
B
R

IC
S

R
S

-02-14
B

erger
&

O
liva:

M
odified

B
ar

R
ecursion

BRICS
Basic Research in Computer Science

Modified Bar Recursion

Ulrich Berger
Paulo B. Oliva

BRICS Report Series RS-02-14

ISSN 0909-0878 April 2002

Copyright c© 2002, Ulrich Berger & Paulo B. Oliva.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/14/

Modified Bar Recursion

Ulrich Berger
u.berger@swan.ac.uk

Paulo Oliva∗

pbo@brics.dk

Abstract

We introduce a variant of Spector’s bar recursion (called “modified bar recur-
sion”) in finite types to give a realizability interpretation of the classical axiom
of countable choice allowing for the extraction of witnesses from proofs of Σ1 for-
mulas in classical analysis. As a second application of modified bar recursion we
present a bar recursive definition of the fan functional. Moreover, we show that
modified bar recursion exists in M (the model of strongly majorizable function-
als) and is not S1-S9 computable in C (the model of total functionals). Finally,
we show that modified bar recursion defines Spector’s bar recursion primitive
recursively.

1 Introduction

In [24] Spector extended Gödel’s Dialectica Interpretation of Peano Arithmetic [11]
to classical analysis using bar recursion in finite types. Although considered question-
able from an intuitionistic point of view ([1], 6.6) there has been considerable interest
in bar recursion, and several variants of this definition scheme and their interrelations
have been studied by, e.g. Schwichtenberg [21], Bezem [8] and Kohlenbach [16]. In
this paper we add another variant of bar recursion (so-called modified bar recursion)
and use it to give a realizability interpretation of the classical, i.e. negatively trans-
lated, axiom of dependent choice that can be used to extract witnesses from proofs
of Σ1-formulas in full classical analysis. Our interpretation is inspired by a paper by
Berardi, Bezem and Coquand [2] who use a similar kind of recursion in order to inter-
pret dependent choice. The main difference to our paper is that in [2] a rather ad-hoc
infinitary term calculus and a non-standard notion of realizability are used whereas we
work with a straightforward combination of negative translation, A-translation, mod-
ified realizability, and Plotkin’s adequacy result for the partial continuous functional
semantics of PCF [20].

As a second application of bar recursion (in section 4) we show that the definition
of the fan functional within PCF given in [3] and [19] can be derived from Kohlenbach’s
and our variant of bar recursion.

∗BRICS - Basic Research in Computer Science, funded by the Danish National Research Foun-
dation.

1

The final part of the paper deals with the question of defining (primitive recur-
sively) modified bar recursion MBR in other bar recursive definitions (namely, Spec-
tor’s original bar recursion SBR and Kohlenbach’s bar recursion KBR – see [24] and
[16] respectively) and vice versa. In section 5 we show that modified bar recursion
exists in M (the model of strongly majorizable functionals), 1 from which we can
conclude that MBR cannot be used to define KBR primitive recursively. In section
6 we show that modified bar recursion is primitive recursively definable in SBR. Fi-
nally, (in section 7,) we prove that (as the fan functional) modified bar recursion is
not S1-S9 computable in C (the model of total continuous functionals), which implies
that MBR is not (primitive recursively) definable in SBR nor in KBR.

2 Bar recursion in finite types

We work in a suitable extension of Heyting Arithmetic in finite types, HAω . For
convenience we enrich the type system by the formation of finite sequences. So, our
Types are N, function types ρ → σ, product types ρ × σ, and finite sequences ρ∗.
We set ρω :≡ N → ρ. The level of a type is defined by level(N) = 0, level(ρ × σ) =
max(level(ρ), level(σ)), level(ρ∗) = level(ρ), level(ρ → σ) = max(level(ρ) + 1, level(σ)).
By o we will denote an arbitrary but fixed type of level 0, and by ρ, τ , σ arbitrary. The
terms of our version of HAω are a suitable extension of the terms of Gödel’s system T
[11] in lambda calculus notation. We use the variables i, j, k, l, m, n: N; s, t: ρ∗; α, β: ρω

unless the type of these variables is stated explicitly otherwise. Other letters will be
used for different types in different contexts. By τ= we denote equality of type τ for
which we assume the usual equality axioms. However, equality between functions
is not assumed to be extensional. We also do not assume decidability for τ=, when
level(τ) > 0. Type information will be frequently omitted, when it is irrelevant or
inferable from the context. We let kρ denote the canonical lifting of a number k ∈ N

to type ρ, e.g. kρ→σ :≡ λxρ.kσ. By an ∃-formula respectively ∀∃-formula we mean a
formula of the form ∃yτ B respectively ∀zσ ∃yτ B, where B is provably equivalent to
an atomic formulaquantifier free and contains only decidable predicates. We will also
use the following operations:

〈x0, . . . , xn−1〉 :≡ the finite sequence with elements x0, . . . , xn−1

|s| :≡ the length of s, i.e. |〈x0, . . . , xn−1〉| = n

sk :≡ the k-th element of s provided k < |s|
s ∗ t :≡ the concatenation of s and t

s ∗ x :≡ s ∗ 〈x〉
s ∗ α :≡ appending α to s, i.e.

(s ∗ α)(k) = [if k<|s| then sk else α(k−|s|)]
s @ α :≡ overwriting α with s, i.e.

(s @ α)(k) = [if k < |s| then sk else α(k)]
s @ x :≡ s @ λk.x, i.e.

1Nonetheless, the realizers for the countable and dependent choice presented by the authors
does not necessarily exist in M since continuity is assumed for the proof of the soundness of the
interpretation.

2

(s @ x)(k) = [if k < |s| then sk else x]
αk :≡ 〈α(0), . . . , α(k − 1)〉

α, k :≡ αk @ λx.0
β ∈ αk :≡ βk = αk.

Definition 2.1 Spector’s definition of bar recursion [24] reads in our notation as
follows:

SBRρ,τ : Φ(s) τ=

{
G(s) if Y (s @ 0ρ)

o
< |s|

H(s, λxρ.Φ(s ∗ x)) otherwise,

where τ= denotes equality of type τ and 0ρ denotes the constant functional zero of type
ρ.

In his thesis [16] Kohlenbach introduced the following kind of bar recursion which
differs from Spector’s only in the stopping condition:

KBRρ,τ : Φ(s) τ=
{

G(s) if Y (s @ 0ρ) o= Y (s @ 1ρ)
H(s, λxρ.Φ(s ∗ x)) otherwise.

Finally, we define modified bar recursion at type ρ:

MBRρ : Φ(s) o= Y (s @ H(s, λxρ.Φ(s ∗ x))).

Instead of Φ(s) we should have written more precisely Φ(Y, G, H, s) in SBRρ,τ , KBRρ,τ ,
and Φ(Y, H, s) in MBRρ in order to make clear that these equations specify functionals
Φ of the respective types

(ρω → o) → (ρ∗ → τ) → (ρ∗ → (ρ → τ) → τ) → ρ∗ → τ

(ρω → o) → (ρ∗ → τ) → (ρ∗ → (ρ → τ) → τ) → ρ∗ → τ

(ρω → o) → (ρ∗ → (ρ → o) → ρω) → ρ∗ → o

By SBR we mean
⋃

τ,ρ SBRρ,τ and the same applies to KBR and MBR. We say a
model S satisfies one of the respective variants of bar recursion if in S (for any given
types τ and ρ) a functional exists satisfying SBRρ,τ , KBRρ,τ , or MBRρ for all possible
values of Y, G, H, s.

Recursive definitions similar to MBR occur in [2], and, in a slightly different form
in [3] and [19] in connection with the fan functional (cf. section 4).

Remark 2.2 Note that in the definition of MBR it is inessential whether we use the
operation @ (overwrite) or ∗ (concatenation). However it is essential that the type
of Φ(s) is of level 0. If, for example, the type of Φ(s) were N → N we could set
Y (α)(m)

o
:≡ α(m) + 1 and H(s, F)(k)

o
:≡ F (0)(|s| + 1), and obtain the equation

Φ(s)(m) o= (s @ λk.Φ(s ∗ 〈0〉)(|s| + 1))(m) + 1

implying

Φ(〈 〉)(0) = Φ(〈0〉)(1) + 1 = Φ(〈0, 0〉)(2) + 2 = . . .

3

which is inconsistent with HAω.

The structures of primary interest to interpret bar recursion are the model C of
total continuous functionals of Kleene [14] and Kreisel [17], the model Ĉ of partial
continuous functionals of Scott [22] and Ershov [9], and the model M of (strongly)
majorizable functionals introduced by Howard [12] and Bezem [7].

Theorem 2.3 The models C and Ĉ satisfy all three variants of bar recursion.

Proof. In the model Ĉ all three forms of bar recursion can simply be defined as the
least fixed points of suitable continuous functionals. For C we use Ershov’s result in
[9] according to which the model C can be identified with the total elements of Ĉ.
Therefore it suffices to show that all three versions of bar recursion are total in Ĉ.
For Spector’s version this has been shown by Ershov [9], and for the other versions
similar argument apply. For example, in order to see that Φ(s) defined recursively by
MBR is total for given total Y , H and s one uses bar induction on the bar

P (s) :≡ Y (s @ ⊥ρ) is total

where ⊥ρ denotes the undefined element of type ρ. P (s) is a bar because Y is
continuous. 2

Theorem 2.4 ([7], [16]) M satisfies SBR but not KBR.

We show in section 5 that M satisfies MBR.

3 Using MBR to realize countable choice

The aim of this section is to show how modified bar recursion can be used to extract
witnesses from proofs of Σ0

1-formulas in classical arithmetic plus the axiom (scheme)
of countable choice

AC ∀n ∃y A(n, y) → ∃f ∀n A(n, f(n)).

Actually we will need only the following weak modified bar recursion which is a special
case of MBR where H is constant:

wMBRρ : Φ(s) o= Y (s @ λk.H(s, λx.Φ(s ∗ x))).

Note that in wMBR the returning type of H is ρ, i.e., the argument of Y consists of
s followed by an infinite sequence with constant value of type ρ.

Remark 3.1 In [4] the authors have shown how the same idea for the realizer of AC
can be extended to give a realizer for the dependent choice [13]

DC ∀n ∀x∃y A(n, x, y) → ∀x∃f (f(0) = x ∧ ∀n A(n, f(n), f(n + 1))).

4

3.1 Witnesses from classical proofs

The method we use to extract witnesses from classical proofs is a combination of
Gödel’s negative translation (translation P o in [18] page 42, see also [25]), the Dra-
galin/Friedman/Leivant trick, also called A-translation [27], and Kreisel’s (formal-
ized) modified realizability [26]. The method works in general for proofs in PAω,
the classical variant of HAω. In order to extend it to PAω plus extra axioms Γ (e.g.
Γ ≡ DC) one has to find realizers for ΓN , the negative translation of Γ2, where ⊥
is replaced by an ∃-formula (regarding negation, ¬C, is defined by C → ⊥). How-
ever, it is more direct and technically simpler to follow [5] and combine the Dra-
galin/Friedman/Leivant trick and modified realizability: instead of replacing ⊥ by
a ∃-formula we slightly change the definition of modified realizability by regarding
y mr⊥ as an (uninterpreted) atomic formula. More formally we define

yτ mrτ ⊥ :≡ P⊥(y),

where P⊥ is a new unary predicate symbol and τ is the type of the witness to be
extracted. Therefore, we have a modified realizability for each type τ , according to
the type of the existential quantifier in the ∀∃-formula we are realizing. The other
clauses of modified realizability are as usual, e.g.

f mrτ (A → B) :≡ ∀x (xmrτ A → fxmrτ B).

In the following proposition ∆ is an axiom system possibly containing P⊥ and
further constants, which has the following closure property: If D ∈ ∆ and B is
a quantifier free formula with decidable predicates, then also the universal closure
of D[λyτ .B/P⊥] is in ∆, where D[λyτ .B/P⊥] is obtained from D by replacing any
occurrence of a formula P⊥(L) in D by B[L/y].

Proposition 3.2 Assume that Φ is a closed term such that

HAω + ∆ ` Φmrτ ΓN

Then from any proof of

PAω + Γ ` ∀zσ ∃yτ B(z, y)

where ∀zσ ∃yτ B(z, y) is a ∀∃-formula in the language of HAω, one can extract a closed
term Mσ→τ such that

HAω + ∆ ` ∀z B(z, Mz).

Proof. The proof is folklore. The main steps are as follows. Assuming w.l.o.g.
that B(z, y) is atomic (P⊥ does not occur in B(z, y)) we obtain from PAω + Γ `
∀zσ ∃yτ B(z, y) via negative translation

HAω + ΓN `m ∀y (B(z, y) → ⊥) → ⊥

where `m denotes derivability in minimal logic, i.e. ex-falso-quodlibet is not used.
Now, soundness of modified realizability (which holds for our abstract version of
modified realizability and minimal logic [5]), together with the assumption on Φ allows
us to extract from this proof a closed term M such that

2The negative translation double-negates atomic formulas, replaces ∃x by ¬∀x¬ and A ∨ B by
¬(¬A ∧ ¬B).

5

HAω + ∆ ` Mz mrτ (∀y (B(z, y) → ⊥) → ⊥)

i.e.

HAω + ∆ ` ∀fo→o (∀y (B(z, y) → P⊥(fy)) → P⊥(Mzf)).

Replacing P⊥ by λy.B(z, y) (remember the closure property of ∆) and instantiating
f by the identity function we conclude

HAω + ∆ ` ∀z B(z, Mz(λy.y)). 2

We will apply this proposition with τ :≡ o (and therefore we write just mr instead
of mro), Γ :≡ DC, or Γ :≡ AC (countable choice, see below), and an axiom system
∆ consisting of MBR (the defining equations), where the defined functional Φ is a
new constant, together with the axiom

Continuity ∀F ρω→o, α ∃n ∀β (αn = βn → F (α) = F (β))

(we call any n such that ∀β (αn = βn → F (α) = F (β)) a point of continuity of F at
α), and the following schema of

Relativized quantifier free pointwise bar induction

∀α ∈ S ∃n P (αn) ∧ ∀s ∈ S (∀x [S(x, |s|) → P (s ∗ x)] → P (s)) → P (〈〉)

where S(x, n) is arbitrary, P (s) is quantifier free, and α ∈ S, s ∈ S are shorthands
for ∀n S(α(n), n) and ∀i < |s|S(si, i), respectively. Clearly the condition on ∆ in
Proposition 3.2 is satisfied. This is similar to Luckhardt’s higher bar induction over
species, (hBI)ρ

D ([18], page 144). 3

In order to make sure that realizers can indeed be used to compute witnesses one
needs to know that, 1. the axioms of HAω + ∆ hold in a suitable model – we can
choose the model C of continuous functionals – and, 2. every closed term of type
level 0 (e.g. of type N) can be reduced to a numeral in an effective and provably
correct way. In [2] this is solved by building the notion of reducibility to normal
form into the definition of realizability. In our case we solve this problem by applying
Plotkin’s adequacy result [20] as follows: each term in the language of HAω plus the
bar recursive constants can be naturally viewed as a term in the language PCF [20],
by defining the bar recursors by means of the general fixed point combinator. In this
way our term calculus also inherits PCF’s call-by-name reduction, i.e. if M is bar
recursive and M reduces to M ′ then M ′ is bar recursive. Furthermore reduction is
provably correct in our system, i.e. if M reduces to M ′ then M = M ′ is provable.
Now let M be a closed term of type N. By Theorem 2.3 M has a total value, which
is a natural number n, in the model of partial continuous functionals. Hence, by
Plotkin’s adequacy theorem M reduces to the numeral denoting n.

3.2 Realizing ACN

We now construct a realizer of the classical (i.e. negatively translated) axiom of count-
able choice,

ACN ∀n (∀y (A(n, y)N → ⊥) → ⊥) → ∀f (∀n A(n, f(n))N → ⊥) → ⊥.

3The verification of the realizer for DC makes use of (aBI)ρ
D ([18], page 144). (cf. [4])

6

Following Spector [24] we reduce ACN to the double negation shift

DNS ∀n ((B(n) → ⊥) → ⊥) → (∀n B(n) → ⊥) → ⊥

observing that AC + DNS `m ACN , where DNS is used with the formula B(n) :≡
∃y A(n, y)N . Therefore it suffices to show that this instance of DNS is realizable.
The following lemma, whose proof is trivial, is necessary to see that the weak form of
modified bar recursion wMBR suffices in the interpretation of AC and DC.

Lemma 3.3 Let B be a formula such that all of its atomic sub-formulas occur in
negated form. Then there is a closed term H such that ∀~z H mr (⊥ → B) is provable
(in minimal logic), where ~z are the free variables of B (it is important here that H is
closed, i.e. does not depend on ~z).

Note that the formula B(n) :≡ ∃y A(n, y)N to which we apply DNS is of the form
specified in Lemma 3.3.

Theorem 3.4 The double negation shift DNS for a formula B(n) is realizable using
wMBR provided B(n) is of the form specified in Lemma 3.3.

Proof. In order to realize the formula

∀n((B(n) → ⊥) → ⊥) → (∀nB(n) → ⊥) → ⊥

we assume we are given realizers

Y ρω→o mr (∀nB(n) → ⊥)

GN→(ρ→o)→o mr∀n((B(n) → ⊥) → ⊥)

and try to build a realizer for ⊥. Using wMBR we define

Ψ(s) = Y (s @ λn.H(G(|s|, λxρ.Ψ(s ∗ x))))

where Ho→ρ is a closed term such that ∀n H mr (⊥ → B(n)) is provable, according
to Lemma 3.3. We set

S(x, n) :≡ xmrB(n),

P (s) :≡ Ψ(s)mr⊥,

and, by quantifier free pointwise bar induction relativized to S, we show P (〈 〉), i.e.
Ψ(〈 〉)mr⊥.

i) ∀α ∈ S ∃n P (αn). Let α ∈ S be fixed, and let n be the point of continuity
of Y at α, according to the continuity axiom. By assumptions on α and Y we get
∀β (Y (αn @ β)mr⊥), which implies Ψ(αn)mr⊥.

ii) ∀s ∈ S(∀x [S(x, |s|) → P (s ∗ x)] → P (s)). Let s ∈ S be fixed. Suppose
∀x [S(x, |s|) → P (s ∗ x)], i.e. ∀x [xmrB(|s|) → Ψ(s ∗ x)mr⊥], or in another words

λxρ.Ψ(s ∗ x)mr (B(|s|) → ⊥).

Using the assumption on G we obtain

G(|s|, λxρ.Ψ(s ∗ x))mr⊥,

7

and from that, setting w
ρ
:≡ H(G(|s|, λxρ.Ψ(s ∗ x))), we obtain w mrB(n), for all n.

Because s ∈ S it follows that s @ λn.w mr∀n B(n) and therefore

Y (s @ λn.w)mr⊥.

Since Ψ(s) = Y (s @ λn.w) we have P (s). 2

As explained above Theorem 3.4 yields

Corollary 3.5 The negative translation of the countable axiom of choice, ACN is
realizable using wMBR.

4 Bar recursion and the fan functional

A functional Ψ(Nω→o)→N is called fan functional if it computes a modulus of uniform
continuity for every continuous functional Y N

ω→o restricted to infinite 0, 1-sequences,
i.e.

FAN(Ψ) :≡ ∀Y ; α, β ≤ λx.1(α(Ψ(Y)) = β(Ψ(Y)) → Y α
o= Y β)

(note that ρ = N here). A recursive fan functional which is presented [3] and [19] uses
two procedures,

Φ(s, v) = s @ [if Y (Φ(s ∗ 0, v)) 6= v then Φ(s ∗ 0, v) else Φ(s ∗ 1, v)] (1)

Ψ(Y, s) N=


0 if Y (α) = Y (s @ 0),

where α = Φ(s, Y (s @ 0))
1 + max{Ψ(Y, s ∗ 0), Ψ(Y, s ∗ 1)} otherwise.

(2)

The first functional, Φ(s, v), returns an infinite path α having s as a prefix, such that
Y (s @ α) 6= v, if such a path exists, and returns s extended by λx.1, otherwise, i.e. if
Y is constant v on all paths extending s. The second functional, Ψ(Y, s), returns the
maximum point of continuity for Y on all extension of s. We show that the functional
λY.Ψ(Y, 〈 〉) is a fan functional and is primitive recursive in MBR and KBR. The proof
of the following two lemmas (which can be formalized in HAω+ rBI) can be found
in [4].

Lemma 4.1 MBR is equivalent to

Φ(sρ∗
)

ρω

= s @ H(s, λtρ
∗
λxρ.Y ρω→o(Φ(s ∗ t ∗ x))). (3)

Lemma 4.2 KBR is equivalent to,

Φ(s) τ=
{

G(s) if Y (s @ 0ρ) o= Y (s @ J(s))
H(s, λxρ.Φ(s ∗ x)) otherwise,

(4)

where the new parameter J is of type ρ∗ → ρω and, as usual, Φ(s) is shorthand for
the more accurate Φ(Y, G, H, J, s).

Theorem 4.3 The functional λY.Ψ(Y, 〈 〉) is primitive recursively definable in MBR
and KBR together.

8

Proof. We show that procedures Φ and Ψ satisfying the equations (1) and (2)
respectively can be defined using MBR and KBR.

For defining the functional Φ(s, v) we use equation (3) of Lemma 4.1.

Φ(s, v) oω

= s @ H(s, v, λtλx.Y (Φ(s ∗ t ∗ x)))

where H is defined by course of value primitive recursion as

H(s, v, F)(n) o=


sn if n < |s|
0 if n ≥ |s| ∧ F (c, 0) 6= v
1 if n ≥ |s| ∧ F (c, 0) = v,

with c :≡ 〈H(s, v, F)(|s|), . . . , H(s, v, F)(n − 1)〉. Clearly Φ satisfies equation (1) at
all n < |s|. For n ≥ |s| we first observe that

Φ(s, v)(n) o=
{

0 if Y (Φ(s ∗ cs,n ∗ 0, v)) 6= v
1 if Y (Φ(s ∗ cs,n ∗ 0, v)) = v,

where cs,n :≡ 〈Φ(s, v)(|s|), . . . ,Φ(s, v)(n − 1)〉. Now if Y (Φ(s ∗ 0, v)) 6= v then
Φ(s, v)(|s|) = 0 and therefore s∗ cs,n = s∗0∗ cs∗0,n. Hence Φ(s, v)(n) = Φ(s∗0, v)(n)
as required by (1). The case Y (Φ(s ∗ 0, v)) = v is similar.

One immediately sees that a functional Ψ satisfying (2) can be defined from an
instance of equation (4) using the functional Φ above. 2

Theorem 4.4 λY.Ψ(Y, 〈 〉) is a fan functional.

Proof. See [3] and [19]. 2

Remark 4.5 Kohlenbach [16] has shown that KBR is primitive recursively definable
in SBR and µ̂ (where µ̂ is the functional defined as,

µ̂(Y, α) :≡ min k [Y (αk ∗ 0) = Y (αk ∗ 1)]).

Since in section 6 we show that MBR defines SBR primitive recursively, we can indeed
say that FAN is primitive recursively definable in MBR + µ̂.

5 Modified bar recursion and the model M
The model M (=

⋃
Mρ) of strongly majorizable functionals (introduced in [7] as

a variation of Howard’s majorizable functionals [12]) and the strongly majorizability
relation s-majρ ⊆ Mρ ×Mρ are defined by induction on types as follows:

n s-majo m :≡ n ≥ m, Mo :≡ N,

F ∗ s-majρ→τ F :≡ F ∗, F ∈ Mρ → Mτ∧
∀G∗, G ∈ Mρ [G∗ s-majρ G → F ∗G∗ s-majτ F ∗G, FG],

Mρ→τ :≡ {F ∈ Mρ → Mτ : ∃F ∗ ∈ Mρ → Mτ F ∗ s-majρ→τ F}.

9

In the following we abbreviate s-majρ by majρ and by “majorizable” always mean
“strongly majorizable”. We often omit the type in the relation majρ.

In [16] it is shown that KBR is provably not primitive recursively definable from
SBR, since SBR yields a well defined functional in the model of (strongly) majorizable
functionals M (cf. [7]) and KBR does not (in the following we will by “majorizable”
always mean “strongly majorizable”). SBR, however, can be primitive recursively
defined from KBR (cf. [16]).4 In this section we show that a functional satisfying
MBR exists in M. We first show that there exists a functional 5

Φ : Mρω→o ×Mρ∗×(ρ→o)→ρω ×Mρ∗ → Mo

satisfying MBR, then we show that any such Φ has a majorant and therefore belongs
to M.

Most of our results in this section rely on Lemma 5.2 which can be viewed as a
weak continuity property of functionals Y (of type ρω → o) in M. It says that a
bound on the value of Y (α) can be determined from an initial segment of α. For the
rest of this section all variables (unless stated otherwise) are assumed to range over
the type structure M.

Lemma 5.1 ([7], 1.4, 1.5) Let maxρ be inductively defined as,

max
i≤n

omi :≡ max{m0, . . . , mn},

max
i≤n

τ→ρXi :≡ λY τ . max
i≤n

ρXi Y ,

and for αρω

, define α+(n) :≡ max
i≤n

ρα(i). Then,

∀n(α(n) maj β(n)) → α+ maj β+, β.

We also use addition in all types, which is done pointwise, e.g. if x, y are of type
τ → ρ then x +τ→ρ y :≡ λzτ (x(z) +ρ y(z)).

Lemma 5.2 (Weak continuity for M) ∀Y ρω→N, α ∃nN ∀β ∈ αn (Y (β) ≤ n).

Proof. Let Y and α be fixed, α∗ maj α and Y ∗ maj Y . From the assumption

(a) ∀n ∃β ∈ αn(Y (β) > n)

we derive a contradiction. For any n, let βn be the function whose existence we are
assuming in (a). Let

β∗
n(i) :≡

{
0ρ i < n
[βn(i)]∗ i ≥ n,

where [βn(i)]∗ denotes some majorant of βn(i). Having defined the functional β∗
n we

note two of its properties,
i) ∀i < n(β∗

n(i) = 0ρ),
ii) (α∗ +ρω β∗

n)+ maj βn. (by Lemma 5.1)

4For the rest of the paper “s1 is primitive recursively definable in s2” should be understood as
“there exists a closed term t such that E-HAω ` s1 = t(s2)”

5By Mρ → Mτ we mean an arbitrary function from Mρ to Mτ . By Mρ→τ we mean a functional
from Mρ to Mτ which belongs to M.

10

Consider the functional α̂ defined as, α̂(n) :≡ α∗(n) +ρ

∑
i∈N

β∗
i (n). Since at each

point n only finitely many β∗
i are non-zero, α∗ is well defined. Let Y ∗(α̂+) = m.

Note that α̂+ maj βi, for all i ∈ N, and from (a) we should have m < Y (βm) ≤ m, a
contradiction. 2

We extend, for convenience, the definition of majorizability for finite sequences as
follows:

s∗ majρ∗ s :≡ 〈s∗ ∗ λk.s∗|s∗|−1, |s∗|〉 maj 〈s ∗ λk.s|s|−1, |s|〉,

(s∗ and s not begin the empty sequence) where 〈α, m〉 maj 〈β, n〉 stands for α maj β ∧
m ≥ n. For the special case when one of the sequences is empty we set, s∗ maj 〈 〉 if
s∗ maj s∗. Moreover, 〈 〉 majorizes only itself.

5.1 Finding Φ ∈ Mρω→o × Mρ∗×(ρ→o)→ρω × Mρ∗ → Mo satisfying
MBR

For any type ρ, the elements s of Mρ∗ (finite sequences of elements in ρ) can be viewed
as nodes of an infinite tree which we call T. The infinite paths of T are the elements
of Mρω (which is just Mω

ρ as shown in [7]). For fixed Y and H , the functional Φ we
are looking for should assign values to the nodes of T according to MBR. For each
node s the set of nodes s′ extending s is denoted by Bs.

Let Y, H ∈ M be fixed. We show that at each infinite path α there exists a point
n such that a functional Φα,n : Mρ∗ → Mo can be defined satisfying MBR for all
s ∈ Bαn. Then, by bar induction, a functional Φ can be defined for all nodes of T.

Let α ∈ Mω
ρ be fixed, n the number whose existence is stated in Lemma 5.2,

and K :≡ {0, 1, . . . , n}. We show how to define a functional Φα,n(s) such that, for
s ∈ Bαn, equation

Φα,n(s) = Y (s @ H(s, λx.Φα,n(s ∗ x)))

holds. Here we note that, for s ∈ Bαn, by Lemma 5.2, Φα,n(s) must belong to the
finite set K. Therefore, for those s ∈ Bαn, what we have is an instance of the more
general equation,

(∗) Ψ(s) = G(s, λx.Ψ(s ∗ x)),

where Img(G) ⊆ K (K as above). To see that modified bar recursion becomes an
instance of (∗), let

G(s, F) :≡ Y (αn ∗ s @ H(αn ∗ s, F)),

and, clearly, Img(G) = Img(λsλF.Y (αn ∗ s @ H(αn ∗ s, F))) ⊆ K. Hence, it suffices
to show that equations of the form (∗) (with the mentioned restriction on G) always
have a solution Ψ. That is what we will do now.

Consider the set T = T → 2K\{∅}. The set T can be viewed as the set of labelled
trees whose labels range over non-empty subsets of K. We define a partial order v
on T as follows (for f, g ∈ T)

f v g :≡ ∀s (f(s) ⊆ g(s)).

Finally, we define an operation χ : T → T ,

11

χ(f)(s) :≡ Img(λF ∈ Consfs .G(s, F)),

where Consfs :≡ {F : ∀xρ.F (x) ∈ f(s ∗ x)}. We first observe the following.

Lemma 5.3 (T ,v) is a directed complete semi-lattice.

Proof. Let S be a directed subset of T . Since we assign non-empty finite sets to the
nodes of T, it is easy to see that

⋂
S belongs to T and it is smaller than any element

in S. 2

Lemma 5.4 χ : T → T is monotone.

Proof. Let f v g and s be fixed. We get that Consfs ⊆ Consgs , which implies
χ(f)(s) ⊆ χ(g)(s). 2

By the Knaster-Tarski fixed point theorem we obtain an f ∈ T such that χ(f) = f ,
i.e. f(s) = Img(λF ∈ Consf

s .G(s, F)), for all s. Let χ−1
f,s be a functional from the set

f(s) to Consfs such that c = G(s, χ−1
f,s(c)), for all c ∈ f(s). Define the functional Ψ(s)

recursively as follows,

Ψ(〈 〉) :≡ arbitrary element of f(〈 〉);

Ψ(s ∗ x) :≡ χ−1
f,s(Ψ(s))(x).

Lemma 5.5 The functional Ψ is total and satisfies equation (∗).

Proof. We have just shown that Ψ is total. Moreover, note that, for all s, the values
assigned to Ψ(s ∗ x) are such that Ψ(s) = G(s, λx.Ψ(s ∗ x)). 2

Corollary 5.6 There exists a functional

Φ : Mρω→o ×Mρ∗×(ρ→o)→ρω ×Mρ∗ → Mo

satisfying modified bar recursion.

5.2 Finding a majorant for Φ

Now we show that Φ (from corollary above) has a majorant, and therefore belongs to
M.

Lemma 5.7 Let s∗ and s s.t. |s∗| = |s| be fixed. If s∗ maj s then

∀β ∈ s∃β∗ ∈ s∗ (β∗ maj β).

Proof. Let s∗, s and β ∈ s be fixed. Moreover, assume |s∗| = |s| = n and s∗ maj s.
Define β∗ as,

β∗(i) :≡
{

s∗i if i < n
maxρ{max

j<i

ρβ∗(j), [β(i)]∗} otherwise,

where [β(i)]∗ is some majorant of β(i). First note that, for all i, β∗(i) maj β(i). We
show that β∗ maj β. Let k ≥ i.

If k < n then β∗(k) = s∗k maj s∗i maj si = β(i).
If k ≥ n then β∗(k) = maxρ{max

j<k

ρβ∗(j), [β(k)]∗} maj β∗(i) maj β(i). 2

In the following we shall make use of two functionals Ω and Γ which we define
now. The functional Ω was first introduced in [15], 3.40.

12

Lemma 5.8 ([15], 3.41) Define functionals minρ (from non-empty sets X ⊆ Mρ

to elements of Mρ) and Ω : Mρ → Mρ as

min NX :≡ min X, for ∅ 6= X ⊆ N,

min ρ→τ X :≡ λyρ. min τ{Fy : F ∈ X}, for ∅ 6= X ⊆ Mρ→τ ,

Ω(F) :≡ min ρ{F ∗ : F ∗ maj F}.

Then,

i) For all F , Ω(F) maj F ,

ii) Ω maj Ω. (Therefore, Ω ∈ M.)

Lemma 5.9 Define Γ : Mρω→N → Mρω → MN as,

Γ(Y)(α) :≡ min n [∀β ∈ αn(Ω(Y)(β) ≤ n)].

Then,

i) Γ(Y) maj Y ,

ii) Γ(Y) is continuous and Γ(Y)(α) is a point of continuity for Γ(Y) on α,

iii) Γ maj Γ. (therefore, Γ ∈ M)

Proof. First of all, we note that, by Lemma 5.2, the functional Γ is well defined. By
Lemma 5.8 (i), Ω(Y) maj Y .

i) Let α∗ maj α. We have to show Γ(Y)(α∗) ≥ Γ(Y)(α), Y (α). By the definition
of Γ(Y), and Lemma 5.8 (i), we have Γ(Y)(α∗) ≥ Ω(Y)(α∗) ≥ Y (α). It is only left
to show that Γ(Y)(α∗) ≥ Γ(Y)(α). Suppose that n = Γ(Y)(α∗) < Γ(Y)(α) = m.
Note that there exists a β ∈ α(m − 1) such that Ω(Y)(β) ≥ m (otherwise we get
a contradiction to the minimality in the definition of Γ(Y)). But since m > n, by
Lemma 5.7, there exists a β∗ ∈ α∗n such that β∗ maj β. Therefore, Ω(Y)(β∗) ≤ n <
m ≤ Ω(Y)(β). But by Lemma 5.8 (i) also Ω(Y)(β∗) ≥ Ω(Y)(β), a contradiction.

ii) Let α be fixed and take n = Γ(Y)(α). Suppose there exists a β ∈ αn such
that Γ(Y)(β) 6= n. If Γ(Y)(β) < n we get, since α ∈ βn, that Γ(Y)(α) < n, a
contradiction. Suppose Γ(Y)(β) > n. Since β ∈ αn we have, ∀γ ∈ βn(Ω(Y)(γ) ≤ n),
also a contradiction.

iii) Assume Y ∗ maj Y and α∗ maj α. We show Γ(Y ∗)(α∗) ≥ Γ(Y)(α). By the
self majorizability of Γ(Y) we have Γ(Y)(α∗) ≥ Γ(Y)(α). We now show Γ(Y ∗)(α∗) ≥
Γ(Y)(α∗). Let n = Γ(Y ∗)(α∗) and suppose m = Γ(Y)(α∗) > n. By the definition
of Γ(Y), there exists a β ∈ α∗(m − 1) s.t. Ω(Y)(β) ≥ m. But, since m > n,
by Lemma 5.7, there exists a β∗ ∈ α∗n s.t. β∗ maj β, and by Lemma 5.8 (ii),
Ω(Y ∗)(β∗) ≥ m > n, a contradiction. 2

Lemma 5.10 Let Y ∗ maj Y (of type ρω → N) and α be fixed, and n = Γ(Y ∗)(α). If
αn maj s and |s| = n then for all sequences β we have

Γ(Y ∗)(s @ β), Γ(Y)(s @ β), Y (s @ β) ≤ n.

13

Proof. We prove just that Γ(Y ∗)(s @ β) ≤ n. The other two cases follow similarly.
Suppose there exists a β such that n < Γ(Y ∗)(s @ β). Since αn maj s, by Lemma
5.7, there exists a β∗ such that αn ∗β∗ maj s @ β. Therefore, by Lemma 5.9 (iii), we
must have n < Γ(Y ∗)(αn ∗ β∗). And by the fact that n is a point of continuity for
Γ(Y ∗) on α we get Γ(Y ∗)(αn ∗ β∗) = n, a contradiction. 2

In the following we extend the (·)+ operator of Lemma 5.1 for functionals F of
type ρ∗ → N as

F+ :≡ λs. max
s′≺s

F (s′),

where s′ ≺ s :≡ |s′| ≤ |s| ∧ ∀i < |s′| (s′i = si).

Lemma 5.11 Let F and G be of type ρ∗ → N. If

∀s∗, s [s∗ maj s ∧ |s∗| = |s| → F (s∗) ≥ F (s), G(s)]

then F+ maj G+, G.

Proof. Let s∗ maj s be fixed. For all prefixes t∗ (of s∗) and t (of s) of the same
length, by the assumption of the lemma, we have F (t∗) ≥ F (t), G(t). Therefore,

max
s′≺s∗

F (s′) ≥ max
s′≺s

F (s′), max
s′≺s

G(s′).

Therefore, F+ maj G+, G. 2

Theorem 5.12 If Φ is a functional of type

Mρω→N ×Mρ∗×(ρ→N)→ρω ×Mρ∗ → MN,

which for any given Y, H, s ∈ M (of appropriate types) satisfies MBR, then Φ ∈ M.

Proof. Our proof is based on the proof of the main result of [7]. The idea is that, if
Φ satisfies MBR then the functional

Φ∗ :≡ λY, H.[λs.Φ(Ŷ , Ĥ, s)]+ maj Φ,

where

Ŷ (α) :≡ Γ(Y)(α+) and

Ĥ(s, F) :≡ H(s, λx.F ({x}s)),

and {x}s abbreviates maxρ{max
i<|s|

ρsi, x} . Let Y ∗ maj Y and H∗ maj H be fixed. The

fact that Φ∗ maj Φ follows from,

[λs.Φ(Ŷ ∗, Ĥ∗, s)]+ maj [λs.Φ(Ŷ , Ĥ, s)]+, λs.Φ(Y, H, s),

which follows, by Lemma 5.11, from ∀s∗ P (s∗) where (For the rest of the proof
s∗ maj s is a shorthand for s∗ maj s ∧ |s∗| = |s|, i.e. majorizability is only
considered for sequences of equal length.)

P (s∗) :≡ ∀s [s∗ maj s → Φ(Ŷ ∗, Ĥ∗, s∗) ≥ Φ(Ŷ ∗, Ĥ∗, s), Φ(Ŷ , Ĥ, s), Φ(Y, H, s)].

We prove ∀s∗ P (s∗) by bar induction:

14

i) ∀α∃n P (αn). Let α be fixed and n :≡ Ŷ ∗(α) = Γ(Y ∗)(α+). If αn does not
majorize any sequence s we are done. Let s be such that αn maj s. Note that
α+n = (αn @ β)+n, for all β. Therefore, by Lemma 5.9 (ii) and our assumption that
Φ satisfies MBR we get Φ(Ŷ ∗, Ĥ∗, αn) = n. Since α+n maj (s @ β)+n (for all β), by
Lemma 5.10, we have n ≥ Φ(Ŷ ∗, Ĥ∗, s), Φ(Ŷ , Ĥ, s), Φ(Y, H, s).

ii) ∀s∗(∀x P (s∗ ∗ x) → P (s∗)). Let s∗ be fixed. Assume that ∀x P (s∗ ∗ x), i.e.

∀x, s [s∗ ∗ x maj s → Φ(Ŷ ∗, Ĥ∗, s∗ ∗ x) ≥ Φ(Ŷ ∗, Ĥ∗, s), Φ(Ŷ , Ĥ, s), Φ(Y, H, s)].

Note that if s∗ does not majorize any sequence we are again done. Assume s is such
that s∗ maj s. If x∗ maj x then (by ∀x P (s∗ ∗ x)),

Φ(Ŷ ∗, Ĥ∗, s∗ ∗ {x∗}s∗)︸ ︷︷ ︸
≡: Φ1({x∗}s∗)

≥ Φ(Ŷ ∗, Ĥ∗, s ∗ {x}s)︸ ︷︷ ︸
≡: Φ2({x}s)

, Φ(Ŷ , Ĥ, s ∗ {x}s)︸ ︷︷ ︸
≡: Φ3({x}s)

, Φ(Y, H, s ∗ x)︸ ︷︷ ︸
≡: Φ4(x)

.

and also Φ1({x∗}s∗) ≥ Φ1({x}s∗), which implies

λx.Φ1({x}s∗) maj λx.Φ2({x}s), λx.Φ3({x}s), λx.Φ4(x),

and by the definition of majorizability

H∗(s∗, λx.Φ1({x}s∗))︸ ︷︷ ︸
Ĥ∗(s∗,λx.Φ1(x))

maj H∗(s, λx.Φ2({x}s))︸ ︷︷ ︸
Ĥ∗(s,λx.Φ2(x))

, H(s, λx.Φ3({x}s))︸ ︷︷ ︸
Ĥ(s,λx.Φ3(x))

, H(s, λx.Φ4(x)),

which implies

(s∗ @ Ĥ∗(s∗, λx.Φ1(x)))+ maj (s @ Ĥ∗(s, λx.Φ2(x)))+,

(s @ Ĥ(s, λx.Φ3(x)))+,

s @ H(s, λx.Φ4(x)).

And finally, by Lemma 5.9 (i) and (iii),

(Φ(Ŷ ∗, Ĥ∗, s∗) =)
Ŷ ∗(s∗ @ Ĥ∗(s∗, λx.Φ1(x))) ≥ Ŷ ∗(s @ Ĥ∗(s, λx.Φ2(x))), (= Φ(Ŷ ∗, Ĥ∗, s))

Ŷ (s @ Ĥ(s, λx.Φ3(x))), (= Φ(Ŷ , Ĥ, s))
Y (s @ H(s, λx.Φ4(x))). (= Φ(Y, H, s))

2

Corollary 5.13 There exists a Φ ∈ M (not unique) satisfying MBR.

Proof. In section 5.1 we have constructed a

Φ ∈ Mρω→o ×Mρ∗→(ρ→o)→ρω ×Mρ∗ → Mo

satisfying MBR. By Theorem 5.12, Φ ∈ M. The fact that Φ is not unique follows by
taking, e.g.,

F (α) =
{

1 if α = λx.1
0 otherwise,

which means that the sets Setσs (cf. section 5.1) will not be singletons. 2

Corollary 5.14 KBR is not primitive recursively definable in MBR.

15

6 Defining SBR primitive recursively in MBR

Assuming we have a term t satisfying MBR we build a term t′ (primitive recursively
in t) which satisfies SBR.

Definition 6.1 µ̃(Y, αρω

, k) :≡ min n ≥ k [Y (α, n) < n].

Kohlenbach [16] has shown that µ̃ is primitive recursively definable in SBR.

Theorem 6.2 µ̃ is primitive recursively definable in MBR.

Proof. Let n be the value of µ̃(Y, α, k). The case when n = k is simple and will be
treated at the end of the proof. We will assume that n > k. In this case we note that,
by the minimality condition, Y (α, n − 1) ≥ n−1. Hence, Y (α, n − 1)+1 can be used
(for bounded search) as an upper bound for the value of n. Using MBR, in order for
Y to return the required upper bound we have to give as input the sequence α, n − 1.
We show how this sequence can be computed by an appropriate H (in the definition
of MBR). By MBR we can define a Φα satisfying Φα(s) = Y (s @ (α, m − 1)), where,

(∗) m
o=

{
|s| + 1 if Y (α, |s| + 1) < |s| + 1
µ̃b(Y, α, k,Φα(s ∗ α(|s|)) + 1) otherwise,

and µ̃b is the bounded version of µ̃ (which is primitive recursive). We then define,

µ̃(Y, α, k) :≡
{

k if Y (α, k) < k
µ̃b(Y, α, k,Φα(αk) + 1) otherwise.

We show that this is a good definition of µ̃ by showing that Φα(αk) + 1 is a good
upper bound on the value of µ̃(Y, α, k) (assume this value is n > k). In fact, we show
by induction on j that, for k ≤ j < n, n is bounded by Φα(αj) + 1.

i) j = n − 1. We see that the first case of (∗) will be satisfied, m is equal n and
Φα(αj) + 1 = Y (αj @ (α, m − 1)) + 1 = Y (α, n − 1) + 1 ≥ n.

ii) j < n−1. By induction hypothesis Φα(αj∗α(j))+1 is a bound for n. Therefore,
m (see second case of (∗)) has value n, and as above we get Φα(αj) + 1 ≥ n. 2

Theorem 6.3 SBRρ,o is primitive recursively definable in MBRρ.

Proof. We show how to define (primitive recursively in MBR) a Ψ satisfying the
equation (SBRρ,o),

(i) Ψ(Y, G, H, s) o=
{

G(s) if Y (s ∗ 0) < |s|
H(s, λx.Ψ(Y, G, H, s ∗ x)) otherwise.

Let Φ be a functional satisfying MBR. In the following π0 and π1 will denote the
projection functional, i.e. πi(〈xρ

0 , x
ρ
1〉) = xi, i ∈ {0, 1}. If s〈ρ,ρ〉∗ = 〈s0, . . . , sn〉, πi(s)

also denotes 〈πi(s0), . . . , πi(sn)〉. In the same way we define πi(α〈ρ,ρ〉ω

). Note that s,
for the rest of the proof, has type 〈ρ, ρ〉ω . We first define two tilde operations,

(ii) H̃(s, F) :≡ λn.〈1, H(π1(s), λx.F (〈0, x〉))〉

and 6

6Since, by our construction, the first element of the pair will either be 0ρ or 1ρ, the test π0(si) = 0
in the definition (iii) is primitive recursive.

16

(iii) ỸG,k(α) :≡
{

G(π1(s)) if
∧n

i=0 (π0(si) = 0)
π1(sn) otherwise,

where (in the definition of ỸG,k) s = 〈s0, . . . , sn〉 = α µ̃(Y, π1(α), k). Note that
the first operation is primitive recursive in H, s and F ; and the second is primitive
recursive in Y, G, k, α and MBR (since it uses µ̃). Moreover, (∗) if Y (s ∗ 0) ≥ |s| then
ỸG,|s| = ỸG,|s|+1.

We abbreviate 〈〈0, s0〉, . . . , 〈0, s|s|−1〉〉 by 〈0, s〉. Define

(iv) Ψ(Y, G, H, s) :≡ Φ(ỸG,|s|, H̃, 〈0, s〉).

We show that Ψ satisfies equation (i), i.e.

(v) Φ(ỸG,|s|, H̃, 〈0, s〉) =
{

G(s) if Y (s ∗ 0) < |s|
H(s, λx.Φ(ỸG,|s|+1, H̃, 〈0, s ∗ x〉)) otherwise.

We first note that, by the definition of MBR (and (ii)),

(vi) Φ(ỸG,|s|, H̃, 〈0, s〉) = ỸG,|s|(〈0, s〉 @ λn.〈1, H(s, λx.Φ(ỸG,|s|, H̃, 〈0, s ∗ x〉))〉).

We will show that (v) holds. Assume Y (s ∗ 0) < |s|, we have,

Φ(ỸG,|s|, H̃, 〈0, s〉) (vi)
= ỸG,|s|(〈0, s〉 @ . . .)

(iii)
= G(s).

On the other hand, if Y (s ∗ 0) ≥ |s| then,

Φ(ỸG,|s|, H̃, 〈0, s〉) (vi)
= ỸG,|s|(〈0, s〉 @ λn.〈1, H(s, λx.Φ(ỸG,|s|, H̃, 〈0, s ∗ x〉))〉)

(iii)
= H(s, λx.Φ(ỸG,|s|, H̃, 〈0, s ∗ x〉))
(∗)
= H(s, λx.Φ(ỸG,|s|+1, H̃, 〈0, s ∗ x〉)),

and the proof is concluded. 2

Theorem 6.4 SBRρ,τ is primitive recursively definable in SBRρ′,o, where if τ = τ1 →
. . . → τn → o then ρ′ = ρ × τ1 × . . . × τn.

Proof. Let τ = τ1 → . . . → τn → o. We will show that SBRρ,τ can be defined from
SBRρ×τ1×...×τn,o. Let G, H and Y be given, we have to define a functional Φ such
that,

(i) Φ(Y, G, H, s) τ=

{
G(s) if Y (s @ 0ρ)

N

< |s|
H(s, λxρ.Φ(s ∗ x)) otherwise.

From Y , G and H we define,

(ii) Ỹ (α) :≡ Y (πn+1
0 (α));

(iii) G̃(t) :≡ G(πn+1
0 (t))(y);

(iv) H̃(t, F) :≡ H(πn+1
0 (t), λxρ, zτ1

1 , . . . , zτn
n .F (〈x, z1, . . . , zn〉))(y);

17

where y denotes πn+1
1 (t|t|−1), . . . , πn+1

n (t|t|−1) and the types are,

α : (ρ × τ1 × . . . × τn)ω

y : τ1 × . . . × τn

t : (ρ × τ1 × . . . × τn)∗

F : (ρ × τ1 × . . . × τn) → o.

We define (using SBRρ×τ1×...×τn,o),

(v) Ψ(Ỹ , G̃, H̃, t) o=

{
G̃(t) if Ỹ (t @ 0)

N

< |t|
H̃(t, λxρ×τ1×...×τn .Ψ(t ∗ x)) otherwise.

Finally we set, (〈s,y〉 abbreviates 〈〈s0,y〉, . . . , 〈s|s|−1,y〉〉)

(vi) Φ(Y, G, H, s)
τ
:≡ λy.Ψ(Ỹ , G̃, H̃, 〈s,y〉).

We show that equation (i) is satisfied by Φ. One easily verifies that

(vii) Ψ(Ỹ , G̃, H̃, 〈s,y〉) = Ψ(Ỹ , G̃, H̃, 〈〈s0, z〉, . . . , 〈s|s|−2, z〉, 〈s|s|−1,y〉〉),

for arbitrary z. Let Y, G, H and s be fixed and t abbreviate 〈s,y〉. By (ii), Y (s @ 0) <
|s| iff Ỹ (t @ 0) < |t|. Therefore, if Y (s @ 0) < |s| then

Φ(Y, G, H, s)
(vi)
= λy.Ψ(Ỹ , G̃, H̃, 〈s,y〉)
(v)
= λy.G̃(〈s,y〉) (iii)

= λy.G(s)(y) = G(s).

On the other hand, if Y (s @ 0) ≥ |s| then

Φ(Y, G, H, s)
(vi)
= λy.Ψ(Ỹ , G̃, H̃, 〈s,y〉) (v)

= λy.H̃(t, λx.Ψ(t ∗ x))
(iv)
= λy.H(s, λx, z.Ψ(t ∗ 〈x, z〉))(y)

(vii)
= λy.H(s, λx, z.Ψ(〈s, z〉))(y)

(vi)
= λy.H(s, λx.Φ(s ∗ x))(y) = H(s, λx.Φ(s ∗ x))

2

Corollary 6.5 SBR is primitive recursively definable in MBR.

7 S1-S9 Computability and MBR

Definition 7.1 (Axioms S1-S9) In any applicative type structure S (containing N)
we define a set of relations Γ (parametrized by their arity and type of arguments) on
S inductively as follows, 7

S1 {e}S(m,−→y) = m + 1, where e = 〈1, σ〉.
7We abbreviate y1, . . . , yn (of arbitrary type) by −→y . The variables e1, e2, m, n, i, k, k1, k2 range

over natural numbers, σ ranges over codes for finite types and f, x,−→y over functionals of appropriate
types. We write {e}S(−→y) = k instead of S |= Γ(e,−→y , k).

18

S2 {e}S(−→y) = k, where e = 〈2, σ, k〉.

S3 {e}S(m,−→y) = m, where e = 〈3, σ〉.

S4 If {e1}S(−→y) = k1 and {e2}S(k1,−→y) = k2 then {e}S(−→y) = k2,
where e = 〈4, e1, e2, σ〉.

S5 Can be omitted in the presence of S9,

S6 If {e1}S(τ(−→y)) = k then {e}S(−→y) = k, where e = 〈6, e1, τ, σ〉.

S7 {e}S(f, x,−→y) = f(x), where e = 〈7, σ〉.

S8 If {e1}S(x,−→y) = f(x), for all x, then {e}S(−→y) = y1(f),
where e = 〈8, e1, σ〉.

S9 If {e1}S(y1, . . . , yi) = k then {e}S(e1,−→y) = k,
where i ≤ n and e = 〈9, i, σ〉.

One can prove by induction on S1-S9 that for each e and −→y there exists at most one
k such that {e}S(−→y) = k. Therefore, each index e gives rise to a partial functional
(denoted by {e}S) which on input −→y takes value k if {e}S(−→y) = k and is undefined
otherwise. It is important to note that the functional {e}S yielded by an index e need
not belong to S. The set of all indices e such that {e}S ∈ S is denoted by RecS . If
{e}S is a functional of the form λΨ,−→y .{e}S(Ψ,−→y) then {e}SΨ denotes the functional
λ−→y .{e}(Ψ,−→y).

Definition 7.2 A formula P in the language of HAω having a unique free variable is
called an specification of a functional or just functional. (e.g. SBR having variables
Y, G, H and s universally quantified is an specification for Spector’s bar recursor.)

Definition 7.3 (S1-S9 computability) Let P, Q be specifications and S any ap-
plicative type structure (containing N). Then,

P is S1-S9 computable in S if S |= ∃e ∈ RecS .P({e}S).

P is S1-S9 + Q computable in S if S |= ∃Ψ
(
Q(Ψ) ∧ ∃e ∈ RecS .P({e}SΨ)

)
.

Lemma 7.4 KBR and SBR are S1-S9 computable in C.

Proof. One shows C |= ∃e ∈ RecC .KBR({e}C) and C |= ∃e ∈ RecC .SBR({e}C) using
the recursion theorem. 2

The total elements of C can be viewed as equivalence classes of elements of Ĉ. We
denote these equivalence classes by [F], i.e. if F ∈ Ĉ is total then [F] ∈ C. We have
a transfer principle which says that if {e}C([F]) = k then {e}Ĉ(F) = k. Moreover,
(+) if {e}Ĉ(F) = k then there exists a compact element G ∈ Ĉ such that G v F and
{e}Ĉ(G) = k.

Lemma 7.5 If

(i) e is a S1-S9 code of type 3,

(ii) −→x ,−→y ∈ Ĉ (of type 2) coincide in all total recursive arguments,

19

(iii) −→x total S1-S9 computable in Ĉ,

(iv) {e}C([−→x]) = k,

then {e}Ĉ(−→y) = k.

Proof. By induction on S1-S9 codes, the critical point being S8. Assume e is of the
form 〈8, e1, σ〉 and that (i) − (iv) hold. From (iv), by the definition of S1-S9, there
must exist a function f ∈ C such that

(v) f(n) = {e1}C(n, [−→x]), for all n ∈ N, and

(vi) [x1](f) = k,

By (iii) and (v) we get that f is recursive. Let n be fixed and assume that {e1}C(n, [−→x]) =
l. By induction hypothesis we have that

{e1}Ĉ(n,−→y) = l,

i.e. λnN.{e1}Ĉ(n,−→y) (= [λpN⊥ .{e1}Ĉ(p,−→y)]) is identical to f . By (vi),

[x1]([λpN⊥ .{e1}Ĉ(p,−→y)]) = k.

Hence,

x1(λp.{e1}Ĉ(p,−→y)) = k.

Note that λp.{e1}Ĉ(p,−→y) is total and recursive. Therefore, by assumption (ii),

y1(λp.{e1}Ĉ(p,−→y)) = k,

and by the definition of S1-S9, {e}Ĉ(−→y) = k. 2

Theorem 7.6 ([10]) FAN is not S1-S9 computable in C.

Proof. Assume e ∈ RecC is such that C |= FAN({e}C). Let O be a total (S1-S9
computable) element of Ĉ which is constant zero. Assume {e}C([O]) = k. Let F
be another type two functional (in Ĉ) such that F (f) = 0 whenever f is total and
recursive, but which is ⊥ for other f . By Lemma 7.5 {e}Ĉ(F) = k. By (+) there must
be a compact G v F (still in Ĉ) such that {e}Ĉ(G) = k, G defined on a closed-open set
that does not cover all of Ĉ. We can then extend G to a total G′ that is not constant
and that k is not a modulus of uniform continuity for G′. Assume {e}C([G′]) = l.
By the transfer principle {e}Ĉ(G′) = l and l must equal k, i.e. {e}C([G′]) = k, a
contradiction. 2

Lemma 7.7 FAN is S1-S9 + MBR computable in C.

Proof. By Theorem 2.3 there exists a Ψ ∈ C such that C |= MBR(Ψ). In Theorem
4.4 we have shown that C |= ∃e ∈ RecC .FAN({e}CΨ). 2

Corollary 7.8 MBR is not S1-S9 computable in C.

Proof. Assume C |= ∃e ∈ RecC .MBR({e}C). By Lemma 7.7 we have that FAN is
S1-S9 computable in C, contradicting Theorem 7.6. 2

Corollary 7.9 MBR is not primitive recursively definable in KBR nor SBR.

Proof. Follows from the corollary above, Lemma 7.4 and the fact that the set of
functionals S1-S9 computable in C is closed under primitive recursion. 2

20

8 Conclusion

In this paper we discussed modified bar recursion a variant of Spector’s bar recursion
that seems to be of some significance in proof theory and the theory and higher type
recursion theory. Our main result was an abstract modified realizability interpreta-
tion (where realizability for falsity is uninterpreted) of the axioms of countable and
dependent choice that can be used to extract programs from non-constructive proofs
using this axiom. A similar result is in [2], but we claim that our solution is more
accessible and, in a sense, more ‘civilised’. It can be noted here that the weak form
of modified bar recursion used for the realization of dependent choice can be imple-
mented quite efficiently by equipping the functional with an internal memory that
records the value of H(s, λx.Φ(s∗x)) (which is of type o) and thus avoids its repeated
computation. Such an optimisation does not seem to be possible for the (allegedly
more efficient) solution given in [2]. In order to make the realizability interpretation
of dependent choice useful for program synthesis it seems necessary to combine it
with optimisations of the A-translation as development e.g. in [5] and [6]. To find out
whether this is possible will be a subject of further research.

Another important result was a definition of the fan functional using modified
bar recursion and a version of bar recursion due to Kohlenbach, improving [3] and
[19] where a PCF definition of the fan functional was given. In [23] this definition of
the fan functional has been applied to give a purely functional algorithm for exact
integration of real functions.

Finally, we have also established the relation between modified bar recursion, Spec-
tor’s and Kohlenbach’s bar recursions. It turns out that MBR and KBR are primitive
recursively incomparable (none is primitive recursively definable in the other). Spec-
tor’s bar recursion, however, is primitive recursively definable in MBR but not the
other way around. All these results hold in HAω. A by-product of this investiga-
tion is that modified bar recursion exists in M, the model of strongly majorizable
functionals. We also proved a weak continuity property for the model M.

References

[1] J. Avigad and S. Feferman. Gödel’s functional (”Dialectica”) interpretation. In
S. R. Buss, editor, Handbook of proof theory, volume 137 of Studies in Logic
and the Foundations of Mathematics, pages 337–405. Elsevier, North-Holland,
Amsterdam, 1998.

[2] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the
axiom of choice. Journal of Symbolic Logic, 63(2):600–622, 1998.

[3] U. Berger. Totale Objekte und Mengen in der Bereichstheorie. PhD thesis, Ma-
thematisches Institut der Universität München, 1990.

[4] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice.
accepted for publication, 2001.

[5] U. Berger and H. Schwichtenberg. Program extraction from classical proofs. In
D. Leivant, editor, Logic and Computational Complexity Workshop (LCC’94),

21

volume 960 of Lecture Notes in Computer Science, pages 77–97. Springer Verlag,
1995.

[6] U. Berger, H. Schwichtenberg, and W. Buchholz. Refined program extraction
from classical proofs. Annals of Pure and Applied Logic, 114, 2002.

[7] M. Bezem. Strongly majorizable functionals of finite type: a model for bar recur-
sion containing discontinuous functionals. Journal of Symbolic Logic, 50:652–660,
1985.

[8] M. Bezem. Equivalence of bar recursors in the theory of functionals of finite
type. Archive for Mathematical Logic, 27:149–160, 1988.

[9] Y.L. Ershov. Model C of partial continuous functionals. In R. Gandy and M. Hy-
land, editors, Logic Colloquium 1976, pages 455–467. North Holland, Amsterdam,
1977.

[10] R. O. Gandy and M. Hyland. Computable and recursively countable functionals
of higher type. In R. Gandy and M. Hyland, editors, Logic Colloquium 1976,
pages 407–438. North Holland, Amsterdam, 1977.

[11] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica, 12:280–287, 1958.

[12] W. A. Howard. Hereditarily majorizable functionals of finite type. In A. S.
Troestra, editor, Metamathematical investigation of intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics, pages 454–461. Springer
Verlag, 1973.

[13] W. A. Howard and G. Kreisel. Transfinite induction and bar induction of types
zero and one, and the role of continuity in intuitionistic analysis. Journal of
Symbolic Logic, 31(3):325–358, 1966.

[14] S. C. Kleene. Countable functionals. In A. Heyting, editor, Constructivity in
Mathematics, pages 81–100. North–Holland, Amsterdam, 1959.

[15] U. Kohlenbach. Theorie der majorisierbaren und stetigen Funktionale und ihre
Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Ef-
fektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Ein-
deutigkeitsbeweisen. PhD thesis, Frankfurt, pp. xxii+278, 1990.

[16] U. Kohlenbach. Theory of majorizable and continuous functionals and their use
for the extraction of bounds from non-constructive proofs: effective moduli of
uniqueness for best approximations from ineffective proofs of uniqueness (ger-
man). PhD thesis, Frankfurt, pp. xxii+278, 1990.

[17] G. Kreisel. Interpretation of analysis by means of constructive functionals of
finite types. Constructivity in Mathematics, pages 101–128, 1959.

[18] H. Luckhardt. Extensional Gödel Functional Interpretation – A Consistency
Proof of Classical Analysis, volume 306. Springer Verlag, 1973.

22

[19] D. Normann. The continuous functionals. In Griffor E. R., editor, Handbook of
Computability Theory, chapter 8, pages 251–275. North Holland, 1999.

[20] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977.

[21] H. Schwichtenberg. On bar recursion of types 0 and 1. Journal of Symbolic Logic,
44:325–329, 1979.

[22] D. S. Scott. Outline of a mathematical theory of computation. In 4th An-
nual Princeton Conference on Information Sciences and Systems, pages 169–176,
1970.

[23] A. Simpson. Lazy functional algorithms for exact real functionals. In L. Brim,
J. Gruska, and J. Zlatuska, editors, Mathematical Foundations of Computer Sci-
ence, volume 1450 of Lecture Notes in Computer Science, pages 456–464, 1998.

[24] C. Spector. Provably recursive functionals of analysis: a consistency proof of
analysis by an extension of principles in current intuitionistic mathmatics. In
F. D. E. Dekker, editor, Recursive Function Theory: Proc. Symposia in Pure
Mathematics, volume 5, pages 1–27. American Mathematical Society, Providence,
Rhode Island, 1962.

[25] A. S. Troelstra. Metamathematical investigation of intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics. Springer Verlag, 1973.

[26] A. S. Troelstra. Realizability. In S.R. Buss, editor, Handbook of proof theory,
volume 137, pages 408–473. North Holland, Amsterdam, 1998.

[27] A. S. Troelstra and Dalen D. van. Constructivism in Mathematics. An Introduc-
tion, volume 121 of Studies in Logic and the Foundations of Mathematics. North
Holland, Amsterdam, 1988.

23

Recent BRICS Report Series Publications

RS-02-14 Ulrich Berger and Paulo B. Oliva. Modified Bar Recursion.
April 2002. 23 pp.

RS-02-13 Gerth Stølting Brodal, Rune B. Lyngsø, AnnaÖstlin, and
Christian N.S̃. Pedersen.Solving the String Statistics Problem
in Time O(n log n). March 2002. To appear in ICALP ’02.

RS-02-12 Olivier Danvy and Mayer Goldberg. There and Back Again.
March 2002. This report supersedes the earlier report BRICS
RS-01-39.

RS-02-11 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Extending Java for High-Level Web Service
Construction. March 2002.

RS-02-10 Ulrich Kohlenbach. Uniform Asymptotic Regularity for Mann
Iterates. March 2002. 17 pp.

RS-02-9 AnnaÖstlin and Rasmus Pagh.One-Probe Search. February
2002. 17 pp.

RS-02-8 Ronald Cramer and Serge Fehr. Optimal Black-Box Secret
Sharing over Arbitrary Abelian Groups. February 2002. 19 pp.

RS-02-7 Anna Inǵolfsdóttir, Anders Lyhne Christensen, Jens Alsted
Hansen, Jacob Johnsen, John Knudsen, and Jacob Illum Ras-
mussen.A Formalization of Linkage Analysis. February 2002.
vi+109 pp.

RS-02-6 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. Equa-
tional Axioms for Probabilistic Bisimilarity (Preliminary Re-
port). February 2002. 22 pp.

RS-02-5 Federico Crazzolara and Glynn Winskel. Composing Strand
Spaces. February 2002. 30 pp.

RS-02-4 Olivier Danvy and Lasse R. Nielsen.Syntactic Theories in Prac-
tice. January 2002. 34 pp. This revised report supersedes the
earlier BRICS report RS-01-31.

RS-02-3 Olivier Danvy and Lasse R. Nielsen.On One-Pass CPS Trans-
formations. January 2002. 18 pp.

RS-02-2 Lasse R. Nielsen.A Simple Correctness Proof of the Direct-Style
Transformation. January 2002.

