Post(Z, e)). This DBM may not be in normal form. The DBM data
structure can thus be used to compute all the operations needed by Algo-
rithm 1.

3 Correctness Problems

As argued in Section 2.3.2, Algorithm 1 raises a correctness problem. Indeed,
it computes an overapproximation of the set of reachable states which can a
priori be strictly larger than the set of reachable states. This algorithm is much
implemented and used, nevertheless, we did not find any complete proof of its

3 Correctness Problems 11

correctness in the literature. There exist of course several papers claiming that
they present such proofs but these proofs are incomplete and even sometimes
incorrect:

• In the PhD. Thesis [Tri98], the implementation of the c-closure presented
page 127 (of [Tri98]) corresponds to our Approxc approximation. Thus,
their Yes/No Algorithm should correspond to Algorithm 1. However,
the definition of the c-closure given page 21 does not correspond to the
implementation. For example, consider the following graph where c is
2:

zone Z c-closure of Z what the
implementation
really computes

The proof of correctness of the Yes/No Reachability Algorithm (Lemma
5.9 page 58) is done using the c-closure which is defined and not the
one which is implemented. Thus, the correctness of the implemented
algorithm is not complete in this paper.

• In the PhD. Thesis [WT94], if Z is a zone then round(Z) corresponds
to our Approxk overapproximation. The theorem which aims at proving
that Algorithm 1 is correct is Theorem 4.8 on page 90. The proof is
done in the following way: considering a zone Z, it is decomposed into
finitely many subzones that are assumed to be included in regions, then
the computation of the round operator is done first for the subzones (this
step is easy); round(Z) is obtained by computing the union of the round
of these subzones. But round is not compatible with union, for example
have a look at the following zone:

zone Z round applied to the
subzones of Z round(Z)

Besides, this proof only aimed at proving the correctness of Algorithm 1
when we restrict to diagonal-free timed automata.

3 Correctness Problems 12

A surprising observation...

In trying to write a complete proof for the correctness of Algorithm 1, we have
had some troubles, and studying precisely what were the problems we were
confronted to, we have been forced to face the facts that Algorithm 1 can not
be correct! Consider for example the automaton Cex depicted on figure 1.

i

q

x3 ≤ 3

{x3, x1} := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2,
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 > x1 + 2

x4 < x3 + 2
Error

The loop

Figure 1: A surprising counter-example, Cex

It is just a matter of computing successors of zones to get that the zones we
can reach in state q, when we start with the valuation where all the clocks are
set to zero in state i, are



x3 ≥ 2α + 5
x2 ≥ 1
x4 ≥ 2α + 6
1 ≤ x2 − x1 ≤ 3
x3 − x1 = 2α + 5
2α + 6 ≤ x4 − x1 ≤ 2α + 8
2α + 2 ≤ x3 − x2 ≤ 2α + 4
x4 − x2 = 2α + 5
1 ≤ x4 − x3 ≤ 3

where α is the number of loops which are taken (we call Zα this zone). This
kind of zones is depicted on figure 3.
We can then notice that, for every α, if we impose the condition x4 − x3 < 2
in Zα, then x2 − x1 < 2 because

x2 − x1 = (x2 − x4) + (x4 − x3) + (x3 − x1)
< (−2α − 5) + 2 + (2α + 5)
< 2

Thus, the state “Error” of Cex is not reachable. However, if we fix a maximal
constant M and if we use the widening operator using this constant M (that

4 The Updatable Timed Automata Framework 13

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

Figure 2: The zone Zα

is if we use the operator ApproxM), then for a number of loops α sufficiently
large (that is such that 2α + 5 > M), the constraint (x3 − x1 ≤ 2α + 5) will
be erased when we will apply the widening operator and thus Algorithm 1
will conclude that the state “Error” is reachable. Thus, we conclude that for
the automaton Cex, there exists no widening operator which is correct with
respect to reachability.
From this counter-example, we get that the widening operator is not correct
with respect to reachability and this was a big surprise! More precisely, we
can state the following result:

Theorem 1 There is no way to have a correct forward analysis algorithm for
timed automata that uses a widening operator on zones.

The aim of the rest of this paper is to study more precisely where appear the
problems and to bring out subclasses for which we can find a correct widen-
ing operator. We decided to do this study in the more general framework of
updatable timed automata, as defined in [BDFP00a].

4 The Updatable Timed Automata Framework

Updatable timed automata are a syntactic extension of timed automata that
has been introduced in [BDFP00a]. We will now present the model, the basic
results and propose a first algorithm which is correct for all the updatable
timed automata that are decidable.

4.1 Definitions

4.1.1 Updates.

An update is a function from TX to P(TX) which assigns to each valuation a
set of valuations. In this work, updates are restricted according to the follow-
ing definitions.

4 The Updatable Timed Automata Framework 14

A simple update over a clock z has one of the two following forms:

up ::= z :∼ c | z :∼ y + c

where c ∈ Q, y ∈ X and ∼ ∈ {<,≤,=,≥, >}
Let v be a valuation and up be a simple update over z. A valuation v′ is in up(v)
if v′(y) = v(y) for any clock y 6= z and if v′(z) verifies (∼ ∈ {<,≤,=, 6=,≥, >}):{

v′(z) ∼ c and v′(z) ≥ 0 if up = z :∼ c
v′(z) ∼ v(y) + d and v′(z) ≥ 0 if up = z :∼ y + d

In what follows, an update over a set of clocks X is a collection up =
(upi)1≤i≤k, where each upi is a simple update over some clock xi ∈ X (note
that it could happen that xi = xj for some i 6= j). Let v, v′ ∈ Tn be two clock
valuations, v′ ∈ up(v) if and only if, for all i, the clock valuation vi defined by{

vi(xi) = v′(xi)
vi(y) = v(y) for any y 6= xi

is in upi(v). The set of updates over the set of clocks X is denoted by U(X).

Example 3 For the update up = (x :> y, x :< 7), a valuation v′ is in up(v) if
the value v′(x) verifies: v′(x) > v(y)∧ v′(x) < 7. Note that up(v) may be empty.
For instance, the update (x :< 1, x :> 1) leads to the empty set.

An update is a reset whenever it is a collection of simple updates of the form
x := 0. The set of resets is denoted by U0(X). For a subset C of X, if up is the
reset

∧
x∈C x := 0 (we write C := 0), for each valuation v, the valuation up(v)

is also denoted by [C ← 0]v.

4.1.2 Updatable Timed Automata.

An updatable timed automaton over T is a 6-tuple A = (Σ, Q, T, I, F,X),
where Σ is a finite alphabet of actions, Q is a finite set of states, X is a fi-
nite set of clocks, T ⊆ Q× [C(X)×Σ×U(X)]×Q is a finite set of transitions,
I ⊆ Q is the subset of initial states and F ⊆ Q is the subset of final states.
A path in A is a finite sequence of consecutive transitions:

P = q0
ϕ1,a1,up1−−−−−−→ q1 . . . qp−1

ϕp,ap,upp−−−−−−→ qp

where (qi−1, ϕi, ai, upi, qi) ∈ T for each 1 ≤ i ≤ p.

The path is said to be accepting if it starts in an initial state (q0 ∈ I) and ends
in a final state (qp ∈ F). A run of the automaton through the path P is a
sequence of the form:

〈q0, v0〉 ϕ1,a1,up1−−−−−−→
t1

〈q1, v1〉 . . .
ϕp,ap,upp−−−−−−→

tp
〈qp, vp〉

4 The Updatable Timed Automata Framework 15

where τ = (ti)1≤i≤p is a time sequence and (vi)1≤i≤p are clock valuations
defined by: 


v0(x) = 0, ∀x ∈ X
vi−1 + (ti − ti−1) |= ϕi

vi ∈ upi (vi−1 + (ti − ti−1))

The label of the run is the timed word w = (a1, t1) . . . (ap, tp). If the path
P is accepting then the timed word w is said to be accepted by the timed
automaton. The set of all timed words accepted by A is denoted by L(A).

Example 4 Consider a system that handles data which come from an external
environment. The time needed to deal the data depends on its (bounded) size.
Updatable timed automata provide an elegant and concise way to model such
a system. Indeed, it is sufficient to store the size in a variable taking non-
deterministically a value less than 3 (assuming that the maximum size for the
data is 3).

p q
0 ≤ size− init < 1, Handling

NewData, size :< 3 ∧ init := 0

1 ≤ size− init < 2, Handling

2 ≤ size− init < 3, Handling

Let C ⊆ C(X) be a set of clock constraints and U ⊆ U(X) be a set of updates,
the class Aut(C,U) is the set of all updatable timed automata whose transitions
only use clock constraints of C and updates of U only. The usual class of
timed automata, defined in [AD90, AD94], is the family Aut(Cdf (X),U0(X)).
However, what we now usually call the family of classical timed automata, as
presented in section 2.1.3, is the family Aut(C(X),U0(X)).

4.1.3 Known Results about the Emptiness Problem.

We characterized the decidable subclasses of updatable timed automata
in [BDFP00a]. The following tabular summarizes roughly the results:

4 The Updatable Timed Automata Framework 16

U0(X) ∪ { . . . } Diagonal-free clock constraints General clock constraints

x := c, x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c

Undecidable
x := x− 1

Undecidable
x := y − c

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x :∼ y + c

y + c <: x :< y + d
y + c <: x :< z + d Undecidable

with ∼ ∈ {≤, <,>,≥} and c, d ∈ Q+.

The table reads as follows: the class of updatable timed automata that only
use diagonal-free clock constraints but that also use decrementation updates
(i.e. updates of the form x := x − 1) is undecidable whereas the class of
updatable timed automata that use general clock constraints and updates of
the form x :< c is decidable using a PSPACE algorithm.

The proof of these decidability results is based on the generalization of the
construction of the region automaton for classical timed automata (as pre-
sented in [AD90, AD94]). For the following of the paper, we will need more
precise decidability results, we present them now.

4.2 Regions and Precise Results about Decidability [BDFP00a]

4.2.1 Regions.

The definition of regions we use in this paper is the one presented
in [BDFP00a]. It is a bit different from the initial definition of Alur and
Dill [AD90, AD94]. We will see the difference in Example 5. Let X be a
set of clocks, n = |X| and

α = ((maxx)x∈X ; (maxx,y)x,y∈X) ∈ Nn × (Z × Z)n
2

be a tuple such that for every x, y ∈ X,
{ −maxy,x ≤ maxx,y

maxx,y ≤ maxx
.

The tuple α defines a set of regionsRα: a region R of Rα is defined by a tuple

((Ix)x∈X ; (Jx,y)x 6=y∈X ;≺)

where:

4 The Updatable Timed Automata Framework 17

• Ix is one of the following intervals:

]−∞;−maxx[;]maxx; +∞[;
]c; c + 1[where −maxx ≤ c < maxx

or {c} where −maxx ≤ c ≤ maxx

• Jx,y is one of the following intervals:

]−∞;−maxy,x[;]maxx,y; +∞[;
]c; c + 1[where −maxy,x ≤ c < maxx,y

or {c} where −maxy,x ≤ c ≤ maxx,y

• ≺ is a total preorder defined on the set

{x | ∃ c ∈ [−max
x

;max
x

[such that Ix =]c; c + 1[}.

A valuation v is in the region R if:4


v(x) ∈ Ix for each x ∈ X
Ix =]maxx; +∞[or Iy =]maxy; +∞[=⇒ v(x) − v(y) ∈ Jx,y for every x 6= y ∈ X
x ≺ y =⇒ frac(v(x)) ≤ frac(v(y)) for every x, y ∈ X.

Note that for a valuation v, there is a unique region in Rα containing v; it is
denoted by [v]α.

Example 5 We define the tuple

α = ((maxx,maxy), (maxx,y,maxy,x)) as

maxx = 3, maxy = 2, maxx,y = 2, maxy,x = 0

The set of regionsRα is represented on the figure
beside.
The region drawn with is represented by the
intervals{

Ix =]2, 3[
Iy =]2,+∞[

and
{

Ix,y =]0, 1[
Iy,x =]− 1, 0[

The region drawn with is represented by the
following intervals and preorder:{

Ix =]1, 2[
Iy =]1, 0[

and ≺ is defined by y ≺ x

0 1 2 3 x

1

2

y

4frac(γ) denotes the fractional part of γ

4 The Updatable Timed Automata Framework 18

The difference with traditional sets of regions [AD90, AD94] is that we allow
some diagonal constraints in the non-bounded regions.

We can note that every convex union of regions of Rα is a zone. The set of
such convex unions of regions of Rα is denoted by Zα. If Z is a zone, we
define Approxα(Z) the smallest zone of Zα that contains Z (this zone is well-
defined because there are finitely many zones in Zα, thus it can be argued as
in section 2.3.1 for the k-approximation that this smallest zone exists). We
say that Approxα(Z) is the α-overapproximation of Z. We can note that the
k-overapproximation of a zone defined in Section 2.3.1 corresponds to the
α-overapproximation when α = ((k, . . . , k), (k, . . . , k)).

A set of regions α = ((maxx))x∈X ; (maxx,y)x,y∈X) is called diagonal-free if
for all clocks x, y ∈ X, maxx,y = −∞. In this case we simply write α =
(maxx)x∈X .

Example 6 We define α as the (diagonal-free)
tuple (maxx,maxy) defined by:

maxx = 3, maxy = 2

The set of regionsRα is represented on the figure
beside. 0 1 2 3 x

1

2

y

4.2.2 Precise Decidability Results.

In Section 4.1.3, we presented roughly the decidability results we obtained
in [BDFP00a]. We will now make these results more precise. We distinguish
two different cases, the updatable timed automata with diagonal-free clock
constraints and the updatable timed automata with general clock constraints.

Diagonal-free updatable timed automata. Let C ⊆ Cdf (X) be a set of diagonal-
free clock constraints and let U ⊆ U(X) be a set of updates such that

up =
∧

x∈X

upx ∈ U ⇐⇒ for each x, upx ∈ {detx, infx, supx, intx} where:




detx ::= x := c | x := z + d with c ∈ N, d ∈ Z and z ∈ X
infx ::= x :C c | x :< z + d | infx ∧ infx

with C∈ {<,≤}, c ∈ N, d ∈ Z and z ∈ X
supx ::= x :B c | x :> z + d | supx ∧ supx

with B∈ {>,≥}, c ∈ N, d ∈ Z and z ∈ X
intx ::= x :∈ (c; d) | x :∈ (c; z + d) | x :∈ (z + c; d) | x :∈ (z + c; z + d)

where (and) are either [or], z is a clock and c, d are in Z.

4 The Updatable Timed Automata Framework 19

If the system of linear Diophantine inequations over the variables (maxx)x∈X

{c ≤ maxx | x ∼ c ∈ C or x :∼ c ∈ U}
∪ {maxz ≤ maxy + c | z :∼ y + c ∈ U} (1)

has a solution, then the class Aut(C,U) is decidable. Moreover, if α =
(maxx)x∈X is a solution of this system, then we can test for emptiness of any
updatable timed automaton from Aut(C,U) using the region automaton based
on the diagonal-free set of regions Rα. Of course, this condition is not nec-
essary, it can be the case that this system does not have a solution, but that
its emptyness can however be decided, for example when clocks are bounded,
but updates which are used lead to systems which dont’t have any solution.

Remark 1 The system of equations (1) has been set in order for a solution α
to define a set of regions Rα such that the region automaton using Rα as set of
regions is bisimilar to the original updatable timed automaton. All the condi-
tions described by (1) aim at ensuring this property. See [BDFP00a] for detailed
explanations on how these conditions ensure the bisimulation property.

General updatable timed automata. Let C ⊆ C(X) be a finite set of clock con-
straints and U ⊆ U(X) be a finite set of updates such that

up =
∧

x∈X

upx ∈ U ⇐⇒ ∀x ∈ X,upx ∈ {x := c, x :< c, x :≤ c | c ∈ N}
∪ {x := y | y ∈ X}.

Then the class Aut(C,U) is decidable. Moreover, if the tuple α =
((maxx)x∈X ; (maxx,y)x,y∈X) is a solution of the following linear Diophantine
inequation system:

{c ≤ maxx | x ∼ c ∈ C}
∪ {c ≤ maxx,y | x− y ∼ c ∈ C}
∪ {c ≤ maxx, maxz ≥ c + maxz,x | x :< c or x :≤ c or x := c ∈ U , and z ∈ X}
∪ {maxx ≤ maxy, maxz,y ≥ maxz,x, maxx,z ≤ maxx,y | x := y ∈ U and z ∈ X}

(2)
then we can test for emptiness of every updatable timed automaton from
Aut(C,U) using the region automaton based on the set of regions Rα.

Remark 2 Considering a classical timed automaton A and defining the con-
stant k as the largest constant appearing in A, the set of regions α =
((k, . . . , k), (k, . . . , k)) is a solution to the system which is associated to A as
above.

4 The Updatable Timed Automata Framework 20

Remark 3 In both cases (diagonal-free and general frameworks), the set of solu-
tions of the linear system corresponding to an updatable timed automaton might
have several solutions. However, if there is a solution, then there is a unique min-
imal solution (for the natural order on the tuples): indeed, all the inequations
are of one of the forms

X ≥ c, X − Y ≥ c

where X and Y are variables and c is a constant. Thus, if we denote by (Xi)i=1...n

all the variables involved in the system, it can be represented by a DBM M and
the unique minimal solution is the offset-point of the zone represented by M , that
is the point with minimal coordinates belonging to the zone represented by M .

Example 7 Consider the following updatable timed automaton:

a, y := 0 b, y := 1 x− y < 1, c

The system of inequations associated with this automaton is the following:


maxy ≥ 0
maxx ≥ 0 + maxx,y

maxy ≥ 1
maxx ≥ 1 + maxx,y

maxx,y ≥ 1

The minimal solution α of this system is:


maxx = 2
maxy = 1
maxx,y = 1

The set of regions defined by these constants
is thus presented with plain lines on the figure
beside.

1 2 x

1

y

0

In what follows we will only consider decidable updatable timed automata,
that is updatable timed automata that belong to some decidable class
Aut(C,U). We will associate with each decidable updatable timed automa-
ton a set of regions, Rα as described above, where α is the minimal solution
of the previous system (the smallest is the solution, the smallest is the number
of regions of Rα and the more abstract is the region automaton).

4 The Updatable Timed Automata Framework 21

4.3 A First Correct Algorithm for Decidable Updatable Timed Au-
tomata

For each zone Z, for each tuple α, we define the closure by regions from Rα

of Z by
Closureα(Z) =

⋃
{R ∈ Rα | R ∩ Z 6= ∅}.

We say that Closureα(Z) is the α-closure of Z. First note that Closureα(Z) can
be different from Approxα(Z): Approxα(Z) is convex whereas Closureα(Z)
can be non-convex.
Example 8 Let us consider the set of regions defined as on
the picture beside. If we consider the zone Z drawn using

then the closure by region Closureα(Z) is drawn adding
the part : it is thus non convex. The α-approximation
Approxα(Z) is obtained by adding the part in .

The first algorithm is presented as Algorithm 2.

Algorithm 2 A First Algorithm for Decidable Updatable Timed Automata
First UTA-Algorithm (A:UTA) {
Compute α using U and C;
Visited := ∅; (* Visited stores the visited states *)
Waiting := {(q0,Closureα(Z0))};
Repeat
Get and Remove (q,Z) from Waiting;
If q is final
then {Return “Yes”;}
else {If there is no (q,Z’) ∈ Visited such that Z ⊆ Z’
then {Visited := Visited ∪ {(q,Z)};
Successor := {(q’,Closureα(Post(Z,e))) |
e transition from q to q’};
Waiting := Waiting ∪ Successor;}}
Until (Waiting = ∅);
Return “No”; }

This algorithm of course terminates (if α is fixed, when Z varies, there are
finitely many different Closureα(Z)). We will prove the correctness of this
algorithm.

Let U be a set of updates and C a set of clock constraints. Let α be the tu-
ple defining the set of regions Rα as in Section 4.2. It implies in particular
(see [BDFP00a]) that for each clock constraint g ∈ C, for each update up ∈ U ,

4 The Updatable Timed Automata Framework 22

for each region R ∈ Rα, for each valuation v ∈ R:{
R ⊆ g or R ⊆ ¬g
up(v) ∩R 6= ∅ =⇒ ∀v′ ∈ [v]α, up(v′) ∩R 6= ∅ (3)

This ensures that the emptiness problem is decidable for the class Aut(C,U)
(see [BDFP00a]).

Proposition 1 The “First UTA-Algorithm” tests for emptiness of every decidable
updatable timed automaton.

The proof of this proposition is proved using several intermediary results. We
first claim that:

Lemma 1 The two following conditions hold:{
Closureα(g) = g for each clock constraint g in C
up(Closureα(Z)) ⊆ Closureα(up(Z)) for each zone Z and for each update up in U

(4)

➜ See the proof in Appendix.

We also claim that:

Lemma 2 For each zone Z,
−−−−−−−−→
Closureα(Z) ⊆ Closureα(

−→
Z) and for each clock

constraint g such that Closureα(g) = g, g ∩ Closureα(Z) ⊆ Closureα(g ∩ Z).

➜ See the proof in Appendix.

Using these two lemmas, we are now ready to prove the proposition. Using
the conditions (4), if e = (q, g, a, up, q′) is a transition, we compute:

Post(Closureα(Z), e) = up(g ∩ −−−−−−−−→Closureα(Z))

⊆ up(g ∩ Closureα(
−→
Z)) from Lemma 2

⊆ up(Closureα(g ∩−→Z)) from Lemma 2

⊆ Closureα(up(g ∩−→Z)) from condition (4)

⊆ Closureα(Post(Z, e))

In particular, whenever Post(Z, e) is empty, Post(Closureα(Z), e) is empty (be-
cause Closureα(Z) is empty if and only if Z is empty).

In fact, the “First UTA-Algorithm” computes for some consecutive transitions
(ei)i=1...p, the zone

Closureα(Post(Closureα(Post(Closureα(Post(. . . , ep−2)), ep−1)), ep)).

5 Where We Focus on Correctness 23

Using iteratively the above relation and the fact that Closureα is involutive,
we get that:

Closureα(Post(Closureα(Post(. . . , ep−1)), ep)) ⊆ Closureα(Post(Post(. . . , ep−1), ep))

Thus, we get, if R(〈q0, Z0〉) and MUA(〈q0, Z0〉) denote respectively the ex-
act set of reachable states and the set of states computed by the “First UTA-
Algorithm”,

R(〈q0, Z0〉) ⊆ MUA(〈q0, Z0〉) ⊆ Closureα(R(〈q0, Z0〉))

Thus, MUA(〈q0, Z0〉) = ∅ ⇐⇒ R(〈q0, Z0〉) = ∅, and this concludes the proof
of the theorem. �

Hence, for each decidable updatable timed automaton A, we can test for
emptiness of L(A) using Algorithm 2. However, this algorithm can not be
implemented easily, but its correctness is fundamental for proving the correct-
ness of other algorithms.

5 Where We Focus on Correctness

We will now extend Algorithm 1 to (decidable) updatable timed automata
and study precisely the correctness of this algorithm. We know that a cor-
rect widening operator can not be found for every automaton, but we will
enlighten what are exactly the problems and bring out subclasses for which
such an algorithm can be used.

5.1 The Natural Extension of Algorithm 1 for Decidable Updatable
Timed Automata

In this section, we present a forward analysis algorithm for updatable timed
automata. This algorithm is parameterized by a function f , which associates
to each automaton a set of regions. From this set of regions will depend the
widening operator which is used in the algorithm. Of course, we will focus on
the class of decidable updatable timed automata, and we want to bring out
subclasses of this model for which we can find a function f which leads to a
correct algorithm. Our algorithm is then described by Algorithm 3.

5 Where We Focus on Correctness 24

Algorithm 3 Algorithm for Updatable Timed Automata
UTA-Algorithm [f] (A:UTA) {
Define β as f(A);
Visited := ∅; (* Visited stores the visited states *)
Waiting := {(q0,Approxβ(Z0))};
Repeat
Get and Remove (q,Z) from Waiting;
If q is final
then {Return “Yes”;}
else {If there is no (q,Z’) ∈ Visited such that Z ⊆ Z’
then {Visited := Visited ∪ {(q,Z)};
Successor := {(q’,Approxβ(Post(Z,e))) |
e transition from q to q’};
Waiting := Waiting ∪ Successor;}}
Until (Waiting = ∅);
Return “No”; }

Considering classical timed automata and defining the function f as the
one which associates to every classical timed automaton A the tuple
((k, . . . , k), (k, . . . , k)) where k is the maximum constant appearing in A, Al-
gorithm 3 parametrized by f corresponds to Algorithm 1. As Algorithm 1,
Algorithm 3 terminates because there are finitely many overapproximations
of zones that can be associated with each control state. From the counter-
example of section 3, we know that it is hopeless to find a parameter function
f such that for every decidable updatable timed automaton, Algorithm 3 is
correct, but our aim is to distinguish classes together with appropriate param-
eters such that it is the case.

We will first study in details the (partial) correctness of Algorithm 3, and we
will then present how the DBM data structure can be used in order to imple-
ment Algorithm 3 when this last one is correct.

5.2 Partial Correctness

As we have seen in section 3, Algorithm 3 is not correct in general. However,
we will propose some subclasses for which it is correct. We will write the
proofs very carefully and with details because, as it will appear, some proper-
ties of zones and DBMs are not intuitive at all, and, in the past, mistakes have
been done (see section 3), maybe because of this bad intuition we have about
zones. We will thus explain where the problems exactly come from.

As we proved that Algorithm 2 is correct with respect to reachability, to prove
that Algorithm 3 (parameterized by a function f) is correct for a subclass of

5 Where We Focus on Correctness 25

timed automata, it is sufficient to prove the following: given a timed automa-
ton A of this class, α associated to A as in section 4.2 and β = f(A), then for
every “computed zone”5,

Z ⊆ Approxβ(Z) ⊆ Closureα(Z)
↑ ↑ ↑

Exact set Algorithm 3 Algorithm 2
(5)

because, if it is the case, it means that the approximation Approxβ used in
Algorithm 3 is coarser than the closure by region Closureα used in Algorithm 2.
Thus, as Algorithm 2 is correct with respect to reachability, Algorithm 3 will
also be correct for the corresponding class of automata.

5.2.1 Diagonal-Free Updatable Timed Automata.

Let A be a diagonal-free decidable updatable timed automaton. As described
in Section 4.2, we associate with A a diagonal-free set of regions Rα where
α = (maxx)x∈X . We then define a second set of regions, Rβ where β is
the tuple ((Maxx)x∈X ; (Maxx,y)x,y∈X) with Maxx,y = Maxx = maxx for every
clocks x, y ∈ X.

Example 9 The sets of regions Rα and Rβ can
be both represented (in a two-dimensional time-
space) as on the figure beside, where α is drawn
with solid lines whereas the refinement β also
uses dashed lines (Rβ refines Rα).

0 1 2 3 x

1

2

y

If α and β are defined as above, we have the following property:

Proposition 2 For each zone Z, the following holds:

Z ⊆ Approxβ(Z) ⊆ Closureα(Z).

Proof It is equivalent to prove that for every zone Z, for every region R of Rα,

R ∩ Z = ∅ =⇒ R ∩ Approxβ(Z) = ∅

Let R = ((Ixi)xi∈X ;≺) be a region of Rα and let MR = ((ri,j ;≺i,j)i,j=0...n) be

5We will make the notion of “computed zone” more precise after.

5 Where We Focus on Correctness 26

the DBM representing R such that:


(ri,0;≺i,0) =




(c + 1;<) if Ixi =]c; c + 1[
(c;≤) if Ixi = {c}
(+∞;<) if Ixi =]maxxi ; +∞[

(r0,i;≺0,i) =




(−c;<) if Ixi =]c; c + 1[
(−c;≤) if Ixi = {c}
(−maxxi ;<) if Ixi =]maxxi ; +∞[

(ri,j ;≺i,j) =




(c− d + 1;<) if Ixi =]c; c + 1[, Ixj =]d; d + 1[
and xj ≺ xi, xi 6≺ xj

(c− d;<) if Ixi =]c; c + 1[, Ixj =]d; d + 1[
and xi ≺ xj , xj 6≺ xi

(c− d;≤) if Ixi =]c; c + 1[, Ixj =]d; d + 1[
and xi ≺ xj , xj ≺ xi

(+∞;<) in all other cases

Note that the diagonal-free hypothesis on Rα has the important consequence
that if (ri,0;≺i,0) = (+∞;<), then for every j 6= 0, (ri,j ;≺i,j) = (rj,i;≺j,i) =
(+∞;<). That’s this property which will be the central point of the proof.

Let Z be a zone and M = ((mi,j;<i,j)i,j) a DBM in normal form that represents
Z. Assume that Z ∩ R = ∅. It means that there exists a sequence of distinct
indices (i1, i2, . . . , il = i1) such that

αi1,i2 + αi2,i3 + · · ·+ αil−1,il < (0;≤) (6)

where αij ,ik = min((mij ,ik ;<ij ,ik); (rij ,ik ;≺ij ,ik)). As M is in normal form, we
can assume that two successive αh,` does not come from M , otherwise, we
can simplify the sum (6). Note that if (mij ,ik ;<ij ,ik) < (rij ,ik ;≺ij ,ik) and if Ixi

and Ixj are both bounded, then we can distinguish two cases:

• First case: (rij ,ik ;≺ij ,ik) = (rij ,ik ;≤) = (−rik,ij ;≤) = (−rik ,ij ;≺ik,ij).

In this case, (mij ,ik ;<ij ,ik) < (−rik,ij ;≺ik ,ij), thus

(mij ,ik ;<ij ,ik) + (rik ,ij ;≺ik ,ij) < (0;≤)

Thus, Z ⊆ (xij−xik < −rik,ij) and R∩(xij−xik < −rik,ij) 6= ∅. Thus, we
get that Approxβ(Z) ⊆ (xij − xik < −rik,ij) and then that Approxβ(Z)∩
R = ∅. Note that, obviously, the zone defined by (xij − xik < −rik,ij) is
β-bounded because Rβ refines Rα.

• Second case: (rij ,ik ;≺ij ,ik) = (c;<) and (rik,ij ;≺ik ,ij) = (−c + 1;<).

In this case, (mij ,ik ;<ij ,ik) ≤ (c − 1;<). Thus, as previously, we obtain
that Approxβ(Z) ∩R = ∅.

5 Where We Focus on Correctness 27

Let us assume now that we are not in one of the two previous cases.
Thus, if (mij ,ij+1 ;<ij ,ij+1) < (rij ,ij+1 ;≺ij ,ij+1), it means that either Ixij

=
]maxxij

; +∞[or Ixij+1
=]maxxij+1

; +∞[. If Ixij
=]maxxij

; +∞[, from the
construction of MR, we get that ij−1 = 0, because if ij−1 6= 0, then
(rij−1,ij ;≺ij−1,ij) = (+∞;<). If Ixij+1

=]maxxij+1
; +∞[, we get that it is

not possible, because every coefficient rij+1,∗ is infinite. After this analysis,
we get that in the sum (6), we can not have two coefficients coming from M .
Thus, as R is not empty, we have exactly one coefficient coming from M in the
sum (6). Collecting all these informations, we get that there exists a sequence
of indices (k1, . . . , kp) such that

(r0,k1 ;≺0,k1) + (mk1,k2;<k1,k2) + (rk2,k3;≺k2,k3) + · · ·+ (rkp,0;≺kp,0) < (0;≤)

Now, by computing the normal form of MR, the only coefficients of MR that
can be tightened are the (rx,y;≺x,y) where rx,0 is bounded. Thus, we can
simplify the previous sum and get that

(r0,k1 ;≺0,k1) + (mk1,k2;<k1,k2) + (rk2,0;≺k2,0) < (0;≤)

Setting (c;≺) = (rk2,0;≺k2,0) + (r0,k1;≺0,k1), we get that{
Z ⊆ (xk1 − xk2 ≺ −c)
R ∩ (xk1 − xk2 ≺ −c) = ∅

Thus, as

−Maxxk1
,xk2

= −maxxk1
≤ c ≤ maxxk2

= Maxxk2
,xk1

the zone (xk1 − xk2 ≺ −c) is β-bounded. As previously, we conclude that
Approxβ(Z) ⊆ (xk1 − xk2 ≺ −c) and thus that R ∩ Approxβ(Z) = ∅. �

Remark 4 We can note that if we consider Approxα instead of Approxβ , the
previous property does not hold anymore. See for example the figure below.

zone Z

Approxβ(Z) \ Z

Approxα(Z) \ Approxβ(Z)

Using what we said before, we get the following theorem:

Theorem 2 Algorithm 3 is correct (with respect to reachability) for decidable
diagonal-free updatable timed automata (taking as parameter the function de-
fined just before the previous proof).

5 Where We Focus on Correctness 28

This theorem, even if it is not as general as we could expect, is already inter-
esting because in many practical cases, the automata built for real systems are
diagonal-free (see as examples [HSLL97] or [BBP02]).

5.2.2 General Updatable Timed Automata.

From the counter-example of section 3, it is hopeless to prove the correctness
of Algorithm 3 in the general case. However, we will bring out a subclass of the
general updatable timed automata for which we can find a parameter function
f such that Algorithm 3 is correct. So, let us take a decidable updatable timed
automatonA and let us consider the set of regionsRα defined as in section 4.2
where α = ((maxx)x∈X ; (maxx,y)x,y∈X). The parameter function f associates
with A the tuple β = ((Maxx)x∈X ; (Maxx,y)x,y∈X) where Maxx = Maxx,y =∑

z∈X maxz for every clocks x, y ∈ X. Roughly, the constant
∑

z∈X maxz is the
maximum constant that can appear in a DBM in normal form that represents
a region of Rα.

Theorem 3 Algorithm 3 is correct (with respect to reachability) for decidable
general updatable timed automata that use less than three clocks (the parameter
is the one defined just above).

This theorem is not in contradiction with what we announced in section 3.
Indeed, the counter-example of figure 1 uses four clocks. The limit between
correctness and non-correctness locates thus precisely between three and four
clocks.
Proof The property (5) is equivalent to proving that for every region R of Rα,
for every “computed” zone Z, if R∩Z = ∅ then R∩Approxβ(Z) = ∅. Let A be
a decidable general updatable timed automaton with less than three clocks,
as defined in section 4.2. We will prove that, for each “computed” zone Z, the
following holds: for each region R of Rα, whenever

R ∩ Z = ∅
implies that there exists a β-bounded zone V such that{

Z ⊆ V
R ∩ V = ∅ (7)

This property will imply what we want because Approxβ(Z) is the smallest
β-bounded zone that contains the zone Z.
Assume that a zone Z verifies the condition (7) and suppose we are given a
clock constraint g and an update up of the automaton A. We will prove that
up(g ∩ −→Z) also verifies the condition (7). Having proved that, we will deduce
that if Z is one of the zones which are computed by the algorithm and if R is
any region ofRα, if Z ∩R = ∅, then Approxβ(Z)∩R = ∅ because Approxβ(Z)
is the smallest β-bounded zone containing Z.

5 Where We Focus on Correctness 29

Computing the future. Assume that R ∩ −→Z = ∅. It means that
←−
R ∩ Z = ∅

where
←−
R is the past of R, that is

←−
R = {v | ∃t. v + t ∈ R}. Moreover, using

the bisimulation property of the set of regions Rα (see remark 1, page 19),
←−
R

is a union of regions
⋃

i Ri. For each i, we can find a β-bounded zone Vi such
that {

Z ⊆ Vi

Ri ∩ Vi = ∅
We then define V =

⋂
i Vi. It verifies that{

Z ⊆ V←−
R ∩ V = ∅

Let us prove that we can eliminate all the constraints of V which are of the
form “x bounded by c”. Let MR = ((ri,j);≺i,j)i,j) be a DBM for

←−
R such that

for each i, (m0,i;≺0,i) is (0;≤) (see [Ben02], part A). Moreover, assume that
V can be rewritten as a DBM ((vi,j ;<i,j)i,j). As

←−
R ∩ V = ∅, if we assume

that a constraint “x bounded by c” is needed in V , it means that there exists
(i1, i2, . . . , ip = 0, ip+1, . . . il = i1) such that

αi1,i2 + · · ·+ αip−2,ip−1 + (vip−1,0;<ip−1,0)+ α0,ip+1 + · · ·+ αil−1,il < (0;≤) (8)

where αk,h = min((rk,h;≺k,h); (vk,h;<k,h)). In particular,

α0,ip+1 = min((r0,ip+1 ;≺0,ip+1); (v0,ip+1 ;<0,ip+1)) = (v0,ip+1 ;<0,ip+1)

because (r0,ip+1 ;≺0,ip+1) = (0;≤). Thus, the sum (vip−1,0;<ip−1,0

) + (v0,ip+1 ;<0,ip+1) in (8) can be safely replaced by a constraint
(v′ip−1,ip+1

;<′
ip−1,ip+1

) = (vip−1,0;<ip−1,0) + (v0,ip+1 ;<0,ip+1). We thus define
the zone

V ′ =
∧
{xi − xj <i,j vi,j ∈ V | j 6= 0} ∧ (xip−1 − xip+1 <′

ip−1,ip+1
v′ip−1,ip+1

)

which is a β-bounded zone. We get thus that{ −→
Z ⊆ V ′

R ∩ V ′ = ∅

Intersection with a clock constraint. Assume that g is a clock constraint
and that R ∩ (g ∩ Z) = ∅. We distinguish two cases:
First case: R ∩ g = ∅, by definition of the regions, there exists a constraint
x− y ≺ c (constraint “defining α”) such that g ⊆ (x− y ≺ c) and R∩ (x− y ≺
c) = ∅. Thus, we get that g ∩ Z ⊆ (x − y ≺ c) and R ∩ (x − y ≺ c) = ∅. Note

5 Where We Focus on Correctness 30

that as x− y = c is a constraint defining the set of regionRα, (x− y ≺ c) is a
β-bounded zone.
Second case: R ⊆ g. It thus means that R ∩ Z = ∅, and we can use the
induction hypothesis to prove that there exists a β-bounded zone V such that
Z ⊆ V and R ∩ V = ∅. In particular, Z ∩ g ⊆ V and R ∩ V = ∅.

Computing the image by an update. Let up be an update such as the ones
of Section 4.2 (general case). It can be written as

up =
∧
x∈Y

(x := yx) ∧
∧

x∈X\Y
(x :∼ cx).

Then the image of a zone by up can be computed by first applying the up-
date

∧
x∈Y (x := yx) (which is equivalent to the update

∧
x∈Y (x := yx) ∧∧

x∈X\Y (x := x)) and then applying successively each update x :∼ cx (for
x ∈ X \ Y).

First assume that up is
∧

x∈X(x := yx) and that R ∩ up(Z) = ∅. First of all,
if yx1 = yx2, then up(Z) is included in the zone (x1 = x2). If for one of such
pairs, R∩ (x1 = x2) = ∅, then up(Z) ⊆ (x1 = x2) and (x1 = x2) is β-bounded.
We thus assume that it is not the case. Thus, the set E = {Ri ∈ Rα | up(Ri) ⊆
R} is not empty and we have moreover that {v | up(v) ∈ R} =

⋃
Ri∈E Ri

(because of the bisimulation property of the set of regions Rα, see remark 1
page 19). For each i, Ri ∩ Z = ∅, thus there exists a β-bounded zone Vi such
that Z ⊆ Vi and Vi ∩ Ri = ∅. We distinguish two cases (we have only three
clocks, say {x1, x2, x3}):

• First case: X = {yx1, yx2, yx3}. We define

V =
∧
i

{xi − xj ≺ m | yxi − yxj ≺ m ∈ Vi}

We have that up(Z) ⊆ V and that R∩ V = ∅, because if v ∈ R∩ V , then
we can define safely v′ such that v′(yxi) = v(xi) for each i = 1, 2, 3 and
v′ will be in

⋂
i Vi, which is not possible because v = up(v′) and thus v′

would be in one of the Ri’s.

• Second case: Y = {yx1 , yx2, yx3} 6= X. We define R′ = R∩⋂
yxi=yxj

(xi =

xj). We have thus that Z ∩R′ = ∅. The zones Z and R′ can now be con-
sidered as one or two-dimensional zones (depending on the cardinality
of Y). For concluding, we will apply the following (obvious) claim to
the zones Z and R′: Claim Let Z1 and Z2 be one or two-dimensional
zones such that Z1 ∩ Z2 = ∅. Assume that M1 = ((mi,j ;≺i,j)) is a
DBM in normal form defining Z1, then there exists i and j such that

5 Where We Focus on Correctness 31

Z2 ⊆ ¬(xi − xj ≺i,j mi,j). Note that one of the indices i or j may be 0.
There exists thus a constraint xi−xj ≺ c that is a constraint defining the
normal form of R′ and such that Z ⊆ ¬(xi − xj ≺ c). Of course, from
the definition of β, we get that the zone (xi− xj ≺ c) is β-bounded, and
defining

V = ¬(xi − xj ≺ c) ∧
∧

yxk
=yxl

(xk = xl)

we get that up(Z) ⊆ V and R ∩ V = ∅.

Assume that up is xk :≺ c and that

R ∩ up(Z) = ∅

We have that up(Z) is included in xk ≺ c, thus, if R is not included in xk ≺ c,
we have finished because (xk ≺ c) is a β-bounded zone. Assume now that
R ⊆ (xk ≺ c). We define Freexk

(R) as the set {v | ∃v′ ∈ R s.t. ∀x ∈ X \
{xk}, v(x) = v′(x)}. In the same way, we define Freexk

(Z). By construction
of the set of regions Rα (because of the bisimulation property...), Freexk

(R)
is a union of regions and for each v in Freexk

(R), there exists v′ ∈ up(v) ∩ R.
Thus, it is easy to see that Freexk

(R) ∩ Freexk
(Z) = ∅. As we only have 3

clocks, Freexk
(Z) and Freexk

(R) can be considered as two-dimensional zones.
Applying the previous claim, there exists a constraint xi−xj ≺ c that does not
involve the clock xk, which is a constraint of the normal form of Freexk

(R) and
such that Freexk

(Z) ⊆ ¬(xi−xj ≺ c). The constraint ¬(xi−xj ≺ c) is of course
a β-bounded zone (because of the definition of β), up(Z) ⊆ ¬(xi − xj ≺ c)
and R ∩ ¬(xi − xj ≺ c) = ∅.

The proof is now finished: we have proved that if Z verifies the property (7),
then up(

−→
Z ∩ g) verifies also (7). Applying the widening operator Approxβ at

each step of the computation is thus correct: if R is a region and Z a computed
zone, R ∩ Z = ∅ implies that R ∩ Approxβ(Z) = ∅. �

Remark 5 In the previous proof, the hypothesis on the small number of clocks
is used. Indeed, updating a clock is “equivalent” to projecting on a smaller di-
mension, and when we only have three clocks, the projection is one or two-
dimensional and has thus nice properties. An error which maybe explains the
numerous mistakes done in the literature is that zones in big dimensions are not
similar to what we can “see” in two dimensions, thus it is not correct to project
and to visualize what happens in two dimensions. In the previous proof, for the
reset, if we want to be general and to reason with n clocks, we get the following:
applying the induction hypothesis to the projection of Z and any region “belong-
ing” to Freexk

(R) will allow to get a β-bounded zone V which “separates” them

5 Where We Focus on Correctness 32

(in the sense that Z ⊆ V and Freexk
(R) ∩ V = ∅). However, we have no argu-

ment to say that this β-bounded zone does not use the clock xk. Thus, from V ,
it is not possible to compute a β-bounded zone that “separates” up(Z) and R.
That’s the reason why the theorem 3 is not true in general.

5.3 Implementation of the Algorithm

From what precedes, we have that, even if it is not correct in general, Al-
gorithm 3 can however be used safely for some subclasses of systems. We
will thus show that the DBM data structure is appropriate to implement Algo-
rithm 3: we will show how to compute the new operations on zones appearing
in Algorithm 3 using the DBMs. New operations are of two types: image by
updates and widening operator Approxβ.

Image by updates. Let up be an update and M be a DBM (in normal form).
The DBM M represents a clock constraint ϕ over the set of clocks X. From
up, we construct a clock constraint ϕup over the set of clocks X ∪ X ′ (where
X ′ is a disjoint copy of X) by induction on up in the following manner:


ϕx:∼c = x′ ∼ c
ϕx:∼y+c = x′ ∼ y + c
ϕup1∧up2 = ϕup1 ∧ ϕup2 .

We now define the formula ϕ′
up = ϕ∧ϕup. This formula represents the update

up in the sense that if V is a valuation for the clocks X ∪X ′, then

V |= ϕ′
up ⇐⇒ V|X |= ϕ and V|X′ ∈ up(V|X).

We assume that up =
∧n

i=1 upi where upi updates the clock xi. We define
N = (ηi,j)i,j=0...2n as the DBM of size 2n + 1 (over the set of clocks X ∪X ′) as
follows:

• for i, j = 0 . . . n, ηi,j = (mi,j;≺i,j),

• for each update upi (1 ≤ i ≤ n), we distinguish the different possible
values of upi:

5 Where We Focus on Correctness 33

if upi is: then we set:

xi := c ηi+n,0 = (c,≤) and η0,i+n = (−c;≤)

xi := xj + c ηi+n,j = (c;≤) and ηj,i+n = (−c;≤)

xi :≺ c with ≺∈ {<;≤} ηi+n,0 = (c;≺) and η0,i+n = (0;≤)

xi :� c with �∈ {>;≥} η0,i+n = (−c;≺)

(where ≺ is < if � is > and ≺ is ≤ if � is ≥)

xi :≺ xj + c with ≺∈ {<;≤} ηi+n,j = (c;≺) and ηj,i+n = (∞;<)

xi :� xj + c with �∈ {>;≥} ηj,i+n = (−c;≺)

(where ≺ is < if � is > and ≺ is ≤ if � is ≥)

If upi is a conjunction of simple updates, we take the smallest con-
straints,

• for every i, j = 0 . . . 2n + 1, if ηi,j has not been initialized yet , we set
ηi,j = (+∞;<).

By construction, the DBM N represents the clock constraint ϕ′
up (indices 1 ≤

i ≤ n correspond to the set of clocks X whereas indices n + 1 ≤ i ≤ 2n + 1
correspond to the set of clocks X ′):

JNK = {V valuation over X ∪X ′ | V |= ϕ′
up}.

We define (φ(N))|X′ as the square subma-
trice of size n+1 of N where we erase ev-
erything about the set of clocks X. It can
be represented by the picture beside (the
white part correspond to the clocks from
X). Then we get that:

J(φ(N))|X′K = up(JMK).




∗ ∗ . . . ∗ ∗ . . . ∗
∗ ∗ . . . ∗ ∗ . . . ∗
...
∗ ∗ . . . ∗ ∗ . . . ∗
∗ ∗ . . . ∗ ∗ . . . ∗
...
∗ ∗ . . . ∗ ∗ . . . ∗




If we want to compute the image by the update up of a zone Z represented
by a DBM M (in normal form), we first compute the DBM N , then its normal
form and finally we erase some coefficients and the result of this algorithm
gives a DBM (in normal form) that represents up(Z).

β-overapproximation. Let β = ((maxx)x∈X ; (maxx,y)x,y∈X) defining a set of
regions. All the β which are used in one of the correct algorithms described
before verifies in addition that for every x, y ∈ X, maxx,y = maxx, We assume

5 Where We Focus on Correctness 34

X = {x1, . . . , xn}. A DBM M = (mi,j;≺i,j)i,j is said β-bounded if:


0 ≤ mi,0 ≤ maxxi or mi,0 =∞ for every 1 ≤ i ≤ n
−maxxi ≤ m0,i ≤ 0 for every 1 ≤ i ≤ n
−maxxj ,xi ≤ mi,j ≤ maxxi,xj or mi,j =∞ for every 1 ≤ i, j ≤ n

Lemma 3 Let Z be a zone. Then

Z ∈ Zβ ⇐⇒ there exists a β-bounded DBM Mβ such that Z = JMβK.

➜ See the proof in Appendix.

We consider the following algorithm (we assume M = (mi,j;≺i,j) and M ′ =
(m′

i,j;≺′
i,j)):

β-Overapproximation Algorithm (M:n-dimensional DBM)
M’ = φ(M); (* Normal Form of M *)
for i = 1 to n do
for j = 1 to n do
if (m’i,j;≺i,j)>(maxxi,xj ;≤) then (m’i,j;≺i,j) becomes (+∞;<);
if (m’i,j;≺i,j)<(-maxxj,xi;<) then
(m’i,j;≺i,j) becomes (-maxxj ,xi;<);
endfor;
if (m’i,0;≺i,0)>(maxxi;≤) then (m’i,0;≺i,0) becomes (+∞;<);
if (m’0,i;≺0,i)<(-maxxi;<) then (m’0,i;≺0,i) becomes (-maxxi ,<);
endfor;
Return M’;

If M is a DBM, applying this algorithm to M , we obtain a DBM that we de-
note by φβ(M). We can note that φβ(M) is a β-bounded DBM and thus that
Jφβ(M)K is in Zβ.

Property 1 If M is a DBM, then it holds that Jφβ(M)K = Approxβ(JMK).

➜ See the proof in Appendix.

The “β-Overapproximation Algorithm” applied to M computes thus a DBM
that represents the β-overapproximation of JMK. This DBM might not
be in normal form. The complexity of the computation of such a β-
overapproximation is not high (it is in O(n3) if n is the number of clocks).

Combining the constructions of section 2.4.1 with what precedes, we get that
if e = q

g,a,up−−−−−→ q′ is a transition and if M is a DBM representing the zone Z,
we can compute a DBM M ′ which represents the zone Approxβ(up(g ∩−→Z)) =

5 Where We Focus on Correctness 35

Approxβ(Post(Z, e)) but which might not be in normal form. Normal forms are
computed before performing all the operations on DBMs, apart from the inter-
section for which it is not required, and apart from when we just performed
either an image by update or a future operation (after such operations, DBMs
are automatically in normal form). Thus, each operation in Algorithm 3 can
be computed using the DBM data structure, which is thus appropriate to the
implementation of this algorithm. Moreover, the complexity of each step of
the algorithm is, as for classical timed automata, polynomial in the number of
clocks.

5.4 Discussion

The automata for which we have troubles with the widening operator have
diagonal clock constraints (and more than four clocks). We will propose two
methods for alleviating this problem. Of course, these solutions will a priori
not be as efficient as Algorithm 3.

5.4.1 First Proposition with a Preprocessing Step for Some Timed Au-
tomata.

This method does concern the decidable updatable timed automata with gen-
eral clock constraints and deterministic updates: we allow updates of the form
x := y and x := c where x and y are clocks and c is a constant. We know that
every (classical) timed automaton with general clock constraints can be trans-
formed into a (classical) diagonal-free timed automaton [BDGP98]. In the
same way, every updatable timed automaton that uses only updates of the
form x := y and x := c can be transformed into a diagonal-free updatable
timed automaton that uses also updates of the form x := y and x := c. This
transformation can not be done if we use non-deterministic updates. As we
know, this transformation suffers from a combinatorics explosion. However, if
the number of diagonal constraints used in the automaton is small, the size of
the automaton obtained after this preprocessing step will not be too big. Thus,
Algorithm 3 can then be applied to the resulting diagonal-free automaton.

5.4.2 Second Proposition.

The last method we propose can be used for every decidable updatable timed
automaton. In practice, it may be expensive, in memory as well as in time.

Let A be an updatable timed automaton. We associate with A the set of re-
gions Rα as in section 4.2. We assume that α = ((maxx)x∈X ; (maxx,y)x,y∈X)
and we define the tuple β = ((Maxx)x∈X ; (Maxx,y)x,y∈X) such that Maxx =
Maxx,y = maxx for every x, y ∈ X.

5 Where We Focus on Correctness 36

Let R be a region of Rα and Z be a zone. We assume that M = ((mi,j;≺i,j

)i,j) is a DBM in normal form for Z and MR = ((ri,j ;<i,j)i,j) is a DBM that
represents R (computed directly from its definition using intervals, like in
section 4.2.1, without tightening any constraint). Assume now that Z∩R = ∅.
It means that there exists a sequence of distincts indices (i1, . . . , il = i1) such
that

αi1,i2 + · · ·+ αil−1,il < (0;≤) (9)

where αh,` = min((rh,`;≺h,`); (mh,`;<h,`)) and two consecutives αh,` do not
belong to M (this is posssible as M is in normal form).

The idea will be then to ensure that there is just one of the coefficient αij ,ij+1

which comes from the DBM MR. It will be the case whenever we have that,
for every pair (i, j) where i.j 6= 0, there exists an interval Ii,j ∈ Ii,j where

Ii,j = {]−∞;−maxxj [,]maxxi ; +∞[} ∪ {[c] | −maxxj ≤ c ≤ maxxi}
∪ {]c; c + 1[| −maxxj ≤ c < maxxi}

such that Z ⊆ Ii,j. In that case, for every pair (i, j) such that i.j 6= 0, (mi,j;≺i,j

) ≤ (ri,j ;<i,j). Thus inequality (9) can be transformed into:

αi,0 + α0,j + (mj,i;≺j,i) < (0;≤)

We can distinguish three cases:

1. αi,0 = (mi,0;≺i,0) and α0,j = (r0,j;<0,j).

In this case, we get that (r0,j ;<0,j) + (mj,0;≺j,0) < (0;≤). Thus, Z ⊆
¬(−xj <0,j r0,j) and R ⊆ (−xj <0,j r0,j)

2. αi,0 = (ri,0;<i,0) and α0,j = (m0,j;≺0,j).

In this case, we get that (ri,0;<i,0) + (m0,i;≺0,i) < (0;≤). Thus, Z ⊆
¬(xi <i,0 ri,0) and R ⊆ (xi <i,0 ri,0).

3. αi,0 = (ri,0;<i,0) and α0,j = (r0,j ;<0,j).

In this case, we get that (ri,0;<i,0) + (r0,j;<0,j) + (mj,i;≺j,i) < (0;≤).
Thus, Z ⊆ ¬(xi − xj <′ c) and R ⊆ (xi − xj <′ c) where (c;<′) =
(ri,0;<i,0) + (r0,j ;<0,j)

In all the cases, there exists a β-bounded zone V such that{
Z ⊆ V
R ∩ V = ∅

The solution we propose is thus to decompose a “computed zone” in the fol-
lowing way:

Z =
⊔
{Z ∩

⋂
i,j

Ii,j | Ii,j ∈ Ii,j}

6 Conclusion 37

and to compute the image by Approxβ of each such sub-zone of Z. Note that
an idea of splitting zones was already presented in [Bou00, Ben02], but it was
a bit different, and, here, it appears as some kind of “necessary” condition for
having a correct algorithm.

A work direction is now to look for more efficient algorithms that test for
emptiness timed automata with diagonal clock constraints. Maybe backward
analysis algorithms would be more appropriate to this model...

6 Conclusion

In this paper, we studied the widening operator proposed in [DT98] to over-
come the non-termination problem of the forward analysis algorithm for timed
automata. This operator is very nice in that it can be very easily computed us-
ing the standard DBM data structure. However, we have proved in this paper
that it is hopeless to look for a correct forward analysis algorithm that uses
such an operator: there exist timed automata for which no widening operator
is correct. This result is very surprising because several (attempts of) correct-
ness proofs can be found in the literature and the algorithm is implemented
and used in model-checking tools like KRONOS and UPPAAL.

Having stated this result, we took the more general setting of updatable timed
automata and brought out subclasses of this model for which we can propose
a correct widening operator. Among these subclasses, we can find all the
decidable diagonal-free updatable timed automata, and in particular all the
classical timed automata which do not use diagonal clock constraints. This
class of timed automata is sufficiently large, and that’s maybe the reason why
the bug has not been detected before. For the timed automata for which no
correct widening operator can be used, other methods are proposed.

This work is also the link that was missing between the theoretical work we
did on this updatable timed automata model in [BDFP00a, BDFP00b] (namely
decidability and expressiveness) and a tool that would deal with updatable
timed automata. If we restrict to diagonal-free systems, updates can be safely
added without more difficulty than implementing the image by updates of
zones. Considering general updatable timed automata, some problems appear
when we want to implement them. However, the problems come from the use
of diagonal clock constraints and not from the updates which are used.

Acknowledgments: I would like to thank François Laroussinie for interest-
ing discussions on DBMs, Antoine Petit and Béatrice Bérard for their careful
reading of some drafts of this paper and Kim G. Larsen, Emmanuel Fleury and
Gerd Behrmann for discussions on the subject during our so-called “UPPAAL

References 38

meetings”. I also want to thank Sergio Yovine as well as anonymous referees
for helpful comments about this work.

References

[ACD+92] Rajeev Alur, Costas Courcoubetis, David Dill, Nicolas Halbwachs,
and Howard Wong-Toi. Minimization of timed transition systems.
In Proc. 3rd International Conference on Concurrency Theory (CON-
CUR’92), volume 630 of Lecture Notes in Computer Science, pages
340–354. Springer, 1992.

[ACH94] Rajeev Alur, Costas Courcoubetis, and Thomas A. Henzinger. The
observational power of clocks. In Proc. 5th International Confer-
ence on Concurrency Theory (CONCUR’94), volume 836 of Lecture
Notes in Computer Science, pages 162–177. Springer, 1994.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time sys-
tems. In Proc. 17th International Colloquium on Automata, Lan-
guages and Programming (ICALP’90), volume 443 of Lecture Notes
in Computer Science, pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoret-
ical Computer Science (TCS), 126(2):183–235, 1994.

[AFH94] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A determiniz-
able class of timed automata. In Proc. 6th International Conference
on Computer Aided Verification (CAV’94), volume 818 of Lecture
Notes in Computer Science, pages 1–13. Springer, 1994.

[Alu99] Rajeev Alur. Timed automata. In Proc. 11th International Con-
ference on Computer Aided Verification (CAV’99), volume 1633 of
Lecture Notes in Computer Science, pages 8–22. Springer, 1999.
Invited talk.

[BBP02] Béatrice Bérard, Patricia Bouyer, and Antoine Petit. Analysing the
PGM protocol with UPPAAL. In Proc. 2nd Workshop on Real-Time
Tools (RT-TOOLS’02), 2002. Proc. published as Technical Report
2002-025, Uppsala University, Sweden.

[BDFP00a] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and An-
toine Petit. Are timed automata updatable? In Proc. 12th Interna-
tional Conference on Computer Aided Verification (CAV’2000), vol-
ume 1855 of Lecture Notes in Computer Science, pages 464–479.
Springer, 2000.

References 39

[BDFP00b] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and An-
toine Petit. Expressiveness of updatable timed automata. In
Proc. 25th International Symposium on Mathematical Foundations
of Computer Science (MFCS’2000), volume 1893 of Lecture Notes
in Computer Science, pages 232–242. Springer, 2000.

[BDGP98] Béatrice Bérard, Volker Diekert, Paul Gastin, and Antoine Petit.
Characterization of the expressive power of silent transitions in
timed automata. Fundamenta Informaticae, 36(2–3):145–182,
1998.

[Ben02] Johan Bengtsson. Clocks, DBMs ans States in Timed Systems. PhD
thesis, Uppsala University, Uppsala, Sweden, 2002.

[BF99] Béatrice Bérard and Laurent Fribourg. Automated verification of
a parametric real-time program: the ABR conformance protocol.
In Proc. 11th International Conference on Computer Aided Verifica-
tion (CAV’99), volume 1633 of Lecture Notes in Computer Science,
pages 96–107. Springer, 1999.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,
Paul Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-
cost reachability for priced timed automata. In Proc. 4th Inter-
national Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of Lecture Notes in Computer Science,
pages 147–161. Springer, 2001.

[BL96] Johan Bengtsson and Fredrik Larsson. UPPAAL, a tool for auto-
matic verification of real-time systems. Master’s thesis, Depart-
ment of Computer Science, Uppsala University, Sweden, 1996.

[BLP+99] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise,
and Wang Yi. Efficient timed reachability analysis using clock dif-
ference diagrams. In Proc. 11th International Conference on Com-
puter Aided Verification (CAV’99), volume 1633 of Lecture Notes in
Computer Science, pages 341–353. Springer, 1999.

[Bou00] Patricia Bouyer. A new algorithm to decide emptiness of updat-
able timed automata. Research Report LSV–00–9, Laboratoire
Spécification et Vérification, ENS de Cachan, France, 2000.

[BTY97] Ahmed Bouajjani, Stavros Tripakis, and Sergio Yovine. On-the-
fly symbolic model-checking for real-time systems. In Proc. 18th
IEEE Real-Time Systems Symposium (RTSS’97), pages 25–35. IEEE
Computer Society Press, 1997.

References 40

[CG00] Christian Choffrut and Massimiliano Goldwurm. Timed automata
with periodic clock constraints. Journal of Automata, Languages
and Combinatorics (JALC), 5(4):371–404, 2000.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled. Model-
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[Daw97] Conrado Daws. Analyse par simulation symbolique des systèmes
temporisés avec KRONOS. Research report, Verimag, 1997.

[Dil89] David Dill. Timing assumptions and verification of finite-state
concurrent systems. In Proc. of the Workshop on Automatic Ver-
ification Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 197–212. Springer, 1989.

[DOTY96] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. The tool KRONOS. In Proc. Hybrid Systems III: Verification
and Control (1995), volume 1066 of Lecture Notes in Computer
Science, pages 208–219. Springer, 1996.

[DT98] Conrado Daws and Stavros Tripakis. Model-checking of real-time
reachability properties using abstractions. In Proc. 4th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’98), volume 1384 of Lecture Notes in
Computer Science, pages 313–329. Springer, 1998.

[DZ98] François Demichelis and Wieslaw Zielonka. Controlled timed au-
tomata. In Proc. 9th International Conference on Concurrency The-
ory (CONCUR’98), volume 1466 of Lecture Notes in Computer Sci-
ence, pages 455–469. Springer, 1998.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A model-checker for hybrid systems. Journal on Soft-
ware Tools for Technology Transfer (STTT), 1(1–2):110–122, 1997.

[HKWT95] Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi.
The expressive power of clocks. In Proc. 22nd International Col-
loquium on Automata, Languages and Programming (ICALP’95),
volume 944 of Lecture Notes in Computer Science, pages 417–428.
Springer, 1995.

[HRS98] Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves
Schobbens. The regular real-time languages. In Proc. 25th Inter-
national Colloquium on Automata, Languages and Programming
(ICALP’98), volume 1443 of Lecture Notes in Computer Science,
pages 580–591. Springer, 1998.

References 41

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund.
Formal modeling and analysis of an audio/video protocol: An in-
dustrial case study using UPPAAL. In Proc. 18th IEEE Real-Time
Systems Symposium (RTSS’97), pages 2–13. IEEE Computer Soci-
ety Press, 1997.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nut-
shell. Journal of Software Tools for Technology Transfer (STTT),
1(1–2):134–152, 1997.

[MP99] Supratik Mukhopadhyay and Andreas Podelski. Beyond region
graphs: Symbolic forward analysis of timed automata. In Proc.
19th Conference on Foundations of Software Technology and The-
oretical Computer Science (FST&TCS’99), volume 1738 of Lecture
Notes in Computer Science, pages 232–244. Springer, 1999.

[Tri98] Stavros Tripakis. L’analyse formelle des systèmes temporisés en pra-
tique. PhD thesis, Université Joseph Fourier, Grenoble, France,
1998.

[TY98] Stavros Tripakis and Sergio Yovine. Verification of the fast reserva-
tion protocol with delayed transmission using the tool KRONOS. In
Proc. 4th IEEE Real-Time Technology and Applications Symposium
(RTAS’98), pages 165–170. IEEE Computer Society Press, 1998.

[TY01] Stavros Tripakis and Sergio Yovine. Analysis of timed systems
using time-abstracting bisimulations. Formal Methods in System
Design, 18(1):25–68, 2001.

[Wil94] Thomas Wilke. Specifying timed state sequences in powerful de-
cidable logics and timed automata. In Proc. 3rd International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT’94), volume 863 of Lecture Notes in Computer
Science, pages 694–715. Springer, 1994.

[WT94] Howard Wong-Toi. Symbolic Approximations for Verifying Real-
Time Systems. PhD thesis, Stanford University, USA, 1994.

[YL97] Mihalis Yannakakis and David Lee. An efficient algorithm for min-
imizing real-time transition systems. Formal Methods in System
Design, 11(2):113–136, 1997.

[Yov98] Sergio Yovine. Model-checking timed automata. In School on Em-
bedded Systems, volume 1494 of Lecture Notes in Computer Science,
pages 114–152. Springer, 1998.

References 42

�

�

�

�
Appendix: Technical Proofs of this Paper

4.3 A First Correct Algorithm for Decidable Updatable Timed Au-
tomata

Lemma 1 The two following conditions hold:{
Closureα(g) = g for each clock constraint g in C
up(Closureα(Z)) ⊆ Closureα(up(Z)) for each zone Z and for each update up in U

(4)

Proof Let g be in C. Then Closureα(g) =
⋃{R ∈ Rα | R ∩ g 6= ∅} = g because

for each region R ∈ Rα, if R ∩ g 6= ∅ then R ⊆ g.
We will now prove the second condition, namely that for each zone Z, for
each update up ∈ U ,

up(Closureα(Z)) ⊆ Closureα(up(Z)) (5)

Let us take a zone Z. We can write Z as
⋃

f Zi where there exists regions Ri

such that Zi = Z ∩Ri and Zi is not empty. If we prove condition (5) for each
zone Zi, then condition (5) will also hold for Z:

up(Closureα(Z)) = up(Closureα(∪fZi))
= up(∪fClosureα(Zi))
= ∪fup(Closureα(Zi))
⊆ ∪fClosureα(up(Zi)) if condition (5) holds for each Zi

⊆ Closureα(∪fup(Zi))
⊆ Closureα(up(∪fZi))
⊆ Closureα(up(Z))

Thus, we just have to prove the condition (5) for zones included in a region
(defined by α).
Let Z be a zone included in a region. We want to prove that

up(Closureα(Z)) ⊆ Closureα(up(Z))

Thus, let us assume that there exists a valuation v′ ∈ up(Closureα(Z)) \
Closureα(up(Z)). There exists v ∈ Closureα(Z) such that v′ ∈ up(v). Thus,
we obtain that up(v) ∩ [v′]α 6= ∅. Let v0 be in Z, then [v]α = [v0]α and thus,
by hypothesis, up(v0) ∩ [v′]α 6= ∅ and thus [v′]α ⊆ Closureα(up(Z)). This is a
contradiction to the fact that v′ 6∈ Closureα(up(Z)). �

References 43

Lemma 2 For each zone Z,
−−−−−−−−→
Closureα(Z) ⊆ Closureα(

−→
Z) and for each clock

constraint g such that Closureα(g) = g, g ∩ Closureα(Z) ⊆ Closureα(g ∩ Z).

Proof Let us take v0 ∈
−−−−−−−−→
Closureα(Z). There exists some v1 ∈ Closureα(Z) and

some t ≥ 0 such that v0 = v1 + t. By definition of Closureα, there exists some
v2 ∈ Z such that [v1]α = [v2]α. Thus, [v0]α is a time successor of [v2]α: there
exists v3 ∈ [v0]α and t′ ≥ 0 such that v3 = v2 + t′. Thus, v3 ∈ −→Z and it follows
that v0 ∈ Closureα(

−→
Z) because [v3]α = [v0]α. Thus, we get the property we

wanted.

The second property holds because of the relation Closureα(g) = g: let us
take some v0 ∈ g ∩ Closureα(Z). We have that [v0]α ⊆ g and that there exists
v1 ∈ [v0]α ∩ Z. We obtain that v1 ∈ g ∩ Z and thus that v0 ∈ Closureα(g ∩ Z).
�

5.3 Implementation of the Algorithm

Lemma 3 Let Z be a zone. Then

Z ∈ Zβ ⇐⇒ there exists a β-bounded DBM Mβ such that Z = JMβK.

Proof If Mβ is a β-bounded DBM, then JMβK is in Zβ .
A region R ∈ Rβ is β-bounded. Assume Z is the convex union of two zones Z1

and Z2 which belong to Zβ and such that there exists two β-bounded DBMs
MZ1 and MZ2 such that Z1 = JMZ1K and Z2 = JMZ2K. We assume that for
l = 1, 2, MZl

= (m(l)
i,j ;≺(l)

i,j)i,j=1...n and we construct M = (mi,j;≺i,j)i,j=1...n

such that:
(mi,j ;≺i,j) = max((m(1)

i,j ;≺(1)
i,j), (m(2)

i,j ;≺(2)
i,j)).

We first note that M is a β-bounded DBM. We want to prove that JMK = Z.
We note first that for l = 1, 2, MZl

≤ M , thus Zl ⊆ JMK and this implies that
Z ⊆ JMK.
Let r be a real such that −mj,i ≺j,i r ≺i,j mi,j. There exists k such that
(mi,j;≺i,j) = (m(k)

i,j ;≺(k)
i,j). We have that (m(k)

j,i ;≺(k)
j,i) ≤ (mj,i;≺j,i), thus

−m
(k)
j,i ≺(k)

j,i r ≺(k)
i,j m

(k)
i,j . This implies that there exists a valuation v ∈ Zk

such that v(i) − v(j) = r. As a consequence, we can not tighten any constant
in M . Thus, Z = JMK. This concludes the proof. �

Property 1 If M is a DBM, then it holds that Jφβ(M)K = Approxβ(JMK).

References 44

Proof Let M be a DBM in normal form. We get immediately that
Approxβ(JMK) ⊆ Jφβ(M)K because Approxβ(JMK) is the smallest zone from
Zβ that contains JMK and Jφβ(M)K is such a zone.
There exists a β-bounded DBM Mβ such that Approxβ(JMK) = JMβK. We get

that M ≤Mβ . Assume that M = (mi,j;≺i,j)i,j=1...n and that Mβ = (m(β)
i,j ;≺(β)

i,j

)i,j=1...n. We will prove, coefficient by coefficient, that φβ(M) ≤Mβ .

As a first example, assume that (mi,0;≺i,0) > (maxi;≤) and that (mi,j;≺i,j) >

(maxi,j;≤), then M ≤Mβ implies that (m(β)
i,j ;≺(β)

i,j) = (∞;<).
As an other example, assume that (mi,0;≺i,0) > (maxi;≤) and that (mi,j;≺i,j

) < (−maxj,i;<), then M ≤Mβ implies that (m(β)
i,j ;≺(β)

i,j) ≥ (−maxj,i;<).
We don’t write the many other cases, but, in this way, we prove that φβ(M) ≤
Mβ, which implies that Jφβ(M)K ⊆ Approxβ(JMK). This concludes the proof.
�

Recent BRICS Report Series Publications

RS-02-35 Patricia Bouyer. Timed Automata May Cause Some Troubles.
August 2002. 44 pp.

RS-02-34 Morten Rhiger. A Foundation for Embedded Languages. Au-
gust 2002. 29 pp.

RS-02-33 Vincent Balat and Olivier Danvy. Memoization in Type-
Directed Partial Evaluation. July 2002. 18 pp. To appear in
Batory and Consel, editors,ACM SIGPLAN/SIGSOFT Confer-
ence on Generative Programming and Component Engineering,
GPCE ’02 Proceedings, LNCS, 2002.

RS-02-32 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
On Obtaining Knuth, Morris, and Pratt’s String Matcher by Par-
tial Evaluation. July 2002. 43 pp. To appear in Chin, editor,
ACM SIGPLAN ASIAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, ASIA-PEPM ’02 Pro-
ceedings, 2002.

RS-02-31 Ulrich Kohlenbach and Paulo B. Oliva.Proof Mining: A Sys-
tematic Way of Analysing Proofs in Mathematics. June 2002.
47 pp.

RS-02-30 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2002.

RS-02-29 Christian N. S. Pedersen and Tejs Scharling.Comparative
Methods for Gene Structure Prediction in Homologous Se-
quences. June 2002. 20 pp.

RS-02-28 Ulrich Kohlenbach and Laurenţiu Leuştean. Mann Iterates
of Directionally Nonexpansive Mappings in Hyperbolic Spaces.
June 2002. 33 pp.

RS-02-27 AnnaÖstlin and Rasmus Pagh.Simulating Uniform Hashing
in Constant Time and Optimal Space. 2002. 11 pp.

RS-02-26 Margarita Korovina. Fixed Points on Abstract Structures with-
out the Equality Test. June 2002.

RS-02-25 Hans Ḧuttel. Deciding Framed Bisimilarity. May 2002. 20 pp.

RS-02-24 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Static Analysis for Dynamic XML. May 2002.
13 pp.

