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Comparative methods for gene structure prediction

in homologous sequences

Christian N. S. Pedersen∗† Tejs Scharling∗

June, 2002

Abstract

The increasing number of sequenced genomes motivates the use of

evolutionary patterns to detect genes. We present a series of compar-

ative methods for gene �nding in homologous prokaryotic or eukaryotic

sequences. Based on a model of legal genes and a similarity measure be-

tween genes, we �nd the pair of legal genes of maximum similarity. We

develop methods based on genes models and alignment based similarity

measures of increasing complexity, which take into account many details

of real gene structures, e.g. the similarity of the proteins encoded by the

exons. When using a similarity measure based on an exiting alignment,

the methods run in linear time. When integrating the alignment and pre-

diction process which allows for more �ne grained similarity measures,

the methods run in quadratic time. We evaluate the methods in a series

of experiments on synthetic and real sequence data, which show that all

methods are competitive but that taking the similarity of the encoded

proteins into account really boost the performance.

1 Introduction

At the molecular level a gene consists of a length of DNA which encodes a

protein, or in some cases, a tRNA or rRNA molecule. A gene on a prokaryotic

genomic sequence is a stretch of nucleotides �anked by start and stop codons.

A gene on a eukaryotic genomic sequence is also a stretch of nucleotides �anked

by start and stop codons, but it is further divided into an alternating sequence

of blocks of coding nucleotides (exons) and non-coding nucleotides (introns).

Each intron starts at a donor site and ends at an acceptor site.

∗Bioinformatics Research Center (BiRC), www.birc.dk, funded by Aarhus University Re-
search Fundation, Department of Computer Science, University of Aarhus, Ny Munkegade,
8000 Århus C, Denmark. E-mail: {cstorm,tejs}@birc.dk

†Basic Research In Computer Science (BRICS), Center of the Danish National Re-
search Foundation, Department of Computer Science, University of Aarhus, Ny Munkegade,
8000 Århus C, Denmark.
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Identifying the location and structure of genes in the genome of an or-

ganism is an important task, and a lot of work have been devoted to develop

e�cient and good computational gene �nders. Many methods focus on con-

structing signal sensors for identifying e.g. possible acceptor and donor site

positions in eukaryotic sequences, and context sensors for classifying smaller

sequences as being e.g. coding or non-coding. Constructing such signal and

context sensors based on statistics of known genes, e.g. nucleotides frequencies

or shared motifs, have lead to various methods, see [6] for an overview. Neu-

ral networks have been successfully used in signal sensors, e.g. NetGene [4],

and hidden Markov models have been used in context sensors, and to make

sure that the predicted gene structures obey a proper gene syntax, e.g. HMM-

gene [14] and Genscan [5]. The increasing number of sequenced genomes has

lead to methods which use sequence homology and evolutionary patterns as

context sensors and guidelines for identifying genes. These comparative gene

�nders search for genes by comparing homologous DNA sequences looking for

similar segments which can be assembled into genes, or by using proteins from

related organisms to search for gene structures which encode similar proteins,

see e.g. [1, 2, 3, 8, 13, 16].

In this paper we consider a simple but �exible approach to comparative

gene �nding: Given two homologous DNA sequences, we identify the most

likely pair of orthologous genes based on a model of legal gene structures and

a similarity measure between genes. For eukaryotic gene pairs, we furthermore

identify the most likely exon structures. We develop methods based on gene

models and alignment based similarity measures of increasing complexity which

allow us to take into account many details of real gene structures that are often

neglected in comparative methods. E.g. that insertions and deletions in exons

do not only happen at codon boundaries, that stop codons do not occur in

exons, and that improper modeling of insertion and deletions in exons may

produce stop codons. We develop methods where the gene similarity measure

is based on an existing alignment of the sequences, as well as methods where

the gene similarity measure is the optimal score of an alignment of a pair of

legal genes, which is computed as an integral part of the prediction process.

Using an existing alignment is simple but only allows us to assign similarity

to legal gene pairs which are aligned by the given alignment. Computing the

alignments of legal gene pairs as an integral part of the prediction process is

more complicated but allows us to assign similarity of all legal gene pairs. In

both cases it is possible to employ ideas from existing alignment score func-

tions, which we use this to construct a gene similarity measure that explicitly

models that the concatenated exons encode a protein by using a DNA- and

protein-level score function as proposed by Hein in [10]. All our methods can

be implemented using dynamic programming such that gene �nding using a

similarity measure based on an existing alignment takes time proportional to
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the number of columns in the given alignment, and gene �nding using a similar-

ity measures based on integrating the alignment and prediction process takes

time O(nm), where n and m are the lengths of the two sequences.

To evaluated the quality of the develop methods, we have performed a series

of experiments on both simulated and real pairs of eukaryotic sequences which

show that all methods are competitive. The best results are obtained when

integrating the alignment and prediction process using a similarity measure

which takes the encoded proteins into account. In all the experiments we used

very simple pattern based signal sensors to indicate the possible start and stop

positions of exons and introns. An increased performance might be achieved

by using better signal sensors, e.g. splice site detectors such as NetGene [4], as

a preprocessing step. However, since our focus is to examine the quality of our

pure comparative approach to gene �nding, we do not consider this extension

in this paper. The comparative approach can also be extended by comparison

of multiple sequences which is beyond the scope of this paper.

The rest of the paper is organized as follows. In Section 2 we introduce

legal gene structures and similarity measures. In Section 3 we present our basic

methods for gene �nding in prokaryotic and eukaryotic sequences. In Section 4

we consider a number of extensions of the basic methods. In Section 5 we

evaluate our methods through a series of experiments on synthetic and real

sequence data.

2 Preliminaries

Let a = a1a2 · · · an and b = b1b2 · · · bm be two homologous genomic sequences

which contain a pair of orthologous genes of unknown structure. We want to

identify the most likely pair of genes based on a model of legal gene structures

and a gene similarity measure between pairs of legal genes.

Model of legal gene structures An important feature in biological and

computational gene identi�cation is functional signals on the genomic sequence.

Typically a signal is made up of a certain pattern of nucleotides, e.g. the

start codon atg, and these signal �anks the structural elements of the gene.

Unfortunately most signals are not completely determined by a simple two or

three letter code (not even the start-codon). Various (unknown) con�gurations

of nucleotides in the neighborhood determine if e.g. atg is a start codon. We

leave the discussion of how to identify potential signals for Section 5, and settle

here with a more abstract de�nition of the relevant signals. We consider four

types of signals: start codons, stop codons, acceptor sites, and donor sites.

Donor and acceptor sites are only relevant for eukaryotic sequences. Potential

start and stop codons on sequence a are given by the indicator variables Gstart
a,i

and Gstop
a,i , where Gstart

a,i is true when ai is the last nucleotide of a potential

3



a :
α︷ ︸︸ ︷

b : ︸ ︷︷ ︸
β

Figure 1: We want to �nd a pair of legal prokaryotic genes, α and β, of highest
similarity. A legal prokaryotic gene is a substring �anked by certain signals.

In the simplest case these signals can be modeled as just the start and stop

codons.

a :

α︷ ︸︸ ︷
α1︷ ︸︸ ︷ α2︷ ︸︸ ︷ · · ·

αk︷ ︸︸ ︷
b : ︸ ︷︷ ︸

β1

︸ ︷︷ ︸
β2

· · · ︸ ︷︷ ︸
β`︸ ︷︷ ︸

β

Figure 2: We want to �nd a pair of legal eukaryotic genes, α and β, of highest
similarity, and their exon structures α1, . . . , αk and β1, . . . , β`. A legal eukary-

otic gene is a substring �anked by certain signals. In the simplest case these

signals can be modeled as just the start and stop codons. A legal exon structure

is a sequence of substrings of the gene ful�lling that the remaining substrings

of the gene, the introns, all start at a donor site and end at an acceptor site.

start codon and Gstop
a,i is true when ai is the �rst nucleotide of a potential

stop codon. Similarly, potential donor and acceptor sites are given by the

indicator variables Da
i and Aa

i , where Da
i is true when ai is the �rst nucleotide

of a potential donor site, and Aa
i is true when ai is the last nucleotide of a

potential acceptor site.

A legal prokaryotic gene on a genomic sequence a is a substring α =
ai · · · aj , where Gstart

a,i−1 and Gstop
a,j+1 are true. See Figure 1. Similarly, a legal

eukaryotic gene on a genomic sequence a is a substring α = ai · · · aj, where

Gstart
a,i−1 and Gstop

a,j+1 are true, that is divided into substrings which are alternating

labeled intron and exon, such that each intron is a substring ah · · · ak, for some

i ≤ h < k ≤ j, where Da
h and Aa

k are true. The exon structure of a eukaryotic

gene α is the sequence of substrings α1, α2, . . . , αk that are labeled exons. See

Figure 2. In Section 4 we re�ne our de�nition of legal gene structures to ex-

clude gene structures which contain in-frame stop codons, and gene structures

where the coding nucleotides do not constitute an integer number of codons,

i.e. a number of coding nucleotides which is not a multi-plum of three.
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Gene similarity measures Let Sim(α, β) be a similarity measure which

quanti�es the similarity between two genes α and β. We use two alignment

based approaches to de�ne Sim(α, β). The �rst approach is to use an existing

alignment. Let (â, b̂) be an alignment of a and b, where â and b̂ is the �rst and
second row of the alignment matrix respectively. We say that two substrings

α and β of a and b respectively are aligned by (â, b̂) if there is a sub-alignment

(α̂, β̂) of (â, b̂), i.e. a consecutive block of columns, which is an alignment of

α and β. We de�ne the similarity of α and β, Sim(α, β), as the score of

the alignment (α̂, β̂) induced by (â, b̂) cf. a given alignment score function.

Note that this only de�nes the similarity of substrings which are aligned by

(â, b̂). The advantage of de�ning the similarity measure based on an existing

alignment is of course that we can use any existing and well proven alignment

method to construct the alignment. A drawback is that it only de�nes the

similarity of substrings aligned by (â, b̂), which implies that we cannot consider

the similarity of all pairs of possible legal gene structures. To circumvent this

problem, we as the second approach simply de�ne the similarity of α and β as

the score of an optimal alignment of α and β.

3 Methods

In this section we present methods for solving the following problem. Given

two sequences a = a1a2 · · · an and b = b1b2 · · · bm, �nd a pair of legal genes α
and β in a and b respectively such that Sim(α, β) is maximized. For eukaryotic

genes we also want to �nd their exon structures. For ease of presentation, the

methods in this section do not take into account that in frame stop codons

must not occur in exons, that the combined length of exons must be a multiple

of three, that a codon can be split by an intron, or that the exons encode a

protein. These extensions are considered in Section 4.

To de�ne Sim(α, β) we use a column based alignment score which allows

us to assign scores to alignments of α and β by summing the score of each col-

umn in the alignment. The assumption of coding regions being well-conserved

and non-coding regions being divergent can be expressed in two probabilistic

models, one for coding alignment columns P (x
y ) = pxy, and one for non-coding

alignment columns P (x
y ) = qxqy, where qx is the overall probability of ob-

serving x in an alignment. Note that an alignment column can represent an

insertion or deletion, i.e. either x or y can be a gap. Since the chance of in-

serting or deleting a nucleotide depends on the background frequency of the

nucleotide but not its kind, we set px− = p−x = σqx, for some constant σ.
We formulate these models in terms of their log-odds ratio, and use this as a

scoring scheme.

We observe that the log-odds ratio of a non-coding column is− log qxqy

qxqy
= 0.

The log-odds ration for a coding column consisting of two nucleotides is de-
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â =
b̂ =

a

−
g

−
t

g

c

c

start︷︸︸︷
a

a

t

t

g

g

exon︷ ︸︸ ︷
c

c

a

−
a

−
t

−
a

t

c

c

intron︷ ︸︸ ︷
g

−
t

−
t

−
a

−
g

−
−
g

−
t

−
a

−
g

exon︷︸︸︷
c

g

t

t

c

c

stop︷ ︸︸ ︷
t

t

a

g

a

a

a

t

g

c

g

a

−
g

−
a

log-odds ratio = δc,c + 3 · λ + δa,t + δc,c + γ + 9 · 0 + γ + δc,g + δt,t + δc,c

Figure 3: Calculating the log-odds ratio of an alignment of two eukaryotic

sequence with known gene structures. Only coding columns and switching

between coding and non-coding models contribute to the score. The score of

non-coding columns are zero.

scribed by δx,y = − log pxy

qxqy
, and a column including a gap by λ = − log σ

q− .

Hence, the cost of a coding column is given by a substitution cost δx,y and a

gap cost λ, and the cost of a non-coding column is zero. Switching between the

coding and non-coding models is penalized by γ which denotes the probability

(in log-odds ratio) of observing a splice-site. In Sect. 4 we consider exten-

sions of this simple score function. Given an alignment (â, b̂) and a known

gene structure, its log-odds ratio can be calculated by summing over columns

aligning the genes, see Fig. 3.

Finding prokaryotic genes

When working with prokaryotic sequences a and b, we know that legal genes

are substrings of coding nucleotides. Hence, we only have to use the coding

model when computing the similarity between possible pairs of genes.

Prokaryotic Method 1 � Using an existing alignment Let A = (â, b̂)
be an alignment of a and b. A sub-alignment Ai,j from column i to j is an

alignment of the substrings âi · · · âj and b̂i · · · b̂j with gaps removed. We denote

these aligned substrings α = aa(i) · · · aa(j) and β = bb(i) · · · bb(j) respectively,

where a(·) and b(·) are functions which translate column indices in A to string

indices in a and b respectively. We say that Ai,j is a legal sub-alignment if the

aligned substrings α and β are legal genes, i.e. if Gstart
a(i)−1,b(i)−1 and Gstop

a(j)+1,b(j)+1

are true. The score Sim(âi · · · âj , b̂i · · · b̂j) of Ai,j is the sum of the score of each

of the j − i + 1 columns. We want to �nd a legal sub-alignment of maximum

score.

We de�ne S(i) = maxh<i Sim(âh · · · âi, b̂h · · · b̂i) where Gstart
a(h)−1,b(h)−1 is

true, i.e. S(i) is the maximum score of a subalignment ending in column i
of substrings starting at legal gene start positions. Since our alignment score

is column based, we can compute S(i) using dynamic programming based on
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the recursion:

S(i) = max

{
S(i − 1) + δâi,b̂i

0 if Gstart
a(i),b(i)

i′′ = argmax
i

{
S(i) | Gstop

a(i)+1,b(i)+1

} (1)

where i′′ is the index of the last column in a legal sub-alignment of maximal

score. By �nding the maximum i′ < i′′ where Si′ = 0 and Gstart
a(i′),b(i′) is true,

we have that Ai′+1,i′′ is a legal sub-alignment of maximal score, and that the

corresponding pair of substrings is a pair of legal genes of maximum similarity.

Computing S(i) and �nding i′ and i′′ takes time proportional to the number

of columns in A, i.e. the total running time is O(n + m).

Prokaryotic Method 2 � Maximizing over all possible gene pairs We

de�ne the similarity Sim(α, β) between legal genes α and β as the score of an

optimal alignment of α and β using the column based alignment score function

introduced above. Finding a pair of legal genes of maximum similarity is similar

to the local alignment problem [18] with the additional condition that we only

maximize the similarity over pairs of substrings which are legal genes.

We de�ne S(i, j) = maxh<i,k<j Sim(ah · · · ai, bk · · · bj) where Gstart
h−1,k−1 is

true, i.e. S(i, j) is the maximum similarity of a pair of substrings ending in

positions i and j and starting at legal gene start positions. Since our similarity

measure is a column based alignment score, we can compute S(i, j) using

dynamic programming based on the recursion:

S(i, j) = max




S(i − 1, j − 1) + δai,bj

S(i − 1, j) + λ

S(i, j − 1) + λ

0 if Gstart
i,j

(i′′, j′′) = argmax
i,j

{
S(i, j) | Gstop

i+1,j+1

}
(2)

where (i′′, j′′) are the last positions in a pair of legal genes of maximum similar-

ity. We can �nd the start positions of these genes by back-tracking through the

recursive computation of S(i′′, j′′) searching for the maximum indices i′ < i′′

and j′ < j′′ where S(i′, j′) = 0 and Gstart
i′,j′ is true. The substrings ai′+1 · · · ai′′

and bj′+1 · · · bj′′ is by construction legal genes of maximum similarity. Com-

puting S(i, j) and �nding (i′′, j′′) takes time O(nm) using dynamic program-

ming, back-tracking through the recursive computation to �nd (i′, j′) takes

time O(n + m), i.e. the total running time is O(nm). The space consumption

is O(nm) but can be reduced to O(n + m) using the technique in [12].
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Finding eukaryotic genes

When working with eukaryotic sequences a and b, we not only want to �nd a

pair of legal genes α and β of highest similarity, but also their most likely exon

structures. We solve this problem by making it possible to switch between

the coding and non-coding score model at splice-sites when computing the

similarity between possible pairs of genes.

Eukaryotic Method 1 � Using an existing alignment Let A = (â, b̂)
be an alignment of a and b. A legal sub-alignment Ai,j is de�ned as above.

The score of a column in Ai,j is computed by the coding or non-coding score

model cf. these rules: (1) the score of the �rst column, i.e. column i, can be

computed using the coding model. (2) the score of column k can be computed

using the score model used to compute the score of column k−1. (3) the score
of column k can be computed in the non-coding model if Da

a(k) and Db
b(k) are

true, i.e. if we are at a donor site. (4) the score of column k can be computed

in the coding model if Aa
a(k)−1 and Ab

b(k)−1 are true, i.e. if we have just passed

an acceptor site.

The score Sim(âi · · · âj, b̂i · · · b̂j) of Ai,j is de�ned as the sum of the score

of each of the j + i − 1 columns maximized over all possible divisions into

coding and non-coding columns. The division of Ai,j into coding or non-coding

columns which yields the maximum score also yields the exon structures of

the aligned substrings. We want to �nd a legal sub-alignment of maximum

score and the corresponding division into coding and non-coding columns. We

de�ne S(i) = maxh<i Sim(âh · · · âi, b̂h · · · b̂i) where Gstart
a(h)−1,b(h)−1 is true, and

column i is either a coding column or the last column in an intron, i.e. S(i) is
the maximum score of a sub-alignment ending in column i of substrings starting
at legal gene start positions and ending in an exon or at an acceptor site. We

can compute S(i) using dynamic programming based on the recursions:

I(i) = max

{
I : I(i − 1
I : S(i − 1) + γ if Da

a(i) ∧ Db
b(i)

S(i) = max




E : S(i − 1) + δâi,b̂i

I : I(i − 1) + γ if Aa
a(i) ∧ Ab

b(i)

0 if Gstart
a(i),b(i)

i′′ = argmax
i

{
S(i) | Gstop

a(i)+1,b(i)+1

}

(3)

where i′′ is the index of the last column in a legal sub-alignment of maxi-

mal score. Recall that the constant γ is the probability (in log-odds ratio)

of observing a splice-site. We can �nd the start positions of these genes by
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back-tracking through the recursive computation of S(i′′) searching for the

maximum index i′ < i′′ where S(i′) = 0 and Gstart
a(i′),b(j′) is true. By construc-

tion the sub-alignment Ai′+1,i′′ is a legal sub-alignment of maximal score, and

the corresponding pair of substrings is a pair of legal genes of maximum sim-

ilarity. The exon structures of these genes is determined while back-tracking,

where the annotation, E or I, of each applied recursion indicates if the cor-

responding column in Ai′+1,i′′ is coding or non-coding. Computing S(i) and

�nding i′ and i′′ takes time proportional to the number of columns in A, i.e.

the total running time is O(n + m).

Eukaryotic Method 2 � Maximizing over all possible gene pairs We

de�ne the similarity Sim(α, β) between legal genes α and β as the score of an

optimal alignment of α and β, where we use the coding and non-coding score

models, and make it possible to switch between them at donor and acceptor

sites. Since the non-coding score model sets the score of a non-coding column

to zero, we can ignore the possibility of non-coding substitution columns when

computing an optimal alignment. Hence, we only have to consider alignments

where non-coding nucleotides are in gap columns cf. the alignment in Figure 3.

Intuitively, this approach makes it possible to skip introns by allowing free gaps

starting at a donor site and ending at an acceptor site. We de�ne S(i, j) =
maxh<i,k<j Sim(ah · · · ai, bk · · · bj) where Gstart

h−1,k−1 is true and ai and bj are

either coding or the last symbols in introns. Hence, S(i, j) is the maximum

similarity of a pair of substrings ending in positions i and j and starting at legal
gene start positions, that would be a pair of legal genes if Gstop

i+1,j+1 was true.

We can compute S(i, j) using dynamic programming based on the recursions:

Ia(i, j) = max
{ I : Ia(i − 1, j)

I : S(i − 1, j) + γ if Da
i

Ib(i, j) = max
{ I : Ia(i, j − 1)

I : S(i, j − 1) + γ if Db
j

S(i, j) = max




E : S(i − 1, j − 1) + δai,bj

E : S(i − 1, j) + λ

E : S(i, j − 1) + λ

I : Ia(i − 1, j) + γ if Aa
i

I : Ib(i, j − 1) + γ if Ab
j

0 if Gstart
i,j

(i′′, j′′) = argmax
i,j

{
S(i, j) | Gstop

i+1,j+1

}

(4)
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where Ia(i, j) and Ib(i, j) is the maximum similarity of a pair of substrings

ending in positions i and j inside an intron in sequence a and b respectively,

and starting at legal gene start positions. The pair (i′′, j′′) are the last po-

sitions in a pair of legal genes of maximum similarity. We can �nd the start

positions of these genes by back-tracking through the recursive computation

of S(i′′, j′′) searching for the maximum indices i′ < i′′ and j′ < j′′ where
S(i′, j′) = 0 and Gstart

i′,j′ is true. The substrings ai′+1 · · · ai′′ and bj′+1 · · · bj′′

is by construction legal genes of maximum similarity. The exon structures of

these genes is determined when back-tracking where the annotation, E or I,
of each applied recursion indicates if the symbols in the corresponding column

are coding or non-coding. The back-tracking also yields an optimal alignment

of the identi�ed gene pair. Similar to Prokaryotic Method 2, the time and

space complexity of the method is O(nm), where the space consumption can

be improved to O(n + m).

4 Extensions

The model of legal gene structures and the coding and non-coding score func-

tions presented in the previous sections are deliberately made simple. How-

ever, there are some obvious extensions to both of them. The codon structure

is an important feature of gene structures. The coding parts of a gene can

be completely divided into subsequent triplets of nucleotides denoted codons.

Each codon encodes an amino acid which evolves slower than its underlying

nucleotides. If a codon is a stop codon the translation, and thus the gene,

must end. Moreover, the codon structure implies that deleting a number of

nucleotides which is not a multi-plum of three changes all encoded amino acids

downstream of the deletion (called a frame shift). This is believed to be a very

rare event. The coding score function should describe a more evolved treat-

ment of evolutionary events, e.g. take changes on the encoded amino acids into

account when scoring an event, and allow insertion/deletion of consecutive

nucleotides.

Taking the encoded amino acids into account The alignment score

function by Hein in [11] is a reasonable and fairly simple way of taking the

protein level into account. The idea is to think of an amino acid encoded as

being �attached� to the middle nucleotide of the codon encoding it. When

matching two middle nucleotides a2 and b2, i.e. nucleotides in position two in

predicted codons a1a2a3 and b1b2b3, the similarity between the amino acids A
and B encoded by these codons is taken into account. For example, if δa,b

is the similarity between two nucleotides and ∆A,B is the similarity between

two amino acids, then the cost of matching two middle nucleotides a2 and b2

in codons encoding amino acids A and B is δa2,b2 + ∆A,B, while the cost of

10



matching any two non-middle nucleotides ai and bj is δai,bj
. By keeping track

of the codon-position of the current nucleotides, we can distinguish the middle

nucleotide from the other two and thus incorporate ∆.

Avoiding stop codons and obeying length requirements Keeping track

of the codon-position as explained above also enables us to identify and exclude

possible stop codons. Furthermore by only allowing genes to end in nucleotides

that are in codon position three, we ensure that the total length of the coding

regions is a multi-plum of three.

Avoiding frame shifts Frame shifts can be avoided if we only allow gaps to

come in triplets. That is to consider three columns in an alignment at the time

when producing gaps in coding regions. When working on a given alignment

there is however the problem that frame shifts may be introduces by errors in

the preceding alignment step. If we forbid these frame shifts, we might discard

the true genes because of an alignment error. Instead we can penalize �frame

shifts� (alignment errors) with an additional cost φ.

To implement the above three extensions we let p ∈ {1, 2, 3} denote the codon-

position of the nucleotides in the current alignment column, and let the op-

erator 	 be de�ned as p 	 1 = p − 1 except 1 	 1 = 3. Adding this extra

bookkeeping and incorporating the extensions to the Prokaryotic Method 1

yields the recursion:

Sp(i) = max




Sp	1(i − 1) + δâi,b̂i
if p 6= 2 ∧ âi, b̂i nucleotides

Sp	1(i − 1) + δâi,b̂i
+ ∆Aa(i),Bb(i) if p = 2 ∧ âi, b̂i nucleotides

Sp	1(i − 1) + λ + φ if âi ∨ b̂i gaps

Sp(i − 3) + 3λ if âi−2 · · · âi ∨ b̂i−2 · · · b̂i gaps

0 if p = 3 ∧ Gstart
a(i),b(i)

i′′ = argmax
i

{
S3(i) | Gstop

a(i)+1,b(i)+1

}
(5)

Adding the same three extensions to the Eukaryotic Method 2 is strait forward.

Since we produce the alignment ourself, we can avoid frame shifts by producing

gap columns in triplets only. We get the following set of recursions:

11



Ia
p (i, j) = max

{ I : Ia
p (i − 1, j)

I : Sp(i − 1, j) + γ if Da
i

Ib
p(i, j) = max

{ I : Ia
p (i, j − 1)

I : Sp(i, j − 1) + γ if Db
j

Sp(i, j) = max




E : Sp	1(i − 1, j − 1) + δai,bj if p 6= 2
E : Sp	1(i − 1, j − 1) + δai,bj + ∆Ai,Bj if p = 2
E : Sp(i − 3, j) + 3λ

E : Sp(i, j − 3) + 3λ

I : Ia
p (i − 1, j) + γ if Aa

i

I : Ib
p(i, j − 1) + γ if Ab

j

0 if Gstart
i,j ∧ p = 3

(i′′, j′′) = argmax
i,j

{
S3(i, j) | Gstop

i+1,j+1

}
(6)

The implementations of our gene �nding method used for experiments in Sec-

tion 5 incorporate the above three extensions plus the following two extensions.

A�ne gap-cost In the probabilistic model underlying our coding score

model it was assumed that gap-symbols, re�ecting insertions or deletions of

nucleotides through evolution, were independent. However, it is a well-known

fact that insertions and deletions often involve blocks of nucleotides, thus im-

posing a dependence between neighboring gaps. In the alignment literature an

a�ne gap-cost function is often used to model this aspect of evolution. A�ne

gap cost means that k consecutive gap-columns has similarity µ + λ · k instead

of λ · k, i.e. probability pgap · (px,−)k instead of (px,−)k cf. [7]. By using the

technique by Gotoh in [9] we can incorporate a�ne gap cost in all our methods

without increasing the asymptotical time complexity.

Keeping track of codons across exon boundaries In a eukaryotic gene,

a codon can be split between two exons. This implies that nucleotides in a

codon not necessarily are consecutive in the sequence as there between any

two nucleotides in a codon can be a number of nucleotides forming an intron.

The problem of keeping track of the codon-position of the current nucleotide

becomes more di�cult when this is possible. It can be solved by doing some

additional bookkeeping on the di�erent ways to end an exon (with respect to

nucleotides in an possibly un�nished codon). For example, the recursion for

Ia
1 (i, j) can be divided into sixteen recursions Ia

1,x,y(i, j), for x, y ∈ {a, g, t, c},
where each represents a di�erent way for two exons to end with one �hanging�
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nucleotide each. Similarly, Ia
2,x1x2,y1y2

(i, j) represent the cases where each exon

has two hanging nucleotides. Handling hanging nucleotides properly is a tech-

nically hard extension, but it only increases the running time of our methods

by a constant factor.

Adding all �ve extensions to the Eukaryotic Method 2 yields the set of recur-

sions below. Again the pair (i′′, j′′) is the last positions in a pair of legal genes

of maximum similarity and we can �nd the start positions of these genes by

back-tracking through the recursive computation of S(i′′, j′′).

Ia
p,x,y(i, j) =max

{ I : Ia
p,x,y(i − 1, j)

I : Sp,x,y(i − 1, j) if Da
i

Ib
p,x,y(i, j) =max

{
I : Ib

p,x,y(i, j − 1)
I : Sp,x,y(i, j − 1) if Db

j

Sins
p,x (i, j) =max




E : Sins
p,x (i, j − 3) +3λ

E : max
y

S1,x,y (i, j − 3) +3λ + µ if p = 1

E : S2,x,bj−2(i, j − 3) +3λ + µ if p = 2
E : S3,ε,ε (i, j − 3) +3λ + µ if p = 3

Sdel
p,y (i, j) =max




E : Sdel
p,y (i − 3, j) +3λ

E : max
x

S1,x,y (i − 3, j) +3λ + µ if p = 1

E : S2,ai−2,y(i − 3, j) +3λ + µ if p = 2
E : S3,ε,ε (i − 3, j) +3λ + µ if p = 3

Smch
p,x,y (i, j)=max




E : S3,ε,ε (i − 1, j − 1) +δai,bj if p = 1
E : max

x′,y′
S1,x′,y′ (i − 1, j − 1) +δai,bj + ∆x′aix,y′bjy if p = 2

E : S2,ai,bj (i − 1, j − 1) +δai,bj if p = 3

Sp,x,y(i, j) =max




Smch
p,x,y (i, j)

Sins
p,x (i, j) if p = 1 ⇒ y = bj

Sdel
p,y (i, j) if p = 1 ⇒ x = ai

I : Ia
p,x,y(i − 1, j) + γ if Aa

i

I : Ib
p,x,y(i, j − 1) + γ if Ab

j

0 if Gstart
i,j ∧ p = 3

(i′′, j′′) = argmax
i,j

{
S3,ε,ε(i, j) | Gstop

i+1,j+1

}
(7)

To model a�ne gap-cost we divide S into Sins
p,x , Sdel

p,y and Smch
p,x,y which are

conditioned by the last column that must represent an insertion, a deletion
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or a match respectively. As in (6) we condition all recursions with the codon

position p of the last coding column. But we also condition with the content

of the codons �under construction�. If p = 1 we let x and y represent the

�rst nucleotide in the two codons under construction, i.e. S1,x,y(i, j) is the

maximum similarity of a pair of substrings ending in positions i and j inside

an exon in codon position one in sequence a and b, where x and y is the last

coding nucleotide in a[1 .. i] and b[1 .. j] respectively. On the other hand, if

p = 2 we let x and y be the assumed last nucleotides in the two codons under

construction, i.e. S2,x,y(i, j) is the maximum similarity of a pair of substrings

ending in positions i and j inside an exon in codon position two in sequence a
and b, where x and y is the assumed next coding nucleotide a and b respectively.
If p = 3 the codons are completed and we let both x and y be ε.

By keeping track of the two codons under constructions using x and y as

described above, we can incorporate the protein level score function. When

matching two nucleotides in codon position two (p = 2), we can easily consider

all possible last codons by iterating over the possible choices of the �rst and last

nucleotides. This is done in the recursion Smch
2,x,y (i, j) = maxx′,y′ S1,x′,y′(i−1, j−

1) + δai,bj
+ ∆x′aix,y′bjy. Keeping track of the two codons under construction

also make it possible to avoid stop codons in exons.

5 Experiments

To evaluate the quality of our comparative gene �nding method, we examine

the performance of eukaryotic gene �nding based on Eukaryotic Method 1 and

Eukaryotic Method 2 including the extensions of Section 4, on two di�erent

data sets; a set of simulated sequence pairs, and a set of human-mouse se-

quence pairs. The performance of the two methods is evaluated using two

di�erent alignment score functions; one score function which only considers

the nucleotide level, and one score function which also incorporates the pro-

tein level. In total we thus examine four di�erent implementations of eu-

karyotic gene �nding. The implementations are available as GenePair via

http://www.birc.dk/Software/.

Data Set 1 � Simulated sequences The �rst data set consists of a time

series of simulated sequence pairs. For steps of 0.1 in the time interval [0 ; 2] we

simulate 20 sequence pairs. Each simulation starts with a random generated

DNA-sequence (1000 nucleotides in length) with uniform background frequen-

cies. Four regions (total length of about 250 nucleotides) of the sequence

are exons and thus bounded with appropriate signals, i.e. start/stop-codons

and splice sites. Given a time parameter two copies of the sequence undergo

a Jukes-Cantor substitution process and a insertion/deletion Poisson-process

with geometrical length distribution. Non-synonymous mutations changing
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Signal Pattern De�nition

Start codon atg Gstart
x,i = {i|xi−3xi−2xi−1 = atg}

Stop codon taa, tag, tga Gstop
x,i = {i|xi+1xi+2xi+3 ∈ {taa,tag,tga}}

Donor site gt Dx
i = {i|xixi+1 = gt}

Acceptor site ag Ax
i = {i|xi−1xi = ag}

Table 1: Signals are de�ned as short patterns of nucleotides.

amino acid σ to σ′ are kept with probability exp(−d(σ, σ′)/c), where d is the

Grantham distance matrix from PAML [19]. The parameter c lets us control

the dN/dS ratio, i.e. the di�erence between the evolutionary patterns in cod-

ing and non-coding regions. Mutations that change signals or introduce frame

shifts are not allowed. Simulation parameters are chosen such that evolution

time 1 yields coding regions with a mutation rate of 0.25 per nucleotide, a

dN/dS ratio of 0.20, and 20 per cent gaps.

Data Set 2 � Human and mouse sequences The second data set is the

ROSETTA gene set from [2], which consists of 117 orthologous sequence pairs

from human and mouse. The average length of the sequences is about 4750

nucleotides of which 900 are coding, and on average there are four exons per

gene. Estimates in [17] give a dN/dS ratio of 0.12 and a mutation rate of 0.22

per nucleotide.

Parameters Parameter estimation is a crucial aspect of most gene �nding

and alignment methods. Since our gene �nding methods are based on proba-

bilistic models of sequence evolution, we can do maximum likelihood estimation

of the parameters if the true relationship between data are known, i.e. if the

alignments and gene structures of the sequence pairs are known. This is the

case for the simulated sequence pairs in Data Set 1. For each time step we

simulate an additional 100 sequence pairs for the purpose of parameter estima-

tion. The situation is more subtle when working with the human and mouse

sequences in Data Set 2 since the alignments and gene structures are unknown.

Usually the evolutionary distance between two genes is estimated and a corre-

sponding set of prede�ned parameters are used, e.g. PAM similarity matrices.

For our experiments, we use the parameters estimated in [2].

Signals Much work is concerned about identifying functional sites of a gene,

and several customized programs exist for identifying particular sites, see

e.g. [15]. In our gene �nding methods, we need to identify the start/stop

codons and the donor/acceptor sites of a gene. We could perform this iden-
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Figure 4: DNA level score: Nucleotide sensitivity and speci�city of the

predictions made on simulated sequences. The alignment score function only

considers the nucleotide level. Each data point is the average over 20 predic-

tions.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Length of evolution

Sensitivity

true
integrated
computed

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Length of evolution

Specificity

true
integrated
computed

Figure 5: DNA and protein level score: Nucleotide sensitivity and speci-

�city of the predictions made on simulated sequences. The alignment score

function also considers the protein level. Each data point is the average over

20 predictions.

ti�cation by using a customized program on the genes in question to predict

the positions of potential signals, i.e. determine the sets Dx
i , Ax

i , Gstart
x,i and

Gstop
x,i . However, this approach would make it di�cult to compare the accuracy

of our gene �nding method with the accuracy of other methods, since a good

prediction might be the result of a good signal detection by the customized

program. To avoid this problem, we use a very general and simple de�nition

of functional sites, where each site is just a pattern of two or three nucleotides

as summarized in Table 1.
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Figure 6: Correlation coe�cient of predictions made on the time series of

simulated sequences. Each data point is the average over 20 predictions.

Performance evaluation To compare prediction performance, we measure

the nucleotide level sensitivity Sn = TP/(TP + FN), i.e. the fraction of true

coding nucleotide predicted to be coding, and the nucleotide level speci�city

Sp = TP/(TP + FP), i.e. the fraction of predicted nucleotides actually true,

for each method. TP (true positives) is the number of coding nucleotides

predicted to be coding, FP (false positives) is the number of non-coding nu-

cleotides predicted to be coding, and FN (false negatives) is the number of cod-

ing nucleotides predicted to be non-coding. Neither Sn or Sp alone constitute

a good measure of global accuracy. We use the correlation coe�cient, CC =
(TP · TN − FP · FN)/

√
(TP + FP) · (TN + FN) · (TP + FN) · (TN + FP), as

a global measure of similarity. It is a well-known measure in the gene �nding

literature, see e.g. [6]. All three measures take their values between 0 and 1,

where values close to 1 indicate good predictions.

Experiments on Data Set 1 This data set consists of a set of simulated se-

quence pairs with known alignments gene structures. For each sequence pair we

use the four implementations of our gene �nding approach to predict the gene

structures of the sequences. The two implementations which use a given align-

ment (Eukaryotic Method 1 ) are tested with the true alignment known from

the simulations, and a computed alignment obtained by a standard alignment

method [9]. The true alignment is presumable the best possible alignment,

and the computed alignment is presumable the best possible inferred align-

ment because optimal alignment parameters is estimated and used. The other

two implementations integrate the alignment and prediction steps (Eukaryotic

Method 2 ).

Figure 4 and 5 show the plots of the accuracy statistics for the predictions.
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Gene �nding method Speci�city Sensitivity Correlation

DNA level score

Computed alignment
0.89 0.92 0.88

DNA level score

Glass alignment
0.92 0.93 0.90

DNA level score

Integrated alignment
0.88 0.97 0.91

DNA and protein level score

Computed alignment
0.89 0.93 0.88

DNA and protein level score

Glass alignment
0.92 0.93 0.90

DNA and protein level score

Integrated alignment
0.92 0.98 0.94

GLASS/ROSETTA 0.97 0.95 �

Genscan 0.89 0.98 �

Table 2: Accuracy statistics for gene predictions in the human/mouse data set.

The statistics for GLASS/ROSETTA and Genscan are from [2].

For all four implementations, we observe over-prediction for small evolution-

ary distances. This is a consequence of our founding assumption of non-coding

regions being fare divergent, which does not hold when the overall evolution-

ary distance is small. In general, very closely related sequences will always

cause problems in a pure comparative gene �nder because di�erent evolution-

ary patterns cannot be observed. The experiments also indicate that better

predictions are made by combining the alignment and prediction steps instead

of using a pre-inferred alignment (unless when the true alignment is used).

This is con�rmed by Figure 6 which shows the global accuracy of the four

implementations by plotting the correlation coe�cient of the predicted struc-

tures. The experiments also indicate that including the protein level in the

alignment score function results in improved predictions.

Experiments on Data Set 2 This data set consists of a set of 117 sequence

pairs from human and mouse with known gene structures but unknown align-

ments. Again we use the four implementations of our gene �nding approach

in a total of six di�erent settings to predict the gene structures of the 117 se-
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quence pairs. The two implementations which use a given alignment are tested

with a computed alignment obtained by a standard alignment method [9], and

an alignment found using the GLASS alignment program from [2]. Table 2

shows the prediction accuracy of our gene �nders measured in sensitivity, speci-

�city and correlation coe�cient. The table also shows the prediction accuracy

of two existing gene prediction programs, GLASS/ROSETTA [2] and Gen-

scan [5]. GLASS/ROSETTA is a comparative approach which �rst aligns two

genomic sequences using GLASS and then predicts genes on the basis of the

aligned sequences using ROSETTA. The idea behind ROSETTA is similar to

our similarity measure that is based on an given alignment, but with a more

elaborated signal prediction scheme. Genscan is a HMM based gene predic-

tion program. It analyzes each sequence separately and does not utilize any

comparative methods.

The prediction results on the 117 pairs of human and mouse sequences lead

to the same conclusions as the prediction results on the simulated sequences.

Predictions made by combining the alignment and prediction steps instead of

using a pre-inferred alignment yield better results. Including the protein level

in the alignment score function further improves the prediction accuracy. The

experiments show that our gene �nding methods can compete with existing

gene �nding programs, and in some cases outperform them.
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