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Abstract

We show new lower and upper bounds on the number of max-
imal induced bipartite subgraphs of graphs with n vertices. We
present an infinite family of graphs having 105n/10 ≈ 1.5926n such
subgraphs, which improves an earlier lower bound by Schiermeyer
(1996). We show an upper bound of n·12n/4 ≈ n·1.8613n and give
an algorithm that lists all maximal induced bipartite subgraphs
in time proportional to this bound. This is used in an algorithm
for checking 4-colourability of a graph running within the same
time bound.

1 Notation

In this paper we look at simple, undirected graphs G = (V, E) and in-
duced subgraphs of these. The subgraph induced by a subset of the
vertices S ⊆ V is denoted G[S]. If G′ is a subgraph we let V (G′) denote
the vertices of G′ and call G[V \V (G′)] the remaining graph. A maximal
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k-colourable subgraph of a graph is an induced k-colourable subgraph,
contained in no other induced k-colourable subgraph. If k = 1 or k = 2
we use the terminology maximal independent set or maximal bipartite
subgraph, respectively. We let n = |V |.

The running times of all algorithms in this paper are of the form
O (p(n) · cn) where p is a polynomial and c a constant. If we round off
c to a larger value we can ignore the polynomial factor, and we say that
the running time is proportional to cn.

2 Introduction

As a natural generalisation of the use of maximal independent sets in
colouring algorithms (see e.g. Lawler [5]), Schiermeyer [8] considers the
use of maximal bipartite subgraphs. He devises an algorithm that checks
whether a graph is 4-colourable, by generating all maximal bipartite sub-
graphs and checking if any of the remaining graphs are 2-colourable. It
runs in time proportional to that of generating all maximal bipartite sub-
graphs of the graph. Schiermeyer also shows lower and upper bounds on
the number of maximal bipartite subgraphs. He constructs an infinite
family of graphs all having 10n/5 ≈ 1.5849n maximal bipartite subgraphs,
which shows the lower bound. He states a matching upper bound.

In this paper we show a new lower bound of 105n/10 ≈ 1.5926n on
the number of maximal bipartite subgraphs by providing a new infinite
family of graphs. This invalidates the upper bound of Schiermeyer. We
prove instead an upper bound of n · 12n/4 ≈ n · 1.8613n and present a
generating algorithm running in time proportional to this bound. The
same time bound is achieved for 4-colouring.

3 Lower bound

We show a lower bound on the number of maximal bipartite subgraphs in
any graph by providing and infinite family of graphs with many maximal
bipartite subgraphs. The infinite family consists of disconnected copies
of a single graph, the k’th one having k copies. The maximal bipartite
subgraphs of a disconnected graph are exactly the union of one maximal
bipartite subgraph of each connected component. Their number thus
equals the product of the number of maximal bipartite subgraphs of
each component. Schiermeyer [8] uses K5 (having ten maximal bipartite
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subgraphs) to generate his infinite family, resulting in a lower bound of
10n/5 ≈ 1.5849n.

Theorem 1. There exists an infinite family of graphs, in which each
graph has 105n/10 ≈ 1.5926n maximal bipartite subgraphs.

Proof. The generating graph for our infinite family of graphs is seen in
Figure 1.1 Let a pair denote a vertex on the outer 5-cycle and the nearest

Figure 1: Generating graph with a pair marked.

vertex on the inner 5-cycle (see Figure 1). The graph has 5 · 24 = 80
maximal bipartite subgraphs containing one vertex from four of the pairs
(see Figure 2(a)), 5 · 22 = 20 containing one pair and one vertex from
each of the opposite pairs (see Figure 2(b)) and five containing two pairs
(see Figure 2(c)). Thus it has 105 maximal bipartite subgraphs and gives
a lower bound of 105n/10 ≈ 1.5926n using multiple copies.

(a) (b) (c)

Figure 2: The three different types of maximal bipartite subgraphs.

1This graph is also found in a list of counterexamples to graph conjectures [3]
made by Graffiti [2], a program generating such conjectures automatically. We could
not find any information about which conjecture it disproved.
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4 Upper bound

When we look at maximal k-colourable subgraphs it is easier to look at
a specific k-colouring guaranteed to exist by the following lemma:

Lemma 1. Let M be a maximal k-colourable subgraph of G = (V, E).
The vertices of M can be split into colour classes C1, C2, . . . , Ck of non-
increasing sizes s.t. for all i, j with 0 ≤ i < j ≤ k, G[Ci+1∪Ci+2∪· · ·∪Cj]
is a maximal (j − i)-colourable subgraph of G[V \ (C1 ∪ C2 ∪ · · · ∪ Ci)].

Proof. Look at all possible k-colourings of M having the colour classes
sorted in non-increasing order. Label each with a vector, having as co-
ordinates the sizes of the colour classes in reverse order, i.e. the smallest
one first. We claim that the lexicographically smallest labelled colouring
C1, C2, . . . , Ck satisfies the conditions of the lemma.

Suppose conversely that there exists i, j with 0 ≤ i < j ≤ k s.t.
G[Ci+1 ∪Ci+2 ∪ · · · ∪Cj] is not a maximal (j − i)-colourable subgraph of
G[V \ (C1 ∪ C2 ∪ · · · ∪ Ci)]. Since it is (j − i)-colourable there exists a
vertex v in the remaining graph s.t. G[Ci+1∪Ci+2∪· · ·∪Cj∪{v}] remains
(j − i)-colourable. Now v ∈ M ; otherwise, M ∪ {v} is k-colourable,
and thus contradicts the maximality of M . Then v ∈ Cl for some l >
j. Pick a (j − i)-colouring of G[Ci+1 ∪ Ci+2 ∪ · · · ∪ Cj ∪ {v}] together
with the colouring C1, . . . , Ci, Cj+1, . . . , Cl−1, Cl \{v}, Cl+1, . . . , Ck of the
remaining graph. They form a k-colouring of M . Now the l’th colour
class is smaller than in the original colouring, and the proceeding ones
are of the same size. Thus the vector having as coordinates the sizes of
the colour classes in reverse order is lexicographically smaller than the
label of the original colouring. Since sorting the vector only makes it
smaller, the label of the new colouring is lexicographically smaller then
the label of the original colouring. This is a contradiction, and thus the
lemma is true.

We are now in a position to prove our upper bound:

Theorem 2. Any graph contains at most n ·12n/4 ≈ n ·1.8613n maximal
bipartite subgraphs. Moreover, there is an algorithm that takes as input a
graph and outputs all its maximal bipartite subgraphs in time O (1.8613n).

Proof. Let G be an arbitrary graph and M a maximal bipartite subgraph
thereof. Setting i = 0, j = 1 and i = 1, j = 2 in Lemma 1 we can
assume that the vertices of M consists of a maximal independent set M1

of G and a maximal independent set M2 of the remaining graph having
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|M2| ≤ |M1|. Thus to find all maximal bipartite subgraphs, our algorithm
generates all maximal independent sets of G and for each generates all no
larger maximal independent sets of the remaining graph. If their union is
a maximal bipartite subgraph the algorithm outputs it.2 Let MIS≤k(G)
(MIS=k(G)) denote the set of all maximal independent sets of size at
most (exactly) k of G. Then the number of maximal bipartite subgraphs
of G is at most

n∑

k=1

∑

M∈MIS=k(G)

∣∣MIS≤k

(
G[V \ V (M)]

)∣∣

We split the sum in two

bn
4
c∑

k=1

∑

M∈MIS=k(G)

∣∣MIS≤k

(
G[V \ V (M)]

)∣∣ +

n∑

k=bn
4
c+1

∑

M∈MIS=k(G)

∣∣MIS≤k

(
G[V \ V (M)]

)∣∣

and use two bounds on the number of maximal independent sets. Epp-
stein [1] shows that |MIS≤k(G)| ≤ 34k−n4n−3k for any graph G. Moon
and Moser [6] shows that any graph can have at most 3n/3 maximal in-
dependent sets in total. Since |MIS=k(G)| ≤ |MIS≤k(G)| we get that
the sum is at most

bn
4
c∑

k=1

34k−n4n−3k34k−(n−k)4(n−k)−3k +
n∑

k=bn
4
c+1

34k−n4n−3k3(n−k)/3

The expression in the first sum is increasing as a function of k, and the
expression in the second is decreasing. Both equals 12n/4 if k = n/4, thus
the sum is at most n · 12n/4 ≈ n · 1.8613n.

All maximal independent sets of a graph can be generated in time
proportional to their number, see e.g. Johnson et al. [4]. Those of size
at most k can be generated in time O (

34k−n4n−3k
)
, as shown by Epp-

stein [1]. Thus in our algorithm we generate all maximal independent

2The union is not necessarily a maximal bipartite subgraph: In the 6-cycle, two
opposite vertices form a maximal independent set, but their union with a maximal
independent set of the remaining graph do not form a maximal bipartite subgraph.
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sets of the graph in time proportional to their number. For those of size
k ≤ n/4 we use the algorithm of Eppstein to generate the maximal in-
dependent sets of size at most k of the remaining graph, and for those of
size k > n/4 we generate all maximal independent sets of the remaining
graph in time proportional to their number. We thus get a time bound
proportional to 1.8613n

5 Colouring

Suppose that a graph G = (V, E) is k-colourable. By setting M = V ,
i = 0 and j = 2 in Lemma 1 we obtain that the graph has a k-colouring
consisting of a maximal bipartite subgraph s.t. the remaining graph is
(k−2)-colourable. Thus the algorithm of Schiermeyer [8] checks whether
a graph is k-colourable by generating all maximal bipartite subgraphs
and checking whether the remaining graphs are (k − 2)-colourable. The
time complexity of checking k-colourability is proportional to the time
complexity of generating all maximal bipartite subgraphs times the time
complexity of checking (k − 2)-colourability of the remaining graphs.

The time complexity of checking 4-colourability using the above al-
gorithm is proportional to the time complexity of generating all maxi-
mal bipartite subgraphs, since 2-colourability can be checked in polyno-
mial time. By Theorem 2 the running time is O (1.8613n). This is not
competitive as Nielsen [7] has a 4-colouring algorithm running in time
O (1.7504n). To improve the running time we need smaller upper bounds
on the number of maximal bipartite subgraphs, while still being able to
generate them in time proportional to their number.

6 Conclusion

We have shown that there can be at least 105n/10 ≈ 1.5926n and at most
n · 12n/4 ≈ n · 1.8613n maximal bipartite subgraphs of a graph, and they
can be generated in time proportional to our upper bound. Maximal
bipartite subgraphs can be used in 4-colouring algorithms, but to be
competitive better upper bounds are needed.

We found our lower bound by testing all graphs of size n ≤ 10 on a
computer. This becomes infeasible even for slightly larger n, since the
number of graphs grows very fast. To prove our upper bound we used
bounds on the number of maximal independent sets of a graph. These
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bounds are tight, at least for the values where our expression attains its
maximum. Thus new ideas are needed to prove better lower and upper
bounds.

Acknowledgements

We would like to thank our advisors Peter Bro Miltersen and Sven Skyum
for many helpful comments and insights.

References

[1] David Eppstein. Small maximal independent sets and faster exact
graph coloring. In Proc. 7th Worksh. Algorithms and Data Structures,
volume 2125 of Lecture Notes in Computer Science, pages 462–470.
Springer-Verlag, 2001.

[2] Siemion Fajtlowicz. Written on the wall. See http://www.math.uh.

edu/~siemion/.

[3] Siemion Fajtlowicz and Steven Skiena. A database of counterex-
amples to conjectures by graffiti. Can be obtained by ftp from
ftp.cs.sunysb.edu/pub/Combinatorica/graffiti/.

[4] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadim-
itriou. On generating all maximal independent sets. Information
Processing Letters, 27(3):119–123, 1988.

[5] Eugene L. Lawler. A note on the complexity of the chromatic number
problem. Information Processing Letters, 5(3):66–67, 1976.

[6] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of
Mathematics, 3:23–28, 1965.

[7] Jesper Makholm Nielsen. On the number of maximal independent
sets in a graph. Report Series RS-02-15, Department of Computer
Science, Aarhus University, 2002. Available at http://www.brics.

dk/RS/02/15/.

[8] Ingo Schiermeyer. Fast exact colouring algorithms. Tatra Mt. Math.
Publ., 9:15–30, 1996.

7



Recent BRICS Report Series Publications

RS-02-17 Bolette Ammitzbøll Madsen, Jesper Makholm Nielsen, and
Bjarke Skjernaa. On the Number of Maximal Bipartite Sub-
graphs of a Graph. April 2002. 7 pp.
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