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Abstract

In a previous paper, the first author derived an explicit quantita-
tive version of a theorem due to Borwein, Reich and Shafrir on the
asymptotic behaviour of Mann iterations of nonexpansive mappings
of convex sets C in normed linear spaces. This quantitative version,
which was obtained by a logical analysis of the ineffective proof given
by Borwein, Reich and Shafrir, could be used to obtain strong uni-
form bounds on the asymptotic regularity of such iterations in the case
of bounded C and even weaker conditions. In this paper we extend

∗Basic Research in Computer Science, funded by the Danish National Research
Foundation.
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these results to hyperbolic spaces and directionally nonexpansive map-
pings. In particular, we obtain significantly stronger and more general
forms of the main results of a recent paper by W.A. Kirk with explicit
bounds. As a special feature of our approach, which is based on logical
analysis instead of functional analysis, no functional analytic embed-
dings are needed to obtain our uniformity results which contain all
previously known results of this kind as special cases.

1 Introduction

This paper continuous the approach of applying logic to metric fixed point
theory started by the first author in [12],[13],[14]. In particular, the last two
papers were concerned with explicit bounds on the asymptotic behaviour of
so-called Mann iterations of nonexpansive mappings in the following setting:

Let (X, ‖ · ‖) be a normed linear space, C ⊆ X convex and f : C → C
nonexpansive, i.e.

∀x, y ∈ C(‖f(x) − f(y)‖ ≤ ‖x − y‖).
Let (λn)n∈IN be a sequence of real numbers in [0, 1). Then Mann iteration
starting from x0 := x ∈ C is defined as1

xn+1 := (1 − λn)xn + λnf(xn).

In [2], the following important result is proved:

If (λn)n∈IN is divergent in sum and is bounded away from 1 then

∀x ∈ C(‖xn − f(xn)‖ → rC(f)),

where rC(f) := inf{‖x − f(x)‖ | x ∈ C}.
In many cases, e.g. for bounded C, rC(f) can be shown to be 0, i.e ‖xn −
f(xn)‖ → 0 which (for bounded C) was first proved by Ishikawa in the clas-
sical paper [6]. The special case of constant λk = λ also follows from [3]
which even proves uniform (in x) convergence. Later, [4] extended this to
uniformity in both x and f .

Using specially designed techniques from mathematical logic the first author

1The special case of λn := 1
2 was already considered by Krasnoselski in [15].
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established in a series of papers general theorems on the extractability of
explicit bounds from large classes of prima-facie ineffective existence proofs
together with procedures to transform such proofs into new ones from which
these bounds can be read off (see [9],[10] and, in particular, [11]). The proof
given by Borwein, Reich and Shafrir in [2] of the result just cited happens to
be of the required form. In [13], as a result of the logical transformation of
the proof, a new quantitative version of the Borwein-Reich-Shafrir theorem
was obtained. From this version, explicit uniform bounds for the case of
bounded C could simply be read off. These bounds only depend on the error
ε, an upper bound for the diameter of C, a distance by which (λn) stays
away from 1 and a rate of divergence of the sum of that sequence towards
infinity. Subsequently ([14]), this could be extended to the case where not C
as a whole is required to be bounded but only some Mann iteration sequence.

The logical approach does not use any tools from functional analysis to es-
tablish these uniformity results which suggests that it should be possible to
generalize the results to other settings in which the basic proof idea of the
Borwein-Reich-Shafrir theorem applies.

In this paper we show that, indeed, all results from [13] (as well as the one
from [14] just mentioned) extend to the more general class of hyperbolic
spaces (in the sense of [16]) and (with minor changes in the assumptions) to
the more general class of directionally nonexpansive mappings (in the sense
of [8]).
In particular, we prove significantly stronger forms of the main results in [8].
Although some of the proofs follow closely those in [13] we include them in
this paper for completeness.

2 Hyperbolic spaces-basic results

In this section we present hyperbolic spaces, defined by Reich and Shafrir [16]
as an appropriate context for the study of operator theory in general, and
of iterative processes for nonexpansive mappings in particular. This class of
metric spaces includes all normed linear spaces and Hadamard manifolds, as
well as the Hilbert ball equipped with the hyperbolic metric [7] and the Carte-
sian products of Hilbert balls. Extensive information on hyperbolic spaces
and a detailed treatment of examples like the Hilbert ball can be found in
[5] (see also [4, 7] and [17]).
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A still more general class of metric spaces is the class of spaces of hyperbolic
type (see [4, 7]), also called convex metric spaces ([18]). In particular, every
hyperbolic space is a space of hyperbolic type.

In the following we collect some basic facts on hyperbolic spaces which we
will need later. To make the paper self-contained we include the (short)
proofs.
Let (X, ρ) be a metric space and let IR denote the real line. We say that a
mapping c : IR → X is a metric embedding of IR into X if

ρ(c(s), c(t)) = |s − t|

for all real s and t. The image of IR under a metric embedding will be called
a metric line.
Any isometry c : IR → X is a metric embedding and the metric line as-
sociated with it is X. In fact, a metric embedding is an isometry iff it is
surjective.
The image c([a, b]) ⊆ X of a real interval under a metric embedding c : IR →
X will be called a metric segment.
Let x, y ∈ X and c : IR → X a metric embedding. We say that the metric
line c(IR) passes through x and y if x, y ∈ c(IR) and that the metric segment
c([a, b]) joins x and y if (c(a) = x and c(b) = y) or (c(a) = y and c(b) = x).

In the sequel, we shall assume that (X, ρ) contains a non-empty family M
of metric lines such that for each pair of distinct points x and y in X there
is a unique metric line which passes through x and y. Hence, there is a non-
empty family {ci}i∈I of metric embeddings such that for all x 6= y ∈ X there
is a unique i ∈ I such that x, y ∈ ci(IR).

Remark 2.1 Since M 6= ∅, there is at least one metric embedding c : IR →
X. Since c is injective, it follows that card(X) ≥ card(IR) = ℵ1.

The following lemmas collect some simple facts. For the sake of completeness,
we shall prove them.

Lemma 2.2 For any x ∈ X there is at least one metric line from M that
passes through x.
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Proof: By the above remark, X is infinite, so there is y ∈ X, y 6= x. Take
now the unique metric line that passes through x and y. 2

Lemma 2.3 For any distinct points x and y in X there is a unique metric
segment joining them.

Proof: There is a unique i ∈ I such that x, y ∈ ci(IR). Since ci is injective,
there are unique a, b ∈ IR, a 6= b such that ci(a) = x and ci(b) = y. Hence,
the unique metric segment joining x and y is ci([a, b]) if a < b or ci([b, a]) if
b < a. 2

We shall denote by [x, y] or [y, x] the unique metric segment joining two
distinct points x and y from X.
For any x ∈ X, by [x, x] we shall understand the singleton {x}. By Lemma
2.2, there is c : IR → X and a ∈ IR such that c(a) = x, hence {x} = c([a, a]).
Thus, [x, x] is a degenerate metric segment.

Lemma 2.4 Let x, y ∈ X, x 6= y and z, w ∈ [x, y]. Then

(i) 0 ≤ ρ(x, z) ≤ ρ(x, y);

(ii) if ρ(x, z) = ρ(x, w), then z = w.

Proof: Let [x, y] = c([a, b]).
(i) Let s ∈ [a, b] such that c(s) = z. If c(a) = x and c(b) = y, then ρ(x, z) =
ρ(c(a), c(s)) = |s − a| = s − a ≤ b − a = ρ(x, y). If c(a) = y and c(b) = x,
then ρ(x, z) = ρ(c(b), c(s)) = |b − s| = b − s ≤ b − a = ρ(x, y).
(ii) Since z, w ∈ [x, y], there are s1, s2 ∈ [a, b]. such that c(s1) = z and
c(s2) = w. Let us suppose that c(a) = x and c(b) = y. It follows that
ρ(x, z) = ρ(c(a), c(s1)) = |a − s1| = s1 − a and, similarly, ρ(x, w) = s2 − a.
Thus, ρ(x, z) = ρ(x, w) iff s1 − a = s2 − a iff s1 = s2 iff z = w. 2

Lemma 2.5 Let c : IR → X be a metric embedding, a ≤ b ∈ IR and t ∈ [0, 1].
Then

ρ(c(a), c((1 − t)a + tb)) = tρ(c(a), c(b)) and
ρ(c(b), c((1 − t)a + tb)) = (1 − t)ρ(c(a), c(b)).

Proof: ρ(c(a), c((1−t)a+tb)) = |a−((1−t)a+tb)| = t|a−b| = tρ(c(a), c(b))
and, similarly, ρ(c(b), c((1− t)a+ tb)) = |b− ((1− t)a+ tb)| = (1− t)|a− b| =
(1 − t)ρ(c(a), c(b)). 2
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Proposition 2.6 Let x, y ∈ X. For each t ∈ [0, 1] there is a unique point
z ∈ [x, y] such that

(1) ρ(x, z) = tρ(x, y) and ρ(y, z) = (1 − t)ρ(x, y).

Proof: If x = y, then, obviously, z = x = y. Suppose that x 6= y. Let
[x, y] = c([a, b]). If c(a) = x and c(b) = y, then take z = c((1 − t)a + tb).
If c(b) = x and c(a) = y, then take z = c((1 − t)b + ta). Then z ∈ [x, y]
and z satisfies (1), by Lemma 2.5. Unicity of z follows from Lemma 2.4(ii). 2

The unique point satisfying (1) will be denoted (1 − t)x ⊕ ty. Then, for any
x ∈ X and t ∈ [0, 1], (1 − t)x ⊕ tx = x.
If z ∈ [x, y] satisfies only one of the conditions (1), then it is necessary that
z = (1− t)x⊕ ty. Hence, any point of the segment [x, y] satisfying one of the
conditions (1), satisfies also the other.

Remark 2.7 Let x, y ∈ X, x 6= y and s, t ∈ [0, 1]. Then
(i) (1 − t)x ⊕ ty = (1 − s)x ⊕ sy iff s = t;
(ii) (1 − t)x ⊕ ty = ty ⊕ (1 − t)x.

Lemma 2.8 Let x, y ∈ X, x 6= y. Then

(i) [x, y] = {(1 − t)x ⊕ ty | t ∈ [0, 1]};
(ii) the mapping f : [0, 1] → [x, y], f(t) = (1 − t)x ⊕ ty is continuous and
bijective;

(iii) ρ(x, z) + ρ(z, y) = ρ(x, y) for all z ∈ [x, y];
(iv) if z 6= w ∈ X are such that ρ(x, y) ≤ ρ(z, w), then there is a unique
v ∈ [z, w] such that ρ(z, v) = ρ(x, y).

Proof: (i) ⊇ By definition.
⊆ Let z ∈ [x, y] and t = ρ(x, z)/ρ(x, y). Then, by Lemma 2.4(i), t ∈ [0, 1]
and ρ(x, z) = tρ(x, y). It follows that z = (1 − t)x ⊕ ty.

(ii) Applying (i) and Remark 2.7(i), we get immediately that f is well-defined
and bijective. Let c([a, b]) = [x, y]. Then for all t ∈ [0, 1], f(t) = c((1− t)a +
tb). Since c is continuous and the map [0, 1] → [a, b], t 7→ (1 − t)a + tb is
also continuous, it follows that f is continuous.

(iii) Let z ∈ [x, y]. By (i), there is t ∈ [0, 1] such that z = (1− t)x⊕ ty, hence
ρ(x, z) + ρ(z, y) = tρ(x, y) + (1 − t)ρ(x, y) = ρ(x, y).
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(iv) Let t = ρ(x, y)/ρ(z, w), so t ∈ [0, 1]. Let v = (1 − t)z ⊕ tw. Then
v ∈ [z, w] and ρ(z, v) = tρ(z, w) = ρ(x, y). 2

Definition 2.9 ([16]) We say that (X, ρ, M) is a hyperbolic space if

(2) ρ(
1

2
x ⊕ 1

2
y,

1

2
x ⊕ 1

2
z) ≤ 1

2
ρ(y, z)

for all x, y, z ∈ X.

Remark 2.10 ([16]) (2) is equivalent to

(2
′
) ρ(

1

2
x ⊕ 1

2
y,

1

2
w ⊕ 1

2
z) ≤ 1

2
(ρ(x, w) + ρ(y, z))

for all x, y, z, w ∈ X.

Proof: (2
′
) ⇒ (2) is obvious, take w = x. It remains to prove (2) ⇒ (2

′
).

For any x, y, z, w ∈ X,

ρ(1
2
x ⊕ 1

2
y, 1

2
w ⊕ 1

2
z) ≤ ρ(1

2
x ⊕ 1

2
y, 1

2
x ⊕ 1

2
z) + ρ(1

2
x ⊕ 1

2
z, 1

2
w ⊕ 1

2
z)

≤ 1
2
(ρ(y, z) + ρ(x, w)).

2

Let (X, ρ, M) be a hyperbolic space. A non-empty subset C ⊆ X is convex
if [x, y] ∈ C for all x, y ∈ C. We shall denote by d(C) the diameter of C.
Hence,

d(C) = sup{ρ(x, y) | x, y ∈ C}.
The set C is bounded if d(C) < ∞. A sequence (xn)n∈IN ⊆ X is bounded if
the set {xn | n ∈ IN} is bounded.

At a few places we will use the following fact

Proposition 2.11 ([5, 16]) Let (X, ρ, M) be a hyperbolic space. Then

(3) ρ((1 − t)x ⊕ tz, (1 − t)y ⊕ tw) ≤ (1 − t)ρ(x, y) + tρ(z, w)

for all t ∈ [0, 1] and x, y, z, w ∈ X.
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Proof: The idea of the proof is presented in [5, pp. 77, 104]. We first
prove the result for t = k

2n , where k, n ∈ IN are such that k ≤ 2n. We use
induction on n. If n = 0, then k

2n = k and k ∈ {0, 1}. If k = 0, then
(3) ⇔ (ρ(1x ⊕ 0z, 1y ⊕ 0w) ≤ ρ(x, y)) ⇔ (ρ(x, y) ≤ ρ(x, y)). If k = 1, then
(3) ⇔ (ρ(0x ⊕ 1z, 0y ⊕ 1w) ≤ ρ(z, w)) ⇔ (ρ(z, w) ≤ ρ(z, w)). Hence, (3) is
true even with equality.

Suppose now that (3) is true for t = k
2n . Hence,

(∗) ρ((1 − k

2n
)x ⊕ k

2n
z, (1 − k

2n
)y ⊕ k

2n
w) ≤ (1 − k

2n
)ρ(x, y) +

k

2n
ρ(z, w)

for all k ∈ IN, k ≤ 2n and for all x, y, z, w ∈ X.
We have to prove (3) for t = k

2n+1 , where k ∈ IN, k ≤ 2n+1. If we denote
u := (1− k

2n+1 )x⊕ k
2n+1 z and v := (1− k

2n+1 )y⊕ k
2n+1 w, then we have to prove

(∗∗) ρ(u, v) ≤ (1 − k

2n+1
)ρ(x, y) +

k

2n+1
ρ(z, w).

First, let us show (**) for k ≤ 2n, that is k
2n ∈ [0, 1]. Let α := (1− k

2n )x⊕ k
2n z,

β := (1 − k
2n )y ⊕ k

2n w, α1 := 1
2
x ⊕ 1

2
α and β1 := 1

2
y ⊕ 1

2
β. Then ρ(x, α1) =

1
2
ρ(x, α) = k

2n+1 ρ(x, z) = ρ(x, u) and α1, u ∈ [x, z], since u, α ∈ [x, z] and
α1 ∈ [x, α]. Applying Lemma 2.4(ii), it follows that u = α1. We get similarly
that v = β1. Applying now (2

′
) and the induction hypothesis, it follows that

ρ(u, v) = ρ(α1, β1) = ρ(1
2
x ⊕ 1

2
α, 1

2
y ⊕ 1

2
β) ≤ 1

2
(ρ(x, y) + ρ(α, β))

≤ 1
2
ρ(x, y) + 1

2
((1 − k

2n )ρ(x, y) + k
2n ρ(z, w))

= (1 − k
2n+1 )ρ(x, y) + k

2n+1 ρ(z, w).

Suppose now that 2n < k ≤ 2n+1 and let p := 2n+1 − k. Then p ≤ 2n, so we
can apply (∗∗) for p. We obtain

ρ(u, v) = ρ( p
2n+1 x ⊕ (1 − p

2n+1 )z,
p

2n+1 y ⊕ (1 − p
2n+1 )w)

= ρ((1 − p
2n+1 )z ⊕ p

2n+1 x, (1 − p
2n+1 )w ⊕ p

2n+1 y)
≤ (1 − p

2n+1 )ρ(z, w) + p
2n+1 ρ(x, y)

= (1 − k
2n+1 )ρ(x, y) + k

2n+1 ρ(z, w).

In the sequel, we use the fact that the set D := { k
2n | k, n ∈ IN, k ≤ 2n} is

dense in [0, 1]. Let t ∈ [0, 1]. Then there is (tp)p∈IN ⊆ D such that lim
p→∞ tp = t.

For all p ∈ IN,

ρ((1 − tp)x ⊕ tpz, (1 − tp)y ⊕ tpz) ≤ (1 − tp)ρ(x, y).
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Letting p → ∞ and using Lemma 2.8(ii) and the fact that ρ is continuous,
we get (3). 2

Corollary 2.12 Let (X, ρ, M) be a hyperbolic space. Then for all t ∈ [0, 1]
and x, y, z ∈ X,

(4) ρ((1 − t)x ⊕ tz, y) ≤ (1 − t)ρ(x, y) + tρ(z, y).

Proof: Apply (3) with w = y. 2

Let us now present the related concept of metric space of hyperbolic type
[7, 4] which was introduced first in [18] under the name ‘convex metric space’.

Let (X, ρ) be a metric space and S a family of metric segments. We say that
(X, ρ, S) is of hyperbolic type if the following are satisfied:

(i) for each two points x, y ∈ X there is a unique metric segment from S that
joins them, denoted [x, y];

(ii) if p, x, y, m ∈ X and if m ∈ [x, y] satisfies ρ(x, m) = tρ(x, y) for t ∈ [0, 1],
then

ρ(p, m) ≤ (1 − t)ρ(p, x) + tρ(p, y).

Proposition 2.13 Any hyperbolic space is of hyperbolic type.

Proof: Let (X, ρ, M) be a hyperbolic space. Let S be the family of all
metric segments determined by the metric embeddings associated with M .
Let x, y ∈ M . If x 6= y, then (i) is satisfied, by Proposition 2.3. If x = y, then
the unique metric segment from S that joins x and x is [x, x] = {x}. Let us
verify (ii). Since m ∈ [x, y] and ρ(x, m) = tρ(x, y) = ρ(x, (1 − t)x ⊕ ty), by
Lemma 2.4(ii), we must have m = (1 − t)x ⊕ ty. Now apply (4). 2

In the sequel, let (λn)n∈IN ⊆ [0, 1).

Let us denote for all i, n ∈ IN,

Si,n :=
i+n−1∑

s=i

λs,

Pi,n :=
i+n−1∏

s=i

1

1 − λs

.
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Let (xn)n∈IN, (yn)n∈IN be two sequences in X such that for all n ∈ IN,

xn+1 = (1 − λn)xn ⊕ λnyn.

The following very important result was proved in [4] for spaces of hyperbolic
type. Hence, by Proposition 2.13, it is true also for hyperbolic spaces.

Proposition 2.14 ([4]) Let (X, ρ, M) be a hyperbolic space. Suppose that
(xn)n∈IN, (yn)n∈IN satisfy for all n ∈ IN,

ρ(yn, yn+1) ≤ ρ(xn, xn+1).

Then the sequence (ρ(xn, yn))n∈IN ⊆ IR is nonincreasing and for all i, n ∈ IN,

(1 + Si,n)ρ(xi, yi) ≤ ρ(xi, yi+n) + Pi,n[ρ(xi, yi) − ρ(xi+n, yi+n)].

We shall use in the sequel the following consequence of the above inequality.

Proposition 2.15 ([2]) In the assumptions of Proposition 2.14,

Si,nρ(xi, yi) ≤ ρ(xi, xi+n) + Pi,n[ρ(xi, yi) − ρ(xi+n, yi+n)].

Proof: Apply Proposition 2.14 and the fact that ρ(xi, yi+n) − ρ(xi, yi) ≤
ρ(xi, xi+n)+ρ(xi+n, yi+n)−ρ(xi, yi) ≤ ρ(xi, xi+n), since(ρ(xn, yn))n∈IN is non-
increasing, hence ρ(xi+n, yi+n) − ρ(xi, yi) ≤ 0. 2

Proposition 2.16 ([4]) In addition to the assumptions of Proposition 2.14,
assume that

(i) the set {ρ(xn, yn+i) | n, i ∈ IN} is bounded;

(ii) (λn)n∈IN is divergent in sum;

(iii) there is b ∈ (0, 1) such that λn ≤ b for all n ∈ IN.

Then lim
n→∞ ρ(xn, yn) = 0.

Proof: This result is proved in [4] for any space of hyperbolic type. Apply-
ing again Proposition 2.13, it follows that it is true for any hyperbolic space,
too. 2
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Lemma 2.17 In the hypotheses of Proposition 2.14, the following are equiv-
alent

(i) (xn)n∈IN is bounded;

(ii) (yn)n∈IN is bounded;

(iii) the set {ρ(xn, yn+i) | n, i ∈ IN} is bounded.

Proof: Let n, i ∈ IN.
(i)⇒(ii) ρ(yn, yn+i) ≤ ρ(yn, xn) + ρ(xn, xn+i) + ρ(xn+i, yn+i) ≤ 2ρ(x0, y0) +
ρ(xn, xn+i), since (ρ(xn, yn))n∈IN is nonincreasing, by Proposition 2.14.

(ii)⇒(iii) ρ(xn, yn+i) ≤ ρ(xn, yn) + ρ(yn, yn+i) ≤ ρ(x0, y0) + ρ(yn, yn+i).

(iii)⇒(i) ρ(xn, xn+i) ≤ ρ(xn, yn+i)+ ρ(yn+i, xn+i) ≤ ρ(xn, yn+i)+ ρ(x0, y0). 2

Lemma 2.18 The following are equivalent:

(i) lim sup
n→∞

λn < 1;

(ii) there is b ∈ (0, 1) such that λn ≤ b < 1 for all n ∈ IN.

Proof: Obviously, since λn < 1 for all n ∈ IN. 2

Using these lemmas, we obtain the following reformulation of Proposition
2.16.

Theorem 2.19 Let (X, ρ, M) be a hyperbolic space and (λn)n∈IN ⊆ [0, 1).
Suppose that (λn)n∈IN is divergent in sum and lim sup

n→∞
λn < 1.

Let (xn)n∈IN, (yn)n∈IN be two sequences in X which satisfy for all n ∈ IN:

xn+1 = (1 − λn)xn ⊕ λnyn and

ρ(yn, yn+1) ≤ ρ(xn, xn+1).

If (xn)n∈IN is bounded, then lim
n→∞ ρ(xn, yn) = 0.

3 Uniform asymptotic regularity for direc-

tionally nonexpansive mappings

The main purpose of the present paper is to generalize the core results from
[13] and [14] not only to hyperbolic spaces (which is largely straightforward)

11



but at the same time to directionally nonexpansive mappings which requires
quite some care. Directionally nonexpansive mappings were considered in
[8]. In this section we will, in particular, strengthen the main results from
[8].

Definition 3.1 ([8]) Let (X, ρ, M) be a hyperbolic space and C ⊆ X a non-
empty convex subset. A mapping f : C → C is called directionally nonex-
pansive if

ρ(f(x), f(y)) ≤ ρ(x, y),

for all x ∈ C and y ∈ [x, f(x)].

Let us recall that f : C → C is called nonexpansive if for all x, y ∈ C,

ρ(f(x), f(y)) ≤ ρ(x, y).

Obviously, any nonexpansive mapping is directionally nonexpansive, but the
converse fails as directionally nonexpansive mappings not even need to be
continuous on the whole space:

Example (simplified by Paulo Oliva): Consider the normed space
(IR2, ‖ · ‖max) and the function

f : [0, 1]2 → [0, 1]2, f(x, y) :=

{
(1, y), if y > 0
(0, y), if y = 0.

Clearly, f is directionally nonexpansive (even directionally constant) but dis-
continuous at (0, 0).

In the following, (X, ρ, M) will be an arbitrary hyperbolic space, C ⊆ X a
non-empty convex subset of X and f : C → C a directionally nonexpansive
mapping. Let us define [2]

rC(f) := inf{ρ(x, f(x)) | x ∈ C}.
We consider the so-called Krasnoselski-Mann iteration starting from x ∈ C

x0 := x, xn+1 := (1 − λn)xn ⊕ λnf(xn),

where (λn)n∈IN is a sequence of real numbers in [0, 1).
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Lemma 3.2 For all n ∈ IN,

ρ(f(xn), f(xn+1)) ≤ ρ(xn, xn+1).

Proof: Since xn+1 ∈ [xn, f(xn)], we can apply the fact that f is direction-
ally nonexpansive to obtain that ρ(f(xn), f(xn+1)) ≤ ρ(xn, xn+1). 2

Thus, the sequences (xn)n∈IN, (f(xn))n∈IN satisfy the hypotheses of Proposi-
tion 2.14 with yn := f(xn). We get immediately the following results.

Proposition 3.3 The sequence (ρ(xn, f(xn)))n∈IN ⊆ IR is nonincreasing and
for all i, n ∈ IN,

Si,nρ(xi, f(xi)) ≤ ρ(xi, xi+n) + Pi,n[ρ(xi, f(xi)) − ρ(xi+n, f(xi+n))].

Proof: Apply Lemma 3.2, Proposition 2.14 and Proposition 2.15. 2

For nonexpansive mappings the following proposition is due to [6] (normed
spaces) and [4] for hyperbolic spaces. Using Lemma 3.2, the proof from [4]
extends to directionally nonexpansive mappings:

Proposition 3.4
Suppose that (λn)n∈IN is divergent in sum and lim sup

n→∞
λn < 1.

If (xn)n∈IN is bounded, then lim
n→∞ ρ(xn, f(xn)) = 0.

Proof: By Theorem 2.19 and Lemma 3.2. 2

Corollary 3.5 Suppose that (λn)n∈IN is divergent in sum and lim sup
n→∞

λn < 1.

If C is bounded, then for every x ∈ X, lim
n→∞ ρ(xn, f(xn)) = 0.

Corollary 3.6 Suppose that (λn)n∈IN is divergent in sum and lim sup
n→∞

λn < 1.

If C is bounded or – even weaker – there is x ∈ C such that (xn)n∈IN is
bounded, then rC(f) = 0.

Let x∗ ∈ C and (x∗
n)n∈IN be the Krasnoselski-Mann iteration starting from

x∗.

The next inequality is due to [2]:
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Lemma 3.7 If f is nonexpansive, then for all n ∈ IN,

ρ(xn+1, x
∗
n+1) ≤ ρ(xn, x∗

n).

Proof: Applying inequality (3) and the definition of a nonexpansive map-
ping, we get that

ρ(xn+1, x
∗
n+1) = ρ((1 − λn)xn ⊕ λnf(xn), (1 − λn)x∗

n ⊕ λnf(x∗
n))

≤ (1 − λn)ρ(xn, x∗
n) + λnρ(f(xn), f(x∗

n))

≤ (1 − λn)ρ(xn, x∗
n) + λnρ(xn, x∗

n)

= ρ(xn, x∗
n).

2

Since in general x∗
n ∈/[xn, f(xn)], we cannot prove the inequality

ρ(f(xn), f(x∗
n)) ≤ ρ(xn, x∗

n)

on which the proof of Lemma 3.7 is based for directionally nonexpansive
mappings f . The absence of Lemma 3.7 will cause some changes in the
generalizations of the main results from [13] and [14] to directionally nonex-
pansive mappings carried out below.

In [2] the following theorem is proved:

Theorem 3.8 ([2]) Let (X, ‖ · ‖) be a normed linear space, C ⊆ X convex
and f : C → C nonexpansive. Let (λn)n∈IN be a sequence of real numbers in
[0, 1) which is divergent in sum and satisfies lim sup

n→∞
λn < 1. Then

‖xn − f(xn)‖ n→∞→ rC(f),

where (xn)n∈IN is the Krasnoselski-Mann iteration starting from x ∈ C.

In [13], the first author obtained by a logical analysis of the proof of Theorem
3.8 from [2] an effective quantitative version of that theorem (see also Remark
3.10). From this quantitative version various strong (effective) uniformity
results for the case of bounded C were derived (improving previous results
in this direction from [3] and [4]) as well as (for the first time) for the more
general case of bounded (xn)n∈IN (see [14]). Since these uniformity results
were obtained by logical analysis and, in particular, did not use any functional
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analytic embedding techniques (in contrast to [3] and [4]) this suggests that
it should be possible to extend these results to the more general setting
of hyperbolic spaces and directionally nonexpansive mappings. The main
content of this paper is to show that this is indeed true to a large extent.
Whereas the extension to hyperbolic spaces does not cause any problems
at all, the absence of Lemma 3.2 for directionally nonexpansive mappings
results in an additional hypothesis which, however, is trivially satisfied e.g.
in the bounded case.

Theorem 3.9 Let (X, ρ, M) be a hyperbolic space, C ⊆ X a non-empty
convex subset and f : C → C a directionally nonexpansive mapping. Let
(λn)n∈IN be a sequence in [0, 1) which is divergent in sum and satisfies

∀n ∈ IN(λn ≤ 1 − 1

K
)

for some K ∈ IN.
Let α : IN × IN → IN be such that

∀i, n ∈ IN((α(i, n) ≤ α(i + 1, n)) ∧ (n ≤
i+α(i,n)−1∑

s=i

λs)).

Let x, x∗ ∈ C and d > 0 be such that

∀n ∈ IN(ρ(xn, x∗
n) ≤ d),

where (xn)n∈IN and (x∗
n)n∈IN are the Krasnoselski-Mann iterations starting

from x and x∗.
Then the following holds

∀ε > 0∀n ≥ h(ε, x, d, f, K, α)(ρ(xn, f(xn)) < ρ(x∗, f(x∗)) + ε),

where2

h(ε, x, d, f, K, α) := α̂(d2c(f, x) · exp(K(M + 1))e−· 1, M), where
M ∈ IN is such that M ≥ 1+2d

ε
,

c(f, x) ∈ IR is such that c(f, x) ≥ ρ(x, f(x)) and
α̂(0, n) := α̃(0, n), α̂(i + 1, n) := α̃(α̂(i, n), n) with
α̃(i, n) := i + α(i, n) (i, n ∈ IN)

2n −· 1 = max(0, n− 1).
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Proof: Most parts of the proof follow closely the one given in [13] for
the nonexpansive case (and normed spaces). For completeness we present,
nevertheless, all details.
Let

(1) γ := ρ(x∗, f(x∗)).

Let ε > 0 be arbitrary and M ∈ IN be such that

(2) M ≥ 1 + 2d

ε
.

For example, M :=
⌈

1+2d
ε

⌉
.

Let δ > 0 be so small that

(3) δ exp(K(M + 1)) < 1.

For example, δ := 1
2 exp(K(M+1))

.

Let i, n ∈ IN. Then (reasoning as in [6])

Pi,n =
i+n−1∏

s=i
(1 + λs

1−λs
) = exp(ln

i+n−1∏
s=i

(1 + λs

1−λs
))

= exp(
i+n−1∑

s=i
ln(1 + λs

1−λs
))

≤ exp(
i+n−1∑

s=i

λs

1−λs
), since ln(1 + x) ≤ x for x ≥ 0

≤ exp(K
i+n−1∑

s=i
λs) = exp(K · Si,n),

since λs ≤ 1 − 1
K

implies 1 − λs ≥ 1
K

, so 1
1−λs

≤ K for all s ∈ IN.
Hence, we have proved that for all i, n ∈ IN,

(4) Pi,n ≤ exp(K · Si,n).

Let us define α∗ : IN × IN → IN by

(5) α∗(i, n) := min{m ∈ IN | n ≤ Si,m}.
Since (λn)n∈IN is divergent in sum, it follows that for all i ∈ IN, the sequence
(Si,m)m∈IN is not bounded above, so for all n ∈ IN the set Ai,n := {m ∈ IN |
n ≤ Si,m} is non-empty, hence it has a least element. Thus, α∗ is well-defined.
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We also get that α∗(i, n) − 1 ∈/ Ai,n, which means that Si,α∗(i,n)−1 < n, that
is Si,α∗(i,n) − λi+α∗(i,n)−1 < n, so Si,α∗(i,n) < n + λi+α∗(i,n)−1 < n + 1. Hence,
for all i, n ∈ IN,

(6) n ≤ Si,α∗(i,n) < n + 1.

Consider the Krasnoselski-Mann iteration (x∗
n)n∈IN starting from x∗. Then

ρ(x∗
i , x

∗
i+n) ≤ i+n−1∑

s=i
ρ(x∗

s, x
∗
s+1) =

i+n−1∑
s=i

λsρ(x∗
s, f(x∗

s))

≤ (
i+n−1∑

s=i
λs)ρ(x∗

i , f(x∗
i )) = Si,n · ρ(x∗

i , f(x∗
i )) ≤ Si,n · ρ(x∗, f(x∗)),

since, by Proposition 3.3, (ρ(x∗
n, f(x∗

n)))n∈IN is nonincreasing. Hence, for all
i, n ∈ IN,

(7) ρ(x∗
i , x

∗
i+n) ≤ Si,n · ρ(x∗, f(x∗)).

Consider now the Krasnoselski-Mann iteration (xn)n∈IN starting from x. Ap-
plying again Proposition 3.3, we get that the sequence (ρ(xn, f(xn)))n∈IN is
nonincreasing and, since is bounded below by 0, it is convergent and hence
Cauchy. Thus, for δ > 0 there exists an i such that

(8) ρ(xi, f(xi)) − ρ(xi+α∗(i,M), f(xi+α∗(i,M))) ≤ δ.

In the sequel, we shall consider an i satisfying (8).

Applying Proposition 3.3 and (8), we get that

Si,α∗(i,M) · ρ(xi, f(xi)) ≤ ρ(xi, xi+α∗(i,M)) + δ · Pi,α∗(i,M)

≤ ρ(xi, x
∗
i ) + ρ(x∗

i , x
∗
i+α∗(i,M)) + ρ(x∗

i+α∗(i,M), xi+α∗(i,M)) + δ · Pi,α∗(i,M)

≤ 2d + Si,α∗(i,M) · ρ(x∗, f(x∗)) + δ · Pi,α∗(i,M), by the hypothesis and (7)

= 2d + Si,α∗(i,M) · γ + δ · Pi,α∗(i,M), by (1).

That is, we have got

(9) Si,α∗(i,M) · ρ(xi, f(xi)) ≤ 2d + Si,α∗(i,M) · γ + δ · Pi,α∗(i,M).

Let us now prove
(10) ρ(xi, f(xi)) < γ + ε.

Suppose that ρ(xi, f(xi)) ≥ γ + ε. It follows that
Si,α∗(i,M)(γ + ε) ≤ Si,α∗(i,M) · ρ(xi, f(xi)), so applying (9), we get that
Si,α∗(i,M)(γ + ε) ≤ 2d + Si,α∗(i,M) · γ + δ · Pi,α∗(i,M). Hence,

(11) Si,α∗(i,M) · ε ≤ 2d + δ · Pi,α∗(i,M).
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It follows that

1 + 2d ≤ M · ε by (2)
≤ Si,α∗(i,M) · ε by (6)
≤ 2d + δ · Pi,α∗(i,M) by (11)
≤ 2d + δ · exp(K · Si,α∗(i,M)) by (4)
< 2d + δ · exp(K(M + 1)) by (6)
< 2d + 1 by (3).

That is, we have got a contradiction.

Hence, we have proved that if i ∈ IN is such that

(8) ρ(xi, f(xi)) − ρ(xi+α∗(i,M), f(xi+α∗(i,M))) ≤ δ,

then
(10) ρ(xi, f(xi)) < γ + ε.

Define α̃∗, α̂∗ : IN × IN → IN by

α̃∗(k, n) := k + α∗(k, n) and

α̂∗(0, n) := α̃∗(0, n) and α̂∗(k + 1, n) := α̃∗(α̂∗(k, n), n).

Since α̂∗(k + 1, n) = α̃∗(α̂∗(k, n), n) = α̂∗(k, n) + α∗(α̂∗(k, n), n) ≥ α̂∗(k, n),
it follows that for all k, n ∈ IN,

(12) α̂∗(k, n) ≤ α̂∗(k + 1, n).

Claim: Let j :=
⌈

ρ(x,f(x))
δ

⌉
−· 1. For all n ∈ IN,

(13) ∃k ≤ j(ρ(xα̂∗(k,n), f(xα̂∗(k,n))) − ρ(xα̂∗(k+1,n), f(xα̂∗(k+1,n))) ≤ δ).

Proof of Claim: Let n ∈ IN and for every k ∈ IN let

Tk := ρ(xα̂∗(k,n), f(xα̂∗(k,n))) − ρ(xα̂∗(k+1,n), f(xα̂∗(k+1,n))).

Suppose the claim is false. Then Tk > δ for all k ≤ j, so
j∑

k=0
Tk > δ · (j + 1),

that is
ρ(xα̂∗(0,n), f(xα̂∗(0,n))) − ρ(xα̂∗(j+1,n), f(xα̂∗(j+1,n)))

> δ · (j + 1) = δ ·
⌈

ρ(x,f(x))
δ

⌉
≥ ρ(x, f(x)).
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¿From this we get that

ρ(xα̂∗(0,n), f(xα̂∗(0,n))) > ρ(x, f(x)),

which is a contradiction to the fact that the sequence (ρ(xn, f(xn)))n∈IN is
nonincreasing and finishes the proof of the claim.

Let k satisfy (13) with n := M and let i := α̂∗(k, M). Applying (13) and
the definition of α̂∗, it follows immediately that i satisfies (8). Hence, i also
satisfies (10).

Let c(f, x) ∈ IR be such that c(f, x) ≥ ρ(x, f(x)). Let

h(ε, x, d, f, K, α∗) := α̂∗(d2c(f, x) · exp(K(M + 1))e−· 1, M).

Since we can put δ := 1
2 exp(K(M+1))

, we get that

ρ(x, f(x))

δ
= 2ρ(x, f(x)) · exp(K(M + 1)) ≤ 2c(f, x) · exp(K(M + 1)).

Hence

k ≤
⌈
ρ(x, f(x))

δ

⌉
−· 1 ≤ d2c(f, x) · exp(K(M + 1))e−· 1

Applying (12), it follows that i ≤ h(ε, x, d, f, K, α∗). Using now the fact that
i satisfies (10), we get immediately that

(13) ∀n ≥ h(ε, x, f, d, K, α∗)(ρ(xn, f(xn)) < ρ(x∗, f(x∗)) + ε).

Hence, we have obtained the conclusion of the theorem with α∗ instead of
α. We now show that we can replace α∗ with α satisfying the more flexible
requirement from the hypothesis

(14) ∀i, n ∈ IN((α(i, n) ≤ α(i + 1, n)) ∧ (n ≤
i+α(i,n)−1∑

s=i

λs)).

Since n ≤ Si,α(i,n), by the definition of α∗ it follows that for all i, n ∈ IN,

(15) α∗(i, n) ≤ α(i, n).

Let us now prove that for all i, n ∈ IN,

α̂∗(i, n) ≤ α̂(i, n).

19



We use induction on i. For i = 0, we get that

α̂∗(0, n) = α̃∗(0, n) = α∗(0, n) ≤ α(0, n) = α̃(0, n) = α̂(0, n).

Suppose that α̂∗(i, n) ≤ α̂(i, n). Using (15) and the fact that, by the hy-
pothesis, α is nondecreasing in the first argument, we get that α̂∗(i + 1, n) =
α̃∗(α̂∗(i, n), n) = α̂∗(i, n)+α∗(α̂∗(i, n), n) ≤ α̂(i, n)+α(α̂∗(i, n), n) ≤ α̂(i, n)+
α(α̂(i, n), n) = α̃(α̂(i, n), n) = α̂(i + 1, n). It follows that

h(ε, x, d, f, K, α∗) = α̂∗(d2c(f, x) · exp(K(M + 1))e−· 1, M)
≤ α̂(d2c(f, x) · exp(K(M + 1))e−· 1, M)
= h(ε, x, d, f, K, α).

Finally, applying (13) we obtain

∀n ≥ h(ε, x, d, f, K, α)(ρ(xn, f(xn)) < ρ(x∗, f(x∗)) + ε).

2

Remark 3.10 If f is nonexpansive, applying Lemma 3.7, it follows that the
sequence (ρ(xn, x∗

n))n∈IN is nonincreasing, so letting d := ρ(x, x∗) we get that

∀n ∈ IN(ρ(xn, x∗
n) ≤ d).

Hence, Theorem 3.9 holds with

h(ε, x, x∗, f, K, α) = α̂(d2c(f, x) · exp(K(M + 1))e−· 1, M), where

M ∈ IN is such that M ≥ 1+2ρ(x,x∗)
ε

and
c(f, x), α̃ and α̂ are as above.

It is this restricted form (for normed spaces) of Theorem 3.9 which is proved
in [13].

The following remarks from [13] apply in our context as well:

Remark 3.11 Let α : IN × IN → IN be such that

(∗) ∀i, n ∈ IN(n ≤
i+α(i,n)−1∑

s=i

λs).

Define α+ : IN × IN → IN by

α+(i, n) := max
j≤i

α(j, n).

Then α+ is nondecreasing in the first argument and also satisfies (*), so that
Theorem 3.9 holds with h(ε, x, d, f, K, α+).
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Remark 3.12 A function α satisfying the conditions of Theorem 3.9 can
easily be computed from a function β : IN → IN satisfying the weaker require-
ment

(∗∗) ∀n(n ≤
β(n)∑
s=0

λs).

Just define β ′(i, n) := β(n + i) − i + 1 and β+(i, n) := max
j≤i

β ′(j, n).

Then β+ satisfies the conditions imposed on α so that Theorem 3.9 holds with
h(ε, x, d, f, K, β+), where β satisfies (∗).

Proof: We have only to verify that β
′

satisfies the condition (∗) from
Remark 3.11. Let i, n ∈ IN. Then

i+β
′
(i,n)−1∑
s=i

λs =
β(n+i)∑

s=i

λs =
β(n+i)∑

s=0

λs −
i−1∑
s=0

λs ≥ n + i −
i−1∑
s=0

λs > n + i − i = n,

since λs < 1 for all s ∈ IN. 2

Let us just note that as a corollary to Theorem 3.9 we get the following
(non-quantitative) strengthened version of the original Borwein-Reich-Shafrir
theorem

Corollary 3.13 Let (X, ρ, M) be a hyperbolic space, C ⊆ X a non-empty
convex subset and f : C → C a directionally nonexpansive mapping. Let
(λn)n∈IN be a sequence in [0, 1) which is divergent in sum and satisfies that
lim sup

n→∞
λn < ∞. Then for all x ∈ C if

∀ε > 0∃x∗ ∈ C(ρ(xn, x∗
n) bounded ∧ ρ(x∗, f(x∗)) ≤ rC(f) + ε)

then
ρ(xn, f(xn))

n→∞→ rC(f).

The main application of the quantitative version of the Borwein-Reich-Shafrir
theorem given in [13] was a fully uniform bound on the asymptotic regularity
‖xn −f(xn)‖ → 0 in the case of bounded C. ‘Fully uniform’ here means that
the rate of convergence only depends on the error ε, an upper bound d for the
diameter of C and the quantities K, α on λk but not on x, f or any special
features of C. Uniformity in x (for constant λk := λ) was first established in
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[3]. In [4], uniformity in x and f has been proved for general λk, but no uni-
formity in C or λk. Moreover, no effective bounds were obtained. Recently
([8], Theorem 1), Kirk established uniformity in x, f for directionally nonex-
pansive mappings in the case of constant λk := λ. All these results are based
on functional analytic embeddings. We now show that the results obtained
in [13] by logical analysis of the proof of Theorem 3.8 extend even with the
same numerical bounds to the case of hyperbolic spaces and directionally
nonexpansive mappings (containing Theorem 1 from [8] just mentioned as
a special case). This is due to the fact that the only additional assumption
that ∀n ∈ IN(ρ(xn, x∗

n) ≤ d) which we had to impose in the directionally
nonexpansive case holds trivially for sets C whose diameter is bounded by d.
The proofs of Corollaries 3.14,3.16,3.17 and 3.19 follow the ones in [13] for
the corresponding results in the case of nonexpansive mappings in normed
spaces except that we now have to use our more general Theorem 3.9:

Corollary 3.14 Let (X, ρ, M) be a hyperbolic space, C ⊆ X a non-empty
convex bounded subset with diameter d(C) < ∞ and f : C → C a direc-
tionally nonexpansive mapping. Let (λn)n∈IN be a sequence in [0, 1) which is
divergent in sum and satisfies

∀n ∈ IN(λn ≤ 1 − 1

K
)

for some K ∈ IN.
Let α : IN × IN → IN be such that

∀i, n ∈ IN((α(i, n) ≤ α(i + 1, n)) ∧ (n ≤
i+α(i,n)−1∑

s=i

λs)).

Then the following holds

∀x ∈ C∀ε > 0∀n ≥ h(ε, d, K, α)(ρ(xn, f(xn)) ≤ ε),

where

h(ε, d, K, α) := α̂(d2d · exp(K(M + 1))e − 1, M)), with
d ∈ IR is such that d ≥ d(C),
M ∈ IN is such that M ≥ 1+2d

ε
and

α̂(0, n) := α̃(0, n), α̂(i + 1, n) := α̃(α̂(i, n), n) with
α̃(i, n) := i + α(i, n).
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Proof: Let x ∈ C and ε > 0. Let d ≥ d(C). Then for every x∗ ∈ C, we
have that ρ(xn, x∗

n) ≤ d(C) ≤ d for all n ∈ IN. Hence, for every x∗ ∈ C, we
can apply Theorem 3.9 to get

∀n ≥ h(ε, x, d, f, K, α)(ρ(xn, f(xn)) < ρ(x∗, f(x∗)) + ε),

where

h(ε, x, d, f, K, α) := α̂(d2c(f, x) · exp(K(M + 1))e−· 1, M), where
M ∈ IN is such that M ≥ 1+2d

ε
,

c(f, x) ∈ IR is such that c(f, x) ≥ ρ(x, f(x)) and
α̃, α̂ are defined as above.

Since d ≥ d(C) ≥ ρ(x, f(x)), we can take c(x, f) := d.

Thus, we get that

h(ε, x, d, f, K, α) = α̂(d2d · exp(K(M + 1))e − 1, M)
= h(ε, d, K, α).

Let n ≥ h(ε, d, K, α). It follows that

∀x∗ ∈ C(ρ(xn, f(xn)) < ρ(x∗, f(x∗)) + ε),

hence
ρ(xn, f(xn)) ≤ inf{ρ(x∗, f(x∗)) | x∗ ∈ C} + ε,

that is
ρ(xn, f(xn)) ≤ rC(f) + ε.

Apply now the fact that rC(f) = 0, by Corollary 3.6. 2

Remark 3.15 In Corollary 3.14, the bound h(ε, d, K, α) can be replaced by
h(ε/d, 1, K, α) just by applying the old bound to the modified hyperbolic space,
where ρd(x, y) := 1

d
ρ(x, y) and cd(s) := c(d · s).

Corollary 3.16 Let d, ε > 0, K ∈ IN and β : IN → IN be an arbitrary
mapping. Then there exists an N ∈ IN such that for any hyperbolic space
(X, ρ, M), any non-empty bounded convex set C ⊆ X such that d(C) ≤ d, any
directionally nonexpansive mapping f : C → C, any sequence λn ∈ [0, 1− 1

K
]

satisfying n ≤
β(n)∑
s=0

λs (for all n ∈ IN) and any x ∈ C, the following holds

∀n ≥ N(ρ(xn, f(xn)) ≤ ε).
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Proof: ¿From n ≤
β(n)∑
s=0

λs for all n ∈ IN, it follows that (λn)n∈IN is divergent

in sum. Apply Remark 3.12 and Corollary 3.14. 2

Corollary 3.17 Let (X, ρ, M) be a hyperbolic space, C ⊆ X a non-empty
convex bounded subset with diameter d(C) < ∞ and f : C → C a direction-
ally nonexpansive mapping. Let K ∈ IN, K ≥ 2 and (λn)n∈IN be a sequence
in [ 1

K
, 1 − 1

K
]. Then the following holds:

∀x ∈ C∀ε > 0∀n ≥ h(ε, d, K)(ρ(xn, f(xn)) ≤ ε),

where
h(ε, d, K) := K · M · d2d · exp(K(M + 1))e with
d ∈ IR, d ≥ d(C) and
M ∈ IN, M ≥ 1+2d

ε
.

Proof: Define α : IN × IN → IN by

α(i, n) = Kn.

Then
i+α(i,n)−1∑

s=i
λs ≥

i+α(i,n)−1∑
s=i

1
K

= 1
K

α(i, n) = n and α(i, n) = α(i + 1, n) =

Kn, so α satisfies the conditions of Corollary 3.14.

We also get immediately that

α̃(i, n) = i + α(i, n) = i + Kn and

α̂(i, n) = K(i + 1)n.

Applying Corollary 3.14, it follows that

∀x ∈ C∀ε > 0∀n ≥ h(ε, d, K, α)(ρ(xn, f(xn)) ≤ ε),

where
h(ε, d, K, α) = α̂(d2d · exp(K(M + 1))e − 1, M)

= K · M · d2d · exp(K(M + 1))e
= h(ε, d, K).

2
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Remark 3.18 1. We could have used in the proof of the above corollary
also Corollary 3.12 for the function β : IN → IN defined by

β(n) = Kn − 1

instead of 3.14. However, this would have resulted in the much less
good bound

h(ε, d, K) = K
K−1

· M · (Kd2d·exp(K(M+1))e−1 − 1), where

d ≥ d(C) and M ∈ IN, M ≥ 1+2d
ε

.

2. For the special case of constant λn = λ ∈ (0, 1), normed spaces and
nonexpansive functions the exponential bound in Corollary 3.17 is not
optimal. In fact, [1] establishes – using an extremely complicated proof
involving computer aided calculations – an optimal quadratic bound in
this special case. However, even for normed spaces and nonexpansive
mappings the bounds in the present paper and [13] are the only effective
bounds known at all for non-constant sequences λn.

The next corollary strengthens theorem 1 in [8]:

Corollary 3.19 Let d, ε > 0 and K ∈ IN, K ≥ 2. Then there exists an
N ∈ IN such that for any hyperbolic space (X, ρ, M), any non-empty bounded
convex set C ⊆ X such that d(C) ≤ d, any directionally nonexpansive map-
ping f : C → C, any sequence (λn)n∈IN in [ 1

K
, 1 − 1

K
] and any x ∈ C, the

following holds
∀n ≥ N(ρ(xn, f(xn)) ≤ ε).

Proof: Apply Corollary 3.17. 2

In [14] (Theorem 2.5) the first author extended (for normed spaces and non-
expansive mappings) Corollary 3.14 to the situation where C no longer is
required to be bounded but only the existence of a point x∗ ∈ C whose
iteration sequence (x∗

n)n∈IN is bounded is assumed. We obtained a fully uni-
form bound which only depends on an upper bound d on ‖x− x∗‖ and ‖x∗

n‖
(and ε, K, α). This is of interest since the functional analytic embedding
techniques from [4],[8] seem to require that C is bounded. Using the results
above it is easy to see that Theorem 2.5 from [14] extends to hyperbolic
spaces:
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Theorem 3.20 Let (X, ρ, M) be a hyperbolic space, C ⊆ X a non-empty
convex subset and f : C → C a nonexpansive mapping, (λn)n∈IN, α and K be
as before. Let d > 0, x, x∗ ∈ C be such that

ρ(x, x∗) ≤ d ∧ ∀n, m ∈ IN(ρ(x∗
n, x∗

m) ≤ d).

Then the following holds

∀ε > 0∀n ≥ h(ε, d, K, α)(ρ(xn, f(xn)) ≤ ε),

where

h(ε, d, K, α) := α̂(d12d · exp(K(M + 1))e − 1, M)), with
d ∈ IR is such that d ≥ d(C),
M ∈ IN is such that M ≥ 1+6d

ε
and

α̂ as before.

Proof: As in the proof of Theorem 2.5 in [14] using Remark 3.10 and Propo-
sition 3.4. 2

For the case of directionally nonexpansive mappings, however, the additional
assumption in our Theorem 3.9 causes various problems and changes in the
proofs. In the following, we will only consider the case where (xn)n∈IN itself is
bounded (i.e. x = x∗). We will need an additional assumption which for the
case of constant λk := λ though is redundant. The proof differs significantly
from that given in [14] since the argument which was used there to derive
the bound ρ(x, f(x)) ≤ 6d in the nonexpansive case does not seem to hold
for directionally nonexpansive mappings. However, a different bound can be
obtained depending on α.

For any k ∈ IN, we define the sequence ((xk)m)m∈IN by:

(xk)0 = xk, (xk)m+1 = (1 − λm)(xk)m ⊕ λkf((xk)m).

Hence, for any k ∈ IN, ((xk)m)m∈IN is the Krasnoselski-Mann iteration start-
ing with xk.

Remark 3.21 ((xk)m)m∈IN is not in general a subsequence of (xn)n∈IN. But if
(λn)n∈IN is a constant sequence, λn = λ, then (xk)m = xk+m for all m, k ∈ IN,
hence ((xk)m)m∈IN is a subsequence of (xn)n∈IN.
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Theorem 3.22 Let (X, ρ, M) be a hyperbolic space, C ⊆ X a non-empty
convex subset and f : C → C a directionally nonexpansive mapping. Let
(λn)n∈IN be a sequence in [0, 1) which is divergent in sum and satisfies

∀n ∈ IN(λn ≤ 1 − 1

K
)

for some K ∈ IN.
Let α : IN × IN → IN be such that

∀i, n ∈ IN((α(i, n) ≤ α(i + 1, n)) ∧ (n ≤
i+α(i,n)−1∑

s=i

λs)).

Let d > 0 and x ∈ C such that

∀n, k, m ∈ IN(ρ(xn, (xk)m) ≤ d).

Then the following holds

∀ε > 0∀n ≥ h(ε, d, K, α)(ρ(xn, f(xn)) ≤ ε),

where

h(ε, d, K, α) := α(0, 1) + α̂∗(d2d · α(0, 1) · exp(K(M + 1))e − 1, M), with
M ∈ IN is such that M ≥ 1+2d

ε
,

α̂∗(0, n) := α̃∗(0, n), α̂∗(i + 1, n) := α̃∗(α̂∗(i, n), n) with
α̃∗(i, n) := i + α∗(i, n),
α∗(i, n) := α(i + α(0, 1), n) (i, n ∈ IN).

Proof: The sequence (xn)n∈IN is bounded, since

∀m, n ∈ IN(ρ(xn, xm) = ρ(xn, (x0)m) ≤ d).

By the hypothesis on α, we have that
α(0,1)−1∑

s=0
λs ≥ 1. From this it is easy to

see that there is N ∈ IN, N ≤ α(0, 1) − 1 such that

λN ≥ 1

α(0, 1)
.
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It follows that

(1) ρ(xα(0,1), f(xα(0,1))) ≤ ρ(xN , f(xN)) =
1

λN

ρ(xN , xN+1) ≤ d · α(0, 1).

Let µn = λα(0,1)+n for all n ∈ IN. It is obvious that (µn)n∈IN is divergent in
sum and µn ≤ 1 − 1

K
for all n ∈ IN.

Let us consider the sequence (yn)n∈IN defined by

y0 := y := xα(0,1), yn+1 := (1 − µn)yn ⊕ µnf(yn).

Hence, (yn)n∈IN is the Krasnoselski-Mann iteration associated with (µn)n∈IN,
starting with xα(0,1). It follows by an easy induction on n that

yn = xα(0,1)+n, so

∀m, n ∈ IN(ρ(yn, ym) = ρ(xα(0,1)+n, xα(0,1)+m) ≤ d).

Thus, we can apply Proposition 3.4 to get that lim
n→∞ ρ(yn, f(yn)) = 0. It

follows that
(2) ∀δ > 0∃Nδ∀n ≥ Nδ(ρ(yn, f(yn)) < δ).

Let y∗ := yNδ
. Then, by the hypothesis,

∀n ∈ IN(ρ(yn, y∗
n) = ρ(xα(0,1)+n, (xNδ+α(0,1))n) ≤ d).

Define for all i, n ∈ IN,

α∗(i, n) := α(i + α(0, 1), n).

It follows immediately that α∗(i, n) ≤ α∗(i + 1, n) and that

i+α∗(i,n)−1∑
s=i

µs =
i+α(i+α(0,1),n)−1∑

s=i

λα(0,1)+s =
i+α(0,1)+α(i+α(0,1),n)−1∑

s=i+α(0,1)

λs ≥ n.

There are satisfied the hypotheses of Theorem 3.9 with µn, α∗, y, y∗ instead
of λn, α, x, x∗, so we can apply it to get

∀ε > 0∀n ≥ h∗(ε, y, d, f, K, α∗)(ρ(yn, f(yn)) < ρ(y∗, f(y∗)) + ε),
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where

h∗(ε, y, d, f, K, α∗) := α̂∗(d2c(f, y) · exp(K(M + 1))e−· 1, M), where
M ∈ IN is such that M ≥ 1+2d

ε
,

c(f, y) ∈ IR is such that c(f, y) ≥ ρ(y, f(y)).

By (1), we have that

ρ(y, f(y)) = ρ(xα(0,1), f(xα(0,1))) ≤ d · α(0, 1),

so we can take c(f, y) := d · α(0, 1).

We get that

h∗(ε, y, d, f, K, α∗) = α̂∗(d2d·α(0, 1)·exp(K(M+1))e−1, M) = h∗(ε, d, K, α),

since α∗ is defined in terms of α.

Applying now (2), it follows that

(3) ∀ε > 0∀n ≥ h∗(ε, d, K, α)(ρ(yn, f(yn)) < δ + ε).

Since (3) is true for every δ > 0, we obtain

∀ε > 0∀n ≥ h∗(ε, d, K, α)(ρ(yn, f(yn)) ≤ ε), that is

∀ε > 0∀n ≥ h∗(ε, d, K, α)(ρ(xα(0,1)+n, f(xα(0,1)+n)) ≤ ε).

Finally, letting h(ε, d, K, α) := α(0, 1) + h∗(ε, d, K, α), we get

∀ε > 0∀n ≥ h(ε, d, K, α)(ρ(xn, f(xn)) ≤ ε).

2

As mentioned already, the condition

∀n, k, m ∈ IN(ρ(xn, (xk)m) ≤ d)

is equivalent to the boundedness of (xn) by d

∀n, m ∈ IN(ρ(xn, xm) ≤ d)

in the case of constant λn = λ. Hence we obtain the following strong uniform
version of Theorem 2 in [8] (note that Theorem 2 in [8] does not state any
uniformity of the convergence at all).
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Corollary 3.23 Let (X, ρ, M) be a hyperbolic space, C ⊆ X a non-empty
convex subset and f : C → C a directionally nonexpansive mapping. Let
d > 0, K ∈ IN, K ≥ 2 and λ ∈ [ 1

K
, 1 − 1

K
]. Let λn := λ for all n ∈ IN. Let

x ∈ C such that ρ(xn, xm) ≤ d for all m, n ∈ IN. Then the following holds

∀ε > 0∀n ≥ h(ε, d, K)(ρ(xn, f(xn)) ≤ ε),

where

h(ε, d, K) := K + K · M · d2d · K · exp(K(M + 1))e and

M ∈ IN, M ≥ 1+2d
ε

.

Proof: Obviously, (λn)n∈IN is divergent in sum.

Define α : IN × IN → IN by
α(i, n) = Kn.

Then α(i, n) = α(i + 1, n) = Kn and

i+α(i,n)−1∑
s=i

λs ≥
i+α(i,n)−1∑

s=i

1

K
=

1

K
· α(i, n) = n.

It is an easy exercise to see that

α∗(i, n) = α(i + α(0, 1), n) = Kn = α(i, n),
α̃∗(i, n) = α̃(i, n) = i + α(i, n) = i + Kn and
α̂∗(i, n) = α̂(i, n) = K(i + 1)n.

Since λn = λ for all n ∈ IN, it follows that (xk)m = xk+m, hence for all
m, n, k ∈ IN,

ρ(xn, (xk)m) = ρ(xn, xk+m) ≤ d.

Hence, we can apply Theorem 3.22 to obtain

∀ε > 0∀n ≥ h(ε, d, K, α)(ρ(xn, f(xn)) ≤ ε),

where

M ∈ IN is such that M ≥ 1+2d
ε

and

h(ε, d, K, α) := α(0, 1) + α̂∗(d2d · α(0, 1) · exp(K(M + 1))e − 1, M)
= K + K · M · d2d · K · exp(K(M + 1))e
= h(ε, d, K).
2
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Final Remark: Inspection of the proofs in this paper shows that the only
places where we used the requirement (2) from the definition of hyperbolic
spaces was in Lemma 3.7 which in turn only was used in Remark 3.10 as well
as the proof of Theorem 3.20. Thus all other results in this paper even hold
for spaces of hyperbolic type in the sense of [4], i.e. convex metric spaces in
the sense of [18].
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