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Abstract

We show that the number of maximal independent sets of size
exactly k in any graph of size n is at most bn/kck−(n mod k)(bn/kc+
1)n mod k. For maximal independent sets of size at most k the same
bound holds for k ≤ n/3. For k > n/3 a bound of approximately
3n/3 is given. All the bounds are exactly tight and improve Epp-
stein (2001) who give the bound 34k−n4n−3k on the number of
maximal independent sets of size at most k, which is the same for
n/4 ≤ k ≤ n/3, but larger otherwise. We give an algorithm list-
ing the maximal independent sets in a graph in time proportional
to these bounds (ignoring a polynomial factor), and we use this
algorithm to construct algorithms for 4- and 5- colouring running
in time O(1.7504n) and O(2.1593n), respectively.

1 Introduction

In their 1965 paper Moon and Moser [6] show that the number of maximal
independent sets in any graph is at most 3n/3 where n is the number
of vertices in the graph. They use a carefully designed transformation
on the extremal graphs to fully characterise these. Croitoru [1] uses
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funded by the Danish National Research Foundation.
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the same technique to show that all graphs with independence number
(the size of the largest independent set) no larger than k have at most
bn/kck−(n mod k)(bn/kc + 1)n mod k maximal independent sets.

Eppstein [3] uses an algorithmic proof to show that the number of
maximal independent sets of size at most k is no larger than 34k−n4n−3k.
His bound is both tight and equal to that of Croitoru for n/4 ≤ k ≤ n/3.
Eppstein advocates the search for a tight bound, for all values of k.

In this paper we give such a tight bound for all values of k. This bound
equals the bound of Croitoru without the restriction on the independence
number. In the proof we use the same technique as Croitoru and Moon
and Moser do, but we furthermore give an algorithmic proof similar to
that of Eppstein, to show that the maximal independent sets can be
listed with only polynomial overhead.

Eppstein uses his bound to improve the time bound for colouring
graphs. Although we do not improve this time bound, our result is
used to give better time bounds for 4- and 5-colouring than what was
previously known.

2 Preliminaries

The graphs in this paper are all simple, undirected graphs G = (V, E).
By “subgraphs” we mean vertex-induced subgraphs, and the subgraph
induced by a subset of the vertices S ⊆ V is denoted G[S]. An edge
(v, w) is adjacent to a vertex v′, if v′ equals v or w. The neighbourhood
of a vertex is N (v) = {w ∈ V | (v, w) ∈ E}, and the neighbourhood
of a set of vertices is the union of their neighbourhoods. Two vertices v
and w are neighbours, if (v, w) ∈ E, or equivalently if w ∈ N (v). For
neighbours v and w we let Gv�w denote the graph obtained from G by
removing all edges adjacent to v, except (v, w), and adding edges from
v to all neighbours of w except for v itself. Note that Gv�w is equal to
the graph obtained by removing v from G, making a copy of w with the
same neighbours as w and adding an edge between them.

A maximal independent set in a graph is an independent set contained
in no other independent set in the graph. Let I=k (G)

(
I≤k (G)

)
denote

the number of maximal independent sets of size exactly (at most) k
in G. Similarly let I=k

G (x)
(
I≤k
G (x)

)
denote the number of maximal

independent sets of size exactly (at most) k in G that contains x. Also let
I=k (n)

(I≤k (n)
)

denote the maximum number of maximal independent
sets of size exactly (at most) k in any n-vertex graph.
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In the rest of the paper, when we talk about the time complexity of
an algorithm we will ignore polynomial factors, as all time complexities
are exponential. We will use the notation O∗ (cn) to denote a function
within a polynomial factor of cn.

3 Results

Theorem 1. Let 1 ≤ k ≤ n. If k ≤ n/3, then

I≤k (n) = bn/kck−(n mod k) (bn/kc + 1)n mod k .

If k > n/3, then

I≤k (n) =




3n/3 if n ≡ 0 (mod 3),

4 · 3bn/3c−1 if n ≡ 1 (mod 3),

2 · 3bn/3c if n ≡ 2 (mod 3).

Moreover, there is an algorithm that takes a graph as input and outputs
all maximal independent sets of size at most k in time O∗ (I≤k (n)

)
.

Theorem 2. Let 1 ≤ k ≤ n. Then

I=k (n) = bn/kck−(n mod k) (bn/kc + 1)n mod k .

Moreover, there is an algorithm that takes a graph as input and outputs
all maximal independent sets of size exactly k in time O∗ (I=k (n)

)
.

Remark. The time needed to output all maximal independent sets is
bounded by the maximum number of these in any n-vertex graphs, not
the actual number in the graph given as input.

The proof of the bounds in the two theorems is essentially the same
as that used by Moon and Moser [6].

Proof of Theorem 1 and 2. Let v and w be neighbours in a graph G,
and look at the number of maximal independent sets of size at most k
in Gv�w. None of these contain both v and w, since they are neighbours.
All maximal independent sets of size at most k in G that neither con-
tains v nor w are still maximal independent sets in Gv�w, since if v or
w could be added in Gv�w so could w in G. Those maximal indepen-
dent sets containing w also remains maximal in Gv�w, and in addition
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we get a new maximal independent set in Gv�w, with v replacing w. The
maximal independent sets containing v are no longer maximal in Gv�w,
except for those that are maximal independent sets in G[V \ {v}] when
v is removed from them. Let M(v) denote the number of these. Thus
I≤k (Gv�w) = I≤k (G) + I≤k

G (w) − I≤k
G (v) + M(v), and by the same ar-

gument I≤k (Gw�v) = I≤k (G) + I≤k
G (v) − I≤k

G (w) + M(w). Suppose G
has the maximum number of maximal independent sets of size at most k
among all graphs with n vertices. If v and w are neighbours in G, neither
Gv�w nor Gw�v can have more maximal independent sets than G, but
then I≤k

G (v) = I≤k
G (w) and M(v) = M(w) = 0 by the above equations.

This implies that we can replace G by Gv�w for all neighbours v and w
in G without changing I≤k (G). Let w ∈ V and N (w) = {v1, v2, . . . , vk}.
By successively replacing G by Gvi�w we end up with {w, v1, v2, . . . , vk}
being a connected component of the graph forming a clique. Doing this
for all connected components we end up with a graph consisting of discon-
nected cliques. Let the number of vertices in these cliques be i1, i2, . . . , il,
where i1 + i2 + · · · + il = n. Then the number of maximal independent
sets of size at most k in G is

I≤k (G) =

{
i1 · i2 · · · · · il if l ≤ k,

0 otherwise.
(1)

We want to find those values of ij maximising this expression.1 It is
clear that none of the ij ’s can differ by more than one, since if a > b + 1,
(a − 1)(b + 1) = ab + (a − b − 1) > ab. Also since a ≤ ba/2c · da/2e
for a ≥ 4, if l < k any ij ≥ 4 can be split in two, namely bij/2c · dij/2e
without lowering the value of the expression. Thus for k ≤ n/3 this
is largest, if (k − (n mod k)) of the ij ’s are bn/kc and (n mod k) of
them are bn/kc + 1, giving I≤k (G) = bn/kck−(n mod k)(bn/kc + 1)n mod k.
For k > n/3, since 23 < 32 three two’s are replaced by two three’s.
Thus the maximum is 3n/3, if n ≡ 0 (mod 3), 4 · 3bn/3c−1, if n ≡ 1
(mod 3) and 2 · 3bn/3c, if n ≡ 2 (mod 3). As we started out from a graph
with the maximum number of maximal independent sets this is an upper
bound on I≤k (n), and since we explicitly found the extremal graphs this
is also a lower bound obtained for the graphs consisting of a union of
(k − (n mod k)) Kbn/kc’s and (n mod k) Kbn/kc+1’s, for k ≤ n/3 and an
appropriate number of K2 and K3’s, for k > n/3.2 For I=k (G) a similar

1Moon and Moser [6] gave the above proof with I≤k replaced by the total number
of maximal independent sets, and thus got the upper bound 3n/3.

2These graphs are the complement of the Turán graphs.
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expression to (1), except that there must be exactly k ij ’s, is found, and
therefore the bound I=k (G) = bn/kck−(n mod k)(bn/kc + 1)n mod k is valid
for all k ≥ 1.

Remark. The extremal graphs are unique, as already Moon and Moser [6]
noted using the following proof. Look at the second-to-last graph G
in the above procedure s.t. Gv�w is the last. Then v and w must be
neighbours, and G consists of v and a bunch of disconnected cliques. Now
v is connected to all vertices in w’s component; otherwise, the maximal
independent set consisting of v, a vertex from w’s component, except for
w itself and a maximal independent set of the remaining graph is still
a maximal independent set in G[V \ {v}] with v removed, contradicting
M(v) = 0. Since I≤k

G (v) = I≤k
G (w), v is connected to no other vertices.

But then G = Gv�w, and since the process started out with any extremal
graph, these are unique.

Proof (continued). We now devise an algorithm for finding all maximal
independent sets of size exactly k. Suppose a graph G = (V, E) has a
maximal independent set I of size k. By maximality I ∪ N (I) = V ;
thus, I must have a vertex say v of degree ≥ dn/ke − 1. All maximal
independent sets in G either consists of v and a maximal independent
set in G

[
V \ ({v} ∪ N (v)

)]
, or a maximal independent set in G[V \

{v}] that intersects N (v). Our algorithm chooses the vertex with the
highest degree and branches on the two cases of either including it in
the maximal independent set, and removing it from the graph together
with all its neighbours, or excluding it from the maximal independent
set, and removing it from the graph. If k = n the algorithm just tests
whether the remaining vertices form an independent set, and if k = 0,
or k > n there are no appropriate maximal independent sets, and the
branching stops. Let T (n, k) denote the maximum number of leaves in
the recursion tree of the algorithm when finding all maximal independent
sets of size exactly k in a graph with n vertices. We want to show that
T (n, k) ≤ bn/kck−(n mod k) (bn/kc + 1)n mod k. For k = 1 and k = n this
is trivially so. We proceed by induction in k. Let 1 < k < n and suppose
it holds for all smaller values of k. Then by the above discussion

T (n, k) ≤ T (n − dn/ke, k − 1) + T (n − 1, k)
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which by induction hypothesis is at most

⌊
n − dn/ke

k − 1

⌋k−1−((n−dn/ke) mod (k−1)) (⌊
n − dn/ke

k − 1

⌋
+ 1

)(n−dn/ke) mod (k−1)

+

⌊
n − 1

k

⌋k−((n−1) mod k) (⌊
n − 1

k

⌋
+ 1

)(n−1) mod k

.

Using the fact that

n − dn/ke =

{
(k − 1)bn/kc if k | n,

(k − 1)bn/kc + (n mod k) − 1 if k - n,

we get that, if k | n, T (n, k) is at most

⌊n

k

⌋k−1 (⌊n

k

⌋
+ 1

)0

+
(⌊n

k

⌋
− 1

)1 ⌊n

k

⌋k−1

which is equal to I=k (n), and if k - n, T (n, k) is at most

⌊n

k

⌋k−(n mod k) (⌊n

k

⌋
+ 1

)(n mod k)−1

+
⌊n

k

⌋k−(n mod k)+1 (⌊n

k

⌋
+ 1

)(n mod k)−1

which again equals I=k (n). Since the algorithm at every step takes
at most polynomial time the total running time of the algorithm is
O∗ (I=k (n)

)
.

Next we devise an algorithm for finding all maximal independent sets
of size at most k rather than exactly k. If the maximum degree in the
graph is at most two the graph consists of only paths and cycles. For each
of these we can calculate all possible sizes of maximal independent sets.
The algorithm branches as before on the cases of including or excluding
a vertex, but keeps track of the possible sizes of maximal independent
sets in the remaining graph, such that it only makes recursive calls that
will find maximal independent sets. Then every leaf in the recursion tree
corresponds to a maximal independent set of size at most k in the graph,
and the running time is thus proportional to I≤k (n).

If the maximum degree is larger than two an algorithm similar to
the one for maximal independent sets of size exactly k is used, the only
difference being that it no longer stops if k ≥ n, since we are looking for
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maximal independent sets of size at most k. We now prove by induction
in k that the number of leaves in the recursion tree T (n, k) is at most
I≤k (n). For n = 1 and k = 1 this is trivially so. We want to show it for
1 < k ≤ n, so suppose it is true for all smaller values of k. If k < n/3
then k ≤ (n−1)/3 and the proof is similar to that for I=k (n). If k = n/3
then

T (n, k) ≤ 3(n−3)/3 + 2 · 3b(n−1)/3c = 3n/3

which is equal to I≤k (n). For k > n/3, if the maximum degree is at most
two the running time is proportional to I≤k (n) by the above. Suppose
that the maximum degree is at least three. Then

T (n, k) ≤ T (n − 4, k − 1) + T (n − 1, k)

which is at most

2 · 3b(n−4)/3c + 2 · 3b(n−1)/3c = 8/9 · 3n/3

if n ≡ 0 (mod 3),

3(n−4)/3 + 3(n−1)/3 = 4 · 3bn/3c−1

if n ≡ 1 (mod 3) and

4 · 3b(n−4)/3c−1 + 4 · 3b(n−1)/3c−1 = 16/9 · 3bn/3c

if n ≡ 2 (mod 3). In all cases this is at most I≤k (n); thus, the algorithm
runs in time O∗ (I≤k (n)

)
.

Hujter and Tuza [4] have shown that triangle-free graphs (i.e. graphs
having no triangles as subgraphs) can have at most 2n/2 maximal inde-
pendent sets. This we can show by an algorithmic proof similar to the
above.

Proposition 1. If G is a triangle-free graph the number of maximal
independent sets in G is at most 2n/2, and the bound is tight. Moreover,
there is an algorithm that takes a triangle-free graph as input and outputs
all maximal independent sets in the graph in time O∗ (

2n/2
)
.

Proof. Let G be a triangle-free graph. As long as the maximum degree
of the graph is greater than two, we just branch on the maximum-degree
vertex. Either it is in the maximal independent set, and thus none of it
neighbours are, or it is not. This removes at least four vertices in one
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branch and one in the other; thus, the number of leaves in the recursion
tree is at most T (n) ≤ T (n − 1) + T (n − 4), which has the solution
T (n) = 20.4650·n. If at some point the maximum degree is at most two
the remaining graph consists of only paths and cycles. Since there are
no triangles the worst case is paths of length two, yielding 2n/2 maximal
independent sets, which is worse than the above. The bound is tight
since a graph consisting of n/2 disconnected K2’s achieves the bound for
even n.

4 Application to colouring

Consider a k-colouring of a graph. Each colour class is an independent
set, and the largest has size at least n/k and can be extended to a max-
imal independent set. Thus to check whether a graph is k-colourable it
suffices to check for all maximal independent sets of size at least n/k,
whether the remaining graph is (k−1)-colourable, which can be done by
applying the method recursively and using a polynomial time algorithm
for checking 2-colourability. For checking 3-colourability, Eppstein [2]
has devised an algorithm running in time T3(n) = O (1.3289n) which is
faster than the above. Using his algorithm for checking 3-colourability
we get the following running times for 4- and 5-colourability.

Theorem 3. It can be checked in time O (1.7504n), whether a graph is
4-colourable.

Proof. The running time of the above-mentioned algorithm is at most
n∑

k=dn
4
e
I=k (G) · T3(n − k).

By Eppstein [3], 34k−n4n−3k is an upper bound on the number of maximal
independent sets for all k, and they can be generated in this time. Thus
the sum is at most

n∑
k=dn

4
e
34k−n4n−3k · T3(n − k).

As the terms are decreasing as a function of k, this is at most

n · 4n/4 · T3(3n/4).

Thus the algorithm runs in time O (1.7504n), where we have dropped the
factor of n since we have rounded up.
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Theorem 4. It can be checked in time O (2.1593n), whether a graph is
5-colourable.

Proof. Let T4 denote the running time of the above algorithm for checking
4-colourability. The running time for checking 5-colourability is at most

n∑
k=dn

5
e
I=k (G) · T4(n − k)

which is no larger than

bn
4
c∑

k=dn
5
e
45k−n5n−4k · T4(n − k) +

n∑
k=dn

4
e
34k−n4n−3k · T4(n − k).

Since the terms in both sums are decreasing as functions of k, and the
largest is the first term in the first sum, this is at most

n · 5n/5 · T4(4n/5),

which is equal to
n2 · 20n/5 · T3(3n/5).

Thus the algorithm runs in time O (2.1593n).

5 Conclusion

In this paper we give new bounds on the number of maximal independent
sets of size k, and thus strengthening Eppstein’s [3] bound to be tight
for all values of k. Eppstein uses his bound to prove better time bounds
for colouring graphs with the minimum possible number of colours, but
for our result to improve this, 4-colouring algorithms running in time
o(1.4150n) are needed (see [3]), which is far from the running time of
O (1.7504n) proven in this paper.

Our result is algorithmic in the sense that all maximal independent
sets of size at most k can be listed, but only in time proportional to our
bound, not their actual number. Algorithms for generating all maximal
independent sets running in time proportional to their number exists;
Johnson et al. [5] give an algorithm that in fact outputs all maximal
independent sets with only polynomial delay. We would like to find such
an algorithm for maximal independent sets of size k.
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Our result gives no information about the distribution of sizes of
maximal independent sets. It does not tell whether the existence of
many maximal independent sets of one size limits the number of maximal
independent sets of another size. Such bounds would be an interesting
goal of further research.
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