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Abstract

In this report a formalization of genetic linkage analysis is introduced. Linkage
analysis is a computationally hard biomathematical method, which purpose is
to locate genes on the human genome. It is rooted in the new area of bioinfor-
matics and no formalization of the method has previously been established.

Initially, the biological model is presented. On the basis of this biological model
we establish a formalization that enables reasoning about algorithms used in
linkage analysis. The formalization applies both for single and multi point
linkage analysis. We illustrate the usage of the formalization in correctness
proofs of central algorithms and optimisations for linkage analysis.

A further use of the formalization is to reason about alternative methods for
linkage analysis. We discuss the use of MTBDDs and PDGs in linkage anal-
ysis, since they have proven e�cient for other computationally hard problems
involving large state spaces.

We conclude that none of the techniques discussed are directly applicable to
linkage analysis, however further research is needed in order to investigated
whether a modi�ed version of one or more of these are applicable.
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Chapter 1

Introduction

Linkage analysis is a well established method used to locate genes in the human
genome. To be more exact, the gene, which is under investigation, is a gene
that is responsible for some trait that an individual possesses. Examples of
traits under investigation range from the more simple, such as blood type and
eye color, to the more serious that might predispose an individual for a deadly
disease.

Disease causing genes for some major diseases have already been discovered
by performing linkage analysis, e.g. Parkinson's disease, obesity, and anxiety,
[dNC01]. Although environmental factors in�uence the disease development
on some of these diseases, it would be ignorant not to have their genetic com-
pounds in mind for the following reasons, [dPGD01]:

• Their causes are not fully understood.

• Current treatments are of limited e�ectiveness.

• There is currently no means of tailoring treatment to the cause.

• Genetic diseases are getting an proportionally increased in�uence on
peoples health in the western world, e.g. the percentage of childhood
deaths in United Kingdom hospitals attributable to genetic causes have
increased from 16.5% in 1914 to 50% in 1976, [JCBW99].

Linkage analysis is a statistical method, which might locate certain trait
causing genes, based on some biological model. However, due to the complexity
of current algorithms incorporated in linkage analysis, the analysis is only
tractable on moderately sized data sets. Analysis of larger data sets bestows
the analyst with an improved likelihood of locating the genes for the trait under
investigation.

Our �nal goal is to enable a reduction of the linkage analysis complexity by
applying modern computer science techniques. Currently, problems arise due
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to explicit representations of state spaces, which shows to be exponential in
the number of individuals involved in the analysis. Dealing with exponential
state spaces is one of the areas where formal methods applied in the �eld
of veri�cation has proven successful in the past decades, and the advances
have often resulted in several orders of magnitude reductions in complexity.
These formal methods include symmetry reduction, partial order reduction,
abstraction, and compositionality.

To reach our �nal goal, we de�ne three major sub goals. The �rst is the
establishment of a formal model that enables reasoning about the correctness
and complexity of di�erent approaches to linkage analysis. Secondly, we anal-
yse the strategies which seem fruitful to pursue further, in order to reduce the
complexity of linkage analysis. The third and �nal sub goal is to construct a
new method for linkage analysis which enables linkage analysis of larger data
sets.

We have with this project moved into the relatively new area of bioinfor-
matics, which spans a number of di�erent sciences, such as biology, statistics,
mathematics, and computer science. We are unaware of anyone who have pre-
viously attempted to formalize linkage analysis in a computer scienti�c context.
Currently, several di�erent software packages exist, which can perform linkage
analysis. A brief overview of the major packages are given in Appendix A.
However, we have not been able to �nd any formal framework, in which it
is possible to reason about the correctness and complexity of existing algo-
rithms. Furthermore, a formal framework would be convenient for evaluating
new methods and for investigating the deeper theoretical nature of linkage
analysis.

The work represented here is based on a collaboration with the Icelandic
company deCODE Genetics (http://www.decode.is). deCODE Genetics is a
company conducting research into inherited causes of common diseases. The
research at deCODE is based on the Icelandic population for three major
reasons, the original genetic pool is small, literature documents the family re-
lations many generations back, and �nally the juridical foundations have been
established. deCODE currently employs more than 600 people divided into
several departments ranging from the Research Laboratory and the Database
Division, to the Statistics Department with which we have collaborated. The
Statistics Department is, among other areas, responsible for developing soft-
ware capable of doing statistical analysis of genetic data. Part of our project
group has spent time working with Ph.D. Daniel Fannar Gudbjartsson, the
creator of Allegro, which is the software package used at deCODE for linkage
analysis (See Appendix A). The stay gave the group a chance to verify and
extend our understanding of the methods currently used within the �eld of
linkage analysis.
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1.1 This report

We have investigated to what extent the area of linkage analysis is formalized
in a computer scienti�c context. To our knowledge, no formal framework exist
to describe linkage analysis. For this reason we develop such a framework, to be
able to reason about the correctness of current and future algorithms. After
establishing the formal framework, we attempt to determine the complexity
of linkage analysis and based on this investigation we discuss approaches to
reduce the complexity in the average case. More speci�cally, we investigate
how well MTBDDs and PDGs work for symbolic representation of probability
distributions in our problem domain.

This report is meant to be a self contained document. Thus readers with
a mathematical, engineering, or computer science background should be able
to read and understand it with little or no prior knowledge on linkage analysis
and genetics. Readers that do not have this background might experience
di�culties in understanding the more computer scienti�c aspects, although
some introduction is given into selected areas in the appendices. In the back of
this report we have provided a glossary (See page 107) of the most important
genetic terms, for quick reference, and a list of symbols can be found on page
v.

The structure of the report is as follows: The �rst part is an introduc-
tion to the biological model. This part is not exhaustive, however it provides
a su�cient background for understanding the motivation behind the two fol-
lowing parts. In the second part we build a formal framework, for proving
the correctness of the algorithms used in linkage analysis. In the �nal part
of the report we state the properties which a new method should preserve, in
order to produce the same results as well established methods. Furthermore,
we discuss the performance of alternative strategies for the representation and
computational tasks in linkage analysis.

1.2 Acknowledgments

First we would like to acknowledge Daniel Fannar Gudbjartsson, the creator
of Allegro, for his help and guidance as well as other people in the Statistics
Department, and Sverrir Þorvaldsson and Gisli Màsson, at deCODE for their
patience and willingness to answer questions and give explanations.

We would also like to thank Professor of Computer Science Finn Verner
Jensen and Assistant Professor of Computer Science Thomas Nielsen, Aalborg
University for their help with Bayesian theory and hidden Markov models.

We would like to thank the following people for inspiration: Professor of
Computer Science Kim G. Larsen and Associate Professor of Computer Science
Luca Aceto, both from Aalborg University. Professor of Biotechnology Aalborg
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University Karen G. Welinder, Assistant Professor Dennis Nilsson from the
Mathematics Department at Aalborg University, Research Assistant Professor
at BRICS Aarhus Christian N. Storm Pedersen, Professor of Computer Science
at the University of Birmingham Martha Kwiatkowska and Ph.D. student at
the University of Birmingham David Parker.
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Chapter 2

Introduction to Human

Genetics

This chapter introduces the reader to the terms and concepts of human ge-
netics which are essential for understanding linkage analysis. Readers who are
familiar with genetic concepts like alleles, mendelian inheritance, linkage anal-
ysis, and so on may want to skip this chapter. We remind the reader unfamiliar
with any of these concepts, that there is a glossary on page 107, where it is
possible to �nd a short explanation and a reference to many of the terms and
concepts present in this chapter.

This introduction is based on various sources, such as, [SR99], [Ott99], and
[KC97]. For further reading, we recommend the reader to see Section 2.7 for a
short discussion of some literature.

The structure is as follows. We begin with a rather high level description
of genetics, by introducing the two major concepts of chromosomes and DNA.
This is followed by the introduction of alleles and allelic states, which describe
the di�erent forms a gene can assume. Two important concepts in inheritance,
meiosis and recombination, are introduced. Furthermore, we introduce the
concept of linkage analysis and �nally summarize the chapter.

2.1 Chromosome

Inside each human cell there are 23 pairs of chromosomes, 22 pairs of autosomes

common for both males and females, and one pair of sex-chromosome which
di�ers between the two sexes. A chromosome consists of two identical sister
chromatides - each a double helix DNA, strand , [SR99, page 30], thus a total
of 92 DNA strands, constituting 46 chromosomes. During fertilization a fetus
receives one chromosome from each parent (actually it is one chromatide, which
later is transformed into a chromosome, but in this context can be thought of
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as a chromosome).
The complete set of genetic material is called The Human Genome.

2.2 DNA

The molecule that encodes genetic information of humans is deoxyribonucleic
acid (DNA). DNA is a double helix molecule that consists of a sugar-phosphate
backbone and four nitrogenous bases - adenine, thymine, cytosine, and guanine
(A, T, C, and G), [SR99, Chapter 1]. The nitrogenous bases are also called
base pairs (bps), as they always pair: A with T, and C with G. The base
pairs are situated between the two helixes, thereby binding the two backbones
together.

A combination of three bps are termed a codon1. Each codon speci�es an
amino acid or a stop code (see Figure 2-1). After a stop code, the bps can
possibly specify a non-coding region, which for example could be hundreds
of C-T combinations. Thus, 3 bps code a codon, codons code the sequence
of amino acids, which again determines the genetic code for a single protein
molecule (a gene), [Lan97, page 246]. Proteins function as enzymes, hormones,
etc. and therefore in�uence many physiological and psychological traits, e.g.
eye-color and schizophrenia. Thus, DNA is the recipe for proteins where the
genetic code consists of nitrogenous bases interpreted in sequences of three.
When the genetic code is translated to a protein, each codon speci�es an
amino acid. Amino acids are the building blocks of proteins. When a stop
codon is reached the translation process is ended and the protein is �nished
and ready to perform its function, such as to signal other cells to start or stop
the production of enzymes, in case the protein just built is a hormone.

Some traits are more dependent on outside stimuli than others, e.g. some
traits might not show at all, due to the environmental factors, while other traits
only show in the presence of one or more outside stimuli. For example, it is
believed that a gene exists, that predisposes individuals for obesity2. However,
the obesity trait is only shown in the case where plentiful nutrients have been
available for an individual with the disease gene.

The sequence of base pairs encoding a single protein is called a gene, and
the section or position on the chromosome harboring a gene is denoted as the
locus (plural: loci) of the gene.

A well characterized locus can serve as a genetic marker , by well character-
ized we mean that the locus of the gene is known and that the di�erent allelic
states of the gene is known (allelic states will be explained shortly). Markers

1Also termed a triplet, [KC97, page 325].
2We learned that a group of statisticians and biologists are currently working on isolating

the gene for this disease, during our stay at deCODE Genetics. Some results have already

been released as news, [dNC01].

6



A single codone

C

CA

T

G

G A A

T T

T

A C

CG

G
A

T

T

T
T

T

A

A
A

AC C

C

C

C
G

G

G G

G

Backbone

(DNA strand/chromatide)

A single bp (A−T)

Figure 2-1: A subsection of a chromatide, which is also known as a
(subsection of a) strand. The molecular structure is a DNA
molecule. Notice the pairing A with T and C with G com-
posing the 18 bps, that are coding 6 codons.

can be used as reference points on a chromosome and they can be analysed in
order to determine the genotype of an individual at a given marker, [Gud00,
page 9].

2.3 Alleles

An individual has two alleles at each locus of a gene, since one chromosome
is received from each parent. An allelic state refers to a speci�c encoding
(in codons) of a speci�c allele. The allelic states on the two chromosomes
are not necessarily di�erent, but they can be, hence the sequences of codons
coding the alleles, and thereby genes, are di�erent. An individual is said to be
homozygous if the maternal and the paternal allelic states (the allele received
from the mother and the allele received from the father) at a locus are identical.
If the allelic states are di�erent, the individual is said to be heterozygous at
that locus.

Two alleles at a locus make up the genotype of that locus for a speci�c
individual. If a person is heterozygous it is possible that only one of the alleles
are expressed . In this case, the allele expressed is called dominant , while the
allele not expressed is called recessive. If both alleles are expressed, they are
said to be codominant . The expression of a genotype is called the phenotype.

Example 1 As an example consider the human blood type. The gene for the

human blood type is located on chromosome 9 at band q34, [Lan97, page 2]

(band refers to a position on the chromosome). Three allelic states exists for

blood type: A, B, and 0. Each person has two alleles, however there exists

only four blood types3 (phenotypes): A, B, A/B, and 0, even though there are

are six possible combinations of allelic states: A/A, B/B, 0/0, A/B, A/0,
and B/0 (note that the ordering is irrelevant). If an individual has the allelic

3For simplicity we have omitted the fact, that a person can either be resus negative or

resus positive.
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states A/A, B/B, or 0/0 the individual is homozygous. In the event that

an individual has the allelic states A/0 the individual is heterozygous, and for

these alleles A is dominant and 0 recessive, since only the A allele is expressed,

giving the person the A blood type, just as if the person had the genotype A/A.

B is also dominant with respect to 0, since a person will have blood type B
if the person has either the genotype B/B or B/0. However, A and B are

codominant, since an individual with the genotype A/B will have neither blood

type just A or B, but A/B. The �nal blood type 0 is only expressed if a person

has the genotype 0/0.

2.4 Meiosis

In this section we present the meiosis in a simpli�ed version, however, su�cient
for understanding the later chapters. Due to the complexity of this biological
process we consider it out of scope to explain it in detail4.

Meiosis is an essential process of the human reproduction. Abstractly, it is
a cell division process that produces gametes, female egg cells or male sperm
cells, which combine in reproduction and become the seed for a new individual.
Meiosis is a process where a cell with one chromosome pair (a diploid cell) is
divided into four cells with one chromatide in each (four haploid cells). This is
illustrated in the left half (before the second ⇒) of Figure 2-2.

Selection based on
Mendels first law (random)Paternal

Maternal
chromosome

chromosome

a new individual
Chromosome pair of

Similar process

Paternal diploid cell

Reproduction

gamete
a maternal 
that creates

Paternal gametes (4 haploid cells)

Meiosis

Figure 2-2: Meiosis illustrated for a single chromosome pair of a male
and (partially) a female. The results of their meiosis is later
combined in reproduction to form the chromosome pair of
a new individual. Note that this is simpli�ed, in reality
there are 22 more chromosomes in each cell, to which a
similar process takes place in parallel.

The probability that a given gamete is passed on to a child is assumed to
be random. Hence, probability 1

4 for each of the four combinations. A single

4See [KC97, Chapter 2] for a detailed description of meiosis.
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gamete is randomly �selected� for reproduction (see the right half of Figure
2-2). Since a given allele is present in precisely two of the four gametes, the
probability that allele being transmitted to an o�spring is 1

2 (from 2 · 14). This
hypothesis, that the source of inheritance for a single allele is equally likely to
be either of the two grandparents, was stated by Gregor Johann Mendel in the
18'th century and is known as Mendel's �rst law, [KC97, Chapter 3].

The pair of alleles received from both the parents at a given locus constitute
a child's genotype at that given locus. As an example see the pedigree in Figure
2-3.

Female individual

Male individual

Genotype information

Two alleles at two loci on

Information for one locus

the same chromosome

X x
A a

Grandfather Grandmother

Father Mother

Son Daughter

X X
A A a a

x x

A a
X x x x

a a

A aA a
x  x X x

Legend:

Figure 2-3: An example of a pedigree. The family is constituted by two
grandparents, two parents, and two children. Bold letters
next to the individuals indicate genotyped information, e.g.
the daughter is A/a at the �rst marker and X/x at a
second marker.

Recombination

Recombination refers to new combinations of genes. This phenomenon arises
during meiosis when the two chromosomes of a pair, one inherited from the
father and one from the mother, are (most probably) recombined to form four

new unique chromatides, as depicted in Figure 2-2.
The cause of a recombination is the biological event called crossover5. A

crossover involves physical breakage of the chromosome into one paternal and
one maternal chromatide, and a joining of the paternal and maternal ends,
[SR99, page 40], we have illustrated this in Figure 2-4. Note that we write
A/a when a person has the allelic states A and a at a given locus, whereas we
write A

X
a
x when A and X reside on one chromosome while a and x reside on the

other. When two alleles at two di�erent loci reside on the same chromosome

5Also known as crossing over.
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they are said to be in phase, otherwise they are not in phase. In the following
example we assume to know which alleles reside on which chromosomes, hence
the phases of the alleles are assumed to be known. When we do not know the
phases of a set of alleles, as it is often the case for linkage analysis, the phase
is unknown.

Example 2 In the inheritance example of Figure 2-3 the son is a recombinant,

whereas the daughter is a nonrecombinant, with respect to the two loci shown.

In the example the son is the recombinant, since the alleles on the father's two

chromosomes, A
X and a

x , have recombined to form then new A
x combination, so

A originates from a di�erent chromosome than x.

Meiosis assures that the number of chromosomes in a human individual is
constant, since only one of the four gametes is passed on to a new individual.
This gamete is then copied in order to constitute a full chromosome with two
sister chromatides for the new individual. Furthermore, meiosis and recombi-
nation is the reason that the child's chromosomes, constituting a chromosome
pair, are most likely not identical to any of the four chromosome sources of the
two parents. Recombinations ensures diversity and uniqueness in a population.

a

b

C

Resulting
4 strands

B

C

A

B

C

A a

b

c

b

c

A

B

C

A a

B

c

a

b

C

B

C

A

b

c

A a

B

c

a

b

c

2 chromosomes

Crossover

Start meiosis End meiosis

4 strands

1 chromosome pair

Figure 2-4: The �gure illustrates how a crossover might occur on a
chromosome, where three marker genes are residing. Hence
this meiosis leads to the gametes {A,B,C}, {A,b, c},
{a,B, c}, and {a,b,C}, where all but {A,B,C} are re-
combinations, [Ott99, page 10]. The elements at the start-
ing point is one chromosome pair, two chromosomes, which
each consists of two strands (DNA molecules).

The probability that an odd number of crossovers occur between two loci is
termed the recombination fraction. Note that if an even number of crossovers
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(including zero) occur between a pair of loci they are constructed from the
same parental chromosome. Thus the individual inheriting this chromosome
have inherited the genes at this pair of loci from the same ancestral origin.

Example 3 Assume that a new chromatide is assembled from one end to the

other. Assume that the �rst part of the chromatide is based on one of the

paternal chromatides, a crossover occurs, hence the chromatide is now being

constructed from a maternal chromatide. If a new crossover occurs (thus we

have had two crossovers so far) the source of the assembly is now back to a

paternal chromatide. Multiple switches can occur between the paternal and the

maternal chromatides.

In a sense, recombinations do not occur completely at random, [SR99, page
271]. The concept of interference states that in the immediate vicinity of a
crossover, it is virtually impossible for another crossover to occur. Thus the
recombination fraction remains very close to zero for some distance along the
chromosome near a crossover. The recombination fraction between two loci
is related to their physical distance. The mathematical relationship between
physical distance and the recombination fraction is given by a map function.
The most widely used map function is the Haldane map function, [Gud00, page
7]:

d = −1
2
ln(1− 2θ),

θ =
1
2
(
1− e−2d

)
,

where θ is the recombination fraction and d is the distance in Morgans.
On average, approximately one recombination occur for each 108 bps. The
distance between two loci is de�ned as 1 Morgan (M), if one recombination can
be expected between them during meiosis (hence 1 M is roughly equivalent to
108 bps). Thus, there is a correspondence between the distance between two
loci and the likelihood of a recombination. The greater the distance, the closer
the recombination fraction approaches 1

2 , [Ott99, page 14]. Note that between
two loci residing on di�erent chromosome pairs the recombination fraction is
1
2 , as each meiosis on either chromosome are independent. Two loci are said to
be linked if the recombination fraction between them is less than 1

2 , otherwise
the two loci are unlinked. This is also an observation made by Mendel, in
Mendel's second law, he states that unlinked, segregating gene pairs assort
independently at meiosis, [Ott99, page 38]. We will refer to Mendel's �rst and
second law as Mendelian inheritance6.

6Often referred to as the Mendelian laws.
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Note that the recombination fraction is not constant over the human genome
with respect to physical distance. It can deviate along a chromosome and dur-
ing female meiosis the recombination fraction is on average twice that of male
meiosis. In the present study we assume that the recombination fraction is
constant, throughout the genome and the same for both male and female7.

2.5 Locating trait genes

The Human Genome project deals with sequencing the chromosomes so that
the order of genes is established. However, when this work is completed, the
task still remains to uncover which genes are responsible for what trait8.

Doctors, physicians, psychologists, psychiatrist, etc. might suspect that a
trait within their �eld is caused by some genetic mutation. The suspicion might
arise from the fact that the trait is often carried by many in some families and
by none in other families. If the trait causing gene(s) could be located, i.e. if
the locus or loci could be identi�ed, it is possible to infer the protein(s) that
cause a given trait. This knowledge can be used for:

1. Diagnosis: If the locus and the allelic state which is responsible for
some trait is known, a blood sample would be su�cient to diagnose a
person, since the result of a sequencing of the persons DNA at the locus
could be matched against the sequence of the trait causing allelic state.
It would also be possible to assess the chance of a person developing a
trait, by knowing the persons genotype at the trait locus or loci.

2. Prescribe e�ective drugs: Some people respond to some drugs, while
others do not. If the responsiveness is dependent on one or more genes,
then a determination of a persons allelic state for those genes can lead
to the correct drug prescription.

3. Cure: If the proteins responsible for a trait are known, it might be
possible to develop a drug which surpasses the e�ect of the proteins or
the proteins themselves.

Two kinds of genetic studies exist in the literature. Both aim at locating
genes causing traits: Association studies and linkage analysis, [Cur01]. In
association studies the aim is to locate a trait gene by looking for marker alleles
more frequent in a group of unrelated individuals carrying a trait, than to a
group of people not carrying the trait. E.g. if two groups of 1000 individuals
are studied, and 80% of the individuals in one group - the group of people

7Gudbjartsson makes the same assumptions in, [Gud00].
8Currently, there is quite a large amount of data available, [BO98], however the compu-

tational power is insu�cient to process this data, [JIS93].
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carrying the trait - carry a certain allele, while the same allele is only carried
by 30% of individuals in the other group of people not carrying the trait, there
is some evidence that the trait and the allele are close to one another (i.e. they
are linked). Association studies are only useful when the trait causing gene
is located very close to a marker gene, because it is based on a rather sharp
division of the two groups (either they have the trait and the marker allele, or
they do not have either).

In linkage analysis related people are studied and di�erent pedigrees are
studied independently. The aim in linkage analysis is to �nd the locus of one
or more genes causing a trait, by looking at inheritance patterns of markers
and comparing these with the inheritance patterns of the trait in question. By
analysing how di�erent markers are segregated compared to the set of e�ected
individuals the location of the trait gene can be approximated. Linkage analysis
is the focus of the remaining part of this report.

2.6 Summary

In this chapter we have introduced the reader to the biological background of
this report, in order to give a basis for understanding the biological context of
the rest of this report. We have explained the structure of a DNA molecules,
and how they combine to the 23 chromosomes that encodes the genetic infor-
mation of an individual. Furthermore, we introduced the reader to the process
of genetic inheritance. How the alleles are inherited is based on some probabil-
ity (Mendelian inheritance), which again is in�uenced by biological properties
like recombination fraction, interference, etc. The main task of linkage analysis
is to locate the gene on the human genome, which causes the trait of interest.

From now on we will abstract away from biological details. The focus is
now on whole genes (markers), which is su�cient to describe linkage analysis
formally. Another prime concept is that of pedigrees. As stated earlier, the
glossary on page 107 can provide quick reference.

We now concentrate on the task of linkage analysis, thus locating the pos-
sible position of a trait causing gene on a single chromosome. The Mendelian
laws of inheritance have a major role in linkage analysis. It is safe only to
consider a single chromosome pair, since genes on di�erent chromosome pairs
assort independently.

2.7 Further reading

The literature is divided into two categories:

Biology orientated: This literature includes [KC97] and [SR99], which
are written for, and by, biologists and geneticists. Both books focus on
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the physical and chemical processes, as well as cell anatomy. For a com-
puter scientist, much of the information in these books is super�uous
for understanding the biological model assumed for the algorithms pre-
sented in the following chapters. However, they can serve as an extensive
reference.

Statistics orientated: This literature includes [Lan97] and [Ott99],
which are written by people with a background in mathematics and/or
statistics. All of the books we have read in this category have an in-
troductory section containing a brief description of the biological model
and terms used. We have found that this kind of literature are inade-
quate to the reader with a background in computer science, because the
main topic of these books, the statistics models, outweighs the biological
descriptions.

In our case the process of learning bioinformatics has largely been an it-
erative process from biology to statistics, back to biology, etc. This is mainly
because we have found little literature on this topic, which was written from a
computer scienti�c perspective.

We have found two references, that is not biology and statistics oriented.
Bioinformatics - A Practical Guide to the Analysis of Genes and Proteins,
[BO98], is largely a guide book for people interested in locating software and
data for genetic analysis. It contains user guides for various genetics analy-
sis software, as well as guides on how to �nd and extract data from public
available databases. Another exception is Faster Sequential Genetic Linkage

Computations, [JIS93]. This is probably the most computer science oriented
paper, it incorporates two synthesis of the biological model and four implemen-
tation level speed ups of central algorithms. Something that is omitted in the
paper is a discussion of the previously mentioned formal techniques, for speed-
ing up computations. This is most probably because the paper is rather old
(1993), compared to the development of these techniques within the computer
scienti�c community.
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Chapter 3

Linkage Analysis

The purpose of this chapter is to describe the concept of linkage analysis in a
formal fashion. First, we motivate linkage analysis by giving an informal de-
scription of the concept, based on how it is performed. After this we formalize
the underlying biological model, this includes formalizing pedigrees, genotype
information, inheritance vectors, and founder allele assignments. The meth-
ods implemented in the software currently used to solve the linkage analysis
problem consists of two algorithms, namely one to solve single point analysis
and one to solve multi point analysis. After introducing the biological model
we �rst focus on single point linkage analysis. We state the problem formally,
followed by a formal description and proof of the correctness and complexity
of the algorithms implemented in Genehunter and Allegro1. Since no previous
framework has been established we prove these two applied algorithms. The
purpose of multi point is to gain more accurate estimates of linkage. Our for-
malization is expanded in the description of multi point analysis. We describe
multi point probability calculation as a Bayesian network and not as a hid-
den Markov model, as previously described in the literature, e.g. as presented
in [LG87]. Finally, we describe two reductions, one that is applied in both
Genehunter and Allegro and the other only in Allegro.

3.1 Introduction to Linkage Analysis

Linkage analysis is a process for constructing genetic linkage maps. A genetic
linkage map is a description of how a number of loci on a chromosome relate in
terms of genetic distance. Hence, a genetic linkage map consists of a number
of loci for which the order and relative distance (recombination fraction2) are
known.

1See Appendix A for a list of software used to analyse genetic data.
2See page 10.
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The recent advances in molecular biology have allowed the construction
of detailed genetic linkage maps based on molecular markers3(from now on
just marker). A marker is a polymorphic DNA or protein sequence deriving
from a single chromosomal location, [SR99, page 551]. Historically, markers
were limited to observable traits known to follow the mendelian4 inheritance
pattern, e.g. as blood groups. Today, however, certain highly polymorphic
structures of the human DNA can be typed directly on large scale by automated
equipment. These structures are called microsatellites which are di-, tri-, and
tetraneucleotide repeats, and single nucleorite polymorphisms5.

In the following we give a overview of how linkage analysis is performed,
and which data is available.

3.1.1 Performing Linkage Analysis

The data needed in order to perform linkage analysis is:

• A genetic linkage map.

• A number of pedigrees.

• Information on the inheritance of markers.

• Trait status for some or all pedigree members.

Figure 3-1 depicts a pedigree with the information for one marker. The
information is used to infer evidence that the inheritance pattern of the trait
resembles the inheritance pattern of a marker. In Figure 3-1 the inheritance
pattern of the trait follows the inheritance of the paternal allele of individual 1.
The reason for this could be that the trait causing gene is situated close to the
marker, i.e. they are linked which means recombination occurs less frequently
than had they been unlinked.

Since crossovers occur, it is not always the case that the inheritance pattern
of a trait follows exactly that of a marker. For this reason we need a measure
of how closely the inheritance patterns of a trait and a marker resembles each
other. Such measures are expressed through scoring functions. The LOD score

is one such scoring function. It is out of the scope of this report to de�ne any
scoring functions, but for the sake of completeness Appendix B gives formal
de�nitions of two commonly used scoring functions, the LOD and NPL scores.

Linkage analysis is performed for a number of pedigrees on a subset of
markers across the genome. If the scoring between the trait and a marker
indicates potential linkage, then that region is further analysed by including

3See page 6.
4See page 9 and 11.
5See [SR99, page 273] for a detailed description of the history, use, and typing of markers.
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Legend:

a|a

Female individual

Male individual

5

3 4

21
Genotype information

Alleles

Right: Maternal
Left:    Paternal

Affected individual

(phase known)
A|a

A|A a|a

A|a

A|a

Figure 3-1: A pedigree with trait status and exact information on in-
heritance of alleles. Note that in reality the phase is often
not known.

more markers from the genetic linkage map. Given that trait causing gene
is located in the region under investigation, the new analysis estimates more
precisely the location of the trait causing gene.

This process is iterated until no more markers are available in the prox-
imity of the trait causing gene. The genetic linkage map is then updated by
introducing a locus representing the trait causing gene.

Using exact knowledge of the inheritance patterns of markers, linkage anal-
ysis is straight forward, but in reality many pedigree members are not geno-
typed making it impossible to infer the precise pattern of inheritance. This
and other problems are discussed in the following section.

3.1.2 Missing and Incomplete Data

As stated above, markers were originally limited to simple characteristic traits,
such as blood type or eye color. Recent techniques have made it possible to
determine the allelic states of microsatellites in human DNA. This method has
only been used for a few decades, therefore genotype information is often only
available for the youngest generations. Since pedigrees are partly constructed
from written documents, such as church records, which contain no information
about genetic markers, some individuals in the pedigree might not be geno-
typed at all. This is often the case for pedigree founders. Furthermore, the
phase of the observed alleles for a marker cannot be determined.

Due to these problems, the inheritance pattern for each marker needs to
be estimated on behalf of the genotyped individuals. Since the genotype in-
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formation is insu�cient and the phase is unknown, the precise inheritance
pattern becomes impossible to infer. To illustrate the problem we introduce
the concepts of identical/identity by descent(IBD) and identical/identity by

state(IBS). Two individuals are IBD if they share inheritance of some founder
allele. Two individuals are IBS if they have the same allelic state for some
marker, these alleles need not be IBD.

Legend:

A/a

A/A a/a

a/a

Female individual

Male individual

3 4

21
A/a Genotype information

(phase unknown)

Alleles

Right: Maternal
Left:    Paternal

A/aA/a 5 6

Figure 3-2: IBS vs. IBD. Individuals 5 and 6 are IBS, but since the
mother is homozygous they have not necessarily inherited
the same maternal allele. In fact in this case they are not
IDB.

Figure 3-2 is a example of two siblings which are IBS, but not IBD. The
individuals 5 and 6 share inheritance of their paternal alleles (A). The allelic
states of their maternal alleles (a) are identical, but they are not identical by
descent because of the pattern of inheritance depicted in the �gure.

For the reasons given, the precise inheritance pattern is impossible to infer
from the given data, that is, several inheritance patterns can give rise to the
same observed genotype information. Some of these inheritance patterns might
be more likely than others, thus we need to compute the individual probability
of each. These computations are the topic of the rest of this chapter.

Each possible inheritance pattern can then be scored against the inheritance
pattern of the trait, using for instance the LOD score. The contribution to
the �nal score of the marker from each inheritance pattern is based on the
probability of that pattern.

Computing the probabilities of possible inheritance pattern is performed
in two steps, single point analysis and multi point analysis. These topics are
covered in Sections 3.2 and 3.4, respectively.
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3.2 Single Point Analysis

Single point analysis is the process of determining linkage between single mark-
ers and traits using only the genotype information available at each marker.
The primary task is computing probability distributions of inheritance pat-
terns at some locus given the available genotype information at that locus.
This is called single point probability computation.

To compute the probability distribution over inheritance patterns, we intro-
duce a formal framework for the biological concepts introduced in the preceding
chapter. After the introduction of the formal framework we explain formally
how the probability distribution is calculated.

3.2.1 Formal Model

Pedigree

In Section 2.4 the concept of a pedigree was introduced. In the following we
formalize this concept.

De�nition 1 (Pedigree) A pedigree is a 4-tuple P = 〈F,N, father,mother〉
with a set of individuals (nodes) V = F ∪ N , where F is the founder set and

N is the non-founder set, and two functions:

- father : N → V .

- mother : N → V , satisfying the following constraints:

• A node cannot be both a founder and a non-founder, that is F ∩N = ∅.

• No node is both a father and a mother, that is:

∀n, n′ ∈ N and n′′ ∈ V . mother(n) = n′′ =⇒ father(n′) 6= n′′ ; and
∀n, n′ ∈ N and n′′ ∈ V . father(n) = n′′ =⇒ mother(n′) 6= n′′.

• A node is never its own ancestor, that is:

∀n ∈ V . n /∈ ancestor(n),

where ancestor : V → 2V is de�ned recursively as:

� Any non-founder has its father and its mother as ancestors together

with the ancestors of both parents, that is:

∀n ∈ N . ancestor(n) = ancestor(father(n))
∪ ancestor(mother(n))
∪ father(n) ∪ mother(n).
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� Founders have no ancestors, that is:

∀n ∈ F . ancestor(n) = ∅.

The constraints on the pedigree are introduced to consistently describe the
underlying biological model.

De�nition 2 (Pedigree Graph) The graph G = 〈P,→〉 consisting of a pedi-
gree P and a transition relation → ⊂ V ×N , where:

n→ n′ i� father(n′) = n or mother(n′) = n,

is called the pedigree graph generated by P = 〈F,N,mother, father〉.

We use the relations n
father−−−−→ n′ and n mother−−−−→ n′ to denote father(n′) = n

and mother(n′) = n, respectively. From this de�nition it follows that:

→ = {(n, n′) | (n, n′) ∈ father−−−−→ ∨ (n, n′) ∈ mother−−−−→} =
father−−−−→ ∪ mother−−−−→ .

Remark: This implies the following relationship between ancestors and the →
relation:

n→+ n′ ⇔ n ∈ ancestor(n′), (3-1)

where n→+ n′ denotes that there is a path in the pedigree graph of length at
least 1 from n to n′.

Example 4 Figure 3-4 is the representation of the example pedigree in Fig-

ure 3-3 under the formal framework. In this example the pedigree graph, G,
has the following structure:

G = 〈P,→〉, where:
P = 〈F,N,mother, father〉,
F = {1, 2, 4},
N = {3, 5},

mother(3) = 2,
father(3) = 1,
mother(5) = 4, and
father(5) = 3.

Figure 3-4 illustrates how the individuals of the example above are related

in terms of the father and mother functions.

Lemma 1 A pedigree graph is a directed, acyclic graph (DAG).
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Legend:

1

3

5

4

2

A/a

A/a

A/A a/a

a/a

A/a

Female individual

Male individual

Genotype information
(phase unknown)

Figure 3-3: An example pedigree with genotype information for which
the phase is unknown.

1

3

father

2

mother

5

father

4

mother

Figure 3-4: A formal representation of the pedigree in Figure 3-3. The
transitions have been labeled to clarify whether a parent
is father or mother.
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Proof: The proof is by contradiction stating that a cycle dictates that some
node would be its own ancestor. Assume that a pedigree graph G = 〈P,→〉
contains a cycle consisting of the nodes V ′ ⊆ V , where:

∀n ∈ V ′.n→+ n.

It follows directly from (3-1) on page 20, that n ∈ ancestor(n), which con-
tradicts De�nition 1 of a pedigree. ♦

Allele

De�nition 3 (Allele) The set of alleles in a pedigree P is de�ned as:

A = {(n,$)| n ∈ V and $ ∈ {p,m}}.

We call the subsets AN = {(n,$)| n ∈ N and $ ∈ {p,m}} and AF =
{(n,$)| n ∈ F and $ ∈ {p,m}} the set of non-founder alleles and the set

of founder alleles, respectively. (n, p) and (n,m) represent the paternal and
maternal alleles.

Marker

De�nition 4 (Marker) A marker6 M is de�ned as a 2-tupleM = 〈AM , πM 〉,
where:

• AM = {a1, a2, . . . , ak} is set of allelic states for the marker M , and

• πM : AM → [0, 1] is the allele frequency7 function, such that:

� The sum of all allele frequencies is 1, that is:∑
a∈AM

πM (a) = 1.

The allele frequencies are based on statistical information for a given pop-
ulation.

Notice the di�erence between the terms allele and allelic state. An allele
is the term used for the section (also denoted position) of a chromosome rep-
resenting a marker. An allele can have a number of states, depending on the
allelic states for the marker. Thus, an allele can be thought of as a variable
which can be assigned a value, that is, an allele can be assigned an allelic state.

6See page 6.
7A more appropriate term would be allelic state frequency, however to remain consistent

with the current practice we call it allele frequency.
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For the remaining part of single point analysis, we assume an underlying
pedigree, and we always work with a single marker, which we call M . Thus,
when we write AM or πM we refer to allelic states or the allele frequencies for
the marker M .

Genotype information

De�nition 5 (Genotype Information) Genotype8 information,

G = 〈L, astates〉, for a gene, g, consists of a set of genotyped individuals L
and a function astates, where:

- L ⊆ V , and

- astates : L → {{a1, a2} | a1, a2 ∈ AM}.

Notice that the de�nition indicates that the phase is unknown since there
is no reference to maternal and paternal alleles. If an individual is homozygous
at a given locus, the astates function returns a set containing just one element.

Example 5 The pedigree graph in Figure3-3 shows genotypic information for

all individuals. Thus the set of genotyped individuals L is equal to the complete

node set V . The allelic states of individual 5 are: astates(5) = {A, a}.

Inheritance Vector

An inheritance vector9 is a complete speci�cation on how the alleles of founders
are inherited by each non-founder. This is a formal way of describing inheri-
tance patterns. We formalize the notion of inheritance vectors in the following
de�nition:

De�nition 6 (Inheritance Vector) An inheritance vector v for some pedi-

gree graph P is a function:

v : N × {p,m} → {p,m}.

The inheritance vector is used to give information about the inheritance of the
paternal, p, and maternal, m, alleles for every non-founder (See the example
below).

8See Section 2.3 for the biological meaning of genotypes and alleles.
9The notion of inheritance vectors was introduced in [LG87] and further used in

[KDRDL96].
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Example 6 In the running Example 4 on page 20, an inheritance vector could

be:

v(3, p) = p,

v(3,m) = m,

v(5, p) = p, and

v(5,m) = p.

This would result in the following inheritance pattern (see Figure 3-5):

Individual 3 has inherited his paternal allele from the father of individual

1 and his maternal allele from the mother of individual 2. The two alleles

of individual 1 and the two alleles of individual 2 are founder alleles. Hence,

individual 3 has inherited the paternal allele of a founder, individual 1, and

the maternal allele of another founder, individual 2. Note that the father of

individual 5 (individual 3) does have parents in the pedigree. To determine

which founder allele individual 5 has inherited, we use the information that the

paternal allele is transmitted from the father's father. This means, that we can

�nd the transmitted founder allele by searching the graph recursively using the

inheritance information of individual 3. Thus the paternal allele of individual 5

is the same as the paternal allele of individual 3. Since v(5,m) = p individual

5 has inherited the paternal allele of individual 4, who is a founder.

Legend:

A/a

A/a

A/A a/a

a/a

Female individual

Male individual

5

3 4

21
A/a Genotype information

(phase unknown)

Alleles

Right: Maternal
Left:    Paternal

v(5,m)=pv(5,p)=p

v(3,p)=p v(3,m)=m

Figure 3-5: Shows how it is determined which founder alleles the non-
founders receive given an inheritance pattern.

Founder Allele Assignment

We need a de�nition of a founder allele assignment, which assigns allelic states
to all founder alleles. Such a de�nition is necessary in order to reason about
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allelic states of non-founders, since every non-founder has inherited his/her
alleles from founders.

De�nition 7 (Founder Allele Assignment) An assignment of allelic states

to founder alleles is a function:

ZM : F × {p,m} → AM .

The founder allele assignment, ZM , assigns allelic states to founders, whereas
the inheritance vector, v, only gives information about the path of inheritance
of alleles, not the exact allelic state.

Example 7 Below we show the only founder allele assignment for the example:

ZM (1, p) = A,

ZM (1,m) = A,

ZM (2, p) = a,

ZM (2,m) = a,

ZM (4, p) = a, and

ZM (4,m) = a.

This is because all founders are genotyped.

Assignment of Alleles to Non-founders

From the inheritance pattern, given by an inheritance vector, it is possible to
determine which founder alleles a non-founder has inherited. This can be done
by the function de�ned below:

De�nition 8 We de�ne a function:

F : (N × {p,m} → {p,m})→ ((V × {p,m})→ (F × {p,m})),

which given an inheritance vector returns a recursive function that for each

allele of each individual in the pedigree gives the founder allele inherited. That

is:

Fv(n, p) =

{
(n, p) : n ∈ F
Fv(father(n), v(n, p)) : otherwise

Fv(n,m) =

{
(n,m) : n ∈ F
Fv(mother(n), v(n,m)) : otherwise,

where Fv denotes F(v).
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Example 8 Using the inheritance vector, v, of Example 6, Fv assigns founder

alleles to both non-founders according to:

Fv(5, p) = Fv(father(5), p) (since v(5, p) = p)
= Fv(3, p) = (father(3), p) (since v(3, p) = p)
= (1, p),

Fv(5,m) = (mother(5), p) = (4, p) (since v(5,m) = p), and
Fv(3,m) = (mother(3),m) = (2,m) (since v(3,m) = m).

Compatibility

Kruglyak et. al. de�ne the concept v-compatibility in [KDRDL96]. This term
is an indication of whether the given inheritance vector is compatible with the
genotypes observed. We formalize this notion below:

De�nition 9 (Compatibility) Let v be an inheritance vector and

G = 〈L, astates〉 some genotype information. Then v is said to be compatible

with G i� there exists a founder allele assignment ZM such that the following

condition is met:

∀n ∈ L . {a | a = ZM (Fv(n, p)) ∨ a = ZM (Fv(n,m))} = astates(n),

ZM is then said to be a compatible founder allele assignment over v and G.

Example 9 The founder allele assignment of Example 7 is compatible with the

inheritance vector of Example 6 and the genotype information of Example 5.

Had the inheritance vector been changed such that v(5, p) = m there would

be no compatible founder allele assignment. This is because both individual 2

and 4 are genotyped with only the a allelic state and individual 5 is genotyped

with one A, which could only have been inherited from individual 1.

3.2.2 Single Point Probability Computation

In the previous section we saw how some genotype information yields no com-
patible founder allele assignment for some inheritance vector. The main task
in single locus probability calculation is exactly identifying compatible inher-
itance vectors and calculating their probability. For readers unfamiliar with
basic probability theory we refer to Appendix C.

The probability of an inheritance vector given some genotype information
is proportional to the sum of the probabilities of all compatible founder allele
assignments (3-5). The probability of a founder allele assignment is given by
the product of the allele frequencies10 for all assigned founder alleles.

10See Section 3.2.1 for more on allele frequencies.
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Formally, given an inheritance vector v and some genotype information
G, we are interested in computing P (v|G), the probability of an inheritance
vector, v, given some genotype information, G. Applying Bayes' theorem we
�nd:

P (v|G) =
P (G|v) · P (v)

P (G) .

However, since the inheritance vector for a pedigree graph is almost never
uniquely determined11 by the genotype information, each inheritance vector
has a probability of denoting the true inheritance pattern.

If we let v denote all inheritance vectors for a pedigree we get:

P (v|G) =
P (G|v) · P (v)

P (G) , (3-2)

where P (v) denotes the probability distribution over all inheritance vectors.
Formally, we say that v is a variable with states v = (v1, v2, ..., vn), where each
vi is an inheritance vector. P (v) denotes the probability distribution over these
states, that is P (v) = (P (v1), P (v2), ..., P (vn)), where

∑n
i=1 P (vi) = 1. P (v)

is called the probability distribution over inheritance vectors. We use P (vi) for
P (v = vi) when the variable is understood. This notation is adopted from
[Jen01] and [Gud00]. In (3-2) P (v|G) refers to the probability distribution
P (v|G) = (P (v1|G), . . . , P (vn|G)).

Notice that the denominator in (3-2) is an instance of genotype informa-
tion, thus it is the same for all v. This means that the probability P (v|G) is
proportional to P (G|v)P (v). We write this as:

P (v|G) ∝ P (G|v) · P (v). (3-3)

Since the inheritance is assumed to be Mendelian12 the a priori probability of
all inheritance vectors v is equal. That is:

∀vi . P (v = vi) =
1
|v| , 1 ≤ i ≤ |v|

where |v| denotes the number of states of v. Under this assumption we deduct
from (3-3) that:

P (v|G) ∝ P (G|v). (3-4)

As can be seen from (3-4) above, the probability of an inheritance vector v
given some genotype information G is proportional to the genotype information
given the inheritance vector. We use this result when computing the single
point probability distribution.

11This is because the phase of the genotype information is usually unknown.
12See page 9 and 11 for more on Mendelian inheritance.
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The computation of the probability of some genotype information given
an inheritance vector is the sum of the probabilities of all compatible founder
allele assignments. Let ZM be a founder allele assignment of a pedigree then
the probability of ZM is de�ned as:

P (ZM ) =
∏
n∈F

πM (ZM (n, p)) · πM (ZM (n,m)),

where πM is the probability function over allele frequencies. If Fv
G is the set

of all compatible founder allele assignments for some inheritance vector v and
some genotype information G, that is, Fv

G = {ZM | ZM is a compatible founder
allele assignment over G and v} then the conditional probability is obtained
by:

P (G|v) ∝
∑

ZM∈Fv
G

P (ZM ). (3-5)

This is a general formulation of single point probability for an inheritance
vector. In the following section we will state and prove the correctness of two
algorithms used to calculate the single point probability distribution over the
set of inheritance vectors for a pedigree.

3.3 Algorithms for Single Point Probability Compu-

tation

In this section we present and prove the correctness of the two most recently de-
veloped algorithms for single point probability calculation. The �rst algorithm,
Kruglyak, is used in the Genehunter software package, and was developed
by Kruglyak et. al. and presented in [KDRDL96]. The second algorithm,
FastTreeTraversal is used in the Allegro software package and it is pre-
sented in [Gud00]. We use the formal framework presented in Section 3.2.1. To
our knowledge the correctness of the two algorithms has not previously been
formulated and proven.

We wish to prove that the two algorithms do indeed �nd the single point
probability distribution P (v|G)13. The proof idea is to show, that the set
of compatible founder allele assignments Fv

G for an inheritance vector v can
be described by a propositional formula, and that both algorithms implicitly
construct correct and equivalent formulae for each inheritance for a pedigree.

Prior to the formulations and the proofs of the algorithms, we establish
the notation needed to express the founder allele assignments in propositional
logic.

13Actually, the algorithms �nd the distribution P (G|v), but since P (v|G) ∝ P (G|v) the

distribution is just normalized after an algorithm has terminated.
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3.3.1 Founder allele assignment in propositional logic

In the following we build syntax and semantics of propositional formulae that
allow us to reason about correctness of single point linkage analysis algorithms
in terms of compatible founder allele assignments.

The semantics is build in such a way that we interpret propositional formu-
lae in the sense of sets of compatible founder allele assignments. In this way
we build a formula over some genotype information and an inheritance vector
where the semantics is given as the set of compatible founder allele assignments
in the pedigree.

The section is organized such that we �rst introduce the propositional vari-
ables, then we introduce the syntax and semantics thereof. Finally, we build a
propositional formula over the genotype information and the inheritance vector
and prove that the semantics of this formula is exactly the set of compatible
founder allele assignments.

To be able to work with propositional logic we assume, that each founder
allele f ∈ F × {p,m} in a pedigree is given by a vector of binary variables
f = (x1, x2, ..., xu), where u is dlog2(|AM |)e. We need dlog2(|AM |)e binary
variables for founder alleles, since there are |AM | allelic states, and we need a
unique, binary encoding for each of these, since we want to be able to assign
an allelic state to each founder allele. We also assume that we have an enu-
meration on the allelic states in AM so that each allele a ∈ AM has an unique
vector representation of binary values a = (α1, α2, . . . , αu). For readability we
abbreviate the expression:

x1 = α1 ∧ x2 = α2 ∧ ... ∧ xu = αu,

by:
fn,$ = a,

where $ ∈ {p,m} and a is the binary representation of an allelic state, and
fn,$ is the vector of binary variables representing some founder allele. We
use fFv(n,$) to denote the founder allele which individual n ∈ V has inherited
from the paternal (p) or maternal (m) side. Hence, fFv(n,p) is the binary
representation of Fv(n, p), and fFv(n,m) is the binary representation of F

v(n,m).
The reason for explicitly describing the encoding of the propositions is to

illustrate that we do not need to model explicitly that a founder allele can only
be assigned one allelic state. This is guaranteed by the encoding. In the rest
of this section we assume that this mutual exclusion is guaranteed.

Example 10 If AM = {a, b, c, d} is the set of allelic states for the marker M ,

and we enumerate the allelic states in the order shown, they have the following

binary vector representations: a = [0, 0], b = [0, 1], c = [1, 0], and d = [1, 1].
We need 2 bits since there are 4 allelic states in AM and dlog2(|4|)e = 2.
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Now, assume that we have a pedigree with two founders, a mother (n1)

and a father (n2) and one non-founder, their child (n3). Since there are two

founders, each with two alleles, we have four founder alleles. Each of these

founder alleles, f1p, f1m for the mother (n1), and f2p, f2m for the father (n2),

can be represented as a vector of binary variables such that:

f1p = [x1p1, x1p2],
f1m = [x1m1, x1m2],
f2p = [x2p1, x2p2], and
f2m = [x2m1, x2m2].

Assume the following:

• astates(n3) = {a, d}. Thus the child has been genotyped with the two

allelic states a and d, and assume that

• the inheritance vector v for the pedigree is de�ned as v(n3,m) = p and

v(n3, p) = m. Thus the child has inherited the paternal founder allele

from its mother (f1p) and the maternal founder allele from its father

(f2m).

Since the child must have received either a or d from its mother and the other

from the father, we can write this as:

(f1p = a and f2m = d) or (f1p = d and f2m = a),

which is an abbreviation for the propositional expression:(
(x1p1 = 0 ∧ x1p2 = 0) ∧ (x2m1 = 1 ∧ x2m2 = 1)

)
∨(

(x1p1 = 1 ∧ x1p2 = 1) ∧ (x2m1 = 0 ∧ x2m2 = 0)
)
.

We build propositional formulae, ϕ, for genotype information using the
following syntax:

ϕ := ϕ ∧ ϕ | ψ| tt (3-6)

ψ := ϑ ∨ ϑ
ϑ := q ∧ q

where q is a proposition of type f = a, such that f ∈ F ×{p,m} and a ∈ AM .
The syntax is build such that genotype information is easily expressed, which
becomes apparent as we construct formulae.

Let a ∈ AM be an allelic state and f ∈ F ×{p,m} be a founder allele, then
formulae, ϕ, build from the syntax of (3-6) are interpreted using the following
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semantics:

[[tt]] = {ZM | ZM is a founder allele assignment} (3-7)

[[f = a]] = {ZM | ZM (f) = a}
[[q1 ∧ q2]] = [[q1]] ∩ [[q2]]
[[ϑ1 ∨ ϑ2]] = [[ϑ1]] ∪ [[ϑ2]]
[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]].

Two formulae ϕ1 and ϕ2 are said to be equivalent if they describe the same set
of founder allele assignments. We write this as:

ϕ1 ∼ ϕ2 ⇔ [[ϕ1]] = [[ϕ2]].

Furthermore, we say that a founder allele assignment, ZM , satis�es a formula,
ϕ, if ZM is an element of the semantics of ϕ, that is:

ZM |= ϕ i� ZM ∈ [[ϕ]].

We now state an important theorem for proving single point linkage analysis
algorithms for �nding compatible founder allele assignments. The theorem
states that from some genotype information and some inheritance vector over
a pedigree, we can build a propositional formula from the syntax of (3-6)
for which the semantics (3-7) is exactly the set of compatible founder allele
assignments, Fv

G .

Theorem 1 (Allele Assignment Formula) The set of compatible founder

allele assignments Fv
G over an inheritance vector v and some genotype informa-

tion G = 〈L, astates〉 is the set described by the semantics of the propositional

formula ϕv
G:

ϕv
G

def=
∧
n∈L

(
(fFv(n,p) = a1 ∧ fFv(n,m) = a2) ∨ (fFv(n,p) = a2 ∧ fFv(n,m) = a1)

)
,

(3-8)
where {a1, a2} = astates(n). a1 and a2 are di�erent if astates(n) contains two
elements (heterozygous) and identical if it contains one element (homozygous).

In case of no genotyped individuals (L = ∅) then ϕv
∅ = tt, hence all founder

allele assignments are compatible.

Proof: Recall that Fv
G is de�ned as the set of all compatible founder allele

assignments. By de�nition ZM is compatible14 with v and G i�:

14See page 26 for more on compatibility.
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∀n ∈ L . {a | ZM (Fv(n, p)) = a or ZM (Fv(n,m)) = a} = astates(n).

We can rewrite this and describe Fv
G as set intersection, that is:

Fv
G =

⋂
n∈L
{ZM | {a | ZM (Fv(n, p)) = a or ZM (Fv(n,m)) = a} = astates(n)}.

(3-9)
By de�nition the semantics of ϕv

G is given as:

[[ϕv
G ]] =

⋂
n∈L

[[(fFv(n,p) = a1 ∧ fFv(n,m) = a2) ∨ (fFv(n,p) = a2 ∧ fFv(n,m) = a1)]],

(3-10)
where {a1, a2} = astates(n).

To complete the proof, what we need to show is that the inner part of (3-9)
equals the inner part of (3-10), that is:

{ZM | {a | ZM (Fv(n, p)) = a or ZM (Fv(n,m)) = a} = astates(n)}
=

[[(fFv(n,p) = a1 ∧ fFv(n,m) = a2) ∨ (fFv(n,p) = a2 ∧ fFv(n,m) = a1)]].

In the heterozygous case both formulae have only compatible founder allele
assignments which assigns a1 to fn,p and a2 to fn,m or the other way around.
In the homozygous case only founder allele assignments which assign the same
allelic state a1 to both fn,p and fn,m are compatible. Therefore no matter
how individuals in the pedigree are genotyped, the semantics of ϕv

G describes
exactly the set of compatible founder allele assignments. ♦

We say that the founder alleles in a sub-expression:

(fn,p = a1 ∧ fn,m = a2) ∨ (fn,p = a2 ∧ fn,m = a1),

of ϕv
G , where a1 6= a2 are ambiguously assigned. In the case where a1 = a2 the

sub-expression simpli�es to:

fn,p = a1 ∧ fn,m = a1,

and we say that the founder alleles fn,p and fn,m are unambiguously assigned.
In case ϕv

G does not contain a founder allele fn,p, we say that the founder allele
is free. A founder allele is free if no genotyped individual has inherited the
allele, and the founder has not been genotyped.
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3.3.2 Kruglyak's Algorithm for Single Point Probability Com-

putation

The algorithm presented in [KDRDL96] is implemented in the software package
Genehunter15. The algorithm takes a brute force approach to determine all the
compatible founder allele assignments by building a graph for each inheritance
pattern given by an inheritance vector. The brute force aspect refers to the
fact, that the algorithm iterates over all possible inheritance vectors.

Let founder alleles be nodes in a graph, and let the edges be labeled with
exactly two allelic states a1, a2 ∈ AM . Let:

f1
a1←→
a2

f2,

denote that the node representing founder allele f1 and the node representing
founder allele f2 are connected by an edge labeled with the allelic states a1 and
a2. The intuitive meaning of this notation is, that either f1 = a1 and f2 = a2,
or f1 = a2 and f2 = a1.

Let v denote the set of all possible inheritance vectors for a given pedigree.
Then for each v ∈ v a graph is build in two steps:

1. Initially alleles of genotyped founders, n ∈ F , are connected by an edge
labeled by the genotype astates(n), by the assignment Graph← Graph′.

2. For all genotyped non-founders the two nodes representing the founder
alleles inherited by the genotyped non-founder n are connected by an
edge labeled with the genotype information for n. Hence, the nodes of
the founder alleles Fv(n,m) and Fv(n, p) are labeled with astates(n).

The algorithm takes a pedigree and genotype information on the pedigree
as input. The output is the probability distributions over all inheritance vectors
conditioned on the genotype information. We are also interested in analysing
the output of each iteration, since every iteration is independent. The output
of each iteration is a graph of founder allele nodes which are connected accord-
ing to the genotype information. We analyse whether our interpretation of
this graph represents all compatible founder allele assignment for the current
inheritance vector. Furthermore, we argue for the correctness of probability
calculations based on the graph.

We use the notation a1, a2 ← astates(n) to indicate that a1 and a2 are
assigned the allelic states of individual n. If n is heterozygous, a1 and a2 are
assigned di�erent allelic states with no speci�c ordering, and if n is homozygous
both a1 and a2 are assigned the same allelic state. We use Graph← f1

a1←→
a2

f2

to denote that an edge connecting f1 and f2 labelled with a1 and a2 in added
to Graph.

15See Appendix A for more on available genetic analysis software.
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The pseudocode for the algorithm is given in Algorithm 3.3.1.

Algorithm 3.3.1: Kruglyak(P,G)

Graph′ ← ∅
for each n ∈ L ∩ F

do

{
a1, a2 ← astates(n)(the observed allelic states for n)
Graph′ ← f1

a1←→
a2

f2 (f1 and f2 are the alleles of the founder n)

for each v ∈ v

do




Graph← Graph′

for each n ∈ L ∩N

do



f1, f2 ← Fv(n, p),Fv(n,m) (the founder alleles inherited by n)
a1, a2 ← astates(n) (the observed allelic state of n)
Graph← Graph ∪ f1

a1←→
a2

f2

CalculateProbability(v,Graph)

First, we discuss the correctness of the algorithm, that is, that Kruglyak
produces the full set of compatible founder allele assignments given an inheri-
tance vector and some genotype information. Second, we analyse the complex-
ity of CalculateProbability. Following this, we discuss the full complexity
of the algorithm.

Correctness

We interpret graphs that are output after each iteration in Kruglyak by sets
of founder allele assignments. The interpretation of a graph, Graph, is denoted
interpret(Graph) and is de�ned as:

interpret(Graph) =
⋂

f1
a1←→
a2

f2∈Graph

interpret(f1
a1←→
a2

f2),

where interpret(f1
a1←→
a2

f2) is de�ned according to the intuitive meaning as:

interpret(f1
a1←→
a2

f2) = {ZM | ZM (f1) = a1 and ZM (f2) = a2 }

∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1}.

We formulate that the graph at each iteration of Kruglyak describes the
full set of compatible founder allele assignments in the following theorem:

Theorem 2 (Kruglyak is equivalent to ϕv
G) For any iteration of Kruglyak

with an inheritance vector, v, over some genotype information, G, the inter-

pretation of the graph, Graph, which is output is equal to [[ϕv
G ]], that is:

interpret(Graph) = [[ϕv
G ]]. (3-11)
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Proof: Since an edge is added to Graph for every genotyped individual
in the pedigree we only need to show that:

interpret(f1
a1←→
a2

f2) = [[(fFv(n,p) = a1 ∧ fFv(n,m) = a2)

∨(fFv(n,p) = a2 ∧ fFv(n,m) = a1)]],

for any genotyped individual n, where a1, a2 ∈ astates(n), f1 = Fv(n, p), and
f2 = Fv(n,m), that is, f1

a1←→
a2

f2 is the edged added to Graph for the geno-

typed individual n. From the de�nition of interpret(f1
a1←→
a2

f2) (3-11) and

the semantics of ϕ-formulae (3-10) the equality is easily shown. ♦

Before discussing the complexity of Kruglyak, we explain how the algo-
rithm computes the probability of the individual inheritance vector based on
the edges in Graph.

Probability

In this section we show that the probability computed by Kruglyak is cor-
rect. This gives us the information to reason about the full complexity of the
algorithm.

We divide the set of founder nodes into two di�erent sets. The set of
founder nodes that are free, that is, a founder node which is not in Graph. In
other words, a founder node that can be assigned any allelic state while still
satisfying the constraints in Graph. The other set consists of the set of founder
nodes which belong to some connected component in Graph, thus, nodes which
have constraints on the possible assignments of allelic states.

If fi is a free founder node, that is, fi can be assigned any allelic state,
then fi has no in�uence on the probability: Consider a set of founder nodes
in which all but fi is uniquely assigned an allelic state, then all founder allele
assignments, which assigns fi any allelic state and the others their unique
state, will be a solution to the constraints in Graph. The probability of these
assignments is the sum of the probability of each assignment. Notice that
the only thing that di�ers in the founder allele assignments is the allelic state
assigned to fi, and since the sum of all allele frequencies is 1 by de�nition, fi

has no in�uence on the �nal probability. This, of course, applies for all free
founder nodes.

Actually, we can extend this reasoning to the set of founder nodes in Graph
if we look at each connected component individually. Consider the case where
Graph contains two connected components then any solution to the �rst com-
ponent can be combined with any solution of the second component to form
a complete solution. This implies that we need only sum the probability of
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the connected components separately and multiply the result to compute the
probability for the inheritance vector.

We now explain this with a simple example.

f2 f3 f4 f5 f6f1 b b c

a a a

Figure 3-6: The six founder nodes of Example 11 and the edges be-
tween them.

Example 11 Consider a set of 6 founder alleles {f1, f2, f3, f4, f5, f6} and

three possible allelic states {a, b, c}. We assume that f1 is a free founder node

and f2
a←→
b

f3, f3
a←→
b

f4, and f5
a←→
c

f6 are the edges in Graph (See Figure 3-

6). This gives two connected components that we need to consider: {f2, f3, f4}
and {f5, f6}. Both components have two solutions. Let π(f2 = a) denote the

allele frequency of a (π(a)) indicating that f2 has been assigned the allelic state

a. Since the probability of the genotype given the inheritance vector is pro-

portional to the sum of all compatible founder allele assignments, we get the

following product of probabilities, for the inheritance vector which Graph was

constructed, by rearranging the components of the sum:

P (Graph) = (π(f1 = a) + π(f1 = b) + π(f1 = c)) ·
(π(f2 = a)π(f3 = b)π(f4 = a) + π(f2 = b)π(f3 = a)π(f4 = b)) ·
(π(f5 = a)π(f6 = c) + π(f5 = c)π(f6 = a)).

Notice, this is the product of the probabilities of the solutions to the individual

components. The contribution from a free founder node to the �nal product is

a factor 1 and we can omit these in the computation.

Let CC denote the set of connected components in Graph and let s ∈ X
denote a solution to a connected component X, then the probability of all
founder allele assignments is:

∏
X∈CC

∑
s∈X

P (s), (3-12)

where P (s) denotes the probability of the solution. Note that, P (s) is only
the product of allelic states assigned to founder nodes in X. If the solution
set of a connected component is empty, we say the probability is zero. In this
way the probability of the genotype information given the inheritance vector
becomes zero, if no compatible founder allele assignment exists.

Before reasoning about the complexity of the computation we �rst argue
that each connected component has at most 2 solutions, that is the alleles in
the connected component can only be assigned in at most two di�erent ways.
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The reason is that assigning an allelic state to any founder node in a con-
nected component uniquely assigns allelic states to all other founder nodes in
the component. Consider two founder nodes fi and fj in a connected compo-

nent. For fi to be in the connected component at least one edge fi
a1←→
a2

fk

exists for some fk. This indicates that fi must be assigned the allelic state a1

or a2. Assigning i.e. a1 to fi forces the assignment of a2 to fk. This in turn
forces any founder node connected to fk by an edge with allelic states a2, a3

to be assigned a3. Since fj by de�nition is connected to fi, fj is also uniquely
assigned an allelic state. Therefore, there can be at most two solutions to a
connected component.

If, however, fk was connected to some founder node by an edge with allelic
states a1, a3, assigning a1 to fi would yield no solution, but assigning it a2

would. This way a connected component can have two, one, or zero solutions.

Example 12 Let a part of Graph consist of three nodes f1, f2 and f3. Let

them be connected by the following edges:

f1
a1←→
a2

f2 and f2
a2←→
a3

f3.

There is only one compatible assignment possible given the edges above.

The assignment is: f1 = a1, f2 = a2, and f3 = a3. If f1 is selected as the

start node, it can be assigned to either a1 or a2, however if it is assigned to a2,

then f2 is forced to be assigned to a1. This assignment is incompatible with the

given vector, since a1 is not present on the edge f2
a2←→
a3

f3.

Complexity

We now discuss the running time of the Kruglyak algorithm.
The dominating factor of the complexity is the iteration over all inheritance

vectors (v) for the pedigree in question. The size of v is given by: 22·|N |, where
|N | denotes the number of non-founders.

Building Graph is linear in the number of genotyped individuals since we
add exactly one edge for each genotyped individual. The set of genotyped
individuals can be no bigger than the set of all individuals which is linear in
the number of non-founders |N |.

Since each connected component in Graph can be treated separately and
has at most two solutions, the complexity ofCalculateProbability is linear
in the number of connected components, which again is linear in the number
of non-founders |N |.

This adds up to a total complexity of O(|N | ·22·|N |). The complexity stated
in [KDRDL96] is: O(|N | ·22·|N |−|F |), where |F | is the number of founders. This
reduced complexity is obtained by using founder reduction, which is introduced
in Section 3.4.4.
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3.3.3 Single Point Probability Computation in Allegro

The FastTreeTraversal algorithm provided by Gudbjartsson in [Gud00]
computes all compatible16 founder allele assignments Fv

g for every inheritance
vector v ∈ v, for a pedigree, with some genotype information G.
Kruglyak has two loops, the outer loop is a loop over all possible inheritance
vectors and in the inner loop a graph is build. Gudbjartsson's algorithm Fast-

TreeTraversal has only one loop. Conceptually, the algorithm traverses a
binary tree with depth 2·|N |, where each path from the root to a leaf represents
an inheritance vector. In reality, the tree is traversed recursively from the root
in a depth-�rst fashion. In each recursive call the compatibility of the subset of
inheritance vectors, sharing the path traversed so far, is checked. If this subset
of the vectors turns out to have no compatible founder allele assignments, the
traversal down the current branch is terminated, since no inheritance vector
in the subset is compatible.

Initially, the whole set of inheritance vectors v is divided into four subsets:

v1 = {v ∈ v | v(n1, p) = p and v(n1,m) = p},
v2 = {v ∈ v | v(n1, p) = p and v(n1,m) = m},
v3 = {v ∈ v | v(n1, p) = m and v(n1,m) = p},
v4 = {v ∈ v | v(n1, p) = m and v(n1,m) = m},

for some non-founder n1. Then v1 is divided into four subsets:

v11 = {v ∈ v1 | v(n2, p) = p and v(n2,m) = p},
v12 = {v ∈ v1 | v(n2, p) = p and v(n2,m) = m},
v13 = {v ∈ v1 | v(n2, p) = m and v(n2,m) = p},
v14 = {v ∈ v1 | v(n2, p) = m and v(n2,m) = m},

for some non-founder n2. This recursive division into subsets continues until
there are no more non-founders (meaning that there is only one inheritance
vector in the subset), or all the vectors in a subset are found to be incompatible.

Practical experiments have shown, that this algorithm performs better than
Kruglyak, which is due to its ability to determine incompatibility for a whole
subset of inheritance vectors without testing each individual inheritance vec-
tor17.

16See page 26 for more on compatibility.
17For a pedigree with 14 non-founders Allegro uses 7 seconds for the single point calculation

(9.6% of the total running time), while Genehunter uses 1702 seconds (64.5% of its total

running time), [Gud00, page 51].
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Example 13 Consider the pedigree with F = {father,mother},
N = {son, daughter} and L = {father, son, daughter} shown in Figure 3-7.

a/c b/d

a/b

father mother

son daughter

f1 f4f2 f3

Figure 3-7: An example pedigree P with one genotyped founder and
two genotyped non-founders.

In the �rst recursion the subset v′ is considered, where the subset of in-

heritance vectors for which v(son, p) = p and v(son,m) = p is checked.The

founder alleles inherited by son for this subset of inheritance vectors:

Fv′(son, p) = f1,

and

Fv′(son,m) = f3,

for any v′ ∈ v′. Since there is no incompatibility yet, the traversal is continued.

Now, the subset v′′ of v′ for which v′(daughter, p) = p and v′(daughter,m) = p
is considered in the next recursion. The compatibility for this subset is evalu-

ated:

Since Fv′′(daughter, p) = Fv′′(son, p) = f1 and Fv′′(daughter,m) =
Fv′′(son,m) = f3, the son and the daughter inherit the same founder alleles

which is impossible, as the two children have been genotyped with di�erent al-

lelic states. Thus, the vectors in v′′ are incompatible, and a new subset v′′′ of
v′, where for which v′(daughter, p) = p and v′(daughter,m) = m, is consid-

ered. When all the subsets, each with a di�erent value for (v′(daughter, p),
v′(daughter,m)) - there are four possible values for the pair: (p, p), (p,m), (m, p),
(m,m) - have been evaluated, another subset of v is selected. The subset se-

lected, is the subset for which v′(son, p) = p and v′(son,m) = m. This new

subset is again divided into four new subset for the four di�erent values of

(v′(daughter, p), v′(daughter,m)).

Implementation of Inheritance Vectors as Bit Vectors

In Allegro and in Genehunter the inheritance vector function is de�ned as a
vector of bits (hence the name inheritance vector). This is done by enumerating

39



the non-founders in a pedigree and by letting two bits denote the inheritance
pattern for one non-founder. E.g. assume that we want to de�ne an inheritance
vector v for a pedigree with two non-founders n1 and n2. This can be done

by a binary vector
−→
b = [b1, b2, b3, b4], where b1 and b2 denotes the inheritance

pattern for n1, and b3 and b4 denotes the inheritance pattern for n2. The bits

of
−→
b should be interpreted as described in the example below.

Example 14 Let b1 and b3 represent the paternally inherited allele of n1 and

n3, respectively, and let b2 and b4 represent the maternally inherited allele of

n1 and n2, respectively. The value of the of the bits should be interpreted such

that 0 corresponds to p and 1 corresponds to m.

An instance of an inheritance vector for the pedigree with the two non-

founders n1 and n2 could be described by the binary vector:

−→
b = [0, 0, 1, 0],

which corresponds to the inheritance vector function de�ned as:

v(n1, p) = p since b1 = 0,
v(n1,m) = p since b2 = 0,
v(n2, p) = m since b3 = 1, and
v(n2,m) = p since b4 = 0.

An inheritance vector of the inheritance pattern in Figure 3-2 implemented as

a bit vector would be [0, 1, 0, 0, 0, 1] where the ordering is individual 3-5-6.

Hence, an instance of an inheritance vector can be described by a binary
vector of length 2 · |N |, where |N | is the number of non-founders. In this way
pedigrees can be categorized by the number of bits required to describe an
inheritance vector for the pedigree.

The FastTreeTraversal Algorithm

The pseudocode for the FastTreeTraversal is found in Algorithm 3.3.2. In
the algorithm the variable n is assigned a non-founder by the method Find-
NextNonFounder, which returns non-founders in a top-down, breath-�rst
fashion, so that when a genotyped non-founder is reached, the founder alleles
inherited by that non-founder are the same for all the inheritance vectors in
the subset v′′ of v′. More speci�cally, we assume that we have an enumeration
on the non-founders: n1, n2, . . . , n|N |, and for all indices 1 ≤ i, j ≤ |N | then:

ni ∈ ancestor(nj) ⇒ i < j. (3-13)
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FindNextNonFounder adds non-founders one by one according to this
enumeration. Therefore, FindNextNonFounder only adds a non-founder n
if all ancestors of n have already been added.

If we assume the bit vector representation described on page 39 and the
enumeration described above, FastTreeTraversal recursively �xes larger
and larger pre�xes of the binary vector until either the pre�x is the complete
vector or until the all the inheritance vectors sharing the pre�x are found to
be incompatible.

In the for-loop the subset of inheritance vectors v′ given as the parameter,
is further subdivided into four subsets (one subset for each iteration), for which
the inheritance pattern for the non-founder n is di�erent. The four di�erent
inheritance patterns for n are:

1) v′′(n,m) = p and v′′(n, p) = p,

2) v′′(n,m) = p and v′′(n, p) = m,

3) v′′(n,m) = m and v′′(n, p) = p, and

4) v′′(n,m) = m and v′′(n, p) = m.

Algorithm 3.3.2: FastTreeTraversal(v′,U , E,A)
v′ is a set of inheritance vectors, U , E,A are the sets of founder alleles (and

edges for E)
as described in the text.

n← FindNextNonFounder()
if an n is found

then




for (P, M) in {(p, p), (p, m), (m, p), (m, m)}

do




v′′ ← {v ∈ v′ | v(n, p) = P and v(n, m) = M}
U ′ ← U
E ′ ← E
A′ ← A
if n ∈ L

then




(U ′, E ′,A′)← PartitionFounderAlleles(v′′, n,U ′, E ′,A′)
if (U ′, E ′,A′) 6= incompatible

then FastTreeTraversal(v′′,U ′, E ′,A′)

else FastTreeTraversal(v′′,U ′, E ′,A′)

else CalculateProbability(v′,U , E,A)

If the individual n, for which v′ is divided, has been genotyped (that
is: n ∈ L), the founder alleles are repartitioned by the method Partition-

FounderAlleles. After the founder alleles have been repartitioned the algo-
rithm checks whether the new partitioning can generate a compatible founder
allele assignment, e.g. whether any inheritance vector within the subset cur-
rently considered, can be compatible18. If a compatible founder allele assign-

18The check is actually performed in PartitionFounderAlleles, where incompatibility

is detected.
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ment is possible given the new partitioning, a new recursive call is performed,
otherwise the recursion down the current branch is terminated.

If n /∈ L no repartitioning is performed, since the individual n does not
add any further information to the compatibility of founder allele assignments,
and the recursion is continued. The partitioning algorithm is presented in the
following.

The PartitionFounderAlleles algorithm

The PartitionFounderAlleles algorithm (Algorithm 3.3.3) partitions the
founder alleles into one, and only one, of three sets A, E and U , according
to the inheritance pattern common to a subset of inheritance vectors v′′, see
Figure 3-8. At �rst sight, the algorithm can appear rather complex, however
much of the complexity is due to the large number of combinations of cases,
allelic states, and the actions taken. In some of the cases shown the action
depends on whether the individual n is homo- or heterozygous, however the
di�erences in these actions are often quite trivial. When reading the algorithm
keep in mind that when the algorithm is run it only performs one action (e.g.
assigns allelic states to two founder alleles and moves them into the A set).
The algorithm should be interpreted in the following way:

• Every case corresponds to one of the six possible combinations of mem-
bership for founder alleles f1 and f2 of the three sets A, E , and U .

• In each case there are one or more tests on the allelic states of the founder
alleles, and the allelic states of n, follow by an ':' after which the appro-
priate action is speci�ed.

• A test like f1 ∈ A ∧ f2 ∈ E ∧ assigned(f1) = a1 ∧ a2 ∈ f2
α←→
β

f3 (case

4), should be interpreted as: If one of the founder alleles f1 is assigned,
and the other f2 is in edge, and the allelic state of f1 matches one of the
allelic states (a1) of n, while the other allelic state (a2) of n is one of the
allelic states on the edge with f2 then perform the action.

• An action like f2 ← a1, f3 ← a2 and A ← f2, f3 (case 4) should be
interpreted as: Assign the allelic state a1 to f2, and a2 to f3, and put
both founder alleles into the set of assigned alleles (A).

The intuitive meaning of each of the three sets is explained below:

U : Unassigned is the set of founder alleles which no genotyped individual
has inherited. Hence, the founder alleles in this set are currently free.

E : Edged is a set of edges and founder alleles, for which an allele assignment
is ambiguous by v′′, thus an edge f1

a1←→
a2

f2 in the set, denotes that
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the two founder alleles f1 and f2 have been inherited by a genotyped
individual, n ∈ L, with the genotype information astates(n) = {a1, a2}.
The founder alleles f1 and f2 are said to be ambiguously assigned, since
there are two possible assignments for the two founder alleles: Either
f1 = a1 and f2 = a2, or f1 = a2 and f2 = a1. f1

a1←→
a2

f2 has the same

interpretation as in Kruglyak.

A: Assigned is the set of founder alleles that, unambiguously, has been as-
signed an allelic state for every inheritance vector in the subset.

The three sets A, E and U will, before entering the FastTreeTraversal,
be initialized such that the founder alleles of a genotyped founder are put into
E , if the founder is heterozygous (the founder alleles are ambiguously assigned).
Otherwise, the founder alleles are moved into A, if the founder is homozygous
(unambiguously assigned). The initialization of the sets is not shown in the
algorithm. The founder alleles of ungenotyped founders are put in the set U .

PartitionFounderAlleles(v′′, n,U , E ,A) is called with: The subset of
inheritance vectors v′′, such that the founder alleles inherited by the genotyped
individual n can be determined, and with the three sets U , E ,A, which rep-
resent the current partition of founder alleles. PartitionFounderAlleles
returns the new partitioning based on current partitioning and the information
of the genotyped individual n.

First PartitionFounderAlleles �nds the founder alleles of n, that is:
Fv′′(n, p) and Fv′′(n,m) for any v′′ ∈ v′′, which are represented by f1 and f2

in Algorithm 3.3.3, and the genotype information astates(n) for n represented
by a1 and a2. Now when the founder alleles and the genotype are known, the
algorithm repartitions the founder alleles f1 and f2 based on which of the sets
U , E and A they are currently an element of. There are six cases as seen in
Figure 3-8. Note, that a founder allele can only be a member of one set, e.g.
when f1 is put into the A set, it is removed from the set which it was previously
in (e.g. U).

The algorithm for PartitionFounderAlleles is shown in Algorithm
3.3.3.
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Figure 3-8: The three sets which founder alleles can be in during ex-
ecution of FastTreeTraversal and the six cases of the
PartitionFounderAlleles algorithm.

Algorithm 3.3.3: PartitionFounderAlleles(v′′, n,U , E,A)

f1, f2 ← Fv′′
(n, p) and Fv′′

(n, m) - for any v′′ ∈ v′′ the founder alleles inherited by n
a1, a2 ← astates(n) - the observed allelic states of n

case 1 :




f1, f2 ∈ U ∧ a1 = a2 : f1, f2 ← a1 and A ← f1, f2

or

f1, f2 ∈ U ∧ a1 6= a2 : E ← f1
a1←→
a2

f2

case 2 :
{
f1, f2 ∈ A ∧ ((assigned(f1) = a1 ∧ assigned(f2) = a2) : skip

case 3 :
{
f1 ∈ A ∧ f2 ∈ U ∧ assigned(f1) = a1 : f2 ← a2 and A ← f2

case 4 :

{
f1 ∈ A ∧ f2 ∈ E ∧ assigned(f1) = a1 ∧ a2 ∈ f2

α←→
β

f3 :

f2 ← α, f3 ← β and A ← f2, f3

case 5 :




f1, f2 ∈ E ∧ a1 = a2 : f1, f2 ← a1, f3 ← a3, f4 ← a4, and

A ← f1, f2, f3, f4, where f1
a1←→
a3

f3 and f2
a1←→
a4

f4

or

f1, f2 ∈ E ∧ a1 6= a2 ∧ a1, a2 ∈ f1
α1←→
β1

f3, f2
α2←→
β2

f4 : SPLIT (f1, f2, a1, a2)

or

f1, f2 ∈ E ∧ a1 6= a2 ∧ a1 ∈ f1
α1←→
β1

f3 ∧ a2 ∈ f2
α2←→
β2

f4 :

f1 ← α1, f2 ← α2, f3 ← β1, f4 ← β2 and A ← f1, f2, f3, f4

case 6 :




f1 ∈ E ∧ f2 ∈ U ∧ a1, a2 ∈ f1
α←→
β

f3 : SPLIT (f1, f2, a1, a2)

or

f1 ∈ E ∧ f2 ∈ U ∧ a1 ∈ f1
α←→
β

f3 ∧ a2 /∈ f1
α←→
β

f3 :

f1 ← a1, f2 ← α, f3 ← β and A ← f1, f2, f3

else (U , E,A)← incompatible
return (U , E,A)
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Below each of the six cases of PartitionFounderAlleles are explained
in text:

case 1: When both founder alleles are in U , meaning that they are both
free, and individual n is homozygous there is no ambiguity, and both
founder alleles are assigned. Hence, both founder alleles f1 and f2 are
assigned to the genotype of n and moved to A. If n is heterozygous, on
the other hand, the founder alleles inherited by n, f1 and f2, are moved
to E with the edge: f1

a1←→
a2

f2.

case 2: If both founder alleles are unambiguously assigned (the are both
currently in A) a check is performed to see whether the genotype of n
is compatible with their current assignment. If the genotype of n is not
compatible with the current assignment, it means that no inheritance
vector in the subset of inheritance vectors v′′ can be compatible, and the
traversal of the current branch is terminated (Fv′′

g is set to ∅).

case 3: If one founder allele, f1, is unambiguously assigned (in A) and
the other, f2, is unassigned (in U), then if one of the allelic states, a1,
matches the assignment of f1, then f2 can be unambiguously assigned
to a2. Hence, f2 is put into A with the assignment a2. If the f1 is not
assigned with any of the allelic states of n, we can terminate the traversal
due to the incompatibility.

case 4: If one of the founder alleles f1 is unambiguously assigned (is in
A) and the other, f2, is ambiguously assigned (is in E), we need to check
that: One of the allelic states of n, a1, is the assignment of f1, and that
the other allelic state, a2, observed for n is the same as one of the allelic
states of the edge: f2

a3←→
a4

f3. Hence, that either a2 = a3 or a2 = a4. If

a2 = a3 then f2 is assigned to a2, thus moved to A, and f3 can also be
unambiguously assigned to a4. If a2 = a4 then f2 = a2 and f3 = a3. If
a2 6= a3 ∧ a2 6= a4 the traversal down the current branch is terminated
do to the incompatibility for all the vectors in v′′.

case 5: If both founder alleles, f1 and f2, are ambiguously assigned (they
are both in E), and if n is homozygous (a1 = a2), then both founder
alleles are moved to A, and the founder allele with an edge to f1 and the
founder allele with an edge to f2, can be assigned. If n is heterozygous,
then if both allelic states a1 and a2 are on both edges, we do a split,
where two recursions down the current branch is made, one where f1 is
assigned to a1 and f1 to a2, and the other where f1 is assigned to a2 and
f2 and a1.

case 6: Finally, if one node f1 is ambiguously assigned, hence is in E ,
and another f2 is unassigned (is in U), and the edge with f1 has both
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allelic states a1 and a2 we do a split. If only one of the allelic states is
on the edge, we can assign f1 and f2, as well as the other founder allele
on the edge, denoted by f3 in the pseudocode.

FastTreeTraversal Complexity

The worst case complexity of the algorithm is:

1. When all possible inheritance vectors have compatible founder allele as-
signments, FastTreeTraversal will be called 22·|N | times.

2. For every n ∈ L the two founder alleles of n, f1 and f2, are found. How
fast this operation is depends on implementation, but if founder alleles
are propagated recursively, for each individual we only have to lookup
the founder alleles of the parents, and we assume this can be done in
constant time.

3. For each n ∈ L the memberships of n's two founder alleles are found,
however, since the founder alleles can be stored in an array, with either
their assignment (ambiguous or unambiguous) or no assignment at all
(meaning that they are in U), this can be performed in constant time.

Hence, the worst time complexity of FastTreeTraversal is: O(22·|N |).

Correctness

When FastTreeTraversal is called it adds one new non-founder from the
set of all non-founders in a top-down, breath-�rst fashion de�ned by the enu-
meration of (3-13). For every non-founder added we enter a loop over all
combinations of values for the alleles of the non-founder in the inheritance
vector. As stated previously, this can be viewed as traversing a binary tree of
depth 2 · |N |, where |N | is number of non-founders.

This implies that at any point in the recursion, the inheritance vector is
uniquely determined for the set of added non-founders, N ′. At any point
in the recursion when FastTreeTraversal is called with some subset of
inheritance vectors, v′, where N ′ is the set of non-founders added so far, we
claim that the following relationship holds between N ′ and v′:

N ′ = { n ∈ N | ∀ v,w ∈ v′ . v(n,$) = w(n,$) }, (3-14)

where $ ∈ {p,m}.
If inheritance vectors were speci�ed as bit vectors according to the enumer-

ation of (3-13), the above is the same as stating that all inheritance vectors in
v′ have the same pre�x for the individuals of N ′.
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Furthermore, since individuals are added such that all ancestors of an in-
dividual are added before the individual due to the enumeration of (3-13) we
deduce from (3-14) that:

∀ v,w ∈ v′ . Fv(n,$) = Fw(n,$), (3-15)

where $ ∈ {p,m}.
The algorithm takes action depending on if the individual is genotyped

or not. If the genotype information on the pedigree in question is G =
〈L, astates〉, then based of N ′ we de�ned the amount of genotype information
added at the current branch of recursion as G′ = 〈L′, astates′〉, where L′ =
L ∩ (N ′ ∪ F ). For every element, n, in the domain of astates′; astates′(n) =
astates(n). That is G′ is genotype information only for founders and non-
founder added so far.

A note on notation: We use f1, f2, f3, . . . to denote founder alleles - the same
notation as used in Algorithm 3.3.3 (PartitionFounderAlleles). However,
in the construction of ϕv

G , we let f1, f2, f3, . . . represent the vector of binary
variables for the founder alleles. Likewise, we use a1, a2, a3, . . . to denote the
alleles a genotyped individual, and as the corresponding vector of binary val-
ues in the construction of ϕv

G . This is again to achieve mutual exclusion on
assignments of founder alleles.

Before proving the correctness of FastTreeTraversal we explain the
interpretation of the three sets A, E , and U .

The interpretation of the sets is given as:

interpret(A, E ,U) = interpret(U) ∩ interpret(A) ∩ interpret(E),

where:

interpret(U) =
⋂

f1∈U
{ZM | ZM (f1) ∈ AM},

interpret(A) =
⋂

f1=a1∈A
{ZM | ZM (f1) = a1}, and

interpret(E) =
⋂

f1
a1←→
a2

f2∈E
interpret(f1

a1←→
a2

f2).

interpret(f1
a1←→
a2

f2) is the same as in (3-11) from Kruglyak. That is:

interpret(f1
a1←→
a2

f2) = {ZM | ZM (f1) = a1 and ZM (f2) = a2 }

∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1}.

This way, if there is no genotyped information available, all founder alleles are
placed in U and never moved to a new set, and the set of compatible founder
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allele assignments is then the set of all founder allele assignments. Note that
interpret(U) only states that the founder alleles in U are free.

Theorem 3 (Invariant on FastTreeTraversal) Whenever

FastTreeTraversal is called on (v′,A′, E ′,U ′), where N ′ and G′ are the

non-founders and genotype information added so far at the current branch of

recursion the following invariant holds:

∀ w ∈ v′ . interpret(A′, E ′,U ′) = [[ϕw
G′ ]], (3-16)

before a new individual is added.

Proof: First we show that it is su�cient to show (3-16) for only one
inheritance vector w in v′. The genotype information G′ is only de�ned on
individuals of the set of non-founders added at the current branch of recursion,
N ′, and founders. As claimed, (3-14) states that for all inheritance vectors
v, v′ ∈ v′ then v(n,$) = v′(n,$), with n ∈ L′ and $ ∈ {p,m}. Furthermore,
(3-15) states that for all genotyped individuals n ∈ L′ we have Fv(n) = Fw(n)
which by Theorem 1 on allele assignment formulae in turn implies that:

[[ϕv
G′ ]] = [[ϕv′

G′ ]],

for any two inheritance vectors in v′. Thus, it su�ces to show that (3-16)
holds for just one inheritance vector in v′.

The proof is by induction on the number of individuals added at the current
branch of recursion.
Base case:

Upon the �rst call of FastTreeTraversal (no individuals are added, N ′ =
∅), A′, E ′ and U ′ are initialized such that A′ contains the founder alleles of
homozygously genotyped founders, E ′ contains edges between heterozygously
genotyped founders, and U ′ contains founder alleles of ungenotyped founders.
Furthermore, v′ is the set of all inheritance vectors. It is easily shown that
the interpretation of A′ and E ′ satis�es the invariant since the interpretation
is only reductions due to ambiguously and unambiguously assigned founder
alleles as shown in Section 3.3.1 and therefore interpret(A′, E ′,U ′) = [[ϕw

G′ ]],
for any w ∈ v′.
Induction hypothesis:

We assume interpret(A′, E ′,U ′) = [[ϕv′
G′ ]] to hold for any v′ ∈ v′ in the k-th

recursion.
Induction step:

We now need to show that when the k-th recursion of FastTreeTraversal
calls the k + 1-th recursion, (v′,A′, E ′,U ′) are formatted into (v′′,A′′, E ′′,U ′′)
such that the following holds:

interpret(A′′, E ′′,U ′′) = [[ϕv′′
G′′ ]],
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where G′′ is the genotype information added at the k+1-th branch of recursion
and v′′ is any inheritance vector in v′′.
We prove this in two steps: n is not genotyped (n /∈ L) and n is genotyped
(n ∈ L), where n is the individual added in the k + 1-th recursion. In the
following we assume v′ to be an element of v′ and v′′ an element of v′′.

1. n /∈ L:
if n is not genotyped, then (A′, E ′,U ′) = (A′′, E ′′,U ′′) since no action is
performed by FastTreeTraversal. This further implies that G′ = G′′
and therefore:

interpret(A′, E ′,U ′) = interpret(A′′, E ′′,U ′′) and
[[ϕv′
G′ ]] = [[ϕv′′

G′′ ]],

and from the induction hypothesis it follows that:

interpret(A′′, E ′′,U ′′) = [[ϕv′′
G′′ ]].

2. n ∈ L:
If n is genotyped such that {a1, a2} = astates′′(n) then we know from
Theorem 1 that:

[[ϕv′′
G′′ ]] = [[ϕv′

G′ ]]
∩

(
(fFv′′ (n,p) = a1 ∧ fFv′′(n,m) = a2)

∨ (fFv′′ (n,p) = a2 ∧ fFv′′ (n,m) = a1)
)
.

From Kruglyak we know that [[ϕv′
G′ ]] equals putting all genotype infor-

mation into the edge set E19. Therefore, it su�ces to show interpret(A′′,
E ′′,U ′′) is the same as if all genotype information in G′′ had been put into
E . From the induction hypothesis this indicates that it is su�cient to
show:

interpret(A′′, E ′′,U ′′) = interpret(A′, E ′,U ′) (3-17)

∩ interpret(fFv′′(n,p)
a1←→
a2

fFv′′ (n,m)),

to prove that:
interpret(A′′, E ′′,U ′′) = [[ϕv′′

G′′ ]].

Since FastTreeTraversal moves founder alleles between the three
sets using the PartitionFounderAlleles algorithm, we show that

19Recall that the edge set of Kruglyak and E have the same interpretation.
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the interpretation of the three sets after the founder alleles have been
moved corresponds to a simpli�cation of:

interpret(A′, E ′,U ′) ∩ interpret(fFv′′(n,p)
a1←→
a2

fFv′′ (n,m)),

and thereby proving (3-17). We observe that FastTreeTraversal is
only called if one of the cases in PartitionFounderAlleles is satis�ed
(otherwise the subset of inheritance vectors v′′ is rejected), therefore we
need to prove that all cases in PartitionFounderAlleles generate a
simpli�cation.

We will go through the six cases of PartitionFounderAlleles one at
a time and show that either one performs a simpli�cation. We assume
that we add the genotyped individual n ∈ L, and we denote the founder
alleles inherited by that individual as f1 and f2.

case 1: If both f1 and f2 were previously unassigned, then we either
move the founder alleles into A′′ or E ′′ depending on if the individual
is homozygous or heterozygous, respectively. This corresponds to
performing simpli�cations as described in Section 3.3.1.

case 2: If both f1 and f2 are already assigned with the genotype
of n no action is performed, that is interpret(fFv(n,p)

a1←→
a2

fFv(n,m))

is already expressed in interpret(A′, E ′,U ′) and the simpli�cation
corresponds to not including it.

case 3: If founder allele f2 is unassigned and f1 is already unam-
biguously assigned to a1. Then we perform the following simpli�-
cation of:

{ZM | ZM (f1) = a}
∩ ({ZM | ZM (f1) = a1 and ZM (f2) = a2 }
∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1})

to:
{ZM | ZM (f1) = a1} ∩ {ZM | ZM (f2) = a2}.

Hence, f2 can be unambiguously assigned, and is moved to A.
case 4: If f1 is unambiguously assigned a1 and f2 is ambiguously
assigned with an edge to f3 with allelic states a2, a3, we simplify:

{ZM | ZM (f1) = a1}
∩ ({ZM | ZM (f2) = a2 and ZM (f3) = a3}
∪ {ZM | ZM (f2) = a3 and ZM (f3) = a2})

∩ ({ZM | ZM (f2) = a1 and ZM (f1) = a2}
∪ {ZM | ZM (f2) = a2 and ZM (f1) = a1}),
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to:

{ZM | ZM (f1) = a1}∩ {ZM | ZM (f2) = a2}∩ {ZM | ZM (f3) = a3},

which corresponds to moving all three founder alleles into A′′.
case 5: If n is homozygous (a1 = a2), f1 is connected to f3 with
allelic states a1, a3, and f2 is connected to f4 with allelic states
a1, a4, we perform the following simpli�cation from:

{ZM | ZM (f1) = a1} ∩ {ZM | ZM (f2) = a1}
∩ ({ZM | ZM (f1) = a1 and ZM (f3) = a3}
∪ {ZM | ZM (f1) = a3 and ZM (f3) = a1})

∩ ({ZM | ZM (f2) = a1 and ZM (f4) = a4}
∪ {ZM | ZM (f2) = a4 and ZM (f4) = a1}),

to:

{ZM | ZM (f1) = a1} ∩ {ZM | ZM (f2) = a1}
∩ {ZM | ZM (f3) = a3} ∩ {ZM | ZM (f4) = a4}.

If n is heterozygous (a1 6= a2), f1 is connected to f3, and f2 is
connected to f4, two situations arise: Either both a1 and a2 are
present on the edge between f1 and f3 and the on edge between f2

and f4, or a1 is present on one edge and a2 is present on the other.
In the latter case we can perform the simpli�cation of:

({ZM | ZM (f1) = a1 and ZM (f2) = a2}
∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1})

∩ ({ZM | ZM (f1) = a1 and ZM (f3) = a3}
∪ {ZM | ZM (f1) = a3 and ZM (f3) = a1})

∩ ({ZM | ZM (f2) = a2 and ZM (f4) = a4}
∪ {ZM | ZM (f2) = a4 and ZM (f4) = a2}),

to:

{ZM | ZM (f1) = a1} ∩ {ZM | ZM (f2) = a2}
∩ {ZM | ZM (f3) = a3} ∩ {ZM | ZM (f4) = a4}.

In the former case we cannot determine if f1 is assigned a1 or a2

since we have:

{ZM | ZM (f1) = a1 and ZM (f3) = a2}
∪ {ZM | ZM (f1) = a2 and ZM (f3) = a1},
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and a similar situation between f2 and f4. In this situation Fast-
TreeTraversal performs a split which corresponds to duplicating
the current branch and assuming f1 = a1 in one copy and f1 = a2 in
the other. This is an implementation decision made by Gudbjarts-
son to simplify the calculation of the probability. Since SPLIT is
implementation speci�c we do not go into further details about the
SPLIT operation.

case 6: Again two situations arise if f1 is ambiguously assigned
with an edge to f3 and f2 is unassigned. One case if both a1 and
a2 are present on the edge between f1 and f3, and the other case if
only one of a1 or a2 are present on the edge. If only one is present,
say a1, we perform the following simpli�cation from:

({ZM | ZM (f1) = a1 and ZM (f2) = a2}
∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1})

∩ ({ZM | ZM (f1) = a1 and ZM (f3) = a3}
∪ {ZM | ZM (f1) = a3 and ZM (f3) = a1}),

to:

{ZM | ZM (f1) = a1}∩ {ZM | ZM (f2) = a2}∩ {ZM | ZM (f3) = a3}.

If both are present we perform a spilt as in case 5, considering both
assignments.

Based on these results we can conclude that the interpretation of the three
sets A′, E ′ and U ′ in FastTreeTraversal describes precisely the same set of
founder allele assignments as [[ϕv′

G′ ]], whenever FastTreeTraversal is called
on (v′,A′, E ′,U ′), where N ′ and G′ are the non-founders and genotype infor-
mation added so far at the current branch of recursion. Therefore the invariant
holds. ♦

From Theorem 3 we deduct that when all individuals have been added
(N ′ = N and G′ = G), which from (3-14) implies that v′ contains only one
inheritance vector v then:

interpret(A′, E ′,U ′) = [[ϕv
G ]].

This states that for all inheritance vectors, when FastTreeTraversal com-
putes the probability of the inheritance given the genotype information, then
the interpretation of the three set A′, E ′,U ′ is exactly the set of compatible
founder allele assignment over v and G.

Since FastTreeTraversal performs early termination on branches in
the binary tree, we need to prove that only inheritance vectors which have the
empty set of compatible founder allele assignments are rejected.
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Theorem 4 (Rejection of Incompatible Inheritance Vectors) If Parti-

tionFounderAlleles is called from FastTreeTraversal on (v′, n,A′, E ′,U ′)
and a genotyped individual n is added to N ′ (the set of added individuals at the

current branch of recursion) then none of the cases of PartitionFounder-

Alleles are satis�ed i�:

interpret(A′, E ′,U ′) ∩ interpret(f1
a1←→
a2

f2) = ∅,

where {a1, a2} = astates(n) and f1 and f2 are the founder alleles inherited by

n according any vector in v′.

Proof: Recall that each case in PartitionFounderAlleles corre-
sponds to the founder alleles being in one of the cases in Figure 3-8. We
say the a subset of inheritance vectors is rejected in a case if f1 and f2 are
in the corresponding case in Figure 3-8, but none of the expressions in the
corresponding case of PartitionFounderAlleles are satis�ed. Subsets are
rejected in the following cases:

case 2: If both f1 and f2 are unambiguously assigned it must be so that
the individual in the current iteration has been genotyped with allelic
states similar to the allelic states which f1 and f2 are assigned, or else
the simpli�cation would be:

{ZM | ZM (f1) = a3} ∩ {ZM | ZM (f2) = a4}
∩ ({ZM | ZM (f1) = a1 and ZM (f2) = a2}
∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1})

= ∅,
where {a1, a2} 6= {a3, a4}. This also holds if exactly one of a1 or a2

equals a3 or a4. That is, there would be no compatible founder allele
assignment.

case 3: Similar to case 2, but where only one of the founder alleles is
unambiguously assigned.

case 4: If f1 is unambiguously assigned a3 and f2 is ambiguously as-
signed a4 or a5 together with f3. We have the following:

{ZM | ZM (f1) = a3}
∩ ({ZM | ZM (f2) = a4 and ZM (f3) = a5}
∪ {ZM | ZM (f2) = a5 and ZM (f3) = a4})

∩ ({ZM | ZM (f1) = a1 and ZM (f2) = a2}
∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1})

= ∅,
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if either (a1 6= a3) and (a2 6= a3), or (a1 = a3) and (a2 6= a4) and
(a2 6= a5), or (a2 = a3) and (a1 6= a4) and (a1 6= a5), the set of compat-
ible founder allele assignments equals the empty set, and we can safely
conclude, that the all the vectors in the subset v′ of inheritance vectors
are incompatible.

case 5: If f1 is connected to f3, f2 is connected to f4, and just one of
the edges has neither of the allelic states a1 and a2, then the subset of
inheritance vectors are rejected, since the interpretation simpli�es to the
empty set of compatible founder allele assignments. That is:

({ZM | ZM (f1) = a1 and ZM (f2) = a2}
∪ {ZM | ZM (f1) = a2 and ZM (f2) = a1})

∩ ({ZM | ZM (f1) = a3 and ZM (f3) = a4}
∪ {ZM | ZM (f1) = a4 and ZM (f3) = a3})

∩ ({ZM | ZM (f2) = a5 and ZM (f4) = a6}
∪ {ZM | ZM (f2) = a6 and ZM (f4) = a5})

= ∅,

since a1 6= a3, a4, a5, a6 and a2 6= a3, a4, a5, a6.

case 6: If f1 is connected to f3, f2 is unassigned, and the edge has neither
of the allelic states a1 and a2, then again the interpretation simpli�es to
the empty set of compatible founder allele assignments. This is similar
to case 5.

♦
Combining our knowledge from Theorems 3 and 4 we conclude that whenever
FastTreeTraversal computes the probability of an inheritance vector then
the interpretation of the three sets A′, E ′,U ′ is exactly the set of compatible
founder allele assignments. Furthermore, only inheritance vectors with no
compatible founder allele assignments are terminated in the recursion, thus
FastTreeTraversal �nds all inheritance vector and all their compatible
founder allele assignments. That is FastTreeTraversal is correct, since it
for every inheritance vector �nds the correct probability:

P (v|G),

where v is the set of all inheritance vectors and G is the available genotype
information for the pedigree.
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3.4 Multi Point Analysis

The previous section described the computation of the probability distribution
over inheritance vectors based on the genotype information available at a single
marker. Recall from page 15 that the genetic linkage map contains multiple
markers across each chromosome. Furthermore, Section 2.4 states that the
probability of crossover between two adjacent markers is given by the recom-
bination fraction. For this reason, the probability distribution of inheritance
vectors at one marker is a�ected by the probability distributions at the two
adjacent markers. This means that all markers on a chromosome in�uence the
probability distribution at all other markers on the same chromosome. The
process of inferring information from all other markers is called multi point

probability computation. Hence, the probability distributions over inheritance
vectors for every marker given all available genotype information across the
chromosome are computed.

Obviously, multi point analysis is a more accurate representation of the
underlying biological model than single point analysis. This is due to the fact
that all markers are used. As mentioned in [Gud00] some markers are more
informative that others, that is, more genotype information is present at some
markers or some markers have more possible allelic states.
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v4

vm

•
•
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•
•
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w2

w3

w4

wm

•
•
•

Mi−1 Mi Mi+1

Figure 3-9: Depicting how a single marker is a�ected by the probabil-
ity distribution of inheritance vectors from both adjacent
markers.

By using the probability distribution obtained from the single point proba-
bility computation we can update the individual probabilities at every marker
based on the contribution from neighboring markers. This process is depicted
in Figure 3-9.

In the remaining part of this section we formalize multi point probabil-
ity computation by extending the framework introduced in the single point
probability computation.
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3.4.1 Formal Model

Before we can de�ne multi point analysis, we need to extend our framework
with the notion of recombination fractions and Hamming distance.

De�nition 10 (Recombination fraction) The recombination fractions be-

tween any two adjacent markers on a chromosome is given by the function

θ:

θ : Nm → [0,
1
2
],

where Nm = {1, . . . ,m} is the set of the �rst m natural numbers. m is the

number of markers on the chromosome.

We use θi to denote θ(i). Intuitively θi denotes the probability of an odd
number of crossovers20 occurring between the i-th and i+ 1-th marker.

We introduce the notion of Hamming distance between inheritance vectors
to reason about the number of odd crossovers that have occurred between
two adjacent markers. For any given allele of an individual, the value of the
inheritance vector distinguishes between maternal and paternal inheritance.
If two adjacent markers on the same chromosome are inherited di�erently an
odd number of crossovers have occurred between the them during meiosis.
The Hamming distance describes exactly this di�erence between two vectors
of equal length.

De�nition 11 (Hamming Distance) The Hamming distance between two

inheritance vectors v and w over a pedigree P = 〈F,N,mother, father〉 is
de�ned as:

Ham(v,w) =
∑

n∈N,$∈{p,m}
d$

n ;where

{
1 : v(n,$) 6= w(n,$)
0 : v(n,$) = w(n,$))

3.4.2 Multi Point Probability Computation

The objective of multi point probability computation is to calculate a bet-
ter probabilistic estimate of the inheritance pattern for each markers given
all available genotype information based on the single point probability dis-
tribution. The method we describe is inspired by [LG87] were the problem is
described by the means of a hidden Markov model (HMM)21. This approach
is widely used due to the fact that complexity only grows linearly with num-
ber of markers introduced, but grows exponentially with size of the pedigree.

20See page 9 for more on crossover.
21See Appendix D for more on hidden Markov models.
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We formalize the computation using the more general framework of Bayesian
Networks.

Furthermore, we show that HMMs are too restrictive to represent the prob-
lem, but that an ordinary Bayesian network with structure similar to a HMM
can be used.

Bayesian Networks

In this section we use Bayesian networks as a framework for computing the
multi point probability distribution. This is consistent with the theory used
in [Gud00] and [LG87]. The description of Bayesian theory used here is based
on [Jen01].

De�nition 12 (Bayesian Network) A Bayesian network is a tuple 〈V, E〉
where:

- V: a set of variables each with a set of mutual exclusive states,

- E ⊆ V × V: a set of directed edges between variables, and

- each variable A ∈ V with parents B1, . . . , Bn has a (conditional) proba-

bility table P (A|B1, . . . , Bn) attached.

If (B,A) ∈ E then the edge is directed from B to A and B is said to be
the parent of A. We denote the states of a variable A by A = (a0, . . . , ak).
When modeling a problem using Bayesian networks the directed edges should
represent the causality of the problem domain. That is, there is a edge from
B to A if the state of B e�ects the state of A

The joint probability distribution22 over all variables in a Bayesian network
is calculated using the chain rule of Bayesian networks:

Theorem 5 (Chain Rule) Let BN be a Bayesian network over the variables

V = {A1, . . . An}. Then the joint probability distribution P (V) is given by:

P (V) =
∏

i

P (Ai|pa(Ai)),

where pa(Ai) is the parent set of Ai.

For the proof we refer to [Jen01, page 21].
Hidden Markov models belong to a special kind of Bayesian network,

namely dynamic Bayesian networks23. The structure of a hidden Markov model

22If the universe, V, consists of three variables A, B, and C then the joint probability

P (V) = P (A,B, C), which is a 3-dimensional table of size |A| · |B| · |C|.
23Also referred to as temporal Bayesian networks in the literature. E.g. [Jen01].
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as a dynamic Bayesian network is illustrated in Figure 3-10. Each step, ti, is
referred to as a time slice or time step. For every time slice i, the conditional
probability table P (Oi|Si) is the same and all transitional probabilities be-
tween time slices are the same, that is, P (Si|Si−1) = P (Sj |Sj−1) for all i and
j. This is consistent with the de�nition of [Jen01].

t1 t2 t3

S1 S2 S3

O1 O2 O3

Figure 3-10: The structure of a hidden Markov model as a dynamic
Bayesian network.

In the remaining part of this section we explain how multi point proba-
bility computation shares structure with hidden Markov models. Under some
assumptions the problem can be described as a HMM. These assumptions state
that the possible observable genotype information at each marker is the same,
and between each marker the recombination fraction is the same. This is nec-
essary in order to keep each conditional probability table identical over time
slices (according to the de�nition of HMMs). We follow the construction in-
troduced by Lander and Green in [LG87] and we show why the constructed
Bayesian network is a HMM under these assumptions only.

As introduced by [LG87], the construction of the Bayesian network goes
as follows. The parent variable of time slice i, vi, becomes a variable with
states corresponding to the set of inheritance vectors. The child variable for
the same time slice, Gi, has states corresponding to the possible genotype infor-
mation. In this way we keep the causality that the inheritance vectors change
the probability of observable genotype information. The i-th probability dis-
tribution over inheritance vectors refers to the inheritance distribution for the
i-th marker on the chromosome. The a priori probability table of vi is the
standard Mendelian inheritance distribution stating that, initially, all inheri-
tance vectors have equal probability. The conditional probability table of vj

for j > 1 is given by:

P (vj = v|vj−1 = w) = θd
j−1 · (1− θj−1)n−d,

where n is the length of the inheritance vector and d is the Hamming distance
between v and w, and θj−1 is the recombination fraction between markerMj−1

and Mj . This is because the contribution from adjacent markers is given as
the number of crossovers that have occurred, and this is exactly given as the
Hamming distance between two markers.
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The corresponding structure is depicted in Figure 3-11. Notice that the
structure is similar to that of a HMM of length m, where m is the number of
markers, but since both P (vj |vj−1) and P (Gj |vj) di�er at each time slice this
is not a HMM. The parent node of each time slice is a variable representing

t1 t2

v1 v2

G1 G2

tm

Gm

vm

Figure 3-11: Multi point probability computation represented as a
Bayesian network with similar structure to a hidden
Markov model.

all inheritance vectors, whereas the child node is an instance of genotype in-
formation, that is a state of the genotype variable. This is not consistent with
the de�nition of Bayesian networks, but we introduce it to symbolise that the
genotype information is always observable, that is, we know the state of the
genotype variable. This observation might be that no genotype information is
available. Furthermore, to propagate evidence in the form of genotype infor-
mation we need only P (Gi|vi). In this sense, the state space in each parent
node remains the same, but the observations and probabilities change over
each time slice.

Using this model we are able to compute the probability of all markers
given the available genotype information. Let Gi denote the observed genotype
information at locus i and let Gall = {Gi|1 ≤ i ≤ m} denote the set of all
genotype information. We can then compute P (v1, . . . ,vm|Gall) by applying
Bayes' rule:

P (v1, . . . ,vm|Gall) =
P (v1, . . . ,vm,Gall)

P (Gall)
.

Notice that the denominator is just the normalization factor and we need only
calculate the numerator. By applying the chain rule for Bayesian networks the
numerator is given as:

P (v1, . . . ,vm,Gall) = P (v1)P (G1|v1)P (v2|v1)P (G2|v2)P (v3|v2)
· · ·P (vm|vm−1)P (Gm|vm).

Finding the conditional probability distributions for the individual vi is just a
matter of marginalizing out the other variables.

This approach is ine�cient since P (v1, . . . ,vm,Gall) has 2|v|·m entries,
where |v| is the number of inheritance vectors. By rewriting the numerator we
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get:

P (v1, . . . ,vm,Gall) ∝ P (v1|G1)P (v2|v1)P (v2|G2)P (v3|v2)
· · ·P (vm|vm−1)P (vm|Gm),

since P (v1) is the Mendelian probability distribution and from (3-4) in single
point probability computation we have that P (Gi|vi) ∝ P (vi|Gi). So far we
achieved no reduction in size, but the reduction becomes apparent when we
want to calculate the probability of a single variable given the genotype in-
formation. The reason is that we can use the commutative and distributive
properties of marginalization [Jen01, page 16], which means that to marginal-
ize out a variable we need only consider the probability tables containing the
variable. This enables us to de�ne the left-conditioned probability, PL

i , and the
right-conditioned probability, PR

i , recursively as:

PL
i+1 = PL

i ·
∑
vi

P (vi|Gi)P (vi+1|vi), 1 ≤ i < m and (3-18)

PR
i−1 = PR

i ·
∑
vi

P (vi|Gi)P (vi|vi−1), 1 < i ≤ m, (3-19)

with base cases PL
1 = 1 = PR

m . From this it follows that the probability of the
variable vi conditioned by all genotype information is:

P (vi|Gall) ∝ PL
i · P (vi|Gi) · PR

i . (3-20)
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•
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P (w3|vi) = θdi
1 · (1− θn−di

1 )

di = Ham(vi, w3)

Figure 3-12: One step in the left-conditioned probability calculations.

Intuitively, we �rst calculate all the single point probabilities at each marker
locus. We then transfer the updated probabilities one step at a time across the
chromosome towards the marker for which we want to calculate P (vi|Gall).
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Figure 3-12 illustrates the calculation of the left-conditioned probability
between marker 1 and 2. In the �gure v2 = w3 is updated according to all
states of v1.

The idea behind multi point analysis is that we exploit the fact that few
crossovers are most likely to occur between two markers, since the recombina-
tion fraction between two adjacent markers is always less than 1

2 . For instance,
if we have observed the exact state of v1 as v3, that is P (v1 = v3|G1) = 1,
then the probability of all inheritance vectors at v2 close

24 to v3 get increased
probability, whereas inheritance vectors far25 from v3 get decreased probability.

More precisely, the contribution from any state vi of v1 is given by the
probability of the inheritance vector at marker 1 conditioned on the genotype
information at that locus, P (vi|G1), times the transition probability P (w3|vi).
The transition probability is given by the Hamming distance between the
two inheritance vectors which indicates the number of odd crossovers that
have occurred between two markers on a chromosome. The probability of d
crossovers occurring between two markers with an inheritance vector of length
n is θd

1 · (1− θ1)n−d.
We then sum over the contribution to w3 of every vector vi, which corre-

sponds to marginalizing out v1. The sum in then multiplied with the condi-
tional probability of w3 given G2. This product is proportional to P (w3|G1,G2).

We compute this product for every inheritance vector at marker M2 to
get the full probability distribution, P (v2|G1,G2)26. The updated probability
distribution at marker 2 can then be used to calculate the left-conditioned
probability at marker 3 and so forth. The right-conditioned probability is
calculated in at similar fashion.

Using this procedure we can compute P (vi|Gall) for any vi. These values
can then be used in the scoring functions, i.e. LOD score, to determine linkage
between markers and traits.

3.4.3 Multi point calculation using Fourier Transforms

Kruglyak et. al. shows in [KL98] that the multi point step, hence calculat-
ing the left and right conditioned probability distributions, can be done using
Fourier Transforms. Inheritance vectors encoded as binary vectors have some
nice properties and since the transition probability between to inheritance vec-
tors for adjacent markers only depends on their Hamming distance and the
recombination fraction between the two markers. This has led to the use of
Fast Fourier Transforms for the multi point step in both Genehunter and Alle-
gro, for which the computational complexity is O(|v| log |v|) per convolution,

24Close means that the Hamming distance indicates that few crossovers have occurred.
25Far means that the Hamming distance indicates that many crossovers have occurred.
26Under the assumption that the result is normalized.
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where |v| is the number of inheritance vectors. A convolution has to be done
twice for each marker: Once for calculating the left conditioned probability
and once for the right conditioned probability.

In [Gud00] Gudbjartsson shows how the algorithms for Fast Fourier Trans-
forms can be rewritten for better utilisation of CPU cache and registers with
speeds-up ranging from a factor of 1.9 to 5.3 depending on the data analysed,
[Gud00, page 32-34]. The speed-ups are obtained through a reordering of the
computations so that they take advantage of the cache memory, and through
unrolling loops which reduces the amount of book-keeping.

For more on Fourier Transforms within the �eld of linkage analysis, see
[KL98] and [Gud00].

3.4.4 Founder Reduction

One way of reducing the number of computations for the set of inheritance
vectors for a pedigree is by applying the so called founder reduction, [Gud00,
page 34]. The intuitive idea is that consistently changing the allele pointing to
a founder, from paternal to maternal and vice versa for all children, yields an
new inheritance vector with the same probability as the original vector. This
is because we cannot distinguish between maternal and the paternal alleles of
founders since the phase is unknown.

Notice that it is not a reduction in the number of inheritance vectors, rather
an exploitation of symmetries in the probability distribution.

For the {p,m} describing paternal and maternal inheritance we de�ne in-
version such that:

p = m and m = p.

The founder reduction applies for any founder, but for convenience we just
state the reduction for one male founder. The reduction for all founders is
equivalent. Stated formally:

Theorem 6 (Founder Reduction) Let h ∈ F be a male founder in some

pedigree P = 〈F,N, father,mother〉. Let C denote the set of children of h,
that is C = {n ∈ N | father(n) = h}. Let v and w be two inheritance vectors,

such that for any n ∈ N :

w(n, p) =

{
v(n, p) : n ∈ C
v(n, p) : otherwise;

w(n,m) = v(n,m).

Given some genotype information G = 〈L, astates〉 on the pedigree the following

always holds:

P (v|G) = P (w|G). (3-21)
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Intuitively, the de�nition of v and w states that if a child of h has inherited
h's paternal allele according to v, then that child has inherited h's maternal
allele in w, and vice versa.

Proof: Prior to proving for multi point linkage analysis we prove that it
holds for single point linkage analysis. The de�nition of v and w implies the
following relationship between Fv and Fw:

Fw(n,$) =




(h,m) : Fv(n,$) = (h, p)
(h, p) : Fv(n,$) = (h,m)
Fv(n,$) : otherwise,

where $ ∈ {p,m}. Theorem 1 states that:

ϕv
G

def=
∧
n∈L

(
(fFv(n,p) = a1 ∧ fFv(n,m) = a2) ∨ (fFv(n,p) = a2 ∧ fFv(n,m) = a1)

)
,

where a1, a2 ∈ astates(n). By de�nition ϕw
G is equal to ϕv

G with regard to all
sub-expressions, except that any sub-expression:

(fh,$ = a1 ∧ fn,$′ = a2) ∨ (fh,$ = a2 ∧ fn,$′ = a1),

in ϕv
G looks like:

(fh,$ = a1 ∧ fn,$′ = a2) ∨ (fh,$ = a2 ∧ fn,$′ = a1),

in ϕw
G . This means that any constraints on founder allele (h,$) in ϕv

G is also
a constraint on (h,$) in ϕw

G .
This implies that for any founder allele assignment, ZM , which satis�es ϕv

G
that assigns the allelic state a to (h,$), there exists a similar founder allele
assignment with equal probability, Z ′M , which satis�es ϕw

G that assigns the
allelic state a to (h,$). In other words:

∀ZM ∈ [[ϕv
G ]] ∃Z ′M ∈ [[ϕw

G ]] ∀n ∈ F. Z ′M (n,$) =

{
ZM (n,$) : n = h

ZM (n,$) : otherwise,

for a �xed h. The opposite is also true since we can apply the same argument
using v as w and w as v. Furthermore, P (ZM ) = P (Z ′M ) since they assign
exactly the same set of allelic states to founder alleles, which in turn implies
that: ∑

ZM∈[[ϕv
G]]

P (ZM ) =
∑

Z′
M∈[[ϕw

G ]]

P (Z ′M )

and from (3-5) we deduce:

P (v|G) = P (w|G). (3-22)
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Now we further prove that founder reduction also holds in the multi point
case. To do this we use the fact that founder reduction holds in the single
point case, that is we use that (3-22) holds. We consider two markers M1 and
M2 with computed single point probabilities. We prove that transferring the
probabilities from M1 to M2 preserves the equality between the probabilities
of the two inheritance vectors v2 and w2, where v2 and w2 are inheritance
vectors for marker M2, and v2 and w2 are de�ned at v and w, respectively,
in Theorem 6. Hence, we want to show that two inheritance vectors in the
same equivalence class, due to the founder reduction at marker M2, remain in
the same equivalence class after we have propagated the evidence (genotype
information) observed at marker M1.

Assume that a vector, v1, is some inheritance vector for markerM1, and w1

is de�ned in terms of v1 as described in Theorem 6. Observe that P (v1|G1) =
P (w1|G1), and P (v2|G2) = P (w2|G2) due to (3-22), where G1 and G2 are the
genotype information for marker M1 and M2, respectively. We want to show
that:

P (v2|G1,G2) = P (w2|G1,G2) (3-23)

Let the recombination fraction between M1 and M2 be θ1. Then contribu-
tion in terms of probability from v1 to v2 is given by θdv

1 (1 − θ1)n−dv , where
dv = Ham(v1, v2) is the Hamming distance between the vectors and n is the
length of an inheritance vector for the pedigree. To show that (3-23) holds we
need to show that the contribution of v1 and w1 to the probability of v2, is ex-
actly the same as the contribution of v1 and w1 to w2. To do this we prove that
Ham(v1, v2) = Ham(w1, w2) and that Ham(v1, w2) = Ham(w1, v2), because
this implies that v2 and w2 are updated with exactly the same probabilities
given the observed genotype for M1. We only prove this for Ham(v1, v2) =
Ham(w1, w2) since the opposite is similar.

The value w1 and v1 are identical for all (n,$), except in the case where
$ = p and father(n) = h, in which case the value di�ers. Since the same
applies for v2 and w2 we need only concentrate on Hamming distances between
the inheritance vectors for children of h. For any (n,$) if v2(n,$) 6= v1(n,$)
then, by the de�nition of w2 and w1 it follows that w2(n,$) 6= w1(n,$). The
same argument applies for parts of the inheritance vectors where v2(n,$) =
v1(n,$). In this case, by de�nition w2(n,$) = w1(n,$), hence the Hamming
distance between v1 and v2 is equal to the Hamming distance between w1 and
w2.

The same can be shown for Ham(v1, w2) = Ham(w1, v2) with the same
arguments. For this reason, in the multi point step the founder reduction
holds.

♦
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3.4.5 Founder Couple Reduction

In [Gud00] Gudbjartsson de�nes founder couple reduction as an additional way
of reducing the number of computations performed during single and multi
point linkage analysis. Intuitively, founder reduction states that we cannot
distinguish between the maternal and paternal alleles of founders, that is,
we can switch between their two alleles. Founder couple reduction states,
intuitively, that we cannot distinguish the male and female founder of a founder
couple. A founder couple is two founders who share o�spring in the pedigree.
We state this formally in the following theorem:

Theorem 7 (Founder Couple Reduction) Let h, h′ ∈ F be the male and

female founder, respectively, of a founder couple in some pedigree

P = 〈F,N, father,mother〉. Let C denote the set of children of h and h′, that
is C = {n ∈ N | father(n) = h and mother(n) = h′}. Let v and w be two

inheritance vectors, such that for any n ∈ N :

w(n,$) =



v(n,$) : n ∈ C
v(n,$) : father(n) ∈ C or mother(n) ∈ C
v(n,$) : otherwise.

Given some genotype information G = 〈L, astates〉 on the pedigree where

h, h′ /∈ L and that neither h nor h′ has any children in V not in C, the

following always holds:

P (v|G) = P (w|G). (3-24)

We do not prove this, but refer the keen reader to [Gud00, page 35] for
more information on founder couple reduction.

3.5 Summary

The �rst subject of this chapter was an introduction to linkage analysis. The
purpose of linkage analysis is to locate the position of trait causing genes
and update the genetic linkage map accordingly. The main problems of this
process is the missing genotype information, but even with missing information
it is often possible to consolidate the knowledge and infer information about
location of the gene in question. Another aspect is the complexity of current
methods which limit either the size of the pedigree of the number of markers
in the analysis.

After the introduction we presented a formal framework that allowed us to
reason about the concepts used in linkage analysis. This framework primar-
ily consists of de�nitions and properties of the biological model presented in

65



Chapter 2. Both single point and multi point linkage analysis were described
using the formal framework.

Two algorithms, Kruglyak and FastTreeTravesal, for �nding com-
patible founder allele assignments and probabilities of inheritance vectors were
analysed for correctness and complexity using the formal framework. These
algorithm were proved by de�ning interpretations of the output from the to al-
gorithms in terms of founder allele assignments. These interpretations proved
equals to the de�nition of compatibility introduced in the framework. The
complexity of Kruglyak is O(|N | · 22·|N |) and the complexity of FastTree-
Traversal is O(22·|N |). Both algorithms can be reduced in complexity be
using founder reduction and founder couple reduction.

The formal framework was extended to describe multi point linkage anal-
ysis. We found that multi point linkage analysis cannot, as described in the
literature [LG87], be described as a hidden Markov model. Instead we argued
that a Bayesian network which shares structure with hidden Markov models is
a more accurate description of the problem.
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Chapter 4

Towards an Improved Method

As we have documented, the current methods for linkage analysis are compu-
tationally heavy. The best known algorithm is the algorithm used in Allegro
(See Section 3.3.3)1. The purpose of this chapter is to present a discussion of
strategies for the development of a method, by which linkage analysis can be
performed more e�ciently. The strategies considered are inspired by classi-
cal concepts of computer science such as: Compositionality, abstraction, and
symbolic representation.

A possibility for speeding up the computation is to approximate the prob-
ability distribution over inheritance vectors. Approximation is an important
future work aspect pointed out in [Gud00]. The approximation approach opens
a range of possibilities, but what in the end is needed is still a probability
distribution that is consistent with the underlying biology, so linkage can be
detected. Thus small deviations seem tolerable. However, approximation is
out of scope for this project, because our interest is not in proving statistical
properties, relative to the true probability distribution, of an approximation
method, rather we wish to apply a computer scienti�c approach to linkage
analysis. We believe that it is still possible to develop better methods, which
produce exact results. Therefore we will not pursue approximation as a possi-
ble optimisation any further in this report.

Another interesting aspect is to establish the computational complexity of
linkage analysis. If it turns out to be NP-complete, it makes little sense to
look for polynomial-time solutions. Initially, it seems appealing to establish a
reduction from a satis�ability-based problem to the problem of sorting out the
incompatible inheritance vectors.

The structure of this chapter is as follows. First, we determine the rel-
evant focus for approaching the problem. Then, before presenting possible

1A paper was recently been published that claims several orders of magnitude in improve-

ments of time and memory requirements, relative to Genehunter version 2.0 (Kruglyak).

The algorithm is implemented in Genehunter version 2.1, [MDK01].
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optimisation strategies, a clear de�nition of how a method can be considered
an optimisation relative to other methods, e.g. when an algorithm is correct
and how to compare the complexities, is needed. We then investigate the
theoretical hardness of linkage analysis. Strategies for improvements are then
considered. Finally, we summarise the results of the chapter.

4.1 Level of Focus

Multi point linkage analysis might be improved on several levels. Optimisations
and improvements can be done on everything from the code level to changing
the biological model. Basically, we have divided the task into three main areas
(see Figure 4-1). Our interpretation of the �biological model� is that it is a
model, which is based purely on biological entities and their relations2. The
�representation and algorithms� level focuses on representing the needed data
and providing e�ective algorithms. The �source code� level refers to optimi-
sations that are very low-level and focuses on implementing the details of the
algorithms.

Biological model

Representation and
algorithms

Source code

Figure 4-1: Tasks of establishing tools for linkage analysis.

Optimisations on the source code level could either be done by implement-
ing the existing algorithm emphasising on code optimisations - or by optimis-
ing or distributing an existing implementation. However, neither of the two
approaches seem appealing. Optimising on the source code level is infeasible,
since it can only be expected to yield minor improvements and current compiler
techniques already takes care of the most obvious optimisations. Distributing
the computation does not yield improved algorithms, in terms of the work
performed, but is a possibility for minimising the time used on each data set.

2Note that [JIS93] refers to the �representation and algorithm� level as the �biological

level�. We disagree with this classi�cation, because we do not consider modi�cations of an

algorithm or a data structure, to a di�erent one with equivalent semantics, as tampering

with the biological model. Our interpretation of the biological model is that it is a model,

which is based purely on biological entities and their relations.
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By modifying the biological model, on the other hand, one could hope to
be able to develop a di�erent set of algorithms, which have a lower complexity
as the set of algorithms currently in practice. The biological model is widely
accepted in the biological and statistics community, therefore we do not �nd it
meaningful to �nd solutions on this level3. We aim at improving the multi point
linkage analysis on some intermediate level, while maintaining the biological
model4. This implies that the notions of inheritance vectors, recombination
fractions, single and multi point probability distributions still apply. However,
we still want to develop a data structure and a set of algorithms, by which we
are able to reduce the computational complexity of multi point analysis.

Since we do not intend to change the biological model, a new method
for doing the analysis should of course be correct in the sense that results
obtained using the existing method and results obtained by a new method
should be identical. We are now ready to describe the properties that an
improved method should posses.

4.1.1 Methods Properties

The most fundamental result of new methods for linkage analysis should be
probability distributions over inheritance vectors, given all observed genotype
data, which must be suitable for further statistical analysis. What we mean by
suitable for further statistical analysis, is that it must be possible to extract
the necessary data for applying the scoring functions (see Appendix B), which
again allows the potential detection of linkage.

The probability distributions produced by new methods, should not di�er
from the probabilities obtained by the left and right conditioned probabilities
on page 60 (which again equals the distributions produced by Genehunter and
Allegro). The reason for this is that they are defacto methods for obtain-
ing the probability distributions and adhere to the biological model. What
can be optimised are the time and space complexities that currently exist for
determining these distributions. The best known current method is the one im-
plemented in Allegro (see Section 3.3.3), the worst case complexity of Allegro
is still exponential in the number of non-founders.

The software currently available, including Allegro, all use �at represen-
tations of probability distributions over inheritance vectors (arrays of �oating
point numbers indexed by the decimal values of the inheritance vectors). An
improvement should include the single point probability computation to rem-
edy this representation of probability distributions, otherwise a new method
would have to do the left and right conditioned probability computation step

3We also consider the insight needed for tampering with the biological model out of scope

for this project.
4Allegro uses approximately 75 % of the time in computing the multi point distributions,

[Gud00].
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faster than Fast Fourier Transform (FFT). However, improving the Fast Fourier
Transformation technique is not within the scope of this project. Hence, we
will require that a new method includes an improvement of the single point
probability computation, and produces a more compact representation of the
probability distributions, or else it is not possible to perform faster average
multi point analysis than in exponential time.

To clarify the goals:

De�nition 13 (Method Properties) The properties adhered to by an im-

proved method are the following (let NEWx(y) denote the result of calculating

y with a new method for x):

I. Single point probability computation:

NEWsinglepoint(vi) =
∑

ZM∈Fv
M

P (ZM ).

II. Multi point probability computation:

NEWmultipoint(vi) = PL
i · P (vi|Gi) · PR

i .

III. Extract statistical information: The information needed to compute LOD,

NPL, and other scoring functions must be available.

IV. The complexity of some new cases of the new method should be better

than the average complexity of the best known current method5.

4.2 Hardness of Linkage Analysis

An important aspect of optimisations to computationally hard problems is
reasonings about the complexity class of the problem. If the problem can be
shown to be NP-complete it makes little sense to seek a P-time algorithm
(unless P=NP). In this section we discuss approaches to establishing the com-
plexity class, in which the general task of linkage analysis belongs.

As already mentioned, the term linkage analysis is a broad term covering
several di�erent aspects of locating trait causing genes. We therefore reduce our
focus, in this section, to the task of determining the compatible inheritance
vectors for a pedigree, P , with some genotype information, G, for a single
marker. We denote this problem as comp. The reasoning behind this selection

5An establishment of the currently best known average complexity is out of scope in this

project, because it requires detailed knowledge of the expected data. For instance, Allegro's

running time depends signi�cantly on how many subsets of inheritance vectors that are

compatible. We regard an experimental comparison on realistic data sets as an adequate

indicator for the e�ectiveness of di�erent methods.

70



is that comp is a central task in linkage analysis, whether it is single or multi
point linkage analysis.

NP-complete problems are decision problems. comp di�ers from these in
the sense that it is not a decision problem, but a problem of determining a set
of possible solutions to a given speci�cation. We now de�ne a language, for
which membership testing is decidable, and which intuitively is close to comp:

SET={〈P , G, W 〉 | W is the set of inheritance vectors, where
for each there exists a compatible founder
allele assignment for P given G}.

A key issue of a Turing Machine (TM) that decides SET , TMSET , is the
size of W . In its most simple form W is simply a list of all the compatible
inheritance vectors, which is potentially exponentially large. A more sophis-
ticated W could be a polynomial size encoding of the compatible inheritance
vectors. In the most simple form a polynomial size encoding could be another
pedigree P ′ and some genotype information on this pedigree G′ of which ex-
actly W is the compatible vectors. This encoding needs some sort of mapping
from inheritance vectors in P ′ to inheritance vectors in P . This is just to illus-
trate that there might exist some simple polynomial encoding, but this does
not bring us closer to a solution of comp.

IfW is polynomial size and the output of TMcomp is P-time comparable to
W the complexity of TMSET , cannot be harder than a TM that solves comp,
TMcomp, because we can construct a TM that uses TMcomp to decide SET in
P-time. That is we can construct a polynomial time reduction from SET to
comp (i.e. SET ≤P TMcomp). The speci�cation of TMSET is as follows:

TMSET = �On input 〈P , G, W 〉.
1. Run TMcomp on 〈P , G〉.
2. Compare the result of 1. with W .
2.1 If they are equal accept.
2.2 Otherwise reject.�

Because of this reduction, membership testing of SET is no harder than a
central task of the current algorithms, Krugylak and FastTreeTraversal,
which solves the comp problem. This is because comp is no easier than testing
membership of SET , since we can use a solution to comp to decide SET . A
further implication is that if we can reduce some NP-complete problem to
decide SET , then solving comp is no easier than solving an NP-complete
problem.

A slight modi�cation of SET gives the following language:
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CONS={〈P , G〉 | For some inheritance vector v there exists a
compatible founder allele assignment
over v for P given G},

where P is a pedigree and G is some genotype information. This is the
language investigating whether W 6= ∅ in SET . i.e. whether there exists
an inheritance vector that is compatible with P given G. If some 〈P , G〉 /∈
CONS then the pedigree is not consistent (hence CONS) with the genotype
information. That is, either the genotype information is invalid6 or some parent
information is not correct. In paternity and other genealogy studies this is a
central issue.

We argue that CONS ≤P SET because of the following TM (TMCONS):

TMCONS =�On input 〈P , G〉.
1. Run TMSET on <P , G, ∅>.
1.1 If TMSET accepts, reject.
1.2 If TMSET rejects, accept�.

Membership testing of CONS can, stated in propositional logic, be thought
of as a satis�ability problem. Intuitively, translating the requirements of
CONS membership to propositional logic seems fruitful, since satis�ability
of propositional logic is a well studied area with many results, e.g. satis�a-
bility of Horn clauses, disjunctive normal form (dnf), and conjunctive normal
form with at most two literals (2cnf) is known to be decidable in polynomial
time. If CONS can be translated to propositional logic in any of these forms
we know that CONS is P-time decidable.

It seems possible to model inheritance dependencies of allelic states, dic-
tated by inheritance vectors, in propositional logic as Horn clauses. For this
reason we investigate the possibility of translating membership testing of CONS
to satis�ability of propositional logic. In the following we explain how to build
propositional formulae for which satis�ability corresponds to testing member-
ship of CONS.

Propositional Variables

For each non-founder n ∈ N , we introduce four propositional variables y
(n,p)
m ,

y
(n,m)
m , y

(n,p)
p , and y

(n,m)
p representing the value of the inheritance vector, v.

That is, y
(n,$)
m represents the truth assignment of v(n,$) = m and y

(n,$)
p

represents the truth assignment of v(n,$) = p, where $ ∈ p,m.
From De�nition 8 we know that, given a founder allele assignment (ZM )

and an inheritance vector (v)7, all individuals in the pedigree are, unam-

6This can be due to mutations in marker genes or genotyping errors.
7See de�nition 6.
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biguously, assigned one maternal and one paternal founder allele given by
Fv(n,$). In other words we say that the allelic state of (n,$) is determined
by ZM (Fv(n,$)). For each individual, n ∈ V , we introduce propositional

variables, ξ
(n,$)
a , for each possible allelic state a ∈ AM , where AM is the set

of allelic states for the marker under consideration. Thus ξ
(n,$)
a represents

whether the allelic state of (n,$) is a or not.

Clauses for Testing CONS Membership

As mentioned above, the determination of allelic states in the pedigree is based
on the inheritance vector and the founder allele assignment. We now state these
requirements dictated by De�nition 8:

y(n,m)
m ∧ ξ(n,m)

a → ξ(mother(n),m)
a ,

y(n,m)
p ∧ ξ(n,m)

a → ξ(mother(n),p)
a ,

y(n,p)
m ∧ ξ(n,p)

a → ξ(father(n),m)
a , and

y(n,p)
p ∧ ξ(n,p)

a → ξ(father(n),p)
a .

These implications can be rewritten as Horn clauses, i.e.

y
(n,m)
m ∧ ξ(n,m)

a → ξ
(mother(n),m)
a ⇔ ¬y(n,m)

m ∨ ¬ξ(n,m)
a ∨ ξ(mother(n),m)

a .

The left most part (relative to the biimplication) indicates: If there is inher-
itance from the maternal grandparent and the individual is assigned allelic
state a, then the maternal allele of the mother must also have allelic state a8.
This set of clauses determines the compatible patterns of inheritance. Notice
that we need two propositional variables to reason about the ancestral origin
of a single allele (one entry in the inheritance vector), that is, we cannot use

¬y(n,m)
m instead of y

(n,m)
p since ¬y(n,m)

m ∧ ξ(n,m)
a → ξ

(mother(n),p)
a is not a Horn

clause because of the two positive literals when rewriting the expression.
The above set of clauses needs to be joined with clauses for genotype infor-

mation. A homozygous genotyped individual is easily expressed as two Horn
clauses:

Homozygous with a : ξ(n,p)
a ∧ ξ(n,m)

a .

Unfortunately, representing heterozygous genotyped individuals turns out
to be more di�cult. The reason is that we need to state that each allele should
have exactly one of the allelic states. In other words we need to state(for two
alleles and the paternal assignment):

(ξ(n,p)
a1
∨ ξ(n,p)

a2
) ∧ (¬ξ(n,p)

a1
∨ ¬ξ(n,p)

a2
).

8Conversely for the paternal case.
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This is, however, not a set of Horn clauses (because of the two positive
literals in the �rst clause), and we cannot state it as such. Actually, the
same problem arises with the inheritance vector, since the above implications

permits both y
(n,m)
m and y

(n,m)
p to evaluate to false, which is inconsistent with

the biological model, because a single allele must be inherited from either a
paternal or a maternal source, but not both.

The genotype information, however, can be stated as 2cnf as just shown.
Furthermore, the described problem with inheritance vectors can also be stated
as 2cnf in a similar fashion. In this way we have a combination of clauses both of
which can be tested for satis�ability in polynomial time. This is unfortunately,
to our knowledge, not the case for the combination of the two.

We have found no way of expressing genotype information as Horn clauses
and no way of expressing inheritance patterns as 2cnf. Could genotype infor-
mation be expressed as Horn clauses or inheritance patterns as 2cnf the we
would know that CONS was decidable in polynomial time.

Regarding disjunctive normal form then we can construct a propositional
formula in dnf for the problem. This formula, however, would be exponential in
the size of the pedigree since it would be a disjunctive listing of all possibilities
which corresponds to explicitly expressing every possible pattern of inheritance.

To summarise, we have investigated the possibilities of performing mem-
bership testing of CONS in polynomial time using propositional logic. No
appropriate formulae have been established. This does not imply that a propo-
sitional formula does not exist and further investigation seems reasonable. We
have shown the construction of Turing machines which indicate the relation-
ship between comp, SET , and CONS depicted in Figure 4-2. We know that
reducing some NP-complete problem to either SET of CONS would imply
that comp is no easier to solve than a NP-complete problem. This would be
a strong indication that no polynomial time algorithm exists for comp.

comp

NP-c

P-time

?

P-time

?

CONS

SET

Figure 4-2: The known relationship between several decidability prob-
lems. The dashed lines represent interesting reductions,
that can lead to the conclusion that COMP is at least as
hard as NP-complete problems.

74



4.3 Symbolic Representation

We have in Section 3.3.1 shown that the problem of determining the set of
compatible founder allele assignment, Fv

G , can be described in terms of propo-
sitional logic. Well known heuristics for handling propositional logic are the
xDD structures. The fact that the problem of �nding compatible founder al-
lele assignments can be expressed using a xDD has made us look further into
heuristic-based solutions capable of expressing the probability distribution over
all inheritance vectors for a pedigree.

We have examined two data structures, namely the Multi Terminal Binary
Decision Diagram (MTBDD), [KKNP01] and [KNPS99] and the Probabilistic
Decision Graph (PDG)9, [BM99]. Both of these are discussed in the context
of linkage analysis in Section 4.3.1 and 4.3.2. Some familiarity with the xDD
structures and operations on them is assumed through out the rest of this
section.

4.3.1 Evaluating MTBDDs

A MTBDD is a graph based representation for functions of the type f : B
n 7→

R. This is expressed in the following de�nition:

De�nition 14 (MTBDD) A MTBDD over the boolean variables V ars =
{x1 . . . xn} with a �xed ordering ≺ is a rooted, directed, acyclic graph M =
〈T,NT, var, child0, child1, value〉, where T is the set of terminal nodes, NT is

the set of non terminals, and four functions:

- var : NT → V ars,

- child0 : NT → NT ∪ T ,

- child1 : NT → NT ∪ T , and

- value : T → R.

This seems to �t well with the computations introduced in Section 3.2.2,
where we formulate the need to compute the probability for all compatible
inheritance vectors. With MTBDDs we can express an inheritance vector as
the path from the root node to a terminal node, if value(t ∈ T ) = 0, the
path expresses a incompatible vector. If value(t ∈ T ) 6= 0 the terminal node
expresses the probability for an inheritance vector given the genotype infor-
mation, P (v|G). In [KNPS99] the reduce operation is applied on a MTBDD
reducing it in the same manner as BDDs are reduced. This implies that it

9[BM99] gives the name PDG to avoid another xDD acronym. i.e. a PDG could also be

called a PDD.
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might be possible to collapse some of the nodes. The following example shows
how it is possible to construct a MTBDD representing the probabilities of all
inheritance vectors of a pedigree with genotype information.

Example 15 Given the pedigree of Figure 4-3 with genotyped individuals10

L = {n1, n2}, a marker M = 〈AM , πM 〉, where the allele set is AM =
{a, b, c, d}, and πM (a) = 0.5, πM (b) = 0.2, πM (c) = 0.2 and πM (d) = 0.1.

a/ca/b n1 n2

Figure 4-3: The example pedigree for the illustration of MTBDDs in
the context of linkage analysis.

Figure 4-4 illustrates the inheritance vectors for this pedigree and geno-

type information in a MTBDD. The path from the root to each non-terminal

represent the subset of inheritance vectors. E.g. the path n1p 0−→ n1m 1−→
n2pn represents the subset of inheritance vectors for which v(n1, p) = p and

v(n1,m) = m. A terminal represent the probability of all the vectors with a

path leading to the terminal.

The inheritance vector for which v(n1, p) = p, v(n1,m) = p, v(n2, p) = m
and v(n2,m) = m has the probability P (G|v) = 0.0025. The alert reader would
notice that 16 terminal nodes are present in the MTBDD only describing three

di�erent probabilities, which indicate a presence of some equivalence between

the probabilities of some inheritance patterns. Applying the Reduce operation

on the MTBDD of Figure 4-4 produces the MTBDD of Figure 4-5, reducing

the number of nodes from 31 to 14.

The example shows promising results when the single point case is consid-
ered. However, results have indicated that the number of terminal nodes and
thus, the number probability classes change for the multi point case. We have
investigated this, by evaluating some of the debug information produced by
Allegro. These debug �les reveals information on intermediate results. The
data that we have used is the right conditioned probabilities11 for all markers

10See Section 3.2 for the formal de�nitions used in this example.
11See Section 3.4 for the de�nition of the left and right conditioned probabilities.

76



Figure 4-4: The possible inheritance vectors of the pedigree of Figure
4-3 illustrated in a MTBDD before Reduce is applied.
Each terminal node represent the probability P (G|v). The
full lines represent that the parent node is set to �1� (m),
and the dotted lines that the parent node is set to �0� (p).
Note that P (G|v) is not normalised to get P (v|G), since
the values of the terminal nodes do not sum to 1.

Figure 4-5: The possible inheritance patterns of the example pedigree
in a reduced MTBDD. The full lines represent that the
parent node is set to �1� (m), and the dotted lines that the
parent node is set to �0� (p).
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multiplied with the single point probability for the marker. Furthermore, the
debug data has been post processed in order to create suitable graphs. Analy-
sis of this data indicates, that the number of di�erent probabilities grows over
each maker in the multi point case, this is depicted in Figure 4-6.
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Figure 4-6: A graph showing the number of di�erent probabilities for
each marker in a 12-bit family (an inheritance pattern for
the family can be described by an inheritance vector with
a length of 12 bits).

Figure 4-6 shows the number of markers on the x-axis and the total number
of probabilities at each marker on the y-axis. At marker 43 (right most bar)
there are only a couple of hundred di�erent probabilities and thus the same
number terminal nodes. But at the �nal markers moving from right to left,
the number of di�erent probabilities is close to half the number of vectors
in the state space. This is an unfortunate property that all of the pedigrees
investigated share.

As stated, MTBDDs could be bene�cial for the single point probability
computations, and actually the FastTreeTraversal can be viewed as an
implicit construction of the non-reduced MTBDD for each marker. The prob-
lem arises when calculating the conditional probabilities in the multi point
analysis, as we have found no means of exploiting the compact representation
of the MTBDD. Furthermore, multi point computation is based on the Ham-
ming distance between inheritance vectors, which disables the exploitation of
the equivalence classes, as each vector must be considered separately. Access
time to an inheritance vector in a MTBDD is linear in the length of the vector
opposed to the constant time access in the explicit representation, with vectors
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stored in an array.

4.3.2 Evaluating PDG's

Probabilistic Decision Graphs are generalisations of Probabilistic Decision Trees,
which are de�ned as follows:

De�nition 15 (Probabilistic Decision Tree) [BM99]
A probabilistic decision tree (PDT) of depth n is a tuple D = 〈S, 0, 1, v〉 where
S = B

n, 0 and 1 are respectively the left and right successor partial functions on

S and v : s→ [0, 1], v(ε)12 = 1 and for every non-leaf node s, v(s0)+v(s1) = 1
and P (sx) = P (s) · v(sx), where the nodes s0 and s1 are child nodes of s and

where sx is any child node of s.

PDTs do not solve any problems since they are exponential in the number
of variables used. Therefore [BM99] de�nes the concept of PDGs following:

De�nition 16 (Probabilistic Decision Graph) [BM99]
Let D = 〈S, 0, 1, v〉 be a PDT and let ∼ be a congruence relation on S de�ned

as s ∼ s′ if v(s) = v(s′) and both s0 ∼ s′0 and s1 ∼ s′1. The associated PDG

is G = 〈S/ ∼, 0, 1, v〉.

This shows that the ∼ relation utilises equivalence classes for compact
representation which, just as MTBDDs, seems to enable us to create a symbolic
representation. In [BM99], where PDTs and PDGs are presented, the authors
state that PDGs can succeed in some situations where MTBDDs fail, more
speci�cally that MTBDDs fail when the corresponding vectors and matrices
do not have a lot of identical entries, but that PDGs can be used in case the
domain has certain structural properties. As shown in the previous section it
is exactly the case that we do not have many identical probabilities, but that
we have some structure.

The PDG structure, however, does not seem to be directly applicable to
the problem domain. There remain a lot of unanswered questions, such as:

• In [BM99] there is speci�cation on an algorithm to convert a PDT to a
PDG. We would somehow have to do this on the �y, so that we do not
need the full PDT before reducing it to a PDG.

• The article introduces a way of representing n×n matrices using nlog2n
space, if the matrix satis�es a certain constraint. The probability ma-
trices between markers in multi point linkage analysis satisfy this con-
straint. This structure can be used to perform vector multiplication with

12The empty string ε denotes the entire B
n.
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matrices getting a PDG as result. The article, however, does not state
a complexity of this operation, and a such needs to be established to
evaluate the e�ciency of PDG's.

• An e�cient algorithm for multiplication of two PDGs is needed in the
multipoint step in the left and right step. The authors of [BM99] do not
sketch such an algorithm.

We cannot conclude whether the use of PDGs would yield an improved
method. It depends on whether the above issues can be solved e�ciently.

4.3.3 Future Heuristics

Neither the MTBDD nor the PDG are directly applicable to the problem of
linkage analysis, although our evaluation of the two heuristics shows that fur-
ther investigation into heuristic models could be fruitful. The research has
shown that it is possible to reduce the state space using MTBDDs, but that
this heuristic fail in the multi point analysis. Further investigation into heuris-
tics might consider linkage analysis as a whole or go along tailoring a heuristic
that is usable in both single and multi point analysis.

Furthermore, an investigation on the logic properties of the structure of
a pedigree might reveal methods of decomposition. We now reason about
exploiting this structural information.

4.4 Utilising the Structural Information of Pedigrees

As we have shown, MTBDDs do not seem to yield promising results, and PDGs
will only work in the case where e�cient algorithms for converting a PDT to
a PDG, and multiplication of two PDGs exist. The reason for their inability
to work right of the box could be that they are too general for our problem
domain, and that the probability of an inheritance vector given some genotype
information, P (v|G), cannot directly be related to individual subsets of the
pedigree. That is, the probability of an inheritance pattern de�ned on the
pedigree with the set of N non-founders, v : N × {p,m}, is not always deter-
mined by its values for N ′ ⊂ N independent of N ′′ ⊂ N where |N ′|, |N ′′| > 0
and N ′ ∩N ′′ = ∅, because for some inheritance probability distribution v ∈ v,
n′ and n′′, might inherit the same founder allele, where n′ ∈ N ′ and n′′ ∈ N ′′.

In this section we show how the probability distribution of inheritance pat-
terns, v, for a pedigree can be recursively partitioned into subset v1 ∪ v2 ∪ v3

∪... ∪ vn = v in which all the inheritance patterns in a subset vi share some
inheritance dependencies. We formalize the notion of inheritance dependence

and show how the structure of a pedigree might be exploited to obtain a smaller
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space complexity, than that of the current applications, such as Allegro and
Genehunter.

Dependencies in Pedigrees

The algorithms in Allegro and Genehunter already utilise some of the struc-
tural information of the pedigrees analysed by using the founder reduction13,
furthermore the algorithms in Allegro also use the founder couple reduction14,
however we believe that the structure of the pedigree can be exploited even
further to reduce the complexity of the probability calculations.

De�nition 17 (Inheritance Independence) Given an inheritance pattern

v ∈ v and a pedigree P , where N are the non-founders of P , two disjoint

subsets N ′ and N ′′ of N , are inheritance independent i�:

IN ′
v ∩ IN ′′

v = ∅, and(4-1)
L ∩ { f | (f,$) ∈ IN ′

v and (f,$′) ∈ IN ′′
v $,$′ ∈ {m,p}} = ∅, (4-2)

where IN
v is a set of founder alleles:

IN
v = { f | f = Fv(n,m) or f = Fv(n, p) for some n ∈ N}. (4-3)

Hence, N ′ and N ′′ are independent if none of the individuals in N ′ inherit
any of the founder alleles inherited by the individuals in N ′′ (4-1), and that no

common founder of the two sets are genotyped (4-2).

If two subsets of N are not independent they are said to be inheritance
dependent.

Theorem 8 (Decomposition Based on Inheritance Independence) Let

N ′ and N ′′ be non-empty disjoint subsets of N , where N is the set of non-

founders for some pedigree. Let N ′ ∪N ′′ = N . Let vI be the subset of v where

N ′ and N ′′ are inheritance independent. Then the single point probability of

an inheritance pattern v ∈ vI given some genotype information G is given by:

P (v|G) = P (vN ′ |G) · P (vN ′′ |G), (4-4)

where, vN ′ : N ′×{p,m} → {p,m} and vN ′′ : N ′′×{p,m} → {p,m} is de�ned
as:

∀ n ∈ N ′.vN ′(n,$) = v(n,$)
∀ n ∈ N ′′.vN ′′(n,$) = v(n,$),

where $ ∈ {p,m}.
13See Section 3.4.4 for more on founder reduction.
14See Section 3.4.5 for more on founder couple reduction.
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Proof: Since none of the individuals in N ′ inherit a founder allele that
some individual in N ′′ inherit, and since no common founder is genotyped by
de�nition of inheritance independence, we can see that the Graph produced
by the Kruglyak algorithm (See Section 3.3.2), will contain at least two
connected components. One containing the founder alleles (or nodes) inherited
by the individuals in N ′ and the other containing those of the individuals in
N ′′. As shown in (3-12) on page 36 the following holds:

P (Graph) =
∏

X∈CC

∑
s∈X

P (s),

where CC denotes the set of connected components and P (s) denotes the prob-
ability of the solution to a connected component. Hence, (4-4) must hold. ♦

Female individual

Male individual

Legend:
1 2

3 4 5 6

7 8 9 10 11 12 13

14 15 16

Figure 4-7: An example pedigree ex1 f1 distributed with the Allegro
software package.

Example 16 This example is meant to give the reader an intuitive idea about

under which conditions two sub-pedigrees are inheritance independent. Con-

sider the pedigree in Figure 4-7. It contains two sub-pedigrees, one where indi-

vidual 3 and individual 4 are considered as founders, and one where individual

5 and individual 6 are a considered as founders. These two sub-pedigrees need

only to be considered in a uni�ed whole, when a genotyped individual from

each of the sub-pedigrees inherit the same founder allele. In the pedigree it is

only when v(4,m) = v(5,m) or v(4, p) = v(5, p), that the two sub-pedigrees

need to be considered as a whole. Assume that the non-founders 4 and 5 have

not been genotyped, then even if v(4,m) = v(5,m) it is only in the event that

(v(8,m) = m∨v(9,m) = m)∧(v(11,m) = m∨v(12,m) = m∨v(13,m) = m)15,
15Minimum one child of individual 4 and minimum one child of individual 5 inherit the

maternal allele from the maternal side.
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that they are dependent. Hence, only in the event that a child in both sub-

pedigrees actually receives the allele IBD from individual 4 and individual 5,

respectively. The case where v(4, p) = v(5, p) is symmetrical.

For the inheritance patterns in the set vI where the two sub-pedigrees are

independent in the example pedigree found in Figure 4-7, the single point prob-

ability is the product of the probability of the inheritance patterns for the sub-

pedigree below individual 4 and the probability of the inheritance patterns for

the sub-pedigree below individual 516.

From Theorem 8 it follows that the single point probability distributions
for the inheritance patterns vI ⊂ v, for which two subsets of non-founders are
inheritance independent, can be represented as two probability distributions
instead of one. This reduces the space complexity, since vI can be represented
in O(2b′) space, using a �at representation, for the sub-pedigree with the non-
founders in N ′ plus O(2b′′) space for the non-founders in N ′′, where b′ and b′′

are the number of bits needed to represent the two sub-pedigrees. If the subset
vI of v was represented in one distribution it would require O(2b′+b′′) space
instead of O(2b′ + 2b′′) space.

This could open for a more compact representation for parts of the state
space, where subsets of a pedigree are independent. The principle of decom-
position can also be applied recursively to independent subsets. How well this
works will of course depend on the pedigree structure. We consider the idea of
decomposition based on inheritance dependence a strategy which might lead
to an improved algorithm for linkage analysis. However, this requires:

1. A data structure which can represent the state space symbolically with
respect to the di�erent inheritance dependencies for di�erent subsets of
the state space.

2. A multi point probability computation algorithm to work e�ciently with
such a structure.

4.5 Summary

In this chapter di�erent approaches for improving algorithms for linkage anal-
ysis have been discussed. We have established our level of focus for major
improvements as the �representation and algorithms� level. Furthermore, the
requirements that future algorithms must uphold are stated, based on the for-
malization. We have investigated the more theoretical nature of the linkage
analysis task and we have found no way of describing the satis�ability-based
task of determining the set of compatible inheritance vectors in a single form

16This is only true in the event that neither individual 1 nor 2 have been genotyped.
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that is P-time solvable. Furthermore, we have presented two reductions that
would imply that the task of determining the compatible inheritance vectors is
not easier than solving a NP-complete problem, if some reduction can be estab-
lished to testing membership of two languages in these reductions. Methods for
making a more compact representation of the state space were analysed as well
as a method for exploiting inheritance independence to decompose the pedi-
gree. We found that MTBDDs are inappropriate because of the high number
of equivalence classes in the multi point probability computation. Further-
more, either the PDG structure must be adapted to our problem domain or
a set of e�cient algorithms need to be developed. We formalized inheritance
independence, that might reduce the complexity of both single and multi point
linkage analysis, this also depends on whether an e�cient structure and a set
of e�cient algorithms can be developed. This is also subject for further re-
search. Thus, none of the techniques considered in this chapter seem to be
directly applicable to linkage analysis, but might serve as an inspiration for a
new customised method for linkage analysis.
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Chapter 5

Conclusion

As computer scientists we have moved into a new area, namely the �eld of
bioinformatics. More speci�cally, we have worked with the area of linkage
analysis, which is a recognised way to build genetic linkage maps. By locating
genes responsible for traits, within the human genome, companies such as
deCODE Genetics hope to be able to develop diagnostics products, drugs, or
even cures for diseases. Due to the amount of computation required to extract
the statistical data, on which evidence of linkage is based, only pedigrees of a
moderate size are feasible today for analysis.

The bioinformatics �eld spans a variety of sciences. Originally, genetic
analysis was performed by applying methods of biology and statistics, but as
the technology for extracting genetic information has improved, the amount
of available data has introduced a need for e�ective algorithms. However,
currently, no formal framework in which to reason about the correctness and
complexity of the algorithms of linkage analysis exist.

Today's literature on linkage analysis display quite a diversity in terms of
notation and de�nitions. Since further developments within bioinformatics,
and especially linkage analysis, require people with di�erent backgrounds to
communicate and cooperate, the lack of a formal framework makes it hard for
these people to express themselves precisely. We have build a formal framework
in which it is possible to express and reason about linkage analysis precisely.
The formal model presented here could hopefully be the formal model which
will serve as a common base for the community, as it is true to the widely
adopted biological model.

Within our framework we have been able to prove and express the cor-
rectness of two algorithms for single point probability computation, namely
Kruglyak and FastTreeTraversal - the two algorithms used in the soft-
ware packages Genehunter and Allegro, respectively. We have also identi�ed
that the correct framework in which to describe multi point analysis is Bayesian
theory and not the more specialised HMMs.
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We have reasoned about the complexity class of linkage analysis and found
no single P-time solvable form that can express the task of �nding the compat-
ible inheritance vectors. We have made some initial attempts to investigating
whether the task of �nding the compatible inheritance vectors is NP-complete.
However, more research is needed to determine the complexity class of linkage
analysis and its sub-tasks.

We have considered two common data structures for symbolic represen-
tation to represent probability distributions over inheritance vectors, namely
MTBDDs and PDGs. Both data structures do not seem to work well for our
problem and would require some modi�cations in order to reduce the complex-
ity of linkage analysis. MTBDDs seem applicable in single point analysis but
fail in multi point analysis, due to diversity of the probabilities in the distribu-
tion over inheritance vectors. PDGs seem more promising for representing the
intermediate results, but many unanswered questions needs to be resolved.

Now that we have a formal framework, we are able to reason about new
algorithms. Until now, we have not been able to �nd an existing data struc-
ture which will reduce the complexity of single and multi point analysis in
practice. A natural future work aspect is to try to develop a customised data
structure for linkage analysis, and maybe to base this structure on inheritance
dependencies. Another future research direction is investigating the deeper
theoretical nature of the complexity of linkage analysis. Finally, we mention
approximation as possible future research, since approximations to problems,
known to be computationally hard, in some cases yield usable results.
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Appendix A

Linkage Analysis Tools

This appendix contains descriptions of some the programs available for com-
putation on genetic data and is based on [Ott99] and [oGAS00].

Using computers in linkage analysis is not new. Initially computers were
used to store hand calculated LOD score, however as soon as 1955 LOD scores
were calculated by vacuum tube based computers. Computers has tradition-
ally been exploited as powerful calculators and as storage media, but due to
vast amounts of genetic data, researchers turn to more (computer) scienti�c
approaches like data mining, [Ram01].

In the following the most popular programs for linkage analysis and related
genetic computations are presented in alphabetical ordering.

Allegro

Allegro is a tool for multi point linkage analysis, that is able to perform both
parametric linkage analysis and analysis based on allele sharing models. The
program provides features like estimation of total number of recombinations
among markers, it computes posterior IBD sharing probabilities and is able to
reconstruct haplotypes. Literature and source code of Allegro was kindly made
available to us by deCODE Genetics, and provided insight to the computations
needed for linkage analysis.
Allegro is written in C++ by Daniel F. Gudbjartsson, Kristjan Jonasson, Au-
gustine Kong, Michael L. Frigge, deCODE Genetics, Inc. Iceland.

ASPEX

ASPEX is a package of programs for performing multi point exclusion map-
ping of a�ected sibling pair data for discrete traits. The tool is able to use
allele frequencies to reconstruct missing information, and is tailored for data
sets where parents are missing, but additional typed children may be used to
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reconstruct and phase the parents. ASPEX estimates multi point marker dis-
tance from sib pair data. It can do transmission disequilibrium testing and is
able to verifying the degree of relatedness of individuals within a family.
The package is written in ANSI C by Professor Neil Risch, Stanford.
The source code for ASPEX, and pre-compiled binaries are available at:
ftp://lahmed.stanford.edu/pub/aspex

CRI-MAP

CRI-MAP allows rapid, largely automated construction of genetic linkage maps,
generates LOD tables, and detects data errors. The tool was originally designed
to handle codominant loci scored on pedigrees "without missing individuals",
such as nuclear families, but can now be used on general pedigrees, and some
disease loci.
CRI-MAP is implemented by Professor Phillip Green, Washington University.
Version 2.8 of CRI-MAP is distributed as source code in the language C and
is available at:
http://compgen.rutgers.edu/multimap/crimap/

Genehunter

Genehunter provides a wide range of tools for performing linkage and dise-
quilibrium analyses. The package is able to perform multi point analysis on
moderate size pedigree, computing LOD and NPL scores. Genehunter can
be used to do sib pair analysis. In addition, tools are available to search for
association or disequilibrium in addition to linkage. Genehunter provide cal-
culations involving dozens of markers, even in pedigrees with inbreeding and
marriage loops. Additionally, the multi point inheritance information allows
the reconstruction of maximum-likelihood haplotypes for all individuals in the
pedigree and information content mapping which measures the fraction of the
total inheritance information extracted from the marker data.
Genehunter has a C source code and is developed by Leonid Kruglyak, Mark
Daly, Mary Pat Reeve-Daly, Eric Lander Whitehead Center for Genome Re-
search, MIT.
Version 2 was released 1998 and is available at:
http://www.fhcrc.org/labs/kruglyak/Downloads/

HOMOZ

HOMOZ is a program for rapid multi point mapping of recessively inherited
disease genes in nuclear families including homozygosity mapping. It includes
an e�cient algorithm for computation of multi point LOD scores in small pedi-
grees including those with inbreeding loops and missing genotype information.
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HOMOZ is developed in C by Leonid Kruglyak, Mark Daly and Eric Lander,
Whitehead Center for Genome Research, MIT.
HOMOZ can be downloaded at:
ftp://ftp-genome.wi.mit.edu/distribution/software/homoz/

LINKAGE

The core of the LINKAGE package is a series of programs for maximum likeli-
hood estimation of recombination rates, calculation of LOD score tables, and
analysis of genetic risks. The analysis programs are divided into two groups.
The �rst group can be used for general pedigrees with marker and disease loci.
Programs in the second group are for three-generation families and codominant
marker loci, and are primarily intended for the construction of genetic maps
from data on reference families. LINKAGE is capable of making two-point and
multi point analysis. LINKAGE is a Pascal program of Dr. Mark Lathrop,
Centre National de Genotypage, Evry Cedex, France.
Version 5.5 available at:
ftp://linkage.rockefeller.edu/software/linkage/

LIPED

The LIPED program carries out genetic linkage analysis. It estimates the
recombination fraction, by calculating pedigree likelihoods for various assumed
values of the recombination fraction. The program is able to handle age of onset
data. Only two loci can be handled at a time.
LIPED is written in Fortran IV (1974) by Professor Jurg Ott, Laboratory of
Statistical Genetics, Rockefeller University.
Latest version is from June 1995 and is available at:
ftp://linkage.rockefeller.edu/software/liped

Loki

Loki analyses a quantitative trait observed on large pedigrees using Markov
chains, Monte Carlo, multi point linkage, and segregation analysis. The trait
may be determined by multiple loci.
Loki is implemented in C by Postdoctoral Researcher Dr Simon Heath, Uni-
versity of Washington.
Loki Version 2.3 was released November 2000 and is available at:
ftp://ftp.u.washington.edu/pub/user-supported/pangaea/PANGAEA/Loki

MAP+

The MAP+ program is written to construct high resolution linkage maps.
MAP+ requires pairwise sex speci�c LOD scores, and a trial map containing
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trial locations for all the loci to be included in the analysis.
MAP+ is Fortran based and implemented by Dr. A. Collins, J. Teague and
Professor N.E. Morton, University of Southampton.
MAP+ was released in 1996 and is available at:
http://cedar.genetics.soton.ac.uk/pub/PROGRAMS/map+

MAPMAKER

The MAPMAKER software package is consisting of two parts MAPMAKER/EXP
and MAPMAKER/QTL. MAPMAKER/EXP performs full multi point link-
age analysis and estimates recombination fractions for dominant, recessive, and
codominant markers. MAPMAKER/QTL is a companion program to MAP-
MAKER/EXP which allows mapping of genes controlling polygenetic quan-
titative traits in F2 inter-crosses and BC1 back-crosses relative to a genetic
linkage map.
MAPMAKER is programmed in C by Eric Lander, Ph. D., Director of White-
head Center for Genome Research, MIT.
Version 3.0 of the tool from 1992 is available at:
ftp://ftp-genome.wi.mit.edu/distribution/software/mapmaker3

MENDEL

MENDEL does genetic analysis of human pedigree data under models involving
a small number of loci. MENDEL is useful for segregation analysis, linkage
calculations, genetic counseling, allele frequency estimation, and related kinds
of problems. MENDEL is able to handle looping pedigrees e�ciently, which
tends to be problematic in other tools.
MENDEL is implemented in Fortran 77 by Professor Kenneth Lange, UCLA.
For registration and download visit:
http://www.biomath.medsch.ucla.edu/faculty/klange/software.html

Pedigree Analysis Package(PAP)

PAP may be used for segregation analysis, variance components analysis, link-
age analysis, measured genotype analysis, or genetic model �tting. The genetic
model may contain any number of loci and alleles. Phenotypes may be simu-
lated assuming any model available in PAP. Linkage analysis on four loci.
PAP comprises a set of Fortran 77 programs produced by Associate Professor
Sandra J. Hasstedt, Department of Human Genetics, University of Utah.
Revision 4.0 from March 1994 is available at:
ftp://ftp.genetics.utah.edu/pub/software/pap
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VITESSE

VITESSE is a software package that computes likelihoods. VITESSE uses
the algorithms of set-recoding and fuzzy inheritance to reduce the number of
genotypes needed for exact computation of the likelihood, which accelerates the
calculation. It also represents multi locus genotypes locus-by-locus to reduce
the memory requirements.
VITESSE is developed in ANSI C by Assistant Professors Je�rey O'Connell
and Associate Professor Dan E. Weeks at the University of Pittsburgh.
Version 1.0 published in 1995 is available at:
ftp://watson.hgen.pitt.edu/pub/vitesse/
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Appendix B

LOD and NPL score

A scoring function is a measure of the likelihood of linkage between a marker
and a trait, for which the locus of the marker is known, but for which the locus
or loci of the trait causing gene(s) are unknown. Note that when one is looking
for the genetic cause of a trait a number of pedigrees are used.

It is not within the scope of this project to go into detail with the scoring
functions, as they rely the statistical part of linkage analysis which is not our
focus. We will, however, brie�y describe two commonly used scoring functions:
The Log Likelihood of Odds (LOD) score, and the Non-Parametric Linkage

(NPL) score.

B.0.1 LOD score

The LOD score is a measure of how plausible an observed set of data is given
a model, [Ott99, page 38]. It is the logarithm of the odds of the observed
data if linkage is assumed (recombination fraction θ < 1

2) compared to the
null-hypothesis (no linkage) where the recombination fraction θ is equal to 1

2 .
Formally the LOD score is, [Ott99, page 39]:

LOD(θ) = log10

(L(θ)
L(1

2)

)
, (B-1)

where L is the likelihood of a hypothesis H given some observation data F ,
de�ned as: L(H) = P (F |H). The odds in favor one hypothesis H1 versus H2

are expressed by the likelihood ratio:

R =
L(H1)
L(H2)

.

Maximum likelihood estimation is used to �nd a θ which maximises the
LOD-score for all markers (See [Ott99, Chapter 3.3] for more on the statistics
of LOD scores and maximum likelihood estimation). The probability of each
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inheritance vector v ∈ v is used in the expression for the score (See [Gud00]
for a more detailed presentation of the LOD score computation).

B.0.2 NPL score

The NPL score does not depend on a hypothesis (or a parameter) as the LOD
score does. It depends on a non-parametric scoring function S such as Spair

or Sall de�ned by Kruglyak et. al in [KDRDL96]. Zi is the standardized from
Si (the score for family i):

Zi =
Si − µi

σi
,

where µi is the mean of Si, and σi is the standard deviation.
A formal de�nition of NPL is given by Gudbjartsson in [Gud00]:

NPL =
∑

i γiZ̄i√∑
i γ

2
i

,

where
∑

i is the sum over all families, γi is a family speci�c weight and Z̄i

is the expectation of Zi conditioned on the observed genotype data. Hence:

Z̄i =
∑
vi

P (vi|Gi)Zi(vi),

where vi is the set of inheritance vectors for family i at a marker and Gi is the
genotype information for the family at the marker.

The reader should note that the every element of the probability distribu-
tion P (v|G) is used in both scoring functions.
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Appendix C

Basic Probability Theory

Here we present an introduction to the probability theory which should su�ce
for understanding the probability theory used in this report. We start with
some basic axioms and develop further theory. This theory is based on [SF00]
and [Jen01].

The most basic concepts of probability theory is that of random variables
and events. A random variable has, in our context, a �nite set of states, which
is the outcome of a particular experiment. In most cases we only write P (a)
as the probability of a variable A being in state a, instead of P (A = a), when
variable A is clear from the context. Furthermore, we abbreviate that variable
A is in state a as the event a.

De�nition 18 (Basic Probability Axioms) We denote the probability of a

given event a (a state) as P (a), which is a value in the interval [0, 1]. Thus

P : a→ [0, 1]. The following basic axioms are preserved by these probabilities:

- If P (a) = 1 for an event a, then event a is certain.

- If P (a) = 0 for an event a, then event a is impossible.

- If events a and b are mutually exclusive then P (a ∨ b) = P (a) + P (b).

Now consider the case where the probability of an event a is conditioned
by some other event b. For instance whether or not the roads are slippery (a)
is conditioned by whether or not it is freezing (b). We term the conditioned

probability of event a by b equals x as P (a|b) = x. If event a is independent of
b then P (a) = P (a|b).

Generally if the event a, conditioned by n other events, has the probability
x, we write P (a|e1, e2...en) = x, where ei denotes the i'th event under which
a is conditioned. Note that P (a|b, c) = P (a|c, b).

The joint probability P (a, b), which states the probability of both a and b
occurring, is given by the so-called fundamental rule (denoted so by [Jen01])
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for probability calculus:

P (a, b) = P (a|b) · P (b),

although this is known as the fundamental rule, it should be considered an
axiom. We will not justify it here, see [Jen01] for a justi�cation.

If two events are independent but not mutually exclusive, the joint proba-
bility is given by:

P (a, b) = P (a) · P (b),

Bayes' theorem relates two conditional events. The basis is that, from
the fundamental rule, we know that: P (a, b) = P (a|b)P (b) and P (a, b) =
P (b|a)P (a), this leads to the well known Bayes' rule:

P (b|a) =
P (a|b) · P (b)

P (a)
.

We now present a small example, illustrating the probability concepts in-
troduced in this appendix.

Example 17 Consider a bowl experiment. We will draw objects that vary in

shape (round or cubic) and color (red or blue) from a bowl, the amount of each

is depicted in Table C-1.

red blue

round 2 5

cubic 4 7

Table C-1: The shape and color of the 18 di�erent objects in the bowl.

The basic probability of drawing a round object and drawing a red object is

given as:

P (round) = 7
18 , and

P (red) = 6
18 .

The probability of the object turning out to be red, after we already know it

is a round object, is given by the conditional probability:

P (red|round) = 2
7 .

If we want to compute the general probability of drawing a red and round

object, we can use the fundamental rule:
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P (red, round) = P (red|round) · P (round) = 2
7 ·

7
18 = 1

9 .

As an example of applying Bayes' rule, lets assume that we cannot directly

determine the probability of an object turning out to be round, given that the

object is red: P (round|red). Then if we know the probabilities of P (red|round),
P (round) and P (red) Bayes' rule can be applied:

P (round|red) = P (red|round)·P (round)
P (red) =

2
7
· 7
18
6
18

= 1
3 .

Whether or not the fundamental rule or Bayes' rule is applied, it is possible

to determine the probability of every element in the probability distribution

P (color, shape), given in Table C-2.

color = red color = blue

shape = round 1
9

5
18

shape = cubic 2
9

7
18

Table C-2: The probability distribution P (color, shape).

From the P (color, shape) distribution it is possible to calculate the P (color)
distribution by marginalizing shape out, by the following expression:

P (color) =
∑

shape

P (color, shape), (C-1)

which denotes that the states of shape is marginalized out of P (color, shape).
This results in the probability distribution P (color) = (1

3 ,
2
3 ), which is notation

for P (color = red) = 1
3 and P (color = blue) = 2

3 .

We end this section on probability theory, by giving the general method
for marginalizing a variable out of a joint probability distribution.

De�nition 19 (Marginalization) We marginalize a variable B, with states

b1, ..., bm, out of a joint distribution P (A,B), where A have the states a1, ..., an

by:

P (A) =
m∑

j=1

P (ai, bj), (C-2)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
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Appendix D

Markov Models

In this appendix we describe a model for probabilistic transition systems. The
systems have the property that all nodes have outgoing edges to all other nodes
and the probability of these edges sum to one. The model is called Discrete

Time Markov Chains (DTMC).

De�nition 20 (Discrete Time Markov Chains) A discrete time Markov

chain over some �nite alphabet Σ is a 4-tuple 〈S, p0,T , L〉 with:

- S: �nite set of states,

- p0 : S → [0, 1]: probability distribution over initial states,

- T : S × S → [0, 1]: probability function assigning probabilities to edges,

and

- L : S → Σ: function assigning an element of Σ to each state, such that:

� the sum of the probabilities of all outgoing edges from a node s ∈ S
is one, that is:

∀s ∈ S .
∑
s′∈S

T (s, s′) = 1, and

� the sum of all start probabilities is one:∑
s∈S

p0(s) = 1.

It should be noted that sometimes in the literature (e.g. [HJ90]) DTMCs
are de�ned as having one distinct start state as opposed to a probability distri-
bution over all states. However, both de�nitions are equally expressive. Using
a single start state would be equivalent to some state having probability 1 in
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p0. Vice versa, using a single start state to describe a probability distribu-
tion can be accomplished by introducing a new state as the start state with
transitions to all other state having the probabilities described in p0.

We introduce a series of examples to give the reader a more intuitive un-
derstanding of the introduced models. We expand the same example as needed
to explain the di�erent models.

Example 18 Let C be a biased coin with the probability p for ending up heads

and 1 − p for ending up tails. This can be described as the DTMC over Σ =
{h, t} with two states H and T where L(H) = h and L(T ) = t. The probability
for either state being the initial state is p0(H) = p and p0(T ) = 1−p. Figure D-

1 is a graphical representation of the DTMC.

H T
p

1−

1−p

p

p

Figure D-1: A biased coin represented as a discrete time Markov chain.

The reason for the name Markov is, that the transition system preserves
the Markov property which states that the future is independent of the past

given the present. Formally, this can be stated as:

P (Si+1|S1, . . . , Si) = P (Si+1|Si).

Using Example 18 the Markov property states given that we are in state H
the probability of �ipping heads does not depend on whether we �ipped heads
of tails previously. Actually, in this simple model the sequence never matters,
but all DTMCs preserve the Markov property.

Hidden Markov Models

This section describes hidden Markov models (HMMs) which is a generalisation
of DTMCs. When in a state, s, in a DTMC, we say that the symbol L(s) ∈
Σ is observable in that state. In the more general hidden Markov model,
the observable symbol is a probability distribution over the symbols in the
alphabet. If a symbol a is observable in a state s with probability p we say
that s emits a with probability p.

De�nition 21 (Hidden Markov Model) A hidden Markov model over some

�nite alphabet Σ is a 4-tuple 〈S, p0,T , PL〉 with:
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- S: �nite set of states,

- p0 : S → [0, 1]: probability distribution over initial states,

- T : S × S → [0, 1]: probability function assigning probabilities to edges,

and

- PL : S × Σ → [0, 1]: function stating probability of each state emitting

each symbol in Σ, such that:

� the sum of probabilities of all outgoing edges from a state s ∈ S is

one, that is

∀s ∈ S .
∑
s′∈S

T (s, s′) = 1, and

� the sum of all start probabilities is one,∑
s∈S

p0(s) = 1, and

� the probabilities of emitting the symbols of Σ in a state s ∈ S sum

to one, that is:

∀s ∈ S .
∑
a∈Σ

PL(s, a) = 1.

Example 19 Continuing the with the biased coin of Example 18 we can de-

scribe the situation as a single state HMM. This state C emits either h or t with
probability p and 1− p, respectively. This model is illustrated in Figure D-2.

1

h:

t: 1−p

p C

Figure D-2: The coin of Example 18 as a hidden Markov model.

We expand the previous example to two biased coins to introduce the frame-
work for explaining multi point linkage analysis. The �rst coin C1 has proba-
bility p and 1 − p for emitting heads and tails, respectively. The second coin
C2 has q and 1− q as probability for the same emissions. The probability for
starting in state C1 is r, thus 1− r for C2. The transition from C1 to C2 has
probability m and n is the probability of the transition from C2 to C1. The
information is gathered in Figure D-3.
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1−m

n

1−nh:

t: 1− t: 1−

h:

p

p q

q

p0(C1)=

p0(C2)= 1−

mC1 C2 r

r

Figure D-3: A hidden Markov model describing two biased coins.

Example 20 An example of a simple use of the model is given here. We could

state the question: What is the chance of �ipping heads followed by tails. To

come up with an answer we need to examine all possibilities for the �rst out-

come being heads and the second tails and then summing their probabilities.

One instance is starting in C1 �ipping heads and then using C2 to �ip tails.

The probability of this is r · p ·m · (1 − q). The four paths leading to this and

their probabilities are listed below.

First coin Second coin Probability

C1 C1 r · p · (1−m) · (1− p)
C1 C2 r · p ·m · (1− q)
C2 C1 (1 − r) · q · n · (1− p)
C2 C2 (1 − r) · q · (1− n) · (1− q)

Another use could be to calculate the most probable outcome of two �ips which

of course depends on the bias. The model can also be used to calculate the

probability of eventually �ipping heads.

For more information on examining properties of Markov chains we refer to [HJ90].
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Glossary

Allele: Term used for the (maybe un-
known) gene that is inherited
from the father and the mother
respectively. A single allele for
each gene locus (allele) is inher-
ited separately from each parent.
An allele can be in di�erent al-
lelic states. Page 7.

Allelic state: A speci�c gene can be
in di�erent allelic states. Page
7.

Base pair: A base pair is con-
structed from two nitrogenous
bases of the four A, T, C and
G. A always pair with T and C
always pair with G. Page 6.

Chromatide: A double helix DNA
strand, humans have 92 chro-
matides in all. Page 5.

Chromosome: Humans have 23
pairs of chromosomes. Each
chromosome consists of two
chromatides. Page 5.

Codominant: When both alleles at
a locus is phenotypically ex-
pressed. Page 7.

Codon: A codon is constituted of 3
base pairs and can either specify

an amino acid or a stop code in
the coding of genes. Page 6.

Crossover: The event where genetic
material exchange between two
chromosomes that pair during
meiosis. Page 9.

DNA Strand: See chromatide.
Page 5.

DNA: Abbreviation for Deoxyri-
bonucleic acid. The molecular
structure that encodes genetic
information. Page 6.

Dominant: An Allele is dominant
over another allele if the other
allele is recessive (at a given lo-
cus). If the allelic state of the
allele is not expressed the allele
is recessive. Page 7.

Expressed: An allele is expressed if
it is expressed in the phenotype.
Page 7.

Gene: The sequence of codons that
encode a single protein. Page 6.

Genotype: Refers to the allelic
states of the two alleles at some
locus. These states constitute a
persons genotype at that locus.
Page 7.
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Heterozygous: An individual is het-
erozygous if the maternal and
paternal gene at a speci�c locus
are di�erent. Page 7.

Homozygous: An individual is ho-
mozygous if the maternal and
paternal gene at a speci�c locus
are the same. Page 7.

IBD: Identical By Descent. Two in-
dividuals who have inherited a
common allele. Page 18.

IBS: Identical By State. Two in-
dividuals with the same allelic
state for some marker. The alle-
les need not be identical by de-
scent. Page 18.

Interference: Occurrence of one
crossover highly reduces the like-
lihood of another in its vicinity.
Page 11.

LOD score: Likelihood of Odds
(LOD) is a scoring function
which determines the likelihood
of two loci being linked given
a recombination fraction versus
the likelihood that they are un-
linked. Page 16.

Linked: Denotes that the recombina-
tion is less than 1

2 between two
loci. Page 11.

Locus: The position on the chromo-
some where a certain gene is lo-
cated. Page 6.

Map function: The function that
speci�es the relationship be-
tween physical distance and re-
combination fraction. Page 11.

Marker: An identi�able physical lo-
cation on a chromosome whose
inheritance can be observed.
Page 6.

Maternal: Refers to the allele re-
ceived from the mother at a spe-
ci�c locus. Page 7.

Meiosis: A cell division process
where haploid cells are divided
to form diploid germ cells. In
our context some of the cells are
later combined with other germ
cells to form the genome of a
new individual. Page 8.

Mendelian inheritance: In our
context, the two laws that in�u-
ence the pattern of inheritance
for genes. Page 11.

Morgan: Denotes a distance where
one recombination can be ex-
pected on average. Page 11.

Paternal: Refers to the allele re-
ceived from the father at a spe-
ci�c locus. Page 7.

Phase: Refers to the relationship be-
tween two alleles at di�erent
loci. If they are in phase they
are residing on the same chro-
mosome. Page 10.

Phenotype: The observable charac-
teristic of an individual. Page 7.

Protein: Important molecules in
the human body that in�uence
many traits. Page 6.

Recessive: When an allele is only
phenotypically expressed in the
homozygous state. Page 7.
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Recombination fraction: The
probability that an odd number
of recombinations occur between
two loci. Page 10.

Recombination: The process by
which o�spring receives a com-
bination of linked genes di�er-
ent from that of either parent.
This occurs by a crossover be-
tween parental chromatides dur-
ing meiosis. Page 9.

Scoring Function: A measure of re-
semblance between inheritance

patterns of a trait and a marker.
Page 16.

Strand: See chromatide. Page 5.

Trait: An observable attribute of an
individual. Page 6.

Triplet: See codon. Page 6.

Unlinked: Denotes that the recom-
bination is 1

2 between two loci.
Page 11.

bp: See Base pair. Page 6.
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