
B
R

IC
S

R
S

-02-34
M

.R
higer:

A
F

oundation
forE

m
bedded

Languages

BRICS
Basic Research in Computer Science

A Foundation for Embedded Languages

Morten Rhiger

BRICS Report Series RS-02-34

ISSN 0909-0878 August 2002

Copyright c© 2002, Morten Rhiger.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/34/

A Foundation for Embedded Languages

Morten Rhiger

BRICS ∗

Department of Computer Science
University of Aarhus †

August, 2002

Abstract

Recent work on embedding object languages into Haskell use “phan-
tom types” (i.e., parameterized types whose parameter does not occur
on the right-hand side of the type definition) to ensure that the embed-
ded object-language terms are simply typed. But is it a safe assumption
that only simply-typed terms can be represented in Haskell using phan-
tom types? And conversely, can all simply-typed terms be represented in
Haskell under the restrictions imposed by phantom types? In this article
we investigate the conditions under which these assumptions are true: We
show that these questions can be answered affirmatively for an idealized
Haskell-like language and discuss to which extent Haskell can be used as
a meta-language.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: mrhiger@brics.dk

Home page: http://www.brics.dk/~mrhiger

New affiliation as of August 1, 2002:
The IT University in Copenhagen,
Glentevej 67, DK-2400 Copenhagen NV, Denmark.
E-mail: mir@it-c.dk

Home page: http://www.it-c.dk/~mir

1

Contents

1 Introduction 3

2 An embedded higher-order language 4
2.1 Higher-order abstract syntax . 5
2.2 An embedded type discipline . 5

3 Soundness and completeness 7
3.1 Object language . 8
3.2 Meta-language . 8

3.2.1 Denotational semantics 9
3.3 Soundness . 11
3.4 Completeness . 16

4 Haskell as a meta-language 19
4.1 Extended object language . 21
4.2 Extended meta-language . 23

5 Related work 23

6 Conclusions 25

List of Figures

1 Higher-order abstract syntax. 6
2 A typed higher-order language embedded into Haskell. 7
3 Extended object language. 21

2

1 Introduction

A program is typically written in terms of library routines. Once stabilized, it
may itself become a library routine and be used in other programs. This bottom-
up style of programming makes program development and maintenance easier
and more efficient since the programmer can rely on well-understood routines.
One of the goals of module systems, macro systems, and separate compilation is
precisely to ease the definition of new routines and the use of existing routines
in new programs.

Similarly, new programming languages typically arise from extending (or,
as Steele says [41], “growing”) existing languages with new features. Program-
ming languages built from existing pieces are easier to design, implement, and
understand since, in principle, they comprise well-understood components. For
example, many realistic programming languages embody the λ-calculus as a
core component. Yet, it was not until Scott that the λ-calculus itself was given
a meaning. He warned that the hitherto “formalistic play with symbols” was
useless and that, eventually, symbols must be given an interpretation [40]. Scott
developed domain theory to provide a foundation for the λ-calculus. The result
is the denotational semantics as we know it today in which the λ-calculus is
used as a meta-language to define the semantics of programming languages [42].

A programming language can also be embedded into another, instead of di-
rectly giving its semantics in terms of, e.g., domains. The result combines the
domain-specific operations (such as domain-specific values, their types, and op-
erations on them) of the object language with the domain-independent linguistic
features (such as evaluation strategy and type system) of the meta-language.
(There is an unfortunate clash of terminology between formal domains as com-
plete, partially ordered sets and informal domains as specific areas of appli-
cations.) Already in the 1960’s, this style was envisioned by Landin [26] who
observed that the design of programming languages splits into “the choice of
written appearances of programs” and “the choice of abstract entities that can
be referred to in the language.”

Statically typed higher-order languages provide powerful domain-independ-
ent linguistic features. In particular, the module system, type classes, and
polymorphic types of Haskell [15] make it a natural candidate to host domain-
specific components [23]. Examples of domain-specific languages embedded into
Haskell include languages for geometric region analysis [3], interactive 3D ani-
mation [13], image synthesis and manipulation [14], interfacing with Microsoft’s
Component Object Model [17, 25], music description and composition [24], ac-
cessing SQL databases [27], robot control [33], and real-time vision process-
ing [37].

The domain-specific operations may be provided by an external system such
as a graphical display showing images, a sound device playing music, a database
processing SQL queries, or a robot executing orders; or they may be provided by
an interpreter implemented in the meta-language. The domain-specific language
may also provide a notion of well-typed domain-specific objects and restrict the
range of the domain-specific operations to these objects. It is then crucial that

3

only well-typed domain-specific objects can be expressed in the meta-language.
When the object-language type system is sufficiently simple it can be expressed
directly by the meta-language types of the domain-specific operations.

“Phantom types” were introduced to embed stronger object-language type
systems into Haskell [17, 25, 27]. (We call a formal type parameter of a param-
eterized type “phantom” if all instances of the parameterized type are indepen-
dent of the actual type parameters. A more informal characterization says that
a phantom type is one that occurs on the left-hand side of a definition but not
on the right, but this characterization does not catch situations where the right-
hand side does contain the type parameter but the type parameter is unused.)
For example, phantom types are instrumental for embedding COM objects and
for embedding SQL queries into Haskell [17, 25, 27]. They also provide a key
for using Haskell’s type inferencer as a theorem prover to show that normal-
ization functions as embodied in type-directed partial evaluation preserve types
and yield normal forms [6, 7]. These applications of phantom types show that
embedded type systems provide a powerful tool for both designing embedded
programming languages and reasoning about program correctness. All existing
embeddings using phantom types, however, take the following key properties for
granted.

Type soundness: If a domain-specific object is ill-typed then it cannot be
represented by a well-typed meta-language term.

Completeness: If a domain-specific object is well-typed then it can be repre-
sented by a well-typed meta-language term.

Together, these properties simply states that the meta-language type system ac-
cepts exactly the well-typed object-language terms. In other words, the object-
language type system is correctly simulated by the meta-language. In this work
we formally prove that these properties hold when embedding a monomorphic,
higher-order language into an idealized Haskell-like meta-language.

This paper is organized as follows. Section 2 gives an implementation of an
embedding of the terms and types of the simply typed λ-calculus into Haskell.
In Section 3 we present a semantics of an idealized Haskell-like meta-language
and then prove the two properties mentioned above. In Section 4 we investigate
the use of Haskell as a meta-language, in particular, which precautions to take
when Haskell is used as a meta-language. This section also discusses extensions
to the object and meta-languages. Section 5 gives an overview of related work
and Section 6 concludes.

2 An embedded higher-order language

Let us consider a domain-specific object language for manipulating integers and
higher-order functions, i.e., an extension of the simply typed λ-calculus. We
include addition of integers but, depending on the domain, one can add other
base types, finite products, lists, etc. and primitive operations on these types.
In Haskell, the object language can be represented by the following data type.

4

type Ide = String
data Raw = INT Int | ADD Raw Raw

| VAR Ide | LAM Ide Raw | APP Raw Raw

instance Show Raw where
showsPrec _ t = ...

Here we have equipped the data type with a function showing terms as strings.
An alternative to using a data type is to directly encode terms as strings (if, for
example, terms are passed to an external system as concrete syntax).

2.1 Higher-order abstract syntax

The key to embedding a typed higher-order object language is to use higher-
order abstract syntax [35] as the interface to constructing terms. In higher-order
abstract syntax, variables and bindings of the object language are modelled
by variables and bindings of the meta-language, in this case Haskell. It is
precisely this connection that enables meta-language types to model object-
language types.

A higher-order abstract syntax usually carries higher-order functions in the
representation of lambdas. The following data type illustrates such a minimal
higher-order abstract syntax.

data HoExp = LAM (HoExp → HoExp) | APP HoExp HoExp

However, short of higher-order matching in Haskell, elements of this data type
cannot be decomposed. Therefore, we build (and reason about) first-order
syntax. In order to maintain the connection between bindings in the object
language and the meta-language we construct first-order syntax using a higher-
order interface as illustrated in Figure 1. The higher-order implementation hides
the (first-order) constructors for variables and lambdas; instead a new higher-
order constructor groups together the construction of a symbolic variable and
the lambda that binds it.

To facilitate automatic generation of variable names, terms are abstracted
over a list of fresh variable names. (Generally, these names must be distinct
to prevent variable clashes in the raw representation of the term.) The type
of terms are [Ide] → Raw. The same list of variable names is passed to all
subterms, except in the case of lambdas where the first name is used to con-
struct a symbolic variable and the rest of the names are passed to the body
of the lambda. Each variable in a term is therefore assigned the ith name in
the given list where i is the de Bruijn level [9] of the variable in the term.
For example, using the names ["a", "b"] to construct the first-order term of
lam (λx → app (lam (λy → y)) (lam (λz → z))) yields

LAM "a" (APP (LAM "b" (VAR "b")) (LAM "b" (VAR "b")))

2.2 An embedded type discipline

Unfortunately, the higher-order abstract syntax does not impose any type con-
straints on the embedded language. For example, Haskell accepts the expression

5

module Lambda(Exp, int, add, lam, app) where

...

type Exp = [Ide] → Raw

int :: Int → Exp
add :: Exp → Exp → Exp
lam :: (Exp → Exp) → Exp
app :: Exp → Exp → Exp

int i = λns → INT i
add a b = λns → ADD (a ns) (b ns)
lam f = λ(n:ns) → LAM n (f (λz → VAR n) ns)
app a b = λns → APP (a ns) (b ns)

Figure 1: Higher-order abstract syntax.

app (int 1) (lam (λx → x))

even though its value represents the ill-typed object-language term (here pre-
sented in Haskell syntax) 1 (λx → x).

Therefore, we restrict the higher-order constructors to only yield represen-
tations of well-typed terms. To this end, we make the following observations
about constructing representations of well-typed object-language terms:

• int produces an object-language term of type Int.

• When add is applied to two object-language terms of type Int it produces
an object-language term of type Int.

• When app is applied to two object-language terms of types a → b and a
it produces a term of object-language type b.

• When lam is applied to a function mapping an object-language term of
type a into an object-language term of type b it produces an object-
language term of type a → b.

These dependencies are just verbal formulations of the standard type rules
for the simply-typed λ-calculus. They suggest that the (polymorphic) types
of the constructors actually could reflect the object-language types. We thus
parameterize the type Exp over the type of the represented object-language
term and we restrict the types of the constructors according to the observations
above. The type parameter of Exp is a phantom type: it is not used in the
right-hand side of the definition of Exp.

The complete embedding of the simply-typed λ-calculus into Haskell is shown
in Figure 2. Terms are given by an abstract data type: a newtype declaration
hides their representations as functions of type [Ide] → Raw and the module
only exports the typed constructors.

6

module Lambda(Exp, int, add, lam, app) where

type Ide = String
data Raw = INT Int | ADD Raw Raw

| VAR Ide | LAM Ide Raw | APP Raw Raw

newtype Exp t = E ([Ide] → Raw)
make (E a) ns = a ns

int :: Int → Exp Int
add :: Exp Int → Exp Int → Exp Int
lam :: (Exp a → Exp b) → Exp (a → b)
app :: Exp (a → b) → Exp a → Exp b

int i = E (λns → INT i)
add a b = E (λns → ADD (make a ns) (make b ns))
lam f = E (λ(n:ns) → LAM n (make (f (E (λz → VAR n))) ns))
app a b = E (λns → APP (make a ns) (make b ns))

instance Show (Exp t) where
showsPrec i (E a) = showsPrec i r where

r = a [c:i | i ← ("":map show [1..]), c ← [’a’..’z’]]

Figure 2: A typed higher-order language embedded into Haskell.

As an example, Haskell rejects the expression app (int 1) (lam (λx → x)),
since this expression is an attempt to represent the ill-typed object-language
term 1 (λx → x). On the other hand, the object-language term λf → 2 + (f 1)
has the type (Int → Int) → Int. It can thus be represented in Haskell by
lam (λf → add (int 2) (app f (int 1))) of type Exp ((Int → Int) → Int).
It is, however, not clear just from the implementation in Figure 2 and the
inferred types that all ill-typed terms are ruled out. Nor is it clear that all
well-typed term are not ruled out. In the next section we present an idealized
Haskell-like meta-language in which these properties do hold.

3 Soundness and completeness

We introduce the the syntax and type system of a simply typed λ-calculus (the
object language) with constants of base type. We then consider an idealized
meta-language without let-polymorphism but with a set of predefined polymor-
phic constant symbols. We give the syntax, type system, and denotational
semantics of the meta-language. Soundness follows from a proof using a Kripke
logical relation and completeness follows by structural induction. Section 4
discusses the differences between the idealized meta-language and Haskell.

7

3.1 Object language

To reason about object-language types and terms we use the following concrete
representations.

σ ::= Int | σ1 → σ2

u ::= i | u1 + u2 | x | λx.u | u1 u2

We let ∆ range over finite mappings from variables to object-language types.
The following type rules assigns types to object-language terms.

∆ ` i : Int

∆ ` u1 : Int ∆ ` u2 : Int

∆ ` u1 + u2 : Int

∆(x) = σ

∆ ` x : σ

∆[x : σ1] ` u : σ2

∆ ` λx.u : σ1 → σ2

∆ ` u1 : σ1 → σ2 ∆ ` u2 : σ1

∆ ` u1 u2 : σ2

These rules are standard and standard results apply to them. We shall only
need the following weakening lemma.

Lemma 1 (Weakening). If for all x ∈ dom(∆), ∆′(x) = ∆(x) and ∆ ` u : σ
then ∆′ ` u : σ

Proof. By induction on the derivation of ∆ ` u : σ.

3.2 Meta-language

Let β range over a set B of base types. The types of the meta-language consist
of base types, function types, and types of representations of terms.

τ ::= β | τ1 → τ2 | Expσ

In the type Expσ, the intention is that σ is the type of the represented object-
language term (as also suggested by the examples at the end of Section 2).
By construction, this σ cannot itself contain occurrences of Exp . This means
that the object language cannot itself express encoded terms, such as used in a
multi-stage framework.

Let x range over an infinite set V of variable names and ct1···tn
over a set C

of constant symbols. The type of a constant ct1···tn
may depend on t1, . . . , tn,

where each ti is either a meta-language type τ or an object-language type σ.
(The type of the constant will always be a meta-language type.) Hence, a
constant symbol ct1···tn

corresponds to a particular monomorphic instance of a
polymorphic constant symbol c. For example, a polymorphic identity function
could be introduced by the set of constants {idτ | type τ} where each idτ would
be given type τ → τ . (The assignment of types to constant symbols is discussed
below.) The syntax of our small language is now given as follows.

e ::= x | λx.e | e1 e2 | ct1···tn
| rec x.e

8

A signature Σ = (B,C) lists base types and constant symbols and addition-
ally assigns types Σ(ct1···tn

) to constants ct1···tn
. A type context Γ is a finite

mapping from variables to types. Given a signature Σ, the type rules for the
language are as follows.

Γ(x) = τ

Γ `Σ x : τ

Γ[x : τ1] `Σ e : τ2

Γ `Σ λx.e : τ1 → τ2

Γ `Σ e1 : τ2 → τ Γ `Σ e2 : τ2

Γ `Σ e1 e2 : τ

Σ(ct1···tn
) = τ

Γ `Σ ct1···tn
: τ

Γ[x : τ] `Σ e : τ

Γ `Σ rec x.e : τ

We define a base signature Σ0 = (B0,C0) containing an addition function
and higher-order constructors,

B0 = {Int}
C0 = Z ∪ {+, int, add} ∪

⋃
types σ1,σ2

{lamσ1,σ2 , appσ1,σ2
}

where Z is the set of integers. The associated assignment of types to constant
symbols is given as follows. (This is where the types of the higher-order con-
structors are restricted.)

Σ0(i) = Int, for each i ∈ Z Σ0(int) = Int → Exp Int
Σ0(+) = Int → Int → Int Σ0(add) = Exp Int → Exp Int → Exp Int

Σ0(lamσ1,σ2) = (Exp σ1 → Expσ2) → Exp (σ1 → σ2)
Σ0(appσ1,σ2

) = Exp (σ1 → σ2) → Expσ1 → Exp σ2

It is straightforward to extend the meta-language with other base types and
constant symbols. The formal requirements that constant symbols must satisfy
are discussed in Section 3.3.

3.2.1 Denotational semantics

To model the construction of object-language terms, we assume the existence
of a discretely ordered [45, page 120] set L that is capable of representing terms
and we assume the existence of the following injective functions with mutually
disjoint ranges,

INT ∈ Z → L ADD ∈ L × L → L
VAR ∈ V → L LAM ∈ V × L → L
APP ∈ L × L → L

where N is the set of natural numbers. As an example one might take L to be,
e.g., the set of finite strings of symbols. We need not require the constructor
functions to be surjective. That is, we do not rule out “syntactically invalid”
elements in L.

9

We draw fresh object-language variables from the same source as meta-
language variables, namely the infinite set V. In particular, we assume that
there is an injective function fresh ∈ N → V.

In the semantical development that follows we shall use standard domain-
theoretic notation: For CPOs A and B, we write A⊥ for the lifted domain, ⊥A

for the bottom element of this domain, up ∈ A → A⊥ for the lifting injection,
f∗ ∈ A⊥ → B⊥ for the strict extension of f ∈ A → B⊥, f⊥ ∈ A⊥ → B⊥ for the
strict version of f ∈ A → B. We shall write (·, ·)⊥ ∈ A⊥×B⊥ → (A × B)⊥ for the
strict pairing function, e.g., the function for which (up(a),up(b))⊥ = up(a, b)
and where (a, b)⊥ = ⊥A×B if either a = ⊥A or b = ⊥B. We write A →c B for
the continuous function space between A and B. The partial order on a domain
A is @A.

An interpretation I of a signature Σ assigns predomains (i.e., bottomless
CPOs) to base types and values to constant symbols. For a given interpretation
I, the meaning of types is defined as follows. (In the third case, σ is the semantic
counterpart of a phantom type: it does not affect the predomain assigned to
Expσ.)

[[β]]I = (I(β))⊥
[[τ1 → τ2]]I = [[τ1]]I →c [[τ2]]I

[[Expσ]]I = N⊥ →c L⊥
The interpretation furthermore assigns values to constant symbols such that

if Σ(ct1···tn
) = τ then I(ct1···tn

) ∈ [[τ]]I .
The meaning of a type context Γ is the labelled product

[[Γ]]I =
∏

x∈dom(Γ)

[[Γ(x)]]I

Finally, to any well-typed meta-language expression Γ `Σ e : τ we assign a
continuous function [[e]]I ∈ [[Γ]]I →c [[τ]]I . The following is a standard call-by-
name semantics for functional languages.

[[x]]I ρ = ρ(x)
[[λx.e]]I ρ = λa.[[e]]I ρ[x 7→ a]
[[e1 e2]]I ρ = [[e1]]I ρ ([[e2]]I ρ)

[[ct1···tn
]]I ρ = I(ct1···tn

)
[[rec x.e]]I ρ =

⊔
i∈ω φi(⊥[[τ]]I), where φ(a) = [[e]]I ρ[x 7→ a]

The initial signature Σ0 is given the interpretation I0: First, the type Int
is interpreted by the integers, i.e., I0(Int) = Z. For the constant symbols, the
interpretation is defined as follows.

I0(i) = up(i)
I0(+) = λx.λy.x+⊥ y
I0(int) = λi.λn.INT⊥(i)
I0(add) = λv1.λv2.λn.ADD⊥(v1(n), v2(n))⊥

I0(lamσ1,σ2) = λf.λn.LAM⊥(fresh⊥(n),
f (λz.VAR⊥(fresh⊥(n))) (n +⊥ up(1)))⊥

I0(appσ1,σ2
) = λv1.λv2.λn.APP⊥(v1(n), v2(n))⊥

10

The two last equations hold for all object-language types σ1 and σ2.
It follows by construction that the functions involved in defining the seman-

tics of terms and in defining the initial interpretation of the constant symbols
are all continuous.

We define the obvious injective representation functions mapping object-
language terms into L as follows.

die = INT (i) du1 + u2e = ADD(du1e, du2e)
dxe = VAR(x) dλx.ue = LAM (x, due)

du1 u2e = APP(du1e, du2e)

This representation function need not be surjective: Some elements in L may
not correspond to any object-language term. It is our goal to show, however,
that any element of L that is denoted by an expression in the meta-language
corresponds to an object-language term and, furthermore, that these terms are
well typed.

3.3 Soundness

In this section we formally state and prove soundness. We end up with Corol-
lary 1, a strong soundness result stating that if an expression has type Expσ then
it either diverges or yields the representation of an object-language term of type
σ, and Corollary 2, a weak result that corresponds to the informal statement
from Section 1.

In the rest of this section we restrict our attention to the initial signature
Σ0 and the initial interpretation I0.

Definition 1. Given a type context ∆ and a type σ we define a subset of L⊥ as
follows.

T ∆
σ = {⊥L} ∪ {up(l) ∈ L⊥ | ∃u.due = l ∧ ∆ ` u : σ}

The set T ∆
σ contains exactly the elements in L⊥ that are undefined or that

correspond to object-language terms of type σ in type context ∆.

Lemma 2 (Admissibility of T). For any type σ and type context ∆ the
relation T ∆

σ is admissible. That is, it is pointed (i.e., ⊥L ∈ T ∆
σ) and it is chain

complete (i.e., if (li)i∈ω is a chain in L⊥ such that for all i ∈ ω, li ∈ T ∆
σ then⊔

i∈ω li ∈ T ∆
σ).

Proof. Pointedness follows trivially by the definition. Chain completeness
follows from the fact that L⊥ is discretely ordered and that any chain in L⊥
therefore eventually becomes constant.

Definition 2. A world is a type context ∆. Worlds are ordered as follows.

∆′ � ∆ ⇐⇒ ∀x ∈ dom(∆).x ∈ dom(∆′) ∧ ∆′(x) = ∆(x)

We let #∆ = max({−1} ∪ {i | fresh(i) ∈ dom(∆)}) denote the largest fresh
variable number already bound in the context ∆ (or −1 if the context is empty).

11

It is easy to show that � is reflexive and transitive, that ∆′ � ∆ implies
#∆′ ≥ #∆, and that n > #∆ implies n + 1 > #∆[g : σ] where g = fresh(n).

Terms that are well typed in one world are also well typed in any larger
world, a result due to weakening.

Lemma 3 (Monotonicity of T). For any type σ, if two type contexts satisfy
∆′ � ∆ then T ∆′

σ ⊇ T ∆
σ .

Proof. A consequence of Lemma 1.

A logical relation is a type-indexed relation over the denoted values defined
in such a way that it is closed under abstraction and application [30]. We define
such a unary logical relation containing values that behave well : Informally,
all values of base type are well-behaved, a function is well-behaved if it maps
well-behaved values to well-behaved result, and a representation of an object-
language term is well-behaved if, given a fresh variable index, it has the correct
type in a given type context.

Definition 3 (Logical relation R). Given a type τ and a type context ∆ we
define a subset of [[τ]]I0 as follows.

(1) R∆
β = [[β]]I0

(2) R∆
τ1→τ2

= {f ∈ [[τ1]]I0 →c [[τ2]]I0 | ∀∆′ � ∆.∀a ∈ R∆′
τ1

.f(a) ∈ R∆′
τ2
}

(3) R∆
Exp σ = {f ∈ N⊥ →c L⊥ | ∀n > #∆.f(up(n)) ∈ T ∆

σ }

In case (2), the restriction that f ∈ R∆
τ1→τ2

must satisfy f(R∆′
τ1

) ⊆ R∆′
τ2

for any ∆′ � ∆ (and not just for ∆′ = ∆) accounts for situations where an
argument to such a function carries free object-language variables not contained
in ∆. This is utilized in showing soundness for lamσ1,σ2 (which introduces free
object-language variables) in Lemma 8 below. The restriction also ensures that
the logical relation is monotone.

The goal is now to show that any well-typed meta-language expression de-
notes a well-behaved value.

Lemma 4 (Admissibility of Rτ). For any type τ and type context ∆ the
relation R∆

τ is admissible.

Proof. Using admissibility of T ∆
σ (Lemma 2). Chain completeness follows

by induction on τ . For the case τ = β we use the fact R∆
β is the constantly

true predicate. For the case τ = Exp σ we use chain completeness of T ∆
σ and

the fact that for any chain of continuous functions (fn)n∈ω ,
(⊔

n∈ω fn

)
(x) =⊔

n∈ω fn(x). Pointedness follows by induction on τ using pointedness of T ∆
σ and

[[β]]I0 .

Together with Definition 3, the following lemma shows that Rτ is a Kripke
logical relation [30].

12

Lemma 5 (Monotonicity of Rτ). For any type τ , if two type contexts satisfy
∆′ � ∆ then R∆′

τ ⊇ R∆
τ .

Proof. By induction on τ .

Case τ = β. Holds trivially since R∆′
β = R∆

β .

Case τ = τ1 → τ2. Follows from the transitivity of �.

Case τ = Expσ. Follows from the monotonicity of T (Lemma 3) and using the
fact that #∆′ ≥ #∆.

We extend the logical relation of values and types to a relation of environ-
ments and type contexts. This gives a notion of well-behaved environments.

Definition 4. For any type contexts ∆ and Γ we define a subset of [[Γ]]I0 as
follows.

R∆
Γ = {ρ ∈ [[Γ]]I0 | ∀x ∈ dom(Γ).ρ(x) ∈ R∆

Γ(x)}

This extension preserves monotonicity.

Lemma 6 (Monotonicity of RΓ). For all type contexts Γ, ∆, and ∆′, if
∆′ � ∆ then R∆′

Γ ⊇ R∆
Γ .

Proof. Follows from Lemma 5.

Adding a well-behaved value to an already well-behaved environment results
in another well-behaved environment.

Lemma 7. If d ∈ R∆
τ and ρ ∈ R∆

Γ then also ρ[x 7→ d] ∈ R∆
Γ[x:τ].

Proof. Follows from Definition 4.

Using the results established so far, soundness amounts to showing that
the semantics of a well-typed expression is well-behaved. The following lemma
shows that this result holds for the constant symbols defined by the initial
interpretation.

Lemma 8. For any constant symbol ct1···tn
∈ C0 with Σ0(ct1···tn

) = τ and for
any type context ∆ we have I0(ct1···tn

) ∈ R∆
τ .

Proof. By analysis of the individual constant symbols.

Case ct1···tn
= i. Holds trivially since all values of base type are well behaved.

Case ct1···tn
= +. Holds trivially since + produces a value of base type which

is always well behaved.

Case ct1···tn
= int. Since ∆ ` i : Int we have up(INT (i)) ∈ T ∆

Int for any i ∈ Z
and type context ∆. Therefore λi.λn.INT⊥(up(i)) = λi.λn.up(INT (i)) ∈
R∆

Int→Exp Int as required.

13

Case ct1···tn
= add. Given ∆′ � ∆, ∆′′ � ∆′, v1 ∈ R∆′

Exp Int, v2 ∈ R∆′′
Exp Int, and

n > #∆′′ we must show that ADD⊥(v1(up(n)), v2(up(n)))⊥ is either ⊥L

or equal to up due for some u with ∆′′ ` u : Int.
Since n > #∆′′ ≥ #∆′ ≥ #∆ we immediately have v2(up(n)) ∈ T ∆′′

Int .
Using Lemma 3 we also get v1(up(n)) ∈ T ∆′

Int ⊆ T ∆′′
Int . Therefore, either

v1(up(n)) = ⊥L or v2(up(n)) = ⊥L, in which case we are done since
ADD⊥(v1(up(n)), v2(up(n)))⊥ = ⊥L, or we have terms u1 and u2 with
v1(up(n)) = up du1e, v2(up(n)) = up du2e, ∆′′ ` u1 : Int, and ∆′′ ` u2 :
Int. We set u = u1 + u2 and have

ADD⊥(v1(up(n)), v2(up(n)))⊥ = up du1 + u2e

and
∆′′ ` u1 : Int ∆′′ ` u2 : Int

∆′′ ` u1 + u2 : Int

as required.

Case ct1···tn
= lamσ1,σ2 . Given ∆′ � ∆, n > #∆′, g = fresh(n), and f ∈

R∆′
Exp σ1→Exp σ2

we must show that

LAM⊥(up(g), f (λz.VAR⊥(up(g))) (up(n + 1)))⊥

is either ⊥L or equal to up due for some u with ∆′ ` u : σ1 → σ2

We have λz.VAR⊥(up(g)) = λz.up(VAR(g)) ∈ R∆′[g:σ1]
Exp σ1

since dge =
VAR(g) and ∆′[g : σ1] ` g : σ1. Since also n + 1 > #(∆′[g : σ1]) we
have

f (λz.VAR⊥(up(g))) (up(n + 1)) ∈ T ∆′[g:σ1]
σ2

This value must therefore either be ⊥L, in which case we are done, or
be equal to up du′e for some term u′ with ∆′[g : σ1] ` u′ : σ2. We set
u = λg.u′ and have

LAM⊥(up(g), f (λz.VAR⊥(up(g))) (up(n + 1)))⊥ = up dλg.u′e

and
∆′[g : σ1] ` u′ : σ2

∆′ ` λg.u′ : σ1 → σ2

as required.

Case ct1···tn
= appσ1,σ2

. (Follows the same structure as the case for add.)
Given ∆′ � ∆, ∆′′ � ∆′, v1 ∈ R∆′

Exp (σ1→σ2), v2 ∈ R∆′′
Exp σ1

, and n > #∆′′

we must show that APP⊥(v1(up(n)), v2(up(n)))⊥ is either ⊥L or equal to
up due for some u with ∆′′ ` u : σ2.
Since n > #∆′′ ≥ #∆′ ≥ #∆ we immediately have v2(up(n)) ∈ T ∆′′

σ1
.

Using Lemma 3 we also get v1(up(n)) ∈ T ∆′
σ1→σ2

⊆ T ∆′′
σ1→σ2

. Therefore,
either v1(up(n)) = ⊥L or v2(up(n)) = ⊥L, in which case we are done

14

since APP⊥(v1(up(n)), v2(up(n)))⊥ = ⊥L, or we have terms u1 and u2

with v1(up(n)) = up du1e, v2(up(n)) = up du2e, ∆′′ ` u1 : σ1 → σ2, and
∆′′ ` u2 : σ1. We set u = u1 u2 and have

APP⊥(v1(up(n)), v2(up(n)))⊥ = up du1 u2e

and
∆′′ ` u1 : σ1 → σ2 ∆′′ ` u2 : σ1

∆′′ ` u1 u2 : σ2

as required.

Other constant symbols can be added to the meta-language if they satisfy
Lemma 8. The following main result states that evaluating a well-typed expres-
sion in a well-behaved environment yields a well-behaved value.

Theorem 1 (Soundness). In the initial interpretation I0 of the initial signa-
ture Σ0, if Γ `Σ0 e : τ and ρ ∈ R∆

Γ then [[e]]I0 ρ ∈ R∆
τ .

Proof. By structural induction on e.

Case e = x. Then Γ(x) = τ and [[x]]I0 ρ = ρ(x) so [[x]]I0 ρ ∈ R∆
τ follows from

Definition 4.

Case e = λx.e′. Then τ = τ1 → τ2 where Γ[x : τ1] `Σ0 e′ : τ2 and [[λx.e′]]I0 ρ =
λa.[[e′]]I0 ρ[x 7→ a]. We must show [[λx.e′]]I0 ρ ∈ R∆

τ1→τ2
. So given ∆′ � ∆

and d ∈ R∆′
τ1

we must show that [[e′]]I0 ρ[x 7→ d] ∈ R∆′
τ2

. From Lemma 6
it follows that ρ ∈ R∆′

Γ and then from Lemma 7 we have that ρ[x 7→
d] ∈ R∆′

Γ[x:τ1]
. Thus, [[e′]]I0 ρ[x 7→ d] ∈ R∆′

τ2
follows from the induction

hypothesis.

Case e = e1 e2. Then Γ `Σ0 e1 : τ2 → τ , Γ `Σ0 e2 : τ2, and [[e1 e2]]I0 ρ =
[[e1]]I0 ρ ([[e2]]I0 ρ). Using the induction hypothesis twice we get [[e1]]I0 ρ ∈
R∆

τ2→τ and [[e2]]I0 ρ ∈ R∆
τ2

. Using reflexivity of �, Definition 3(2) gives
[[e1 e2]]I0 ρ ∈ R∆

τ as required.

Case e = ct1···tn
. Follows from Lemma 8.

Case rec x.e′. Using pointedness for the base case and Lemma 7 for the induc-
tion step an induction on i shows that φi(⊥) ∈ R∆

τ for all i, where φ(a) =
[[e′]]I0 ρ[x 7→ a] . The result then follows from admissibility (Lemma 4).

The following corollary states that an expression of type Exp σ evaluates to
a function that, when passed an initial variable index, either diverges or yields
a representation of an object-language term of type σ.

Corollary 1. For any σ and e if ∅ `Σ0 e : Exp σ then either

(1) [[e]]I0 ∅ (up(0)) = ⊥L, or

(2) [[e]]I0 ∅ (up(0)) = up due for some term u with ∅ ` u : σ.

15

Proof. Since ∅ ∈ R∅
∅, Theorem 1 gives

[[e]]I0 ∅ ∈ R∅
Exp σ = {f ∈ N⊥ →c L⊥ | ∀n > #∅.f(up(n)) ∈ T ∅

σ }

In particular, since #∅ = −1

[[e]]I0 ∅ (up(0)) ∈ T ∅
σ = {⊥L} ∪ {up(l) ∈ L⊥ | ∃u.due = l ∧ ∅ ` u : σ}

From which the result follows.

The above corollary is a strong soundness result that relates types of meta-
language expressions to types of object-language terms. In analogy with the
informal statement in Section 1 we also have the following weaker result about
the mere existence of object-language terms.

Corollary 2. Given an object-language term u, if, for any σ, ∅ 6` u : σ then
there exist no e and σ with ∅ `Σ0 e : Exp σ and [[e]]I0 ∅ (up(0)) = up due.

Proof. Follows from Corollary 1 by a proof of contradiction.

3.4 Completeness

We show that for any well-typed object-language term there exists a meta-
language expression that evaluates to a representation of the term. It is straight-
forward to translate an object-language term into a Haskell expression that
builds a representation of that term. Using the definitions in Figure 2, such a
translation can be defined by induction over object-language terms as follows.
(We rely on the requirement that the object-languages identifiers are a subset
of the Haskell identifiers.)

〈x〉 = x 〈λx.u〉 = lam (λx → 〈u〉)
〈i〉 = int i 〈u1 u2〉 = app 〈u1〉 〈u2〉

〈u1 + u2〉 = add 〈u1〉 〈u2〉
However, the idealized meta-language used in our formal development pro-

vides type-indexed constant symbols instead of polymorphic functions such as
lam and app. We therefore present the translation as an extended type system
where the constant symbols are indexed by the correct types. The translation
uses int, add, lamσ1,σ2 , and appσ1,σ2

to build integers, additions, lambdas, and
applications. In addition, the type rules carry symbolic variable indices so that
these can be related to the corresponding meta-language variables in the proofs
below.

We let a translation context Ξ range over finite mappings from variables
to pairs of types and integers. It is the intention that these integers denote
the de Bruijn levels of the free variables in the term. The following rules then
simply add a translation to the type system presented in Section 3.1. They
define a predicate n; Ξ ` e : σ / e expressing that at de Bruijn level n and in
translation context Ξ the object-language term u has type σ and it translates
to the meta-language expression e.

16

n; Ξ ` i : Int / int i

n; Ξ ` u1 : Int / e1 n; Ξ ` u2 : Int / e2

n; Ξ ` u1 + u2 : Int / add e1 e2

Ξ(x) = (σ, m)

n; Ξ ` x : σ / x

n + 1; Ξ[x : (σ1, n)] ` u : σ2 / e

n; Ξ ` λx.u : σ1 → σ2 / lamσ1,σ2 (λx.e)

n; Ξ ` u1 : σ1 → σ2 / e1 n; Ξ ` u2 : σ1 / e2

n; Ξ ` u1 u2 : σ2 / appσ1,σ2
e1 e2

As shown by the following lemma, if an object-language term can be typed
in the type system presented in Section 3.1 then it can also be translated in
the system above. We say that a type context ∆ and a translation context Ξ
are related by ∆ ≈ Ξ when dom(∆) = dom(Ξ) and when for all x ∈ dom(∆),
∆(x) = σ implies Ξ(x) = (σ, m) for some m.

Lemma 9. If ∆ ` u : σ, ∆ ≈ Ξ, and n denotes the number of free variables in
u then there exists an expression e such that n; Ξ ` u : σ / e.

Proof. By induction on the derivation of ∆ ` u : σ.

We first relate the type of the object-language term and the type of the
meta-language expression it is translated to.

Lemma 10. For any translation context Ξ, type context Γ, n ∈ Z, and type σ,
if n; Ξ ` u : σ / e and if Γ(x) = Exp σ when Ξ(x) = (σ, n) then Γ `Σ0 e : Exp σ

Proof. By induction on the derivation of n; Ξ ` u : σ / e.

Not all well-typed object-language terms can be encoded syntactically in the
meta-language since the fresh variable names drawn from the predetermined
list might differ from the intended variable names. We will show, however, that
a term and its encoding as given above are equal up to renaming of bound
variables.

Definition 5 (Substitutions and α-convertibility). A substitution s is a
finite mapping of variables to variables. We let (s\x) be the restricted substi-
tution satisfying (s\x) (x) = x and (s\x) (y) = s(y) for x 6= y. Substitutions
extend to terms in such a way that s(λx.u) = λx.u′ where u′ = (s\x) (u).

We say that a term u can be α-converted to a term u′ under a substitution
s, written s ` u −→ u′, if renaming bound variables in u according to s yields
u′. The relation is defined by the following rules.

s ` i −→ i

s(x) = y

s ` x −→ y

y /∈ (s\x) (u) s[x 7→ y] ` u −→ u′

s ` λx.u −→ λy.u′

s ` u1 −→ u′
1 s ` u2 −→ u′

2

s ` u1 + u2 −→ u′
1 + u′

2

s ` u1 −→ u′
1 s ` u2 −→ u′

2

s ` u1 u2 −→ u′
1 u′

2

17

where y 6∈ u indicates that the variable y does not occur (free or bound) in the
expression u.

Two closed terms u1 and u2 are α-congruent in the traditional sense [1, page
26] if they are related by ∅ ` u1 −→ u2.

Definition 6. Given a translation context Ξ we define a substitution ΞS and
an environment ΞE such that if fresh(n) = g then

(1) (Ξ[x : (σ, n)])S = ΞS [x 7→ g]

(2) (Ξ[x : (σ, n)])E = ΞE [x 7→ λz.up(VAR(g))]

If an object-language term u can be translated to a meta-language expression
e then e will evaluate to a representation of u (modulo renaming).

Lemma 11. For any integer n, term u, expression e, type σ, and translation
context Ξ with range(Ξ) = {(σ, i) | i < n}, if n; Ξ ` u : σ / e then there exists a
term u′ such that ΞS ` u −→ u′ and [[e]]I0 ΞE (up(n)) = up du′e.

Proof. By induction on the derivation of n; Ξ ` u : σ / e.

Case n; Ξ ` i : Int / int i. Then [[int i]]I0 ΞE (up(n)) = up(INT (i)) = up die
and indeed ΞS ` i −→ i.

Case n; Ξ ` u1 + u2 : Int / add e1 e2 where n; Ξ ` u1 : Int / e1 and n; Ξ ` u2 :
Int / e2. Then by two applications of the induction hypothesis there exist
u′

1 and u′
2 such that ΞS ` u1 −→ u′

1, ΞS ` u2 −→ u′
2, [[e1]]I0 ΞE (up(n)) =

up du′
1e, and [[e2]]I0 ΞE (up(n)) = up du′

2e. We therefore have

[[add e1 e2]]I0 ΞE (up(n))
= ADD⊥

(
[[e1]]I0 ΞE (up(n)), [[e2]]I0 ΞE (up(n))

)
⊥

= ADD⊥(up du′
1e,up du′

2e)⊥
= up(ADD(du′

1e, du′
2e))

= up du′
1 + u′

2e

and indeed ΞS ` u1 + u2 −→ u′
1 + u′

2.
Case n; Ξ ` x : σ / x where Ξ(x) = (σ, m). Then, with g = fresh(m),

[[x]]I0 ΞE (up(n)) = ΞE (x) (up(n)) = up(VAR(g)) = up dge

and indeed ΞS ` x −→ g.
Case n; Ξ ` λx.u : σ1 → σ2 / lamσ1,σ2 (λx.e) where n + 1; Ξ[x : (σ1, n)] ` u :

σ2 / e. Then with g = fresh(n), we have from the induction hypothesis that
there exists u′ such that Ξ[x : (σ1, n)]S ` u −→ u′. Definition 6(1) then
gives ΞS [x 7→ g] ` u −→ u′. Together with Definition 6(2) the induction
hypothesis also gives

[[λx.e]]I0 ΞE (up(n)) = LAM⊥
(
up(g), [[e]]I0 Ξ[x : (σ1, n)]E (up(n + 1))

)
⊥

= LAM⊥
(
up(g),up du′e

)
⊥

= up(LAM (g, du′e)
= up dλg.u′e

18

Since range(Ξ) ⊆ {(σ, i) | i < n} we have that for all z, ΞS(z) 6= g. Hence
indeed ΞS ` λx.u −→ λg.u′.

Case n; Ξ ` u1 u2 : σ2 / appσ1,σ2
e1 e2 where n; Ξ ` u1 : σ1 / e1 and n; Ξ ` u2 :

σ1 → σ2 / e2. (Follows the same structure as the case for addition.) Then
by induction hypothesis there exist u′

1 and u′
2 such that ΞS ` u1 −→ u′

1,
ΞS ` u2 −→ u′

2, [[e1]]I0 ΞE (up(n)) = up du′
1e, and [[e2]]I0 ΞE (up(n)) =

up du′
2e. We therefore have

[[appσ1,σ2
e1 e2]]I0 ΞE (up(n))

= APP⊥
(
[[e1]]I0 ΞE (up(n)), [[e2]]I0 ΞE (up(n))

)
⊥

= APP⊥(up du′
1e,up du′

2e)⊥
= up(APP(du′

1e, du′
2e))

= up du′
1 u′

2e

and indeed ΞS ` u1 u2 −→ u′
1 u′

2.

Theorem 2 (Completeness). Given an object-language term u, if, for some
σ, ∅ ` u : σ then there exists an expression e with ∅ `Σ0 e : Expσ and
[[e]]I0 ∅ (up(0)) = up du′e for some u′ with ∅ ` u −→ u′.

Proof. The term u must be closed. Hence, by Lemma 9, there exists an
expression e with 0; ∅ ` u : σ / e. This e is the candidate we’re seeking. Indeed,
from Lemma 10, ∅ `Σ0 e : Exp σ and, from Lemma 11, there exists a term u′

with [[e]]I0 ∅ (up(n)) = up du′e and ∅ ` u −→ u′.

4 Haskell as a meta-language

There are a number of issues that must be addressed to use Haskell as a meta-
language for embedded languages. Differences between Haskell and the idealized
meta-language presented in the previous section influence the conditions under
which Haskell can safely be used as a meta-language.

There are no built-in types Exp σ or constant symbols lamσ1,σ2 and appσ1,σ2

in Haskell. Instead, we must provide global definitions as in Figure 2 and ar-
gue that their semantics agree with the semantics of lamσ1,σ2 and appσ1,σ2

. We
have designed the semantics of these constant symbols to match the Haskell
implementation. Furthermore, in Haskell, the types of these symbols are re-
stricted outside the module of their implementation. In contrast, in the formal
development they are given as constant symbols of the restricted types.

The formal treatment in this work uses strict data type constructors. In
contrast, Haskell’s constructors are non-strict. For the soundness result, the
strict constructors guarantee that we only observe the types of “finite” object-
language terms. In Haskell, it is possible to observe the shape of “infinite” terms
using the top-level read-eval-print loop. For example, the following well-typed
Haskell expression uses recursion to build an infinite object-language term.

let f = lam (λx → app f x) in f

19

Its meaning is the representation of the limit of the chain of incomplete terms

⊥
v LAM "x1" (APP ⊥ (VAR "x1"))
v LAM "x1" (APP (LAM "x2" (APP ⊥ (VAR "x2"))) (VAR "x1"))
v · · ·

where ⊥ denotes the bottom element of the CPO of (non-strict) data types.
In a formal account for the soundness property using non-strict data types it
may be desirable not to give types to such infinitely expanding terms. Instead,
the soundness property might state that if a “finite” object-language term is
denoted by an expression of type Exp σ then it has type σ.

Haskell’s function space is lifted, e.g. [[τ1 → τ2]]I = ([[τ1]]I →c [[τ2]]I)⊥, al-
lowing observing termination of expressions of higher types using the top-level
read-eval-print loop. In contrast, in the idealized meta-language an expression
of higher type is always applied so its termination behavior is never observed in-
dependently. Changing the semantics to account for Haskell-like lifted function
spaces does not appear to introduce any difficulties in the soundness proof.

Finally, the approach to embedding languages into higher-order host lan-
guages presented above inherits the known problems of higher-order abstract
syntax [22]. Most importantly, a higher-order abstract syntax does not admit
a notion of case analysis. In order to make any use of constructed object-
language terms, the embedding we have presented directly represents terms
using a first-order data type which can be printed as text. However, the stan-
dard function spaces of functional languages are generally too large for adequate
higher-order abstract syntax. For example, the implementation in Figure 2 ac-
tually allows representations of “exotic terms”, such as the following expression
of type Exp (Int → Int).

lam (λx → if show x = "a" then int 1 else int 2)

Although closed, this term does not correspond to any object-language term.
Depending on the context, it may behave as either λa → 1 or λx → 2. Here we
have used the overloaded Haskell function show to obtain a representation of an
object-language term as a string. Such show-like functions are not, however, tied
to Haskell’s overloading mechanism. They can be implemented in Haskell as well
as in languages without overloading (such as ML [29]) as ordinary polymorphic
functions of type Exp a → String.

Research on higher-order abstract syntax alleviates these problems by re-
stricting the function spaces of the meta-language using, e.g., modal logic [10].
In Haskell and ML-like languages, however, such a requirement cannot be en-
forced by the type system. In the presence of show-like functions, there are
no ways around the problems of higher-order abstract syntax other than to in-
formally require the programmer to only observe the behavior of closed object-
language terms. This requirement appears to match the typical use of embedded
languages in existing applications.

Below, we briefly discuss the embedded type discipline in the context of
extended object languages and in the context of extended meta-languages.

20

-- Finite products
pair :: Exp a → Exp b → Exp (a, b)
pfst :: Exp (a, b) → Exp a
psnd :: Exp (a, b) → Exp b

-- Lists
nil :: Exp [a]
cons :: Exp a → Exp [a] → Exp [a]
hd :: Exp [a] → Exp a
tl :: Exp [a] → Exp [a]

-- Booleans
tt :: Exp Bool
ff :: Exp Bool
ift :: Exp Bool → Exp a → Exp a → Exp a

iszero :: Exp Int → Exp Bool
isnull :: Exp [a] → Exp Bool

Figure 3: Extended object language.

4.1 Extended object language

As already mentioned, other domain-specific types and operations are easily
added to the object language. Figure 3 presents the types of operations on
finite products, lists, and booleans. (The actual definition of these primitives
are similar to those presented in Figure 2 and are left out for conciseness.) It
is straightforward to extend the proof of soundness and completeness to also
handle the extensions outlined here.

It is also possible to extend the object language with types that do not exist
in the meta-language. For example,

type Ref a = ()

ref :: Exp a → Exp (Ref a)
get :: Exp (Ref a) → Exp a
set :: Exp (Ref a) → Exp a → Exp ()

declares the types of pointer-manipulating object-language functions in Haskell.
(Appropriate values can be defined as in Figure 2.) Values of type Ref will never
be constructed and therefore we can choose a minimal representation, here as
the unit type (). A similar technique is used to integrate COM objects into
Haskell [17].

The domain-specific operations on base types considered here (i.e., int, add,
and the operations of the extended language in Figure 3) are meta-functions:
they do not represent first-class functions in the object language. For example,
there is no object-language equivalent of a first-class zero predicate. Indeed,
Haskell rejects the expression cons iszero nil (an attempt to represent a sin-

21

gleton list of a zero predicate). A first-class zero predicate can be embedded
by

data Raw = ... | ISZERO’

iszero’ :: Exp (Int → Bool)
iszero’ = E (λns → ISZERO’)

and used as in cons iszero’ nil of type Exp [Int → Bool].
Since the object language is higher order we can also apply object-language

β and η conversions at the meta-level. The two function compositions

lam . app :: Exp (a → b) → Exp (a → b)
app . lam :: (Exp a → Exp b) → Exp a → Exp b

are the extensional identity function on object-language functions, and the ex-
tensional identity function on meta-language functions. In fact, in the sense of
binding-times and two-level coercions, the first composition coerces a dynamic
function to static and back to dynamic again whereas the second composition
coerces a static function to dynamic and back to static again, using two-level
η-expansions [5]. Given, for example, a Haskell-like object language where the
meta-language expression iszero E represents (e ≡ 0) (where E represents e)
and the meta-language expression iszero’ represents (≡ 0). (In Haskell, ≡ de-
notes structural equality.) In the meta-language we then have the (extensional)
identities

iszero = app iszero’ -- of type Exp Int → Exp Bool
iszero’ = lam iszero -- of type Exp (Int → Bool)

since (for the first equality) for any meta-language expression E of type Exp Int
representing e, app iszero’ E represents (≡ 0) e and (for the second equality)
lam iszero’ represents λx → x ≡ 0 and indeed e ≡ 0 and (≡ 0) e are seman-
tically identical, as are (≡ 0) and λx → x ≡ 0.

As opposed to Haskell, the object-language does not provide polymorphism
and recursion. Polymorphic or recursive meta-language expressions that are
accepted by Haskell’s type system are unfolded in the object language. For
example, it is possible to define polymorphic representations of object-language
values in the meta-language as illustrated above for finite products and lists.
Even though we cannot represent object-language term such as

let f = λx → x in (f 0, f True)

we can inline let-bound polymorphic values in the object-language term. For
example, the following expression has type Exp (Int, Bool).

let f = lam(λx → x) in pair (app f (int 0)) (app f tt)

It evaluates to the object-language term ((λa → a) 0, (λa → a) True).

22

4.2 Extended meta-language

It is possible to extend the meta-language with other base types, finite prod-
ucts, and lists à la Haskell, and also to extend the proofs of soundness and
completeness.

It is also possible to change the evaluation strategy of the meta-language to
call-by-value. Adding other effects than non-termination, however, might give
an unsound embedding. This is the case for ML [29]. Using assignments, for
example, some well-typed ML expressions do not represent well-typed object-
language terms. In fact, as the following example shows, some expressions do
not even yield representations of closed terms.

let val v = ref (int 0)
in lam (fn x ⇒ (v := x; x));

v
end

This expression returns whatever symbolic variable was generated at the time
of constructing the object-language lambda. This problem is due to the use of
higher-order abstract syntax, not to the typed embedding.

5 Related work

The soundness proof presented in this article uses a Kripke logical relation.
The development is akin to Filinski’s proof that type-directed partial evalua-
tion implements a normalization function [16]. A corollary of Filinski’s work is
that type-directed partial evaluation is type preserving, a result we have also
established using the typed embedded language described in this work [6, 7].

Completeness could also be stated by giving a semantics of the object lan-
guage and then showing that a term and its encoding are semantically equiv-
alent. Our proof is stronger in that it shows that a term and its encoding are
syntactically equal modulo renaming of bound variables. It also avoids dealing
with the semantics of the object language.

Yelland has used Haskell as a meta-language for hosting stack instructions
for a core Java Virtual Machine [48]. In his work, the type of a stack cell is
parameterized by its contents using a phantom type. Essentially, instructions
are given types that reflect their behavior on the stack. Yelland proves a sound-
ness result stating that instructions that are well-typed in Haskell will not err
on execution. In Yelland’s work, the object language is first order and has no
notion of variables and bindings. Hence, he avoids higher-order abstract syntax.
In contrast, we have considered a higher-order object language is this present
work.

Phantom types provide a simple form of dependent types for constructing
representations of simply-typed terms in Haskell. The embedding is limited,
however, in that it does not allow a type-preserving deconstruction of simply-
typed terms. This is partly due to the lack of higher-order matching in Haskell.

23

A dependently typed language, such as Martin-Löf’s type theory [31], can di-
rectly express both type-safe construction and deconstruction of object-language
terms. Previously, Yang has shown how to encode another class of dependently
typed expressions in ML [46, 47].

There exists a number of logical frameworks that specifically, although not
exclusively, address the problem of manipulating typed higher-order object-
language terms [4, 12, 18, 19, 20, 21, 32, 34, 36]. Compared to Haskell, these
languages typically provide a richer dependent-type system and a better sup-
port for higher-order abstract syntax via higher-order unification and match-
ing. These logical frameworks are primarily aimed at reasoning about object-
language terms and, in some cases, also entire logics. In contrast, we have
explored the extent to which general-purpose languages such as Haskell are ad-
equate for hosting typed object languages.

In the mid-1980’s, Wand has defined the meaning of an object language
(with primitive I/O and non-local jumps) in terms of the λ-calculus, viewing the
latter as a semantic meta-language [44]. His translation is sound and complete
in the sense that exactly the well-typed object-language terms have a well-
typed meta-language counterpart. Thus, it can be seen as providing both a
static and a dynamic semantics for the object language. (In fact, since the
translated terms are in continuation-passing style, Wand also shows that the
CPS transformation preserves well-typedness [28].) Wand’s translation does not
yield first-order data as result such as the embedding we consider here. Instead,
it maps higher-order functions to higher-order functions. Furthermore, Wand’s
object-language type system is not presented in terms of his meta-language.
In contrast, the embedded type discipline we consider here expresses the type
system of the object language in terms of the type system of the meta-language
(using phantom types).

Davies’s λ©-calculus is an extension of the simply-typed λ-calculus for ex-
pressing staged evaluation [8]. In λ©, a term of type ©σ evaluates in one stage
to a value representing a term of type σ. Terms of type ©σ are thus first-class
representations of terms, much as the expressions of type Exp σ in our work are
representations of object-language terms. There is a syntactic difference, how-
ever. In λ© there is one uniform construct for building terms at the next stage.
The meta-language in our work provides several constructors, one for each syn-
tactic category of the object language. (Analogy: λ© provides a type system
for Lisp-like quasiquotation [2] whereas phantom types provide a type system
for ML-like data types.) Another difference is that λ©-terms build other λ©-
terms for a later stage. In contrast, the object-language terms in our work are
always simply typed λ-terms. Consequently, we cannot embed object languages
with an arbitrary number of stages. There is some hope, though, that type
encodings as described by Yang [46] could achieve such a nested embedding, a
staged version of which is provided in a language such as MetaML [43]. There is
a growing interest in such statically typed, multi-stage languages because they
provide a foundation for multi-stage evaluation and run-time code generation.

24

6 Conclusions

Phantom types make it possible to embed not only the (abstract) syntax but
also the type system of a monomorphic object language into a statically typed
meta-language such as Haskell. They have been used to design embedded lan-
guages [17, 25, 27] and to prove properties of programs [6, 7]. An experiment
with run-time code generation for the rewrite engine of the logical framework
MetaPRL [20] also confirms the utility of phantom types in a two-stage lan-
guage [38, 39]. In this article, we have formally proved that phantom types
yield sound and complete embeddings into an idealized meta-language and we
have discussed the power and limitations of Haskell as such a meta-language.

Acknowledgements: I sincerely thank Olivier Danvy, Andrzej Filinski, Hel-
mut Schwichtenberg, and Peter Sestoft for providing insightful comments on this
work and Mikkel N. Hansen and Lasse R. Nielsen for kindly proof-reading earlier
versions of this article. I am also grateful to the referees for their constructive
comments and suggestions.

References

[1] Henk Barendregt. The Lambda Calculus — Its Syntax and Semantics.
North-Holland, 1984.

[2] Alan Bawden. Quasiquotation in Lisp. In Olivier Danvy, editor, Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, number NS–99–1 in BRICS Note Series,
pages 4–12, San Antonio, Texas, January 1999.

[3] William E. Carlson, Paul Hudak, and Mark P. Jones. An experiment us-
ing Haskell to prototype ‘geometric region servers’ for navy command and
control. Technical Report 1031, Yale University, New Haven, Connecticut,
November 1993.

[4] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith. Imple-
menting Mathematics with the Nuprl Development System. Prentice-Hall,
1986.

[5] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion does
The Trick. ACM Transactions on Programming Languages and Systems,
8(6):730–751, 1996.

[6] Olivier Danvy and Morten Rhiger. A simple take on typed abstract syntax
in Haskell-like languages. In Herbert Kuchen and Kazunori Ueda, editors,
Proceedings of the Fifth International Symposium on Functional and Logic
Programming, number 2024 in Lecture Notes in Computer Science, pages

25

343–358, Tokyo, Japan, March 2001. Springer-Verlag. An extended version
is available as the technical report BRICS RS-00-34.

[7] Olivier Danvy, Kristoffer Høgsbro Rose, and Morten Rhiger. Normalization
by evaluation with typed abstract syntax. Journal of Functional Program-
ming, 11(6):673–680, 2001. An extended version is available as the technical
report BRICS RS-01-16.

[8] Rowan Davies. A temporal-logic approach to binding-time analysis. In
Edmund M. Clarke, editor, Proceedings of the Eleventh Annual IEEE Sym-
posium on Logic in Computer Science, pages 184–195, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

[9] N. G. de Bruijn. Lambda calculus notation with nameless dummies. A tool
for automatic formula manipulation with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34:381–392, 1972.

[10] Jöelle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive re-
cursion for higher-order abstract syntax. In P. de Groote and J. R. Hindley,
editors, Proceedings of the 3rd International Conference on Typed Lambda
Calculi and Applications, number 1210 in Lecture Notes in Computer Sci-
ence, pages 147–163, Nancy, France, April 1997.

[11] Premkumar Devanbu and Jeff Poulin, editors. Proceedings of the Fifth
International Conference on Software Reuse, Victoria, British Columbia,
June 1998. IEEE Computer Society Press.

[12] Gilles Dowek, Amy Felty, Hugo Herbelin, Gerard Huet, Chet Murthy,
Catherine Parent, Christine Paulin-Mohring, and Benjamin Werner. The
COQ proof assistant user’s guide. Technical Report 154, INRIA, Rocquen-
court, France, 1993.

[13] Conal Elliott. Modeling interactive 3D and multimedia animation with
an embedded language. In Chris Ramming, editor, First Conference on
Domain-Specific Languages, pages 285–296, Santa Barbara, California, Oc-
tober 1997.

[14] Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded lan-
guages. In Walid Taha, editor, Proceedings of the International Workshop
on Semantics, Applications, and Implementation of Program Generation,
number 1924 in Lecture Notes in Computer Science, pages 9–27, Montréal,
Canada, September 2000.

[15] Joseph H. Fasel, Paul Hudak, Simon Peyton Jones, and Philip Wadler.
Haskell special issue. SIGPLAN Notices, 27(5), May 1992.

[16] Andrzej Filinski. A semantic account of type-directed partial evalua-
tion. In Gopalan Nadathur, editor, International Conference on Princi-
ples and Practice of Declarative Programming, number 1702 in Lecture

26

Notes in Computer Science, pages 378–395, Paris, France, September 1999.
Springer-Verlag.

[17] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling
hell from heaven and heaven from hell. In Peter Lee, editor, Proceedings
of the 1999 ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 114–125, Paris, France, September 1999. ACM Press.

[18] Michael J. C. Gordon and Tom Melham. Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University Press,
1993.

[19] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the ACM, 40(1):143–184, 1993. A preliminary ver-
sion appeared in the proceedings of the First IEEE Symposium on Logic
in Computer Science, pages 194–204, June 1987.

[20] Jason Hickey. Metaprl homepage. http://metaprl.org.

[21] Jason Hickey. Nuprl-light: An implementation framework for higher-order
logics. In William McCune, editor, 14th International Conference on Auto-
mated Deduction, number 1249 in Lecture Notes in Artificial Intelligence,
pages 395–399. Springer-Verlag, 1997.

[22] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In
Giuseppe Longo, editor, Proceedings of the Fourteenth Annual IEEE Sym-
posium on Logic in Computer Science, Trento, Italy, July 1999. IEEE Com-
puter Society Press.

[23] Paul Hudak. Modular domain specific languages and tools. In Devanbu
and Poulin [11], pages 134–142.

[24] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore
music notation – an algebra of music. Journal of Functional Programming,
6(3):465–483, 1996.

[25] Simon Peyton Jones, Erik Meijer, and Daan Leijen. Scripting COM com-
ponents in Haskell. In Devanbu and Poulin [11], pages 224–233.

[26] Peter J. Landin. The next 700 programming languages. Communications
of the ACM, 9(3):157–166, 1966.

[27] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In
Thomas Ball, editor, Proceedings of the 2nd USENIX Conference on
Domain-Specific Languages, pages 109–122, 1999.

[28] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs
– Proceedings, number 193 in Lecture Notes in Computer Science, pages
219–224, Brooklyn, June 1985. Springer-Verlag.

27

[29] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[30] John C. Mitchell. Type systems for programming languages. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics, chapter 8, pages 365–458. The MIT Press,
1990.

[31] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in
Martin-Löf’s Type Theory. International Series on Monographs on Com-
puter Science No. 7. Oxford University Press, 1990.

[32] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828
in Lecture Notes in Computer Science. Springer-Verlag, 1994.

[33] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Con-
trolling robots with Haskell. In Gopal Gupta, editor, Proceedings of the
First International Symposium on Practical Aspects of Declarative Lan-
guages, number 1551 in Lecture Notes in Computer Science, pages 91–105,
San Antonia, Texas, January 1999. Springer-Verlag.

[34] Frank Pfenning. Logic programming in the LF logical framework. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–181.
Cambridge University Press, 1991.

[35] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Mayer D. Schwartz, editor, Proceedings of the ACM SIGPLAN’88 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 23, No 7, pages 199–208, Atlanta, Georgia, June 1988. ACM
Press.

[36] Frank Pfenning and Carsten Schürmann. System description: Twelf —
A meta-logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), volume 1632 of Lecture Notes in Artificial Intelligence, pages
202–206, Trento, Italy, 1999. Springer-Verlag.

[37] Alastair Reid, John Peterson, Greg Hager, and Paul Hudak. Prototyping
real-time vision systems: An experiment in DSL design. In Twenty-First
International Conference on Software Engineering, pages 484–493, Los An-
geles, California, May 1999. ACM Press.

[38] Morten Rhiger. Higher-Order Program Generation. PhD thesis, BRICS
PhD School, University of Aarhus, Aarhus, Denmark, July 2001.

[39] Morten Rhiger. Compiling embedded programs to byte code. In Shriram
Krishnamurthi and C.R. Ramakrishnan, editors, Proceedings of the Fourth
International Symposium on Practical Aspects of Declarative Languages,
number 2257 in Lecture Notes in Computer Science, pages 120–136, Port-
land, Oregon, January 2002. Springer-Verlag.

28

[40] Dana Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Science, 121:411–440, 1993.

[41] Guy L. Steele Jr. Growing a language. Higher-Order and Symbolic Com-
putation, 12(3):221–236, October 1999.

[42] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, 1977.

[43] Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage pro-
gramming: Axiomatization and type safety. In Kim G. Larsen, Sven
Skyum, and Glynn Winskel, editors, Proceedings of the 25th International
Colloquium on Automata, Languages, and Programming, number 1443 in
Lecture Notes in Computer Science, pages 918–929. Springer-Verlag, 1998.

[44] Mitchell Wand. Embedding type structure in semantics. In Mary S. Van
Deusen and Zvi Galil, editors, Proceedings of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, pages 1–6. ACM
Press, January 1985.

[45] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-
dation of Computing Series. The MIT Press, 1993.

[46] Zhe Yang. Encoding types in ML-like languages. In Paul Hudak and Chris-
tian Queinnec, editors, Proceedings of the 1998 ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 289–300, Baltimore,
Maryland, September 1998. ACM Press. Extended version available as the
technical report BRICS RS-98-9.

[47] Zhe Yang. Language Support for Program Generation: Reasoning, Imple-
mentation, and Applications. PhD thesis, Computer Science Department,
New York University, New York, New York, August 2001.

[48] Phillip M. Yelland. A compositional account of the Java Virtual Machine.
In Alex Aiken, editor, Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on Principles of Programming Languages, pages 57–69, San Anto-
nio, Texas, January 1999. ACM Press.

29

Recent BRICS Report Series Publications

RS-02-34 Morten Rhiger. A Foundation for Embedded Languages. Au-
gust 2002. 29 pp.

RS-02-33 Vincent Balat and Olivier Danvy. Memoization in Type-
Directed Partial Evaluation. July 2002. 18 pp. To appear in
Batory and Consel, editors,ACM SIGPLAN/SIGSOFT Confer-
ence on Generative Programming and Component Engineering,
GPCE ’02 Proceedings, LNCS, 2002.

RS-02-32 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
On Obtaining Knuth, Morris, and Pratt’s String Matcher by Par-
tial Evaluation. July 2002. 43 pp. To appear in Chin, editor,
ACM SIGPLAN ASIAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, ASIA-PEPM ’02 Pro-
ceedings, 2002.

RS-02-31 Ulrich Kohlenbach and Paulo B. Oliva.Proof Mining: A Sys-
tematic Way of Analysing Proofs in Mathematics. June 2002.
47 pp.

RS-02-30 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2002.

RS-02-29 Christian N. S. Pedersen and Tejs Scharling.Comparative
Methods for Gene Structure Prediction in Homologous Se-
quences. June 2002. 20 pp.

RS-02-28 Ulrich Kohlenbach and Laurenţiu Leuştean. Mann Iterates
of Directionally Nonexpansive Mappings in Hyperbolic Spaces.
June 2002. 33 pp.

RS-02-27 AnnaÖstlin and Rasmus Pagh.Simulating Uniform Hashing
in Constant Time and Optimal Space. 2002. 11 pp.

RS-02-26 Margarita Korovina. Fixed Points on Abstract Structures with-
out the Equality Test. June 2002.

RS-02-25 Hans Ḧuttel. Deciding Framed Bisimilarity. May 2002. 20 pp.

RS-02-24 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Static Analysis for Dynamic XML. May 2002.
13 pp.

RS-02-23 Antonio Di Nola and Laurent¸iu Leuştean. Compact Represen-
tations of BL-Algebras. May 2002. 25 pp.

