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Abstract

The spi-calculus, proposed by Abadi and Gordon, is a process cal-
culus based on the w-calculus and is intended for reasoning about the
behaviour of cryptographic protocols. We consider the finite-control
fragment of the spi-calculus, showing it to be Turing-powerful (a re-
sult which is joint work with Josva Kleist, Uwe Nestmann, and Bjorn
Victor.) Next, we restrict our attention to finite (non-recursive) spi-
calculus. Here, we show that framed bisimilarity, an equivalence rela-
tion proposed by Abadi and Gordon, showing that it is decidable for
this fragment.

1 Introduction

The spi-calculus, originally proposed by Abadi and Gordon [AG97al, is a pro-
cess calculus based on the 7-calculus [MPW92] and is intended for describing
and reasoning about the behaviour of cryptographic protocols.

An important insight of the spi-calculus is that correctness properties
can be expressed as statements of behavioural equivalence. For instance,
a protocol P(M) transmitting the message z satisfies the secrecy property
w.r.t. M if we cannot distinguish between two instances of P which transmit
different messages. Expressed using behavioural equivalence, this reduces to
stating that
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VM, My.P(My) ~ P(Ms,)

Deciding correctness properties of cryptographic protocols now amounts
to deciding the behavioural equivalence ~.

Various notions of behavioural equivalence have been put forward. Abadi
and Gordon [AG97a] choose may-testing equivalence (originally proposed by
De Nicola and Hennessy [NH83]). While may-testing is ideal from a philo-
sophical point of view — processes are equivalent iff they behave in the same
way under all attacks/observations — this equivalence is defined via univer-
sal quantification over observer processes and is therefore less ideal from the
perspective of actually determining the equivalence of processes.

Consequently, in [AG98b] Abadi and Gordon define a bisimulation-style
equivalence, framed bisimilarity, and show it to be as a sound approximation
of may-testing equivalence. A main motivation behind their work was to
define a notion of behavioural equivalence which has a useful proof technique
and is decidable.

The main focus of this paper is to examine to which extent the latter is
the case.

As the full spi-calculus is Turing-powerful one can only hope for a positive
decidability result within a proper subcalculus. A natural candidate would
be the finite-control spi-calculus, the spi-calculus counterpart of regular CCS;
finite-control processes have a bounded number of parallel components and,
because of the presence of recursion, are able to describe multiple protocol
runs.

However, even the finite-control spi-calculus is Turing-powerful [HKNV97].
In this paper we first demonstrate this by presenting an encoding of Minsky’s
two-counter machines into the finite-control calculus, a result which is joint
work with Josva Kleist, Uwe Nestmann, and Bjorn Victor.

Next, we restrict our attention to finite spi-calculus processes and show
that framed bisimilarity is decidable in this fragment. The finite spi-calculus
processes are the recursion-free processes of the spi-calculus, corresponding
to single runs of a cryptographic protocol.

In [ALOO] Amadio and Lugiez consider a finite spi-calculus similar to
ours and show that its associated reachability problem is decidable (albeit
NP-hard). As further work they mention finding an algorithm for deciding
bisimilarity.

A main problem in obtaining our result stems from matching input tran-
sitions, since two processes must be equivalent under all value instantiations;
we overcome this problem by showing that only finitely many values need be
considered.



2 The spi-calculus

The spi-calculus extends the m-calculus [MPW92, Mil99] with primitives for
encryption and decryption. As in the 7-calculus, communication takes place
over channels that can either be public or restricted. Messages may be de-
crypted; the perfect encryption hypothesis is adopted in the spi-calculus —
an attacker cannot guess the key of an encrypted message.

2.1 Syntax

In this section we present the two fragments of the spi-calculus that we shall
study in the rest of the paper. Our syntax largely follows that of [AG97a].
We only consider shared key cryptography since the definitions related to
framed bisimilarity in [AG98b] only use shared key cryptography. However,
an extension of the results in the present paper should be straightforward.

2.1.1 Terms

Common to our two fragments is the set of terms that can be communicated
by processes. Unlike the 7-calculus, the spi-calculus allows us to communi-
cate composite terms. The set of terms, 7, has its syntax defined by the
following grammar.

L M,N:=z|n|{M}y|(M,N)

In the above, x ranges over the set of variables, n ranges over the set
of names, {M}x denotes the term M encrypted using key N and (M, N)
denotes the pair whose components are the terms M and N.

2.1.2 The finite-control spi-calculus

The finite-control spi-calculus is a straightforward extension of the finite-
control m-calculus introduced by Lin [Lin91].

As the definition below shows, a finite-control process consists of a fixed
number of sequential processes running in parallel.

Definition 1 The set of finite-control spi-calculus processes is given by the
grammar



R = M(z).R| M(N).R| (vn)R
| D(M)|0|[M=N]R| R+ R
| let (z,y) = MinR |recD(M).R
| caseL of {x}yinR

P == R|(vn)P|P|P

The spi-calculus distinguishes between variables x, y, z, ... € V and names
c,m,n,k...N. Names refer to a key or a channel, whereas variables are
instantiated to messages. When concerning channels, a name c is used for
input and its co-name ¢ used for output.

The spi-calculus has two communication primitives. M(N).P is output;
N is emitted on the channel M. M(x).P is input; the variable x is received
on the channel M, and x is bound in P.

While encryption is handled at the level of message terms, decryption is
a process construct. case L of {z}yin P is used to decrypt terms; z is bound
in P. The other term destructor is let (x,y) = M in P which allows us to
split a pair; the variables z and y are bound in P.

The remaining process constructs are also found in the 7-calculus: (vn)P
is the restriction construct. The new name n is bound in P. P | () denotes
parallel composition and 0 is the empty process. Finally, the match construct
[M = N] P can proceed as P iff M is equal to N.

In the finite-control calculus we allow two additional constructs, namely
nondeterministic choice, R+ Rs and recursively defined processes, recD(M).R.
D(M) ranges over recursion constants which may be parameterised by a term.

We identify processes up to renaming of bound names and variables. A
process without any free variables is closed; we let P denote the set of closed
processes. Furthermore we let fn[P] denote the set of free names in P, and
fv[P] the free variables in P. For any set of terms S, we let n(S) denote
the set of names occurring in S, free as well as bound. P[M/x] denotes the
substitution of the term M for all free occurrences of x in the process P and
is defined as expected.

The original presentation of the spi-calculus in [AG97a] introduces natural
numbers into the syntax. This, however, is unimportant as we can encode
the naturals using encryption and decryption. Let a,b be fresh names. We
then let



The test-for-zero process construct now becomes

[case v of 0: P suc(z) : Q] =case v of {z},in P+ [v =a]Q
In our undecidability proof in section 3 we use natural numbers freely by
implicit appeal to this encoding.
2.1.3 Finite processes

The syntax of processes in the finite spi-calculus omits nondeterministic
choice and recursion from the finite-control fragment.

P,Q,R == (vn)P|M(N).P|M(z).P|P|Q
| [M=N|P|0|let (x,y) =MinP |caseL of {x}yinP

2.1.4 Agents

An agent can be a process, an abstraction or a concretion. The syntax of
agents is defined by the following grammar:

AB == P|C|F
F.G == (z)P
C,D == (vm)(M)P

()P is an abstraction, which needs to bind a term to x before proceeding.
(vm)(M)P is a concretion, which is immediately able to output the term M.
A will denote the set of closed agents.

2.2 Semantics

Our labelled commitment semantics of the spi-calculus is that of [AGI8b].

2.2.1 Reduction and structural congruence

The reduction relation describes how processes unfold and make preparations
for a reaction. In particular, the rules describe how the term deconstruc-
tors behave (Table 1) and, for finite-control processes, how nondeterministic
choice is resolved and that a recursive process proceeds by unfolding the re-
cursive definition (Table 2) . In the case of a decryption we only proceed if
the key is a name. See Table 1.



(M=M] > P
let(z,y) = (M,N)in P > P[M/x][N/y]
case {M}, of {z},inP > P[M/x]

Table 1: The reduction rules for term destructors

recD(x).P > PlrecD(M;).P/D(M,)]
P1 + P2 > P1
P1 + P2 > PQ

Table 2: The reduction rules for recursion and choice

Structural congruence, =, is defined in Table 3. It captures the identities
that should intuitively hold.

2.2.2 The commitment relation

The commitment transition system (P,{——| a € N U{7}},A) has its tran-
sition relation defined inductively by the rules in Definition 4.
In Definition 4 we use the interaction operator e defined by

CeF = (vii)(Q | PIN/x]) FeC = (vii)(P[N/2] | Q),
when {1} N f[P] = 0. Here, we extend restriction and composition as
follows:

(vn)(x)P £



PlO=P PlQ=Q|P
PI@QIR)=(PIQ) R (vm)(vn)P = (vn)(vm)P
(vn)0 =0 P|(vn)Q = (vn)(P | Q) ifn¢&Mm[P]
P>Q P=Q Q=R
P=qQ P=R
P=qQ
P=P Q=P
P=qQ P=qQ
P|R=Q|R (vn)P = (vn)Q

Table 3: Rules defining structural congruence

where we assume x & v[Q], n &€ {m} and {m} N M[Q] = 0. The dual
composition A | @ is defined symmetrically.

3 The finite-control fragment is Turing-powerful

As the finite-control spi-calculus calculus is the spi-calculus analogue of the
finite-control fragment of the m-calculus, introduced by [Lin91], one might
expect the situation to be same as in the m-calculus. Here, Dam [Dam97] has
shown that late and early bisimilarity [MPWO92] as well as open bisimilarity
[San96] are all decidable. Dam’s result depends on the fact that it is always
suffices to consider a finite set of names due to the bounded parallelism of a
finite-control process.

However, the finite-control spi-calculus is in fact Turing-powerful, de-
stroying all hope of obtaining positive decidability results for any non-trivial
notion of behavioural equivalence. The encoding presented here is joint work
with Josva Kleist, Uwe Nestmann, and Bjorn Victor.

3.1 Encoding two-counter machines in the finite-control
fragment

For our proof of this fact, we consider another universal model of computa-
tion, namely the two-counter machines of [Min67]. A two-counter machine is
a simple imperative program consisting of a sequence of labelled instructions
that can modify the values of two nonnegative integer counters, ¢y and c;.
Two instructions are singled out, namely Lg;qpt and Lgygy. The program



(oput)  m(x).P = ()P

PF Q%0

(Output) m(M)P E) (V)<M>P

Prnoc Q% F

(Com—l) - (Com—2) —
P|Q— FeC P|Q—CeF
(Par-1) P 7 A (Par-2) ¢ 7 A
PlQ— A|Q PlQ—P|A
(Res) P—A4 3 g {m’ m} (Red) w
(vm)P — (vm)A P2 A

Table 4: The commitment semantics of the spi-calculus

starts with the line L g4 and halts if L g, is reached. The instruction set
consists of two different types of instructions (in the indices of the counter
variables we always assume addition and subtraction modulo 2):

1. L : ¢, :=cp+1; goto L,
2. L : if ¢; = 0 then goto Lrll else ¢, := ¢, — 1; goto Li

We can always assume that a type 1 instruction has L # L, (if L = L,
the machine would loop forever) and that a type 2 instruction has L # L}
(here, too, if L = L. the machine would loop forever) and L # L? (we can
simply duplicate the instruction in question.)

Theorem 2 Any two-counter machine can be simulated in the finite-control
spi-calculus.

PROOF: We define an encoding [] from two-counter machine instructions into
the finite-control spi-calculus. The idea is simply that the two counters are
represented by processes and the each instruction corresponds to a process
that communicates with the counters.

We assume the following set of names, which we denote by n:

e For every instruction label L,, we introduce the name [,,, used to signal
a goto, and the constant D, .



e For counter ¢; we introduce the names

dj indicating that the counter is decremented
¢, indicating that the counter is incremented

rr indicating that the value of the counter is being read

A counter ¢, is represented as the process

Instructions are encoded as

[L:cp:=cp+1;goto L,] = recD;.Liy.1,.D;
[L : if ¢z =0 then
goto L} else
cri=cp — 1; goto L] = recDy.l.ri(y).(Jy=0]1L.D, + [y # 0] dy .12 .D,,)

Suppose that a two-counter machine M is composed of a sequence of
instructions Si,...,S,,. Then the encoding of the machine is given by

[M] = (VH)H[[Sz]] [ Co | Gy

It is now easy see that the two-counter machine can reach a state where
co = vo and ¢; = vy if and only if [M] -~ P’ where the term P’ has
counter constants whose values are Dy(vg) and Dy (vy), respectively. O

Corollary 3 Any nontrivial notion of behavioural equivalence is undecid-
able in the finite-control spi-calculus.

4 Framed bisimilarity

Framed bisimilarity was introduced by Abadi and Gordon in [AG98b].

4.1 Frames and theories

Processes are related with respect to a frame-theory pair which represents
the knowledge of the environment.

Definition 4 A frame fris a finite set of names. A theory th is a finite set
of pairs of terms (M, N). We let e range over the set of frame-theory pairs.



(Ind Var)

eFxr—x
n € fr (M,N) € th
(Ind Frame) clFn e n (Ind Theory) e M o N
e-M— M ekF N« N e-M— M e N« N

(Ind Pair) (Ind Enc)

e (M,N) < (M',N') e {Miy < {M'}y

Table 5: Rules defining the indistinguishability relation

Intuitively, when comparing processes P and (), the elements of the frame
are the names from P and @ that the attacker knows. If (M, N) € th the
attacker cannot distinguish the term M coming from P and the term N
coming from Q).

In what follows, when given an environment e we refer to its frame part
as fr, and its environment part as th,.

Definition 5 Let e = (fr,th) be an environment. Terms M and N are
indistinguishable under e, written e - M « N, if it can be derived by the
rules in Table 5.

An environment must be consistent. This is captured by

Definition 6 Environment e is ok, written e - ok, if:

1. V(M, N) € th it must hold that M is closed, My, My : M = { M}
and AN, : e - My < N,. The converse must also hold for N.

2. whenever (M, N) € th and (M',N') € thy M = M' iff N = N'.

Definition 7 Let e and ¢’ be environments. ¢’ extends e, written e < ¢/, iff
VM,N:et-M — N=¢FM< N.

A framed process pair is a quadruple (fr, th, P,Q), where P,Q € P. If R
is a set of framed process pairs, we write e - PRQ when (fr, th, P,Q) € R. A
framed relation is a set R of framed process pairs, such that e F ok whenever
e PRQ.

10



4.2 Framed simulations and bisimulations

Framed simulation is a late simulation [MPW92]; the choice of a matching
transition for an input transition does not depend on the value that will
eventually be received.

Definition 8 A framed simulation is a framed relation S such that, when-
ever e - PS(Q), the following three conditions hold

1. If P -5 P’ then there exists a process (' such that Q — ' and
ek P'SQ'.

2. If P - (z)P'" and c € fr then there exists an abstraction (z)Q’ with
Q = (z)Q’ and, for all sets {77} disjoint from fn[P] U m[Q] UfUfn(th)
and all closed terms M and N, if (fru{i},th) - M < N then (f U
{1}, th) = P'[M/z|SQ'[N/x].

3. If P - (vm)(M)P', ¢ € fr and {m} N (f[P] U fo(m(th)) U fr)
= () then there exists a concretion (vi1)(N)Q' with Q —— (vii)(N >
and {71} N (]Q] U fn(m(th)) U f) = 0. Furthermore Je’ : e < e
¢+ M«— N,and ¢+ P'SQ’.

Definition 9 A framed bismulation is a framed simulation & such that
St={FQSP |et PSQANE = (fr,{(M,N) | (N,M) € th})} is

also a framed simulation.

Definition 10 Framed bisimilarity is the greatest framed bisimulation, writ-
ten ~ .
f

5 A decidability result

Definitions 8 and 9 do not provide us with a straightforward means of check-
ing bisimilarity. The goal of the rest of our paper is to address this issue.
More precisely, we shall show that in the case of finite processes

e we only need to consider finitely many terms when matching input
transitions.

e we only need to consider finitely many possible frame extensions when
matching input transitions

e we only need to consider finitely many frame-theory extensions when
matching output transitions

11



Taken together, these observations will allow us to obtain a simple deci-
sion procedure for framed bisimilarity.

5.1 Matching input transitions

Assume that we are trying to determine whether (fr,th) = P ~; Q. We

have an input commitment P — (x)P’, have a candidate for a matching
commitment, Q —— (2)Q’, and now need to determine whether P’ ~ Q.

Assume that the maximal number of successive term destructors in P
and () is m, and that the maximal number of term constructors of any term
in th is d. Then we need only consider the finitely many terms of depth
< m + d constructed from (fr, th) and a bounded number of new names in
order to determine if (fr,th) = P’ ~,; @'. This must hold as the process
can only inspect any input term up to m levels of encryption/pairing and
because the environment may ask us to regards terms whose depth is up to
d as indistinguishable.

5.1.1 The depth of terms and processes

The notion of the maximal constructor depth of a term is as expected. It
counts the level of encryption and the level of pairing. The level of decryption
takes precedence over the level of pairing and only the level of decryption
within the contents of a ciphertext matters, as terms appearing in key po-
sition must be names. Otherwise, they will cause the process not to evolve
any further.

Definition 11 The mazimal constructor depth d(M) of a term M is defined
inductively by the clauses

) =0
) 0
d{M}y) = d(M)+1
) = max(d(M),d(N))

The above definition easily extends to frame-theory pairs.

Definition 12 Let (fr, th) be a frame-theory pair where fr = {(My, Ny), ..., (M, Ni)}.

The maximal constructor depth of (fr, th) is defined b
d((fr, th)) = max{max(d(M;),d(N;)) | 1 < i < k}

12



The maximal destructor depth of a process P is the maximal number of
encryptions and pairing operators that can ever be removed along the process
P. Decryption and pair splitting operations each contribute by 1, whereas
a parallel composition P | @) may contribute with decryptions from both P
and Q).

Definition 13 Let P be a finite process. The mazimal destructor depth of
P is denoted by mdd(P) and defined inductively by the clauses

mdd(0) = 0
mdd((vn)P) = mdd(P)
mdd(M(N).P) = mdd(P)
mdd(M(z).P) = mdd(P)
mdd(P Q) = mdd(P)+mdd(Q)
mdd([M = N]P) = mdd(P)
mdd(let (x,y) = MmP) = mdd(P)+1
mdd(case L of {z}yinP) = mdd(P)+1

5.1.2 d-framed bisimilarity

d-framed bisimilarity is a variant of framed bisimilarity that only requires
input transitions to be matched for transmitted message terms up to a certain
depth.

Definition 14 Let k be a nonnegative integer and let e be a frame-theory
pair such that e - ok. We write e W M «* N if e F M « N and
max(d(M),d(N)) = k. Whenever e = M <% N we say that M and N

are k-indistinguishable in e.

Since we only consider terms up to a certain depth, we need only consider
finitely many extensions of the frame. This is expressed in the following
lemma.

Lemma 15 Let (fr, th) be a frame-theory pair and assume that max(d(M),d(N)) =
k. If there is a (frU{f}, th) such that (frU{ii}, th) = M «* N, then we may
choose a {71} where |i| < 2k satisfying (frU{f}, th) = M <* N.

ProoF: If M and N are not indistinguishable under (fr, th), this must be
amended by applying the constructor rules, the rule (Ind Theory) and the
rule (Ind Frame) to new names. Every application of a constructor rule
can introduce at most two new names, so at most 2k new names can be
introduced. a

13



Lemma 15 leads to the following definition of d-framed simulation.

Definition 16 For any nonnegative integer d, a d-framed simulation is a
framed relation S such that, whenever (fr,th) - PSQ), the following three
conditions hold

1. If P -5 P’ then there exists a process (' such that Q — @’ and
ek P'SQ'.

2. If P -5 (2)P'" and c € fr then there exists an abstraction (z)Q’ with
Q —= (2)Q’ and, for all sets {7} disjoint from fn[P] U fn[Q] U frU fn(th)
such that |7i| < 2d and all closed terms M and N, if (fru{i},th) -
M <" N and 0 < i < d then (fru{n},th) F P'[M/z]SQ'[N/z].

3.1 P A= (wm)(M)P', ¢ € frand {m} N ([Q] Un(m (th)) U fr) =
(0 then there is a concretion B = (vii){N)@Q’ such that Q —— B, the
set {71} is disjoint from fn[Q] U n(ma(th)) U fr and ¢’ = P'SQ’ for some

e’ > (fr,th) where ¢’ - M < N.

Definition 17 A d-framed bisimulation is a d-framed simulation S such that
St={FQSP|etPSQANe = (fr,,{(M,N)|(N,M) € th.})} is also a

d-framed simulation.

Definition 18 d-framed bisimilarity is the greatest d-framed bisimulation,

: d
written ~ 7

Our goal is to show that for finite processes P and () we have that P and
Q@ are framed bisimilar iff they are d-bisimilar where d is the critical depth.

The critical depth of (e, P, @) is the maximal depth of terms that must be
considered as inputs when determining whether P and () are framed bisimilar
under e.

Definition 19 Let (e, P, Q) be a framed process pair. The critical depth of
(e, P, Q) is defined by

cd(e, P, Q) = d(e) + max(mdd(P), mdd(Q))

We let
cd(e, P) = cd(e, P, P)

When considering the result of an input commitment, we only need to
consider instantiations with terms whose depths do not exceed the critical
depth. Intuitively, this suffices as all subterms occurring below the critical
depth are inaccessible by the destructors of a process.

14



If two terms are indistinguishable, their subterms appearing at depth d
can be replaced by fresh names for any d such that the resulting terms will
still be indistinguishable. This is the idea behing d-pruning.

Example 20 Let M = {{a},}. and N = {{d}.}; and assume that we have
(M,N) € th for some theory th. Let fr = {h}. Then we have (fr,th)
{M}), < {N},. We also have (frU{g}, th) = {{g}s}rn < {{g}s}r where g is
a fresh name not found in fr. ((frU{g}, th),{g}n < {g}n) is the 1-pruning
of (e, M, N).

The pruning of a pair of terms (M, N) at depth d generates a pair of
pruned terms (M', N'). M’ and N’ are constructed by replacing subterms
appearing at levels greater than d by encryptions of arbitary fresh names by
the same fresh names. The fresh names are then added to the frame.

Definition 21 Let M and N be closed terms and let e - ok. Further assume
that e F M < N, that all subterms appearing in key position in M and N
are names and that d is a nonnegative integer. The d-pruning of (e, M, N),
denoted by pr,((e, M, N)), is defined inductively by the clauses

pro(((fr, th)anvn)) = ((f?“, th)anvn)

pro(((fr, th), M, N)) = ((fr,th), M, N) if (M,N) € th
pro(((fr th), M. ) = ((FUfah, ). {aka{a}s) TN E T

P (U7 ), (Mo (N J) = (€ (0 s (V') 3 )

If M is an open term, we define pry((e, M)) = (e, M).
The pruning operator extends to single terms by defining pr,((e)(M)) =
pry((e)(M, M)).

Note that, because of the usage of unspecified fresh names, the pruning
operator as defined here does not generate a unique pair of terms. This can
be dealt with by means of introducing suitable bookkeeping.

Note also how the definition exploits the fact that only names are allowed
in key position.

Lemma 22 If e - M < N, d = max(d(M),d(N)) and pry((e, M,N)) =
(¢/, M', N') then ¢’ - M' <% N'.

15



PROOF: A straightforward induction in d, appealing to Definition 21. O

We can extend the pruning operation to pairs of term vectors. This
is done inductively; we prune the components of the vectors successively,
extending the frame as we proceed.

Definition 23 Let |M| = |N| = k. Then pr,((M, N)) is defined inductively
by

pry((e, (M, ..., My), (N1, ..., Np))) = (¢, (ML, ..., ML), (N.,...,NL)

where
(6//, Mi’ N{) = prd((€7 M17 Nl))

and

(e, (M, ..., M), (Ny,...,N;)) =pry((e", (M, ..., My),(Ng,...,Ni)))

—

Lemma 24 Let P be a process such that P = A[M /Z] and let d = cd(e, P).
P > Aiff P > A, where P, = A[N/Z] where pry((e, M)) = (¢/, N) and
A = A[N /4.

PRroOF: Both implications are seen to hold by an inspection of the clauses in
the definition of the reduction relation. The interesting case is the decryption
clause:

case {M} of {y}rin P’ > P'[M/y]
If P=case{M}y of {y}rin P’, then the definition of the pruning operator
tells us that P, = case {N}, of {y}rinP] where P' = A|[M /7] and P/ =
A'[N/Z] for some A}. We now see that

case {N}y of {y}rin P > P{[N/y]

O

Lemma 25 Let P = A[M /7] and let d = cd(e, P). P - A’ iff P, -2 A
where P, = A[N/Z] where pry((e,M)) = (¢/,N) and A} = B[N/Z] and
A" = B[M /7] for some B.

PROOF: In the case of both implications, the proof proceeds by transition
induction. The induction hypothesis in the case concerning the rule (Red)
uses Lemma 24. The only other interesting cases are the prefix axioms. O

Theorem 26 Let P and @ be finite spi processes and let d = cd(e, P, Q)
where e - ok. We have that e = P ~, Q iff e = P ~4 Q.
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PRrOOF: By definition, any framed bisimulation is also a d-framed bisimula-
tion. It therefore suffices to establish that e = P ~, () whenever e - P Nfc Q.
We show that

P:A[q /7], Q = BLN/g]
— — / 4 ~N /
R =1 (e,P,Q)|3¢,A B,MN.° A[M'/7) ~} BIN'/3]
(¢/, (M',N")) = pry((e, M, N))
d=cd(e, P,Q)
is a framed bisimulation. This follows from Lemma 25. O

5.2 Matching output transitions

Next, we have to deal with matching output transitions. Fortunately, there
are only finitely many candidates for an environment extension in the case
of the output clause.

Unfortunately, as was shown in [BN02], the characterization of framed
bisimilarity presented in [EHHNO99] is sound but not complete. We are
therefore unable to fall back on the algorithm for computing environment
extensions presented in [EHHN99]. Instead we use

Lemma 27 Let e - ok and let M, N € 7. It is decidable whether there is
an e < € such that e M < N.

PRrROOF: To construct an €’ such that ¢’ = M < N, we only need to add pairs
of the form (M, N;) where max(d(M;),d(Ny)) < max(d(M),d(NV)) and such
that n[M;] Un[N;] C n[M]Un[N]. Only finitely many such candidate pairs
exist. O

6 Deciding framed bisimilarity
We can now state the main results of our paper.

Theorem 28 Let e - ok and let P and ) be finite spi-calculus processes.
For any d > 0 it is decidable whether e - P Nfc Q.

PRrOOF: Table 6 presents a nondeterministic recursive algorithm B((e, (P, Q))
for determining if e - P N? Q.

As the algorithm encodes the ‘bisimulation game’ of Definition 16, e
P ~% Q iff there exists a successful evaluation of B((e, (P,Q))). The algo-
rithm always terminates, as Lemma 15 and Lemma 27 guarantee that the
checks performed in the conditional statements of the algorithm are effective

17



B(((fr, th),(0,0))) = ft
B(((fr,th), (P1, P2))) =
let (fr,th) =e in
for each P; - (z)P! where a € fr
select a P, —% ()P
if no such P/ ;| exists
then fail
else
for each 7 where |7i| < d, 7N [P, UMm[P;11]Un(th) =0
for each (fruU{i},th) - M <% N
B(((fru{i}, th), (F{[M/x], F{,,[N/y])))
for each P, - (v&)(M)P! where a € fr
select a Py, — (VCZ)(N>P{+1
if no such P/ ;| exists
then fail
else
select e < (fr', th') such that (fr/,th') - M < N
B(((fr', th'), P}, P,4))
for each P, - P/
select a P, — P,
if no such P/ ; exists
then fail
else

B(((frv th)v 131‘/7 Pi/+1))
Table 6: A nondeterministic algorithm for checking bisimilarity

and as all transition sequences examined along recursive calls are finite due
to the absence of recursion. O

Corollary 29 Let e - ok and let P and @) be finite spi-calculus processes.
It is decidable whether e = P ~, Q.

7 Conclusions and further work

In this paper we have shown that framed bisimilarity is decidable for finite
processes. The ideas used in this paper are closely related to those employed
in giving symbolic semantics to process calculi. The precise relationship is a
topic for further work.

Recent, currently unpublished results [FN0O1, BN02] establish that the en-
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vironment sensitive bisimilarity of Boreale et al. [BDP99] corresponds to a
variant of framed bisimilarity which omits the frame-component. We there-
fore conjecture that our results and techniques carry over to environment
sensitive bisimilarity.

A topic for further work is how to develop an efficient version of the
bisimulation checking algorithm. However, framed bisimulation subsumes
the late bisimulation equivalence of the m-calculus and the decision problem
for this latter equivalence is known to be PSPACE-complete for a number of
recursion-free process calculi with value-passing [BT00].

As we have omitted recursion, we can only study attacks that involve
a given number of runs of a protocol. Another topic for further work is
therefore to study the class of attacks that can be detected within the finite
spi-calculus.
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