
B
R

IC
S

R
S

-02-33
B

alat&
D

anvy:
M

em
oization

in
Type-D

irected
P

artialE
valuation

BRICS
Basic Research in Computer Science

Memoization in
Type-Directed Partial Evaluation

Vincent Balat
Olivier Danvy

BRICS Report Series RS-02-33

ISSN 0909-0878 July 2002

Copyright c© 2002, Vincent Balat & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/33/

Memoization

in Type-Directed Partial Evaluation ∗

Vincent Balat

PPS
Université Paris VII †

Olivier Danvy

BRICS ‡

University of Aarhus §

July 14, 2002

Abstract

We use a code generator—type-directed partial evaluation—to verify
conversions between isomorphic types, or more precisely to verify that
a composite function is the identity function at some complicated type.
A typed functional language such as ML provides a natural support to
express the functions and type-directed partial evaluation provides a con-
venient setting to obtain the normal form of their composition. However,
off-the-shelf type-directed partial evaluation turns out to yield gigantic
normal forms.

We identify that this gigantism is due to redundancies, and that these
redundancies originate in the handling of sums, which uses delimited con-
tinuations. We successfully eliminate these redundancies by extending
type-directed partial evaluation with memoization capabilities. The result
only works for pure functional programs, but it provides an unexpected
use of code generation and it yields orders-of-magnitude improvements
both in time and in space for type isomorphisms.

∗To appear in the proceedings of the first ACM SIGPLAN Conference on Generators and
Components (GPCE’02), Pittsburgh, PA, October 6-8, 2002.

†PPS, Université Paris VII – Denis Diderot
Case 7014, 2 place Jussieu
F-75251 Paris Cedex 05, France.
E-mail: balat@pps.jussieu.fr

Home page: http://www.pps.jussieu.fr/~balat
‡Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

§Department of Computer Science
Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark
E-mail: danvy@brics.dk

Home page: http://www.brics.dk/~danvy

1

Contents

1 Introduction 3
1.1 Background: reduction-based vs. reduction-free normalization . . 3
1.2 Type-directed partial evaluation 5
1.3 Motivation . 6
1.4 Contribution and overview . 7

2 Type isomorphisms 7
2.1 Tarski’s high school algebra problem 8
2.2 Tarski’s high school algebra problem, type-theoretically 8

3 Type-directed partial evaluation 10

4 Memoization 10
4.1 What . 10
4.2 How . 11
4.3 Application . 11
4.4 Common sub-expression elimination 11

5 Related work 13

6 Conclusion and issues 13

List of Figures

1 Isomorphism function for n = 3 (fragment) 9
2 Benchmarks . 12

2

1 Introduction

1.1 Background: reduction-based vs. reduction-free nor-
malization

Say that we consider binary trees modulo associativity. Binary trees are easily
coded as a data type in Standard ML [36, 37, 45]:

datatype ’a bt = LEAF of ’a

| NODE of ’a bt * ’a bt

(In this declaration, bt is the name of the data type. It is parameterized with a
type variable ’a to express that the data type is polymorphic: we can represent
trees of integers, trees of reals, trees of lists, etc. LEAF and NODE are binary-tree
constructors.)

The following conversion rule (written with an infix ⇔) defines associativity:

∀ t1, t2, t3 : ’a bt, NODE (t1, NODE (t2, t3)) ⇔ NODE (NODE (t1, t2), t3).

Two binary trees are equal modulo associativity if they can be converted to
each other using ⇔.

How do we represent binary trees modulo associativity in practice? One
option is to use the data type above and test for equality using the conversion
rule. A more efficient version, however, exists. It is based on the idea of orienting
the conversion rule into a rewriting rule. For example, we could orient is as
follows:

∀ t1, t2, t3 : ’a bt, NODE (t1, NODE (t2, t3)) ⇐ NODE (NODE (t1, t2), t3).

This rewriting rule is nice because repeatedly applying it (1) terminates and
(2) yields a unique normal form. (A normal form here is a binary tree for
which the rewriting rule cannot be applied.) Representing a binary tree modulo
associativity is thus best done with its normal form because it is more efficient
to test for equality.

In the present case, the data type of binary trees in normal form can be
coded as follows:

datatype ’a bt_nf = LEAF_nf of ’a

| NODE_nf of ’a * ’a bt_nf

The constructor NODE nf guarantees that the rewriting rule cannot be applied.
Since this data type is isomorphic to the data type of non-empty lists, we

can represent normalized binary trees as ML lists. The question then is how to
normalize binary trees. In ML terms, this amounts to writing a function

normalize : ’a bt -> ’a list

that flattens its argument into a normal form.
The traditional, reduction-based, approach is to traverse the source tree and

repeatedly apply the rewrite rule:

3

fun reduction_based_normalize (LEAF x)

= x :: nil

| reduction_based_normalize (NODE (LEAF x, t))

= x :: (reduction_based_normalize t)

| reduction_based_normalize (NODE (NODE (t1, t2), t3))

= reduction_based_normalize (NODE (t1, NODE (t2, t3)))

An alternative, reduction-free, approach to normalization, however, exists:
it amounts to interpreting the binary tree in a non-standard model and inverting
this interpretation. In the present case, we choose the non-standard model to
be the function space

’a list -> ’a list

We map leaves into a function that adds an element to its argument, we map
nodes into function composition, and we invert the interpretation function by
applying values to the empty list:

fun reduction_free_normalize t

= let fun eval (LEAF x)

= (fn a => x :: a)

| eval (NODE (t1, t2))

= (eval t1) o (eval t2)

fun reify value

= value nil

in reify (eval t)

end

This esoteric-looking function can be simplified as follows: rather than returning
a function, the argument of this function can be specified as one more argument
to eval, and reify can be inlined:

fun reduction_free_normalize_simpler t

= let fun eval (LEAF x) a

= x :: a

| eval (NODE (t1, t2)) a

= eval t1 (eval t2 a)

in eval t nil

end

The result is the familiar flatten function with an accumulator.
This way of normalizing binary trees is said to be reduction free because

it does not explicitly apply the rewriting rule. Because it normalizes a term
by inverting an evaluation function (into a non-standard model), reduction-free
normalization is also referred to as normalization by evaluation. The flattening
example above is folklore in the normalization-by-evaluation community.

Normalization by evaluation has been variously studied in logic, proof theory,
and category theory [2, 3, 8, 9, 10, 13] and in partial evaluation [14, 16]. Type-
directed partial evaluation, which we present next, has been investigated both
practically [5, 15, 17, 18, 29, 31, 38] and foundationally [24, 25, 47].

4

1.2 Type-directed partial evaluation

Type-directed partial evaluation is a practical instance of normalization by eval-
uation and is used for specializing functional programs. The evaluation function
it inverts is the standard evaluation of functional programs. Consequently, a
type-directed partial evaluator maps values to a textual representation of their
normal form, in contrast to a traditional syntax-directed partial evaluator, which
maps the textual representation of a source program to the textual representa-
tion of the corresponding specialized program.

In the present work, we consider a pure version of type-directed partial
evaluation for ML with the following types (a is atomic):

t ::= a | t1 → t2 | t1 × t2 | t1 + t2

For example, let us consider the following ML function, which exponentiates
its argument x by recursively halving its argument n, using the auxiliary function
binary. Depending on the parity of its argument, binary applies odd or even to
each intermediate result. The functions quot and rem respectively compute the
quotient and the remainder of two integers; they are found in the Int library.
The opportunity for specialization here is that the first argument of exponentiate
(and thus the argument of binary) is known statically.

fun exponentiate n (odd, even) x

= let fun binary 0

= x

| binary n

= let val r = binary (Int.quot (n, 2))

in if Int.rem (n, 2) = 0

then even r

else odd r

end

in binary n

end

A syntax-directed partial evaluator maps the textual representation of exponenti-
ate 20 to the textual representation of its specialized version (the overhead of
the interpretation of 20 has been completely eliminated):

fn (p1, p2) => fn x3 => let val r4 = p1 x3

val r5 = p2 r4

val r6 = p1 r5

val r7 = p2 r6

in p2 r7

end

In contrast, a type-directed partial evaluator maps the value of exponentiate 20

(together with a representation of its type) to the textual representation of its
specialized version. (In fact, the residual function above is the actual output of
our type-directed partial evaluator.)

5

1.3 Motivation

Recently, we have realized that a proof-theoretical application of type-directed
partial evaluation was affected by the size and redundancy of the generated
code. Unsurprisingly, we have diagnosed the problem to arise because of sums,
which are handled with continuations and therefore duplicate contexts.

For example, at type (a → b) → (c → a) → c → b, the term fn f => fn g

=> fn x => f (g x) is normalized into the following residual term:

fn x0 => fn x1 => fn x2 => let val r3 = x1 x2

in x0 r3

end

At type (a → b) → (bool → a) → bool → b, however, it is normalized into
the following other residual term, where the application of x0 occurs in both
conditional branches:1

fn x0 => fn x1 => fn x2 => if x2

then let val r3 = x1 true

in x0 r3

end

else let val r5 = x1 false

in x0 r5

end

In both cases, the residual term is in normal form: it contains no function
applications or conditional expressions that could be simplified away. It is also
fully eta-expanded.

Normalization at boolean type is handled by duplicating contexts (the ap-
plication of x0 in the example just above). This duplication is known to yield
redundant residual terms in a pure setting. For example, normalizing fn f => fn

g => fn x => f (g x) (g x) at type (bool → bool → a) → (b → bool) → b → a
yields the following residual term:

fn x0 => fn x1 => fn x2 => let val r3 = x1 x2

in if r3

then let val r4 = x0 true

val r5 = x1 x2

in if r5

then r4 true

else r4 false

end

else let val r8 = x0 false

val r9 = x1 x2

in if r9

then r8 true

else r8 false

end

end

1The boolean type is a trivial sum.

6

This residual term is redundant in a pure setting because in each branch of the
outer conditional expression, we know the result of x1 x2 and therefore there is
no need to recompute it and test it. The residual term could thus be simplified
into the following one:

fn x0 => fn x1 => fn x2 => let val r3 = x1 x2

in if r3

then let val r4 = x0 true

in r4 true

end

else let val r6 = x0 false

in r6 false

end

end

In the proof-theoretic setting considered here (see Section 2), such a simpli-
fication is crucial.

1.4 Contribution and overview

We solve the above redundancy by introducing a memoization mechanism in
type-directed partial evaluation.

The rest of this article is organized as follows: Section 2 describes the proof-
theoretical setting of our work; Section 3 reviews type-directed partial evalua-
tion; and Section 4 presents the memoization mechanism.

2 Type isomorphisms

Two data types are said to be isomorphic if it is possible to convert data be-
tween them without loss of information. More formally, two types σ and τ are
isomorphic if there exists a function f of type σ → τ and a function g of type
τ → σ, such that f ◦ g is the identity function over τ and g ◦ f is the identity
function over σ.

Type isomorphisms provide a way not to worry about unessential details in
the representation of data. They are used in functional programming to provide
a means to search functions by types [20, 21, 22, 39, 40, 41, 42] and to match
modules by specifications [7, 19].

Searching for converters between particularly complex isomorphic types raises
the problem of normalizing composite functions, in order to verify whether they
are the identity function or not. Normalization by evaluation provides an el-
egant solution: we simply write the functions in ML and we residualize their
composition.

The work presented in this paper takes its inspiration from a recent joint
work by Balat, Di Cosmo, and Fiore [6]. This work addresses the relations be-
tween the problem of type isomorphisms and a well-known arithmetical problem,
called “Tarski’s high school algebra problem” [23].

7

2.1 Tarski’s high school algebra problem

Tarski asked whether the arithmetic identities taught in high school (namely:
commutativity, associativity, distributivity and rules for the neutral elements
and exponentiation) are complete to prove all the equations that are valid for
the natural numbers. His student Martin answered this question affirmatively
under the condition that one restricts the language of arithmetic expressions to
the operations of product and exponentiation and the constant 1.

For arithmetic expressions with sum, product, exponentiation, and the con-
stant 1, however, the answer is negative, witness an equation due to Wilkie that
holds true in N but that is not provable with the usual arithmetic identities [46].
Furthermore, Gurevič has shown that in that case, equalities are not finitely ax-
iomatizable [30]. To this end, he exhibited an infinite number of equalities in N

such that for every finite set of axioms, one of them can be shown not to follow.

2.2 Tarski’s high school algebra problem, type-theoretically

If one replaces sums, product, and exponentiation respectively by the sum,
product, and arrow type constructors, and if one replaces the constants 0 and 1
respectively by the empty and unit types, one can restate Tarski’s question as
one about the isomorphisms between types built with these constructors. For
types built without sum and empty types, Soloviev, and then Bruce, Di Cosmo,
and Longo have shown that exactly the same axioms are obtained [11, 43].

Continuing the parallel with arithmetic, Balat, Di Cosmo, and Fiore have
studied the case of isomorphisms of types with empty and sum types [6]. They
have generalized Gurevič’s equations for the case of equalities in N without
constants as follows:

(Au + Bn
u)v · (Cn

v + Dn
v)u = (Av + Bn

v)u · (Cn
u + Dn

u)v (n ≥ 3 odd)

where A = y + x

Bn = yn−1 + xyn−2 + x2yn−3 + . . . + xn−2y + xn−1

=
∑n−1

i=0 xiyn−i−1

Cn = yn + xn

Dn = y2n−2 + x2y2n−4 + x4y2n−6 . . . + x2n−4y2 + x2n−2

=
∑n−1

i=0 x2iy2n−2i−2

Balat, Di Cosmo, and Fiore have proven that these equalities hold in the world
of type isomorphisms as well. They did so by exhibiting a family of functions
and their inverses. Figure 1 shows a fragment of one of these functions, written
in Standard ML, when n = 3. The type of this term fragment is displayed at
the top of the figure. It corresponds to (Au +Bu

3)v · ... → (Av +Bv
3)u · ..., where

’a corresponds to v, ’b corresponds to u, ’c corresponds to y, ’d corresponds
to x, and furthermore sum, *, and -> are type constructors for sums, products,

8

(’a -> (’b -> (’c,’d) sum, ’b -> (’d * ’d,(’d * ’c,’c * ’c) sum) sum) sum) * ...

->

(’b -> (’a -> (’c,’d) sum, ’a -> (’d * ’d,(’d * ’c,’c * ’c) sum) sum) sum) * ...

fn (p1, p2)

=> (fn x3

=> (case p2 x3

of (LEFT s5)

=> LEFT (fn x7

=> (case p1 x7

of (LEFT s9)

=> (case s9 x3

of (LEFT s12)

=> LEFT s12

| (RIGHT s13)

=> RIGHT s13)

| (RIGHT s10)

=> (case s5 x7

of (LEFT (p17, (p19, p20)))

=> (case s10 x3

of (LEFT (p24, p25))

=> RIGHT p25

| (RIGHT s23)

=> (case s23

of (LEFT (p28, p29))

=> LEFT p29

| (RIGHT (p30, p31))

=> RIGHT p20))

| (RIGHT (p32, (p34, p35)))

=> (case s10 x3

of (LEFT (p39, p40))

=> LEFT p35

| (RIGHT s38)

=> (case s38

of (LEFT (p43, p44))

=> RIGHT p43

| (RIGHT (p45, p46))

=> LEFT p46)))))

| (RIGHT s6) => RIGHT (fn x47 => ...)),

fn x111

=> (case p1 x111

of (LEFT s113) => LEFT (fn x115 => ...)

| (RIGHT s114) => RIGHT (fn x179 => ...)))

Figure 1: Isomorphism function for n = 3 (fragment)

9

and functions (i.e., exponentiations).2

For such large and interlaced functions, whether intuited or automatically
produced, it is rather daunting to show that composing them with their inverse
yields the identity function. A normalization tool that handles sums is needed.
In the presence of sums, however, normalization is known to be a non-trivial
affair [1], chiefly because of commuting conversions [27]. Type-directed partial
evaluation does handle sums, but the redundancy pointed out in Section 1.3 is
a major impediment.

3 Type-directed partial evaluation

Type-directed partial evaluation is defined as a pair of functions for each type
constructor. The first function, reify, maps a value into a representation of its
normal form. The second function, reflect, maps the representation of a normal
form into the corresponding value. Reification and reflection are already well
described in the literature [8, 10, 16, 25, 28, 29, 31, 38, 47] and therefore, rather
than repeating these descriptions, let us instead focus on the one equation of
interest: reflection at sum type.

↑t1+t2 e = shift κ in case(e, x.reset(κ(in1(↑t1 x))), y.reset(κ(in2(↑t2 y))))
where x and y are fresh

The control operator shift abstracts the evaluation context of ↑t1+t2 e and re-
locates it in each branch of a residual conditional expression. The control op-
erator reset delimits the extent of any subsequent control abstraction in the
conditional branches. The effect of this context duplication has been illustrated
in Section 1.3.

4 Memoization

4.1 What

Our aim is to avoid dead branches in the residual code by integrating the two
following transformations in our type-directed partial evaluator:

case(e, x1.M1

[
case(e, y1.N1, y2.N2)/z

]
, x2.M2)

−→ case(e, x1.M1

[
N1

[
x1/y1

]
/z

]
, x2.M2)

case(e, x1.M1, x2.M2

[
case(e, y1.N1, y2.N2)/z

]
)

−→ case(e, x1.M1, x2.M2

[
N2

[
x2/y2

]
/z

]
)

2In ML’s type language, the type constructors for products and functions are infix, and
the type constructor for sums is postfix.

10

These transformations are easily derivable from the η rule for sum types:

case (t, x1.h (in1 x1), x2.h (in2 x2)) = h t

For example, taking h = λx. case(x, x1.M1

[
case(x, y1.N1, y2.N2)/z

]
, x2.M2)

and β-reducing yields the first transformation.

4.2 How

The residual program is an abstract-syntax tree. This abstract-syntax tree is
constructed depth first, left to right. Our key idea is to maintain a global stack
accounting for conditional branches in the path from the root of the residual
program to the current point of construction.

The global stack can be implemented with a global reference and sequential
push and pop operations as the construction proceeds. It seems plausible that
the correctness of this state-based version of type-directed partial evaluation
can be approached by adding a state monad to Filinski’s formalization [25]. We
are currently looking into this issue [4].

The stack associates a flag (Left or Right) and a variable to an expression
as specified below:

↑t1+t2 e =




in1(↑t1 z) if e is globally associated to (Left, z)

in2(↑t2 z) if e is globally associated to (Right, z)

shift κ in case(e,
x.reset(κ(in1(↑t1 x))),
y.reset(κ(in2(↑t2 y))))

otherwise

where x and y are fresh

If e is not associated to anything in the stack, then we associate it to (Left, x)
when processing the consequent and to (Right, x) when processing the alterna-
tive.

4.3 Application

In the present case, memoization pays off: as illustrated in Figure 2, the output
of type-directed partial evaluation is between one and two orders of magnitude
smaller, for a residualization time that is also between one and two orders of
magnitude smaller. (We also observed that the time ML takes for inferring
the types of the isomorphism functions offsets the time taken by type-directed
partial evaluation, even in the absence of memoization.)

4.4 Common sub-expression elimination

Furthermore, we are now in position to integrate common sub-expression elimi-
nation by reflecting at function type into memo functions [32, 35]. These memo

11

4750
18984

49290

101716

182310

494 1312 2570 4268 6406 8984 12002

3 5 7 9 11 13 15

n

size

300000

200000

100000

297120

4000

3000

2000

1000

22 2 96 6
358

13

1137

22

2340

34

4036

47 70

3 5 7 9 11 13 15

normalization time
(ms)

n

The two graphs visualize the size of the residual abstract syntax
trees (the number of their nodes) and their normalization time (in
milliseconds, on a 4-processor Sparc station running SunOS 5.7
using SML/NJ Version 110.0.6) for the isomorphism functions de-
scribed in Section 2 and Figure 1, for n = 3, 5, 7, 9, 11, and 13. The
white bars account for standard type-directed partial evaluation,
and the black bars account for type-directed partial evaluation
with memoization.

Figure 2: Benchmarks

12

functions are indexed by the global stack to ensure their coherence, since a
reflected function can be applied in conditional branches with distinct lexical
scope. (In the absence of sums, the memo functions can be used uniformly.)

To illustrate common sub-expression elimination, let us come back to the
last example of Section 1.3, fn f => fn g => fn x => f (g x) (g x). Without
memo functions, residualizing it at type (a → a → b) → (c → a) → c → b yields
the following residual term where the application x1 x2 occurs twice:

fn x0 => fn x1 => fn x2 => let val r3 = x1 x2

val r4 = x0 r3

val r5 = x1 x2

in r4 r5

end

In contrast, memo functions make it possible to obtain the following residual
term, where the result r3 is used twice and thus the application x1 x2 occurs
only once:

fn x0 => fn x1 => fn x2 => let val r3 = x1 x2

val r4 = x0 r3

in r4 r3

end

5 Related work

Memoisation is a standard component of polyvariant partial evaluators that
yield mutually recursive residual programs [12, 33, 44]. Using a traditional
syntax-directed partial evaluator, however, is not a realistic option here because
our source programs are higher-order and thus require a frightful number of
binding-time improvements.

We are not aware of any similar work on type isomorphisms.
Finally, and as illustrated in Section 1.1, type-directed partial evaluation is

only one instance of normalization by evaluation. We are not aware of any other
use of memoization in other instances.

6 Conclusion and issues

We have extended type-directed partial evaluation of pure functional programs
with memoization capabilities. Primarily, memoization makes it possible to keep
track of the dynamic result of tests in conditional branches, as in Futamura’s
Generalized Partial Computation [26]. Secondarily, memoization makes it pos-
sible to integrate a form of common sub-expression elimination in type-directed
partial evaluation. Getting back to our initial motivation, memoization makes
it practical to use type-directed partial evaluation to verify type isomorphisms
in the presence of sums.

13

Acknowledgments: This article sprang from the two authors’s participa-
tion to the 30th spring school on theoretical computer science (http://www.pps.
jussieu.fr/~ecole) held in Agay, France, in March 2002, and it has benefited
from discussions with Andrzej Filinski and Samuel Lindley. Thanks are also due
to Mads Sig Ager, Peter Thiemann, and the reviewers for helpful comments, and
to Henning Korsholm Rohde for automating the generation of the isomorphism
functions.

This work is supported by the ESPRIT Working Group APPSEM (http:
//www.md.chalmers.se/Cs/Research/Semantics/APPSEM).

References

[1] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip Scott.
Normalization by evaluation for typed lambda calculus with coproducts. In
Joseph Halpern, editor, Proceedings of the Sixteenth Annual IEEE Sympo-
sium on Logic in Computer Science, pages 203–210, Boston, Massachusetts,
June 2001. IEEE Computer Society Press.

[2] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical
reconstruction of a reduction-free normalization proof. In David H. Pitt,
David E. Rydeheard, and Peter Johnstone, editors, Category Theory and
Computer Science, number 953 in Lecture Notes in Computer Science,
pages 182–199, Cambridge, UK, August 1995. Springer-Verlag.

[3] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-
free normalisation for a polymorphic system. In Edmund M. Clarke, editor,
Proceedings of the Eleventh Annual IEEE Symposium on Logic in Com-
puter Science, pages 98–106, New Brunswick, New Jersey, July 1996. IEEE
Computer Society Press.

[4] Vincent Balat. PhD thesis, PPS, Université Paris VII – Denis Diderot,
Paris, France, 2002. Forthcoming.

[5] Vincent Balat and Olivier Danvy. Strong normalization by type-directed
partial evaluation and run-time code generation. In Xavier Leroy and At-
sushi Ohori, editors, Proceedings of the Second International Workshop on
Types in Compilation, number 1473 in Lecture Notes in Computer Science,
pages 240–252, Kyoto, Japan, March 1998. Springer-Verlag.

[6] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Remarks on isomor-
phisms in typed lambda calculi with empty and sum types. In Gordon D.
Plotkin, editor, Proceedings of the Seventeenth Annual IEEE Symposium
on Logic in Computer Science, Copenhagen, Denmark, July 2002. IEEE
Computer Society Press. To appear.

[7] Gilles Barthe and Olivier Pons. Type isomorphisms and proof reuse in de-
pendent type theory. In Furio Honsell and Marino Miculan, editors, Foun-
dations of Software Science and Computation Structures, 4th International

14

Conference, FOSSACS 2001, number 2030 in Lecture Notes in Computer
Science, pages 57–71, Genova, Italy, April 2001. Springer-Verlag.

[8] Ulrich Berger. Program extraction from normalization proofs. In Marc
Bezem and Jan Friso Groote, editors, Typed Lambda Calculi and Applica-
tions, number 664 in Lecture Notes in Computer Science, pages 91–106,
Utrecht, The Netherlands, March 1993. Springer-Verlag.

[9] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization
by evaluation. In Bernhard Möller and John V. Tucker, editors, Prospects
for hardware foundations (NADA), number 1546 in Lecture Notes in Com-
puter Science, pages 117–137. Springer-Verlag, 1998.

[10] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In Gilles Kahn, editor, Proceedings of the
Sixth Annual IEEE Symposium on Logic in Computer Science, pages 203–
211, Amsterdam, The Netherlands, July 1991. IEEE Computer Society
Press.

[11] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomor-
phisms of types. Mathematical Structures in Computer Science, 2(2):231–
247, 1992.

[12] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[13] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. Mathematical Structures in Computer Science, 7:75–
94, 1997.

[14] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., ed-
itor, Proceedings of the Twenty-Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 242–257, St. Petersburg Beach,
Florida, January 1996. ACM Press.

[15] Olivier Danvy. Online type-directed partial evaluation. In Masahiko Sato
and Yoshihito Toyama, editors, Proceedings of the Third Fuji International
Symposium on Functional and Logic Programming, pages 271–295, Kyoto,
Japan, April 1998. World Scientific. Extended version available as the
technical report BRICS RS-97-53.

[16] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Tor-
ben Æ. Mogensen, and Peter Thiemann, editors, Partial Evaluation – Prac-
tice and Theory; Proceedings of the 1998 DIKU Summer School, number
1706 in Lecture Notes in Computer Science, pages 367–411, Copenhagen,
Denmark, July 1998. Springer-Verlag.

15

[17] Olivier Danvy, Morten Rhiger, and Kristoffer Rose. Normalization by eval-
uation with typed abstract syntax. Journal of Functional Programming,
11(6):673–680, 2001.

[18] Olivier Danvy and René Vestergaard. Semantics-based compiling: A case
study in type-directed partial evaluation. In Kuchen and Swierstra [34],
pages 182–197. Extended version available as the technical report BRICS-
RS-96-13.

[19] David Delahaye, Roberto Di Cosmo, and Benjamin Werner. Recherche
dans une bibliothèque de preuves Coq en utilisant le type et modulo isomor-
phismes. In PRC/GDR de programmation, Pôle Preuves et Spécifications
Algébriques, November 1997.

[20] Roberto Di Cosmo. Type isomorphisms in a type assignment framework.
In Andrew W. Appel, editor, Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Programming Languages, pages 200–210, Al-
buquerque, New Mexico, January 1992. ACM Press.

[21] Roberto Di Cosmo. Deciding type isomorphisms in a type assignment
framework. Journal of Functional Programming, 3(3):485–525, 1993.

[22] Roberto Di Cosmo. Isomorphisms of types: from λ-calculus to information
retrieval and language design. Birkhauser, 1995. ISBN-0-8176-3763-X.

[23] John Doner and Alfred Tarski. An extended arithmetic of ordinal num-
bers. Fundamenta Mathematica, 65:95–127, 1969. See also http://www.

pps.jussieu.fr/~dicosmo/Tarski/.

[24] Andrzej Filinski. A semantic account of type-directed partial evaluation. In
Gopalan Nadathur, editor, Proceedings of the International Conference on
Principles and Practice of Declarative Programming, number 1702 in Lec-
ture Notes in Computer Science, pages 378–395, Paris, France, September
1999. Springer-Verlag. Extended version available as the technical report
BRICS RS-99-17.

[25] Andrzej Filinski. Normalization by evaluation for the computational
lambda-calculus. In Samson Abramsky, editor, Typed Lambda Calculi and
Applications, 5th International Conference, TLCA 2001, number 2044 in
Lecture Notes in Computer Science, pages 151–165, Kraków, Poland, May
2001. Springer-Verlag.

[26] Yoshihiko Futamura, Kenroku Nogi, and Akihiko Takano. Essence of gen-
eralized partial computation. Theoretical Computer Science, 90(1):61–79,
1991.

[27] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, vol-
ume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989.

16

[28] Bernd Grobauer. Topics in Semantics-based Program Manipulation. PhD
thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, July
2001. BRICS DS-01-6.

[29] Bernd Grobauer and Zhe Yang. The second Futamura projection for
type-directed partial evaluation. Higher-Order and Symbolic Computation,
14(2/3):173–219, 2001.

[30] R. Gurevič. Equational theory of positive numbers with exponentiation.
Proceedings of the American Mathematical Society, 94(1):135–141, May
1985.

[31] Simon Helsen and Peter Thiemann. Two flavors of offline partial evaluation.
In Jieh Hsiang and Atsushi Ohori, editors, Advances in Computing Science
- ASIAN’98, number 1538 in Lecture Notes in Computer Science, pages
188–205, Manila, The Philippines, December 1998. Springer-Verlag.

[32] John Hughes. Lazy memo-functions. In Jean-Pierre Jouannaud, editor,
Functional Programming Languages and Computer Architecture, number
201 in Lecture Notes in Computer Science, pages 129–146, Nancy, France,
September 1985. Springer-Verlag.

[33] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice-Hall International, Lon-
don, UK, 1993. Available online at http://www.dina.kvl.dk/~sestoft/
pebook/.

[34] Herbert Kuchen and Doaitse Swierstra, editors. Eighth International Sym-
posium on Programming Language Implementation and Logic Program-
ming, number 1140 in Lecture Notes in Computer Science, Aachen, Ger-
many, September 1996. Springer-Verlag.

[35] Donald Michie. ‘Memo’ functions and machine learning. Nature, 218:19–22,
April 1968.

[36] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[37] Larry C. Paulson. ML for the Working Programmer (2nd edition). Cam-
bridge University Press, 1996.

[38] Morten Rhiger. Higher-Order Program Generation. PhD thesis, BRICS
PhD School, University of Aarhus, Aarhus, Denmark, July 2001. BRICS
DS-01-4.

[39] Mikael Rittri. Retrieving library identifiers by equational matching of types.
In Mark E. Stickel, editor, Proceedings of the 10th International Conference
on Automated Deduction, number 449 in Lecture Notes in Computer Sci-
ence, pages 603–617, Kaiserslautern, Germany, July 1990. Springer-Verlag.

17

[40] Mikael Rittri. Searching program libraries by type and proving compiler
correctness by bisimulation. PhD thesis, University of Göteborg, Göteborg,
Sweden, 1990.

[41] Mikael Rittri. Using types as search keys in function libraries. Journal of
Functional Programming, 1(1):71–89, 1991.

[42] Colin Runciman and Ian Toyn. Retrieving re-usable software components
by polymorphic type. Journal of Functional Programming, 1(2):191–211,
1991.

[43] Sergei V. Soloviev. The category of finite sets and cartesian closed cate-
gories. Journal of Soviet Mathematics, 22(3):1387–1400, 1983.

[44] Peter Thiemann. Implementing memoization for partial evaluation. In
Kuchen and Swierstra [34], pages 198–212.

[45] Jeffrey D. Ullman. Elements of ML Programming (ML 97 edition).
Prentice-Hall, 1998.

[46] Alex J. Wilkie. On exponentiation – a solution to Tarski’s high school
algebra problem. Quaderni di Matematica, 2001. To appear. Mathematical
Institute, University of Oxford (preprint).

[47] Zhe Yang. Language Support for Program Generation: Reasoning, Imple-
mentation, and Applications. PhD thesis, Computer Science Department,
New York University, New York, New York, August 2001.

18

Recent BRICS Report Series Publications

RS-02-33 Vincent Balat and Olivier Danvy. Memoization in Type-
Directed Partial Evaluation. July 2002. 18 pp. To appear in
Batory and Consel, editors,ACM SIGPLAN/SIGSOFT Confer-
ence on Generative Programming and Component Engineering,
GPCE ’02 Proceedings, LNCS, 2002.

RS-02-32 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
On Obtaining Knuth, Morris, and Pratt’s String Matcher by Par-
tial Evaluation. July 2002. To appear in ASIA-PEPM ’02.

RS-02-31 Ulrich Kohlenbach and Paulo B. Oliva.Proof Mining: A Sys-
tematic Way of Analysing Proofs in Mathematics. June 2002.
47 pp.

RS-02-30 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2002.

RS-02-29 Christian N. S. Pedersen and Tejs Scharling.Comparative
Methods for Gene Structure Prediction in Homologous Se-
quences. June 2002. 20 pp.

RS-02-28 Ulrich Kohlenbach and Laurenţiu Leuştean. Mann Iterates
of Directionally Nonexpansive Mappings in Hyperbolic Spaces.
June 2002. 33 pp.

RS-02-27 AnnaÖstlin and Rasmus Pagh.Simulating Uniform Hashing
in Constant Time and Optimal Space. 2002. 11 pp.

RS-02-26 Margarita Korovina. Fixed Points on Abstract Structures with-
out the Equality Test. June 2002.

RS-02-25 Hans Ḧuttel. Deciding Framed Bisimilarity. May 2002. 20 pp.

RS-02-24 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Static Analysis for Dynamic XML. May 2002.
13 pp.

RS-02-23 Antonio Di Nola and Laurent¸iu Leuştean. Compact Represen-
tations of BL-Algebras. May 2002. 25 pp.

RS-02-22 Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valen-
cia. On the Expressive Power of Concurrent Constraint Pro-
gramming Languages. May 2002. 34 pp.

RS-02-21 Zolt́an Ésik and Werner Kuich. Formal Tree Series. April 2002.
66 pp.

