
B
R

IC
S

R
S

-02-4
D

anvy
&

N
ielsen:

S
yntactic

T
heories

in
P

ractice

BRICS
Basic Research in Computer Science

Syntactic Theories in Practice

Olivier Danvy
Lasse R. Nielsen

BRICS Report Series RS-02-4

ISSN 0909-0878 January 2002

Copyright c© 2002, Olivier Danvy & Lasse R. Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/4/

Syntactic Theories in Practice ∗

Olivier Danvy and Lasse R. Nielsen

BRICS †

Department of Computer Science
University of Aarhus ‡

January 31, 2002

Abstract

The evaluation function of a syntactic theory is canonically defined
as the transitive closure of (1) decomposing a program into an evalua-
tion context and a redex, (2) contracting this redex, and (3) plugging the
contractum in the context. Directly implementing this evaluation func-
tion therefore yields an interpreter with a worst-case overhead, for each
step, that is linear in the size of the input program. We present suffi-
cient conditions over a syntactic theory to circumvent this overhead, by
replacing the composition of (3) plugging and (1) decomposing by a sin-
gle “refocusing” function mapping a contractum and a context into a new
context and a new redex, if there are any. We also show how to construct
such a refocusing function, we prove its correctness, and we analyze its
complexity.

We illustrate refocusing with two examples: a programming-language
interpreter and a transformation into continuation-passing style. As a
byproduct, the time complexity of this program transformation is me-
chanically changed from quadratic in the worst case to linear.

Keywords: syntactic theories, interpreters, refocusing.

∗A preliminary version of this work was presented at RULE 2001 [4, 10].
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
E-mail: {danvy,lrn}@brics.dk

1

Contents

1 Introduction 3
1.1 Related work . 3
1.2 Interpreters for syntactic theories 3
1.3 A canonical example: the call-by-value λ-calculus 3
1.4 This work . 4

2 The call-by-value λ-calculus 5
2.1 An interpreter . 5

2.1.1 The original specification 5
2.1.2 The refocused specification 6

2.2 A CPS transformer . 6
2.2.1 The original specification 6
2.2.2 The refocused specification 7

2.3 Refocusing efficiently . 8
2.3.1 The interpreter . 9
2.3.2 The CPS transformer . 9

2.4 Summary . 9

3 Refocusing in a syntactic theory 10
3.1 The language . 10
3.2 Syntactic theories . 10

3.2.1 Values . 10
3.2.2 Evaluation contexts . 10
3.2.3 Decompositions and potential redexes 11
3.2.4 Unique decomposition . 11
3.2.5 Reduction rules . 12

3.3 Requirements . 12
3.3.1 No redundant constructs 12
3.3.2 Distinct value constructors and potential-redex constructors 13
3.3.3 Left-to-right evaluation of sub-terms 13

3.4 Consequences of the requirements 13
3.5 Constructing a refocus function 15
3.6 Correctness . 17
3.7 Complexity . 19
3.8 Summary . 19

4 Conclusion and issues 20

A Arithmetic expressions with precedence 20
A.1 A syntactic theory . 20
A.2 Evaluation contexts with right-composition 22
A.3 Implementation . 23
A.4 Refocusing . 27
A.5 Summary . 33

2

1 Introduction

A syntactic theory provides a uniform, concise, and elegant framework for
specifying the semantics of a programming language and reasoning about pro-
grams [5, 6, 7]. We consider the issue of implementing the evaluation function
of a syntactic theory in the form of an interpreter. Our emphasis, however, is
not on automating this process, as in Xiao and Ariola’s SL project [17, 18].1

Instead, we identify that the direct implementation of an evaluation function
entails an overhead and we show how to circumvent it.

1.1 Related work

Formal semantics has always offered a tempting format for implementing spec-
ifications or even for designing programming languages—witness denotational
semantics and functional programming [13], Moggi’s computational monads and
monad-based functional programming [15], operational semantics and logic pro-
gramming [9], etc. Formal semantics can also provide cost models for compu-
tations [8]. The present article describes how to bypass the cost of consecutive
plug-and-decompose operations when implementing an interpreter for a syntac-
tic theory, an issue that is usually dealt with on a case-by-case basis to construct
abstract machines [6, Chapter 7].

1.2 Interpreters for syntactic theories

A syntactic theory is a small-step operational semantics where evaluation is
defined as the transitive closure of single reductions, each performed by (1)
decomposing a program into a context and a potential redex, (2) contracting
the redex, if possible,2 and (3) plugging the contractum in the context. Most
syntactic theories are developed for deterministic programming languages and
satisfy a unique-decomposition property.

The interpreter for a syntactic theory implements its evaluation function.
It naturally consists of a decompose-contract-plug loop. Decomposition is usu-
ally implemented with a depth-first search in the abstract syntax tree. The
decompose step therefore introduces a significant overhead, proportional to the
program size. Likewise, plugging takes time linear in the size of the context and
it always takes at most as long as the following decomposition, if there is one.

1.3 A canonical example: the call-by-value λ-calculus

Here is a syntactic theory of the call-by-value λ-calculus:

e ::= x | λx.e | e e e ∈ Λ
v ::= x | λx.e v ∈ Value ⊆ Λ

x ∈ Var

1http://www.cs.uoregon.edu/~ariola/SL/
2Some potential redexes are not actual ones—they are stuck terms [11].

3

E ::= [] | E[[] e] | E[v []] E ∈ EvCont
r ::= v v r ∈ PotRedex ⊆ Λ

Among potential redexes, only β-redexes are actual redexes. Therefore, the only
reduction rule is the following one:

E[(λx.e) v] → E[e[v/x]]

Plugging the hole of an evaluation context with an expression is defined by
induction on the evaluation context, and thus it operates in time proportional
to the depth of the context:

([])[e] = e
(E[[] e′])[e] = E[e e′]
(E[v []])[e] = E[v e]

Likewise, decomposition operates in time proportional, in the worst case, to the
size of the term to decompose.

Let us illustrate this overhead with Church numerals: the Church numeral
for the number n is λs.λz. s(s(s(. . . (s

︸ ︷︷ ︸
n

z) . . .))) and is noted dne.

Example 1 We consider the term dne (λx.x)v where v is any value. This term
reduces in two steps to (λx.x)((λx.x)((λx.x)(. . . ((λx.x)

︸ ︷︷ ︸
n

v) . . .))). From then on,

each decomposition into a context and a redex (where the redex is always (λx.x)v)
takes time proportional to the number of remaining applications. The total time
taken by decomposition during evaluation is thus at least proportional to n2. �

1.4 This work

We state conditions under which consecutive plug-and-decompose operations
can be replaced by a more efficient refocus operation. These conditions pertain
to the order in which a redex occurs, in the depth-first traversal of the decompose
operation. We show that these conditions hold if the syntactic theory is given
in the “standard” way, i.e., by a context-free grammar of values and evaluation
contexts, and if it satisfies a unique-decomposition property. We also show how
to mechanically construct such a refocus function.

The rest of this article is structured as follows. We first illustrate refocusing
with two concrete examples: a syntactic theory for the call-by-value λ-calculus
and a transformation of call-by-value λ-terms into continuation-passing style
due to Sabry and Felleisen [12]. We then list sufficient conditions to refocus a
syntactic theory. The proof that these conditions are sufficient is constructive.
It indicates how to mechanically rephrase the syntactic theory to circumvent the
overhead. These conditions are general enough to make refocusing practically
useful—for example, they are fulfilled by all the examples documented in the
SL project [17, 18].

4

2 The call-by-value λ-calculus

Let us go back to the call-by-value λ-calculus, initially considered in Section 1.3.
First, we uniformly restate the grammars of the language and of the syntactic
theory in the format used in the rest of this article. These grammars can be
expressed directly as ML data types and the corresponding functions as ML
functions.

e ::= var(x) | lam(x, e) | app(e, e) e ∈ Exp

v ::= var(x) | lam(x, e) v ∈ Val

x ∈ Var

E ::= [] | E[app([], e)] | E[app(v, [])] E ∈ EvCont

r ::= app(v, v) r ∈ PotRedex

Var is the syntactic category of variables.
We make decomposition and plugging explicit with two functions:

decompose : Exp → Val + (EvCont× PotRedex)
plug : Exp × EvCont → Exp

We define the refocusing function refocus as the composition of decompose
and plug . Its type is thus as follows.

refocus : Exp× EvCont → Val + (EvCont× PotRedex)

We now consider an interpreter and then a CPS transformer for the call-by-
value λ-calculus (Sections 2.1 and 2.2). Each uses decompose and plug , which
we fuse into refocus (Section 2.3).

2.1 An interpreter

2.1.1 The original specification

The following interpreter implements the evaluation function of the syntactic
theory. It takes one expression as argument and repeatedly decomposes, con-
tracts, and plugs until either a value or a stuck term is reached, if any.

eval : Exp → Val + (EvCont× PotRedex)
eval (e) = eval ′(decompose(e))

eval ′ : Val + (EvCont× PotRedex) → Val + (EvCont× PotRedex)
eval ′(v) = v

eval ′(E, app(lam(x, e), v)) = eval(plug(e[v/x], E))
eval ′(E, app(x, v)) = (E, app(x, v))

The evaluation of an expression e is eval (e). (NB: The last rule of eval ′ is used
for stuck terms.)

The interpreter contains two calls to eval : one in the second rule of eval ′ and
one in the initial call. In the second rule of eval ′, the argument of eval is the

5

result of plug . In some sense, so is it too in the initial call, since e = plug(e, []).
In that sense, decompose (in the definition of eval) is always called with the
result of plug.

Let us re-express the interpreter with a refocusing function that combines
the effects of decompose and plug .

2.1.2 The refocused specification

We change the interpreter to use refocus instead of decompose and plug .

eval : Exp → Val + (EvCont× PotRedex)
eval (e) = eval ′(refocus(e, []))

eval ′ : Val + (EvCont× PotRedex) → Val + (EvCont× PotRedex)
eval ′(v) = v

eval ′(E, app(lam(x, e), v)) = eval ′(refocus(e[v/x], E))
eval ′(E, app(x, v)) = (E, app(x, v))

The evaluation of an expression e is eval (e).
We are now free to use any implementation of refocus that is extensionally

equivalent to decompose ◦ plug.

2.2 A CPS transformer

In their work on reasoning about programs in continuation-passing style (CPS),
Sabry and Felleisen designed a new CPS transformation [12, Definition 5]. This
CPS transformation integrates a notion of generalized reduction and thus yields
very compact CPS programs [3]. It is also unusual in the sense that it builds
on the notion of a syntactic theory, rather than on operational semantics [2, 11]
or denotational semantics [16]. Therefore, it is defined as the transitive closure
of decomposing, performing an elementary CPS transformation, and plugging,
which makes it a candidate for refocusing.

2.2.1 The original specification

Definition 1 (Sabry and Felleisen, 1993) The following CPS transforma-
tion uses three mutually recursive functions: Ck (and the auxiliary function C′

k)
to transform expressions, Φ to transform values, and Kk to transform evalua-
tion contexts. The functions Ck, C′

k, and Kk are parameterized over a variable
k that represents the current continuation.

Ck : Exp → Exp

Ck(e) = C′
k(decompose(e))

C′
k : Val + (EvCont× PotRedex) → Exp

C′
k(v) = app(k, Φ(v))

Ck(E, app(x, v)) = app(app(x, Kk(E)), Φ(v))
Ck(E, app(lam(x, e), v)) = app(lam(x, Ck(plug(e, E))), Φ(v))

6

Φ : Val → Exp

Φ(x) = x

Φ(lam(x, e)) = lam(k, lam(x, Ck(e)))
where k is fresh

Kk : EvCont → Exp

Kk([]) = k

Kk(E[app(x, [])]) = app(x, Kk(E))
Kk(E[app(lam(x, e), [])]) = lam(x, Ck(plug(e, E)))

Kk(E[app([], e)]) = lam(ui, Ck(plug(app(ui, e), E)))
where ui is fresh

The CPS counterpart of an expression e is lam(k, Ck(e)), where k is fresh. �
The CPS transformer contains five calls to Ck. In three cases, the argument

of Ck is the result of plug , and in two cases, the argument is e. As in Section 2.1.1,
and since e = plug(e, []), we can say that decompose (in the definition of Ck) is
always called with the result of plug.

Let us re-express the CPS transformer with a refocusing function that com-
bines the effects of decompose and plug .

2.2.2 The refocused specification

We change the CPS transformer to use refocus instead of decompose and plug.

Ck : Exp → Exp

Ck(e) = C′
k(refocus(e, []))

C′
k : Val + (EvCont× PotRedex) → Exp

C′
k(v) = app(k, Φ(v))

C′
k(E, app(x, v)) = app(app(x, Kk(E)), Φ(v))

C′
k(E, app(lam(x, e), v)) = app(lam(x, C′

k(refocus(e, E))), Φ(v))

Φ : Val → Exp

Φ(x) = x

Φ(lam(x, M)) = lam(k, lam(x, Ck(e)))
where k is fresh

Kk : EvCont → Exp

Kk([]) = k

Kk(E[app(x, [])]) = app(x, Kk(E))
Kk(E[app(lam(x, e), [])]) = lam(x, C′

k(refocus(e, E)))
Kk(E[app([], e)]) = lam(ui, C′

k(refocus(app(ui, e), E)))
where ui is fresh

The CPS transformation of an expression e is lam(k, Ck(e)), where k is fresh.

7

We are now free to use any implementation of refocus that is extensionally
equivalent to decompose ◦ plug.

2.3 Refocusing efficiently

Let us fuse plug and decompose into one function. First, here is their definition.

plug(e, []) = e

plug(e, E[app([], e2)]) = plug(app(e, e2), E)
plug(e, E[app(v1, [])]) = plug(app(v1, e), E)

decompose(e) = decompose ′(e, [])

decompose ′ : Exp× EvCont → Val + (EvCont× PotRedex)
decompose ′(v, E) = decompose ′

aux (E, v)
decompose ′(app(e1, e2), E) = decompose ′(e1, E[app([], e2)])

decompose ′
aux : EvCont× Val → Val + (EvCont× PotRedex)

decompose ′
aux ([], v) = v

decompose ′
aux (E[app([], e2)], v) = decompose ′(e2, E[app(v, [])])

decompose ′
aux (E[app(v1, [])], v) = (E, app(v1, v))

The definition of plug is a transliteration of the one in Section 1.3. As for
decompose, it implements a depth-first search for the first application of one
value to another, and uses two auxiliary functions: one, decompose ′, recursively
descends into an expression and accumulates the corresponding context, and
the other, decompose ′

aux , dispatches on the accumulated context.
Let us now construct a more efficient version of refocus = decompose ◦ plug .

Our key observation is a consequence of the unique-decomposition property of a
syntactic theory of the λ-calculus and of the fact that the grammar of evaluation
contexts is context-free:

decompose(plug(e, E)) = decompose ′(e, E)

In words: E uniquely determines the partial decomposition of the result of
plug(e, E) into the expression e and the evaluation context E. (In general,
this decomposition is partial because e is not necessarily a potential redex.) A
similar consequence holds for values:

decompose(plug(v, E)) = decompose ′
aux (E, v)

A simple fold-unfold calculation3 lets us calculate the following version of
refocus .

3For example, refocus(app(e1, e2), E) = decompose(plug(app(e1, e2), E))

= decompose ′(app(e1, e2), E)

= decompose ′(e1, E[app([], e2)])

= decompose(plug(e1, E[app([], e2)]))

= refocus(e1, E[app([], e2)])

8

refocus : Exp × EvCont → Val + (EvCont × PotRedex)
refocus(v, E) = refocusaux (E, v)

refocus(app(e1, e2), E) = refocus(e1, E[app([], e2)])

refocusaux : EvCont× Val → Val + (EvCont × PotRedex)
refocusaux ([], v) = v

refocusaux (E[app([], e2)], v) = refocus(e2, E[app(v, [])])
refocusaux (E[app(v1, [])], v) = (E, app(v1, v))

The resulting function refocus is extensionally equivalent to decompose ◦ plug
because fold-unfold transformations are correct [1]. It is also more efficient
because it avoids building an intermediate expression for the sole purpose of
decomposing it straight away.4

2.3.1 The interpreter

The refocused interpreter produces the same result as the original one, but it
operates more efficiently. For example (cf. Example 1 in Section 1.3), when eval-
uating a term such as dne (λx.x) v, the time taken to refocus from a contractum
and a context to a new context and a redex is independent of the number of
remaining applications.

2.3.2 The CPS transformer

The refocused CPS transformer produces the same compact terms as the original
one, but it operates in linear time. More precisely, it operates in one pass over
its input.5

2.4 Summary

We have described how to refocus a syntactic theory for the call-by-value λ-cal-
culus, by deforesting the intermediate expressions produced in each decompose-
contract-plug cycle. As a byproduct, we have shown how refocusing makes it
possible to derive a linear-time program transformation out of a quadratic-time
one.

4Replacing the composition of two functions that produce and consume an intermediate
data structure is an instance of deforestation [14].

5Actually, the transformation could have been optimized to read as follows:

Kk(E[app([], e)]) = lam(ui, Ck(refocus(e, E[app(ui, [])])))

This way, each ui would not be inspected as an expression.

9

3 Refocusing in a syntactic theory

In this section we show how to construct a refocus function for a syntactic theory,
as an alternative to plugging and decomposing. We prove that this function
computes the correct result and we give an exact measure of its computational
complexity. Finally we show that refocusing is always at least as efficient as
plugging and then decomposing.

3.1 The language

A programming language is defined by its syntax and it semantics. Here, its
semantics is specified by a syntactic theory. Without loss of generality we assume
that its abstract syntax is specified by a context-free grammar (or BNF) with
only productions of the form

e ::= c(e1, . . . , en)

where c ranges over a set of constructor names and e, e1, . . . , en are non-
terminals corresponding to the syntactic categories of the language. Each con-
structor may occur only once in a grammar.

3.2 Syntactic theories

A syntactic theory is a specification of a small-steps operational semantics, i.e., it
specifies a reduction relation between programs. Syntactic theories traditionally
come with context-free grammars for values and evaluation contexts, along with
reduction rules of the form E[r] → e, where the term r is called a redex (short
for reducible expression). Let us review each of these concepts in turn.

3.2.1 Values

The grammar of values extends the BNF of the language with new non-terminals,
v’s, one for each non-terminal e. The set of values ranged over by a v is included
in the set of terms ranged over by the matching e. The productions for values
are all of the form

v ::= c(x1, . . . , xn)

where e ::= c(e1, . . . , en) is a production of the language grammar and each xi

is either ei or vi.
If a syntactic category of the language contains only values, then it is irrel-

evant whether we use vi or ei in place of xi. From here on we will consistently
use a ei for such a syntactic category.

3.2.2 Evaluation contexts

Evaluation contexts are also specified by context-free grammars, and their mean-
ing is given by the associated plug function. For example, the evaluation con-
texts of the call-by-value λ-calculus and the associated plug function are shown
in Section 2.

10

All the evaluation contexts of a syntactic theory can be written as the
composition of elementary evaluation contexts. Composition is a binary func-
tion on evaluation contexts, ◦, that together with the plug function satisfies
(E1 ◦E2)[e] = E1[E2[e]], and is thus associative. Elementary contexts can them-
selves not be written as compositions of other non-empty contexts.6

For the call-by-value λ-calculus, the elementary contexts are app([], e) and
app(v, []). The construction of evaluation contexts corresponds to composing
an elementary context to the right of another context, e.g., E[app([], e)] = E ◦
app([], e). In many articles on syntactic theories, though, compound contexts
are constructed by composing an elementary context on the left rather than on
the right. For the λ-calculus, the grammar of evaluation contexts then reads as
follows.

E ::= [] | app(E, e) | app(v, E)

This notation induces the same elementary contexts.

3.2.3 Decompositions and potential redexes

If a term, e, is the result of plugging term e′ into an evaluation context E, i.e.,
E[e ′] = e, then we say that E and e form a decomposition (into an evaluation
context and a term) of e ′, or alternatively that e ′ can be decomposed into E
and e. A term can be decomposed in many different ways.

If e = E[e ′] then the decomposition is trivial if either E is the empty context
or e′ is a value.

Values are normal forms: they cannot have a non-value sub-term in a posi-
tion where it can be evaluated, so all decompositions must be trivial.7 Non-value
terms that can only be decomposed trivially are called potential redexes. For
the λ-calculus, the potential redexes are exactly the terms of the form app(v, v).

If e = E[e ′] then the decomposition is complete if e′ is a potential redex.
The reduction rules of a syntactic theory contain only complete decompositions.

If a term has a decomposition, E[e], that is not complete, then e can be
further decomposed in a non-trivial way as E ′[e ′]. Then (E ◦ E ′)[e ′] is again
a non-trivial decomposition of the original term. The context of a complete
decomposition is maximal in the sense that further decompositions would be
trivial.

3.2.4 Unique decomposition

Unique decomposition is a property of syntactic theories that guarantees the
existence and uniqueness of complete decompositions for arbitrary terms.

Definition 2 (Unique decomposition) A syntactic theory is said to satisfy
the unique-decomposition property if any non-value term e can be uniquely
decomposed as e = E[r] where r is a potential redex.

6We note that evaluation contexts, together with composition and the empty context, form
a monoid.

7This does not preclude, e.g., weak head normal forms or lazy pairs.

11

Unique decomposition is so fundamental to syntactic theories for determin-
istic languages that it is almost always the first property to be established. Its
proof is often technically simple, but because of its many small cases, it tends
to be tedious and error-prone. This state of affairs motivated Xiao, Sabry,
and Ariola to develop an automated support for proving unique-decomposition
properties [18].8

3.2.5 Reduction rules

The reduction rules of a syntactic theory are of the form E[r] → e where r is a
potential redex and e depends only on E and on the sub-terms of r. Often e is
written as E[e ′] for some e ′ depending on r.

The potential redexes that occur in a reduction rule are the actual redexes
of the syntactic theory. The remaining potential redexes stick, to use Plotkin’s
word [11]. Stuck terms encompass type-incorrect terms (e.g., the application of
a literal) and undefined terms (e.g., the application of an identifier).

The only reduction rule of the call-by-value λ-calculus is E[app(lam(x, e), x)]
→ e [v/x], and thus app(lam(x, e), x) is a redex. The remaining potential re-
dexes (of the form app(x, v)) are stuck terms.

3.3 Requirements

We state three requirements that are sufficient for constructing a refocus func-
tion. We consider syntactic theories whose structure is as described in Sec-
tion 3.2 and that satisfy unique decomposition.

3.3.1 No redundant constructs

Syntactic theories specify a reduction relation. Any part of a specification that
does not affect the specified relation is redundant and can be ignored. Specifi-
cally:

• If the language has a grammar production e ::= c(e1, . . . , en) and the syn-
tactic category ranged over by ei contains only values, then an elementary
evaluation context of the form c(x1, . . . , xi−1, [], xi+1, . . . , xn) is redun-
dant. Since only values can be plugged in the hole, and values can only be
trivially decomposed, then no evaluation context constructed by compos-
ing this elementary context can ever be part of a complete decomposition.

• If a syntactic category, ranged over by e, contains no values, i.e., the cor-
responding values ranged over by v is the empty set, then any occurrence
of v in a rule makes this rule redundant. (Syntactic categories with no
values are not useless; they can occur meaningfully in, e.g., languages with
control effects.)

8Xiao, Sabry, and Ariola also point out that proving unique decomposition reduces to prov-
ing equivalence and unambiguity of context-free grammars—two undecidable properties. In
SL, they reduce the problem to regular tree languages, for which equivalence and unambiguity
are decidable. Similarly, the grammars we consider here are regular tree grammars.

12

• If the syntactic category ranged over by e is empty, then that entire syn-
tactic category and all other productions containing e are redundant and
can safely be ignored.

The above properties are all decidable. Deciding whether the set of terms ranged
over by a non-terminal is empty is decidable for context-free grammars. The
specific structure of the productions of values guarantees that values must be a
subset of terms, and that it is decidable whether e and v generate the same set
of terms, i.e., whether e only ranges over values.

3.3.2 Distinct value constructors and potential-redex constructors

By definition, potential redexes are distinct from values, and values are defined
by a context-free grammar of the form shown in Section 3.2.1. If an instance
of a syntactic construct can become a value by evaluating its sub-terms, then
another instance must not also be able to become a redex, and vice-versa.

The only way a syntactic construct can become both a value and a potential
redex is if the value is given by a production of the form v ::= c(. . . , vi, . . .) and
there is no elementary context of the form c(. . . , [], . . .) with a hole in the i’th
position. Then c(. . . , ei, . . .) is a potential redex when ei is not a value.

There are several ways to achieve the property that no syntactic construct
can become both a value and a potential redex. We use the equivalent require-
ment that the potential redexes can be specified by a context-free grammar with
productions of the same type as for values. In other words, the productions are
of the form r ::= c(x1, . . . , xn) where xi is either vi or ei.

3.3.3 Left-to-right evaluation of sub-terms

Without loss of generality, we assume that sub-terms of a syntactic construct are
ordered so that evaluating them proceeds from left to right. In other words, the
unique decomposition into evaluation context and potential redex will always
have the hole of the context occurring in the left-most non-evaluated sub-term,
in the ordering of sub-terms chosen for the abstract syntax.

3.4 Consequences of the requirements

The requirements of Section 3.3 guarantee that a syntactic theory contains el-
ementary evaluation contexts, values, and potential redexes of a specific form.
This form is described in Figure 1.

An example where the m in Figure 1 is strictly smaller than n is a condi-
tional expression such as if(e, e, e). The only elementary evaluation context is
if([], e, e), since the other two sub-terms should not be evaluated until the con-
ditional expression has itself been reduced. Another example is the call-by-name
λ-calculus where only the function part of an application is evaluated.

Lemma 1 A syntactic theory satisfying the requirements stated in Section 3.3
contains productions corresponding to Figure 1.

13

For a syntactic construct with n sub-terms, e ::= c(e1, . . . , en),
there is a number 0 ≤ m ≤ n such that the elementary evalua-
tion contexts for c are exactly:

c([], e2, . . . , en)
c(v1, [], e3, . . . , en)
...
c(v1, . . . , vm−1, [], em+1, . . . , en)

If terms of the form c(v1, . . . , vm, em+1, . . . , en) exist (i.e., the
syntactic category ranged over by em contains values) then they
are either all values or all potential redexes. In other words, either

v ::= c(v1, . . . , vm, em+1, . . . , en)

or
r ::= c(v1, . . . , vm, em+1, . . . , en)

is a production, but not both.

We then say that c needs to evaluate m sub-terms. If c(v1, . . . , vm,
em+1, . . . , en) is a value we say that c becomes a value. If it is a
potential redex we say that c becomes a potential redex.

Figure 1: Elementary contexts, values, and potential redexes

Proof (sketch): Take the production e ::= c(e1, . . . , en).
If there is a value production, v ::= c(e1, . . . , en) or potential-redex produc-

tion r ::= c(e1, . . . , en), then m = 0 and c becomes a value or a potential redex.
If there is no such production then since e is not redundant, there must

exist a term, c(e1, . . . , en), that has a non-trivial decomposition and thus there
must exist an elementary evaluation context c(e1, . . . , ei−1, [], ei+1, . . . , en).
We assume that evaluation proceeds from left to right, so the hole must be in
the left-most term, i.e., the elementary context is c([], e2, . . . , en).

Assume that there exists an elementary evaluation context of the form

c(v1, . . . , vi−1, [], ei+1, . . . , en).

Three cases occur:

1. If ei only ranges over non-values then m = i and c becomes neither a value
nor a potential redex.

2. If ei ranges over values and there exists a production v ::= c(v1, . . . , vi,
ei+1, . . . , en) or r ::= c(v1, . . . , vi, ei+1, . . . , en) then m = i and c becomes
either a value or a potential redex.

14

3. If ei ranges over values, but terms of the form c(v1, . . . , vi, ei+1, . . . , en)
are not values or potential redexes, then they must have non-trivial decom-
positions, so there is a corresponding elementary evaluation context. Since
we assume left-to-right evaluation, the context must be c(v1, . . . , vi, [],
ei+2, . . . , en).

In other words, either (1) c(v1, . . . , vi, ei+1, . . . , en) does not exist, or it is a
value or a potential redex, and then m = i, or (2) there exists an elementary
evaluation context c(v1, . . . , vi, [], ei+2, . . . , en), and then m > i.

An induction argument shows that m is the smallest i such that (1) holds.
There exists such a smallest i: a term of the form c(v1, . . . , vn) either does not
exist or it has only trivial decompositions, i.e., is either a value or a potential
redex, and thus m ≤ n as required. �

We have shown that a syntactic theory satisfying the requirements contain
the productions of Figure 1. We do not show that there are no further pro-
ductions. However, we show in the next section that one can compute the
unique decomposition of any term using only the productions of Figure 1, and
thus any further productions would either be redundant or violate the unique-
decomposition property.

3.5 Constructing a refocus function

We construct a function, refocus , that is extensionally equivalent to the com-
position of the plug function and the decompose function. It uses a stack of
elementary contexts to represent evaluation contexts. Such a stack directly cor-
responds to the representation of contexts of Section 2, and it allows an efficient
implementation of composing an elementary evaluation context and plugging a
term in a context. We use [] for the empty context/stack and E ◦ c(v1, . . . ,
vi−1, [], ei+1, . . . , en) for composing/pushing an elementary context.

The refocusing function is defined with two mutually recursive functions.
The first, refocus , takes a stack of elementary evaluation contexts and a term,
and is defined by cases of the term. The other function, refocusaux , takes a
stack of elementary contexts and a value as arguments, and is defined by cases
on the top-most elementary evaluation context on the stack.

For each e ::= c(e1, . . . , en) in the language grammar, there exists one cor-
responding rule in refocus . If c needs to evaluate m sub-terms then there are m
rules in refocusaux corresponding to the elementary contexts c([], e2, . . . , en)
through c(v1, . . . , vm−1, [], em+1, . . . , en). If refocus and refocusaux are im-
plemented in a typed setting, there is one refocus and one refocusaux for each
syntactic category of the language. The rules of refocus mentioned above go in
the functions corresponding to the syntactic category ranged over by e. The
rules of refocusaux go in the functions corresponding to the syntactic category
of the hole, which is the same as the syntactic category of the value argument.

1. If c needs to evaluate zero sub-terms, then we know that c(e1, . . . , en) is
a value or a potential redex.

15

(a) If c becomes a value, then

refocus(c(e1, . . . , en),E) = refocusaux (E, c(e1, . . . , en))

(b) If instead c becomes a potential redex, then

refocus(c(e1, . . . , en), E) = (E, c(e1, . . . , en))

since we have found the decomposition.

2. If c needs to evaluate more than zero sub-terms then the first expression
must be reduced first, and we simply refocus on it:

refocus(c(e1, . . . , en),E) = refocus(e1,E ◦ c([], e2, . . . , en))

Likewise, the refocusaux function is defined by cases on the evaluation context on
top of the stack. If c(v1, . . . , vi−1, [], ei+1, . . . , en) is the top-most elementary
context on the stack, the corresponding case is one of the following.

1. If c needs to evaluate exactly i sub-terms, then c(v1, . . . , vi, ei+1, . . . , en),
if such a term exists, is either a value or a potential redex.

(a) If c becomes a value then the case is

refocusaux (E ◦ c(v1, . . . , vi−1, [], ei+1, . . . , en), vi)
= refocusaux (E, c(v1, . . . , vi−1, vi, ei+1, . . . , en))

(b) If c becomes a potential redex then we have found a decomposition
into evaluation context and potential redex, and the case is

refocusaux (E ◦ c(v1, . . . , vi−1, [], ei+1, . . . , en), vi)
= (E, c(v1, . . . , vi−1, vi, ei+1, . . . , en))

(c) If ei ranges over only non-values then there is no rule. In a typed set-
ting there is no refocusaux corresponding to that syntactic category.

2. If c needs to evaluate more than i sub-terms, then we continue searching
for a potential redex in the next sub-term, and the rule is:

refocusaux (E ◦ c(v1, . . . , vi−1, [], ei+1, . . . , en), vi)
= refocus(ei+1,E ◦ c(v1, . . . , vi, [], en))

3. Finally there is one rule for the empty context.

refocusaux ([], v) = v

This base case accounts for the situation where the entire program is a
value, so the decomposition has to return a value rather than a a context
and a potential redex.

16

In Appendix A, we illustrate the construction of a refocus function for a
syntactic theory of arithmetic expressions with precedence.

In the following section we show that the refocus function generated by these
rules computes a correct decomposition into evaluation context and potential
redex, and that it does so at least as efficiently as the combination of plug and
decompose.

3.6 Correctness

By construction, refocus can only return either a value or a pair of evaluation
context and potential redex, since the remaining cases all perform a tail-recursive
call. Both refocus and refocusaux are passed a decomposition of a term, i.e., an
evaluation context and another term, and if they make a recursive call, it is on
another decomposition of the same term. Therefore, if refocus(e,E) returns a
decomposition, then it is a complete decomposition of E[e].

It thus suffices to prove that refocus terminates on any argument. Let us
show that if E[e] = E ′[r], where r is a potential redex, then refocus(e,E) per-
forms T (E ′)+Taux (r)−T (E) tail-recursive calls, where T and Taux are defined
as follows:

T : EvCont → N
T ([]) = 0

T (E ◦ c(v1, . . . , vk−1, [], ek+1, . . . , een)) = 1 + T (E) +
∑k

i=1(1 + Taux (vi))

Taux : Val + PotRedex → N
Taux (c(v1, . . . , vm, em+1, . . . , en)) = 1 +

∑m
i=1(1 + Taux (vi))

Given an evaluation context, T computes the number of edges traversed to
go from the root to the hole in a depth-first left-to-right traversal, counting the
edges to values both on the way down and on the way up. This traversal is
illustrated by the following picture.

c

~~
~~

~~
~~

@@
@@

@@
@@

~~ �� v

>>

v

OO

c

~~
~~

~~
~~

>>
>>

>>
>

�� ��
v

??

c

~~
~~

~~
~~

>>
>>

>>
>

��

e

c

��
��

��
��

>>
>>

>>
>>

�� ��

e e

v

@@

[] e

As for Taux , it computes the number of edges followed by a full traversal of a
composite value.

17

All fully traversed sub-terms must be values. With this definition, the result
of T (E) is at most twice the number of nodes visited on such a traversal.

We use the T function to measure how far the refocus function has progressed
in its traversal of its argument.

Lemma 2 (Termination) If E[e] = E ′[r] then refocus(e,E) terminates after
T (E ′) + Taux (r) − T (E) tail-recursive calls.

Proof: Let us use T to define a progress measure on all the left-hand sides and
right-hand sides of the definition of refocus and refocusaux :

Progress(refocus(e,E))) = T (E)
Progress(refocusaux (E, v)) = T (E) + Taux (v)

Progress((E, r)) = T (E) + Taux (r)
Progress(v) = Taux (v)

With this definition, all choices of arguments to refocus and refocusaux give a
right-hand side with a progress value one greater than the left-hand side. We
omit the details and give only one case as example.

If c needs to evaluate m sub-terms to become a value and 0 < k < m, then
refocusaux contains the following case:

refocusaux (E ◦ c(v1, . . . , vk−1, [], ek+1, ek+2, . . . , en), vk)
= refocus(ek+1,E ◦ c(v1, . . . , vk−1, vk, [], ek+2, . . . , en))

Taking the progress measure on both the left-hand side and the right-hand side
gives the expected one-greater value on the right-hand side:

Progress(refocusaux (E ◦ c(v1, . . . , vk−1, [], ek+1, . . . , en), vi))
= T (E ◦ c(v1, . . . , vk−1, [], ek+1, . . . , en)) + Taux (vk)
= 1 + T (E) +

∑k−1
i=1 (1 + Taux (vi)) + Taux (vk)

and
Progress(refocus(ek+1,E ◦ c(v1, . . . , vk, [], ek+2, . . . , en)))
= T (E ◦ c(v1, . . . , vk, [], ek+2, . . . , en))
= 1 + T (E) +

∑k
i=1(1 + Taux (vi))

= 1 + T (E) +
∑k−1

i=1 (1 + Taux (vi)) + Taux (vk) + 1

Since each recursive call increases the progress measure by one, and there is
only a finite possible number of different such calls (each call is to one of two
functions on a decomposition of the same term, and a term has only finitely
many decompositions), the recursion must eventually end. When this happens,
the cumulative increase in the progress measure is also the number of recursive
calls performed to reach it. This number is exactly

Progress((E ′, r)) − Progress(refocus(e,E)) = T (E ′) + Taux (r) − T (E).

�

Lemma 2 tells us both that refocus is a total function and how many calls it
takes to find the result. In Section 3.7, we use it to show that refocus is always
at least as efficient as using plug and decompose .

18

3.7 Complexity

In order to show that refocus is more efficient than the composition of plug and
decompose, we must first decide on a relevant complexity measure, and we must
find the complexity of plug and decompose .

For measuring the time complexity of refocus we use the number of recursive
calls as in Section 3.6. Each call performs a bounded number of basic operations
on the syntax (either constructing a term or deconstructing a term while naming
the sub-terms—the latter is performed implicitly since the function is defined by
cases). If each such operation takes constant time, the time taken to compute the
result of refocus is proportional to the number of recursive calls (i.e., bounded
by a constant factor times the number of calls).

Let us informally argue that any implementation of a function decompose :
Exp → Val + (EvCont × PotRedex) finding the unique complete decom-
position of terms (in a syntactic category satisfying our requirements) must
perform at least (T (E) + Taux (r))/2 basic operations on the syntax to com-
pute decompose(E[r]) = (E, r). If it uses fewer operations, it cannot inspect all
the values of the evaluation context and of the potential redex. If we changed
such a value to a non-value, then the hole of the evaluation context should be
in the new non-value term, but the function cannot see this without inspect-
ing the value and thus it must generate an erroneous result, contradicting the
assumption that it computes the unique complete decomposition.

The plug function is implemented in time proportional to the depth of the
hole in the evaluation context. Since the time complexity of decompose is always
greater, we ignore plug in our comparison.

In summary, the complexity of computing decompose(E[e]) = E ′[r] is at
least proportional to T (E ′) + Taux (r), whereas the complexity of computing
refocus(e,E) = E ′[r] is proportional to T (E ′) + Taux (r) − T (E). For syntactic
theories where rewrites are often local, the difference between T (E) and T (E ′)
is often significantly smaller than the value of T (E ′) itself.

For example, in Example 1 of Section 1.3 the difference between T (E) and
T (E ′) is constant whereas T (E ′) alone is proportional to the size of the program.

In some cases, refocus does no better than decompose , e.g., when the context
argument to refocus is always empty (e.g., for tail-recursive or continuation-
passing style λ-terms, and for trampoline-like programs with control operators
where the context is discarded in each step). Likewise, if the size of the context
is bounded, the saving is at most a constant factor.

3.8 Summary

We have presented a few mild requirements to construct a refocus function for
a syntactic theory. We have also proven the correctness of this construction and
the complexity of the constructed function. Refocusing is at least as efficient as
first plugging and then decomposing, and it is often significantly more efficient.

19

4 Conclusion and issues

We have presented a general result about syntactic theories with context-free
grammars of values, evaluation contexts, and redexes, and satisfying a unique-
decomposition property. This result enables one to mechanically derive an in-
terpreter that does not incur a linear-time overhead for each reduction step.
We have illustrated the result with two interpreters, one for the call-by-value
λ-calculus and one for arithmetic expressions with precedence, and by mechan-
ically turning a quadratic-time program transformation into a program trans-
formation that operates in one pass.

Acknowledgments: We are grateful to Daniel Damian, Bernd Grobauer,
Fritz Henglein, and Julia Lawall for commenting a previous version of this arti-
cle. Thanks are also due to the anonymous RULE’01 referees.

This work is supported by the ESPRIT Working Group APPSEM (http:
//www.md.chalmers.se/Cs/Research/Semantics/APPSEM/).

A Arithmetic expressions with precedence

This section treats a comprehensive example illustrating all the cases of the
construction of a refocus function as presented in Section 3.5. We consider
arithmetic expressions with additions, multiplications, conditional expressions
checking whether their first argument is zero, parenthesized expressions, literals,
and oracles returning 0 or 1. (The oracles are only there to illustrate a case of
the construction.)

The grammar is unambiguous and hierarchic, as often given in compiler
courses. It specifies expressions, terms, and factors, and reads as follows.

e ∈ Expr e ::= t + e | Ifz e e e | t
t ∈ Term t ::= f × t | f
f ∈ Fact f ::= n | flip | (e)
n ∈ Lit

A program is an expression.

A.1 A syntactic theory

We define the syntactic theory of arithmetic expressions by specifying its values,
its computations, its evaluation contexts, its redexes and its reduction rules.

Values (trivial terms):

ve ∈ ExprVal ve ::= vt

vt ∈ TermVal vt ::= vf
vf ∈ FactVal vf ::= n

20

Computations (serious terms):

ce ∈ ExprComp ce ::= t + e | Ifz e e e | ct

ct ∈ TermComp ct ::= f × t | cf
cf ∈ FactComp cf ::= flip | (e)

Evaluation contexts:

Ee ∈ ExprEvCont Ee ::= []e | Et + e | vt + Ee | Ifz Ee e e | Et

Et ∈ TermEvCont Et ::= []t | Ef × t | vf × Et | Ef

Ef ∈ FactEvCont Ef ::= []f | (Ee)

Redexes:

re ∈ ExprRedex re ::= vt + ve | Ifz ve e e | rt

rt ∈ TermRedex rt ::= vf × vt | rf
rf ∈ FactRedex rf ::= flip | (ve)

Reduction rules:

Ee[n1 + n2] → Ee[n3] where n3 is the sum of n1 and n2

Ee[Ifz n e1 e2] → Ee[e1] if n = 0
Ee[Ifz n e1 e2] → Ee[e2] if n 6= 0

Ee[n1 × n2] → Ee[n3] where n3 is the product of n1 and n2

Ee[flip] → Ee[0]
Ee[flip] → Ee[1]
Ee[(n)] → Ee[n]

The reduction rules are defined only on decompositions that “make sense”, i.e.,
only an expression is plugged into []e, only a term into []t and a factor into []f .
The result of a reduction is an expression.

This syntactic theory satisfies three unique-decomposition lemmas, i.e., de-
composing an expression (resp. a term and a factor) into an evaluation context
and a redex yields a unique result. We prove these lemmas by structural induc-
tion on the syntax. The language is simple enough that the number of cases is
manageable.

There are no stuck terms, and reduction always yields an expression. The
reduction relation, however, is not a function from expressions to expressions,
even though decompositions are unique, because of the oracles.

21

A.2 Evaluation contexts with right-composition

In Section A.1, the grammar of evaluation contexts embodies left composition,
i.e., the construction of contexts by composition with an elementary context
on the left. In other words, each production except for the empty context,
e.g., Ee ::= vt +Ee, can be written as Ee ::=(vt +[]e) ◦Ee. Since composition of
contexts is associative, we can define the same contexts using right composition,
giving a production of the form Ee ::=Ee ◦(vt + []e). We write it, however, in
the more common way: Ee ::= Ee[vt + []e].

We transform the grammar of contexts into one representing composition
on the right, and we do this in a completely mechanical way. The example
above shows the general idea, though it does not illustrate the case where the
sub-context is not of the same type as the generated context.

We have three groups of evaluation contexts, grouped by the syntactic cat-
egory they produce when plugged. Take the elementary context []t + e. If
we left-compose another evaluation context with this elementary context, we
require that the other context produces terms. If we right-compose this elemen-
tary context, however, we require the other context to accept expressions in the
hole. To capture this restriction in the grammar, we group the productions by
the type of the hole instead. So for example, the production Ee ::=Et + e is
transformed into Et ::=Ee[[]t + e].

In general, the transformation rewrites a production of the form Ea ::=
c(x1, . . . , Eb, . . . , xn) into Eb ::= Ea[c(x1, . . . , []b, . . . , xn)], and it keeps the
productions of empty contexts. Performing this transformation on the grammar
of evaluation contexts above gives the following grammar.

Evaluation contexts:

Ee ∈ ExprEvCont Ee ::= []e | Ee[vt + []e] | Ee[Ifz []e e e] | Ef [([])]
Et ∈ TermEvCont Et ::= []t | Ee[[]t + e] | Et[vf × []t] | Ee

Ef ∈ FactEvCont Ef ::= []f | Et[[]f × t] | Et

In the original representation, Ee ranged over all contexts that generated
expression, but made no restriction on the type of the hole. The second rep-
resentation likewise lets Ee range over all contexts with a hole accepting an
expression, but makes no restriction on the type of the result of a plug. Using
this second representation, we must require that the evaluation contexts appear-
ing in the reduction rules must output expressions, i.e., we rule out the empty
contexts from Et and Ef in the grammar of evaluation contexts. The resulting
evaluation contexts and reduction rules read as follows.

Evaluation contexts:

Ee ∈ ExprEvCont Ee ::= []e | Ee[vt + []e] | Ee[Ifz []e e e] | Ef [([])]
Et ∈ TermEvCont Et ::= Ee[[]t + e] | Et[vf × []t] | Ee

Ef ∈ FactEvCont Ef ::= Et[[]f × t] | Et

22

Reduction rules:

Ee[n1 + n2] → Ee[n3] where n3 is the sum of n1 and n2

Ee[Ifz n e1 e2] → Ee[e1] if n = 0
Ee[Ifz n e1 e2] → Ee[e2] if n 6= 0

Et[n1 × n2] → Et[n3] where n3 is the product of n1 and n2

Ef [flip] → Ef [0]
Ef [flip] → Ef [1]
Ef [(n)] → Ef [n]

datatype expr = EXPR_VAL of expr_val

| EXPR_COMP of expr_comp

and expr_val = TERM_VAL’ of term_val

and expr_comp = ADD of term * expr

| IFZ of expr * expr * expr

| TERM_COMP’ of term_comp

and term = TERM_VAL of term_val

| TERM_COMP of term_comp

and term_val = FACT_VAL’ of fact_val

and term_comp = MUL of fact * term

| FACT_COMP’ of fact_comp

and fact = FACT_VAL of fact_val

| FACT_COMP of fact_comp

and fact_val = INT of int

and fact_comp = FLIP

| PARENS of expr

Figure 2: Abstract syntax of arithmetic expressions

A.3 Implementation

Figure 2 displays the BNF of arithmetic expressions in Standard ML. As usual
with syntactic theories, we distinguish between values (trivial terms) and com-
putations (serious terms). An expression (expr) is thus trivial (expr val) or
serious (expr comp); a term (term) is trivial (term val) or serious (term comp);
and a factor (fact) is trivial (fact val) or serious (fact comp). The only val-
ues are integers, hence values are defined with the hierarchy of types expr val,
term val, fact val, and int. Computations are similarly embedded, hence the
hierarchy of types expr comp, term comp, and fact comp.

Figure 3 displays the evaluation contexts and Figure 4, the corresponding
plug functions. Figure 5 displays the implementation of redexes and the result
of decomposition, and Figure 6, the corresponding decomposition functions.

23

datatype expr_evcont = EEC0

| EEC1 of term_val * expr_evcont

| EEC2 of expr * expr * expr_evcont

| EEC3 of fact_evcont

and term_evcont = TEC1 of expr * expr_evcont

| TEC2 of fact_val * term_evcont

| TEC3 of expr_evcont

and fact_evcont = FEC1 of term * term_evcont

| FEC2 of term_evcont

Figure 3: Evaluation contexts for arithmetic expressions

(* plug_expr : expr * expr_evcont -> expr *)

(* plug_term : term * term_evcont -> expr *)

(* plug_fact : fact * fact_evcont -> expr *)

fun

plug_expr (e, EEC0)

= e

| plug_expr (e, EEC1 (tt, eec))

= plug_expr (EXPR_COMP (ADD (TERM_VAL tt, e)), eec)

| plug_expr (e, EEC2 (e1, e2, eec))

= plug_expr (EXPR_COMP (IFZ (e, e1, e2)), eec)

| plug_expr (e, EEC3 fec)

= plug_fact (FACT_COMP (PARENS e), fec)

and

plug_term (t, TEC1 (e, eec))

= plug_expr (EXPR_COMP (ADD (t, e)), eec)

| plug_term (t, TEC2 (tf, tec))

= plug_term (TERM_COMP (MUL (FACT_VAL tf, t)), tec)

| plug_term (TERM_VAL tt, TEC3 eec)

= plug_expr (EXPR_VAL (TERM_VAL’ tt), eec)

| plug_term (TERM_COMP st, TEC3 eec)

= plug_expr (EXPR_COMP (TERM_COMP’ st), eec)

and

plug_fact (f, FEC1 (t, tec))

= plug_term (TERM_COMP (MUL (f, t)), tec)

| plug_fact (FACT_VAL tf, FEC2 tec)

= plug_term (TERM_VAL (FACT_VAL’ tf), tec)

| plug_fact (FACT_COMP sf, FEC2 tec)

= plug_term (TERM_COMP (FACT_COMP’ sf), tec)

Figure 4: Plug functions for arithmetic expressions

24

datatype expr_redex = ADD_REDEX of term_val * expr_val

| IFZ_REDEX of expr_val * expr * expr

datatype term_redex = MUL_REDEX of fact_val * term_val

datatype fact_redex = FLIP_REDEX

| PARENS_REDEX of expr_val

datatype decomposed = VALUE of expr_val

| EXPR_DECOMPOSITION of expr_evcont * expr_redex

| TERM_DECOMPOSITION of term_evcont * term_redex

| FACT_DECOMPOSITION of fact_evcont * fact_redex

Figure 5: Redexes and the result of decomposition for arithmetic expressions

25

(* decompose_expr : expr -> decomposed *)

(* decompose_expr_comp : expr_comp * expr_evcont -> decomposed *)

(* decompose_term_comp : term_comp * term_evcont -> decomposed *)

(* decompose_fact_comp : fact_comp * fact_evcont -> decomposed *)

fun

decompose_expr (EXPR_VAL te)

= VALUE te

| decompose_expr (EXPR_COMP se)

= decompose_expr_comp (se, EEC0)

and

decompose_expr_comp (ADD (TERM_VAL tt, EXPR_VAL te), eec)

= EXPR_DECOMPOSITION (eec, ADD_REDEX (tt, te))

| decompose_expr_comp (ADD (TERM_VAL tt, EXPR_COMP se), eec)

= decompose_expr_comp (se, EEC1 (tt, eec))

| decompose_expr_comp (ADD (TERM_COMP st, e), eec)

= decompose_term_comp (st, TEC1 (e, eec))

| decompose_expr_comp (IFZ (EXPR_VAL te, e1, e2), eec)

= EXPR_DECOMPOSITION (eec, IFZ_REDEX (te, e1, e2))

| decompose_expr_comp (IFZ (EXPR_COMP se, e1, e2), eec)

= decompose_expr_comp (se, EEC2 (e1, e2, eec))

| decompose_expr_comp (TERM_COMP’ st, eec)

= decompose_term_comp (st, TEC3 eec)

and

decompose_term_comp (MUL (FACT_VAL tf, TERM_VAL tt), tec)

= TERM_DECOMPOSITION (tec, MUL_REDEX (tf, tt))

| decompose_term_comp (MUL (FACT_VAL tf, TERM_COMP st), tec)

= decompose_term_comp (st, TEC2 (tf, tec))

| decompose_term_comp (MUL (FACT_COMP sf, t), tec)

= decompose_fact_comp (sf, FEC1 (t, tec))

| decompose_term_comp (FACT_COMP’ sf, tec)

= decompose_fact_comp (sf, FEC2 tec)

and

decompose_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| decompose_fact_comp (PARENS (EXPR_VAL te), fec)

= FACT_DECOMPOSITION (fec, PARENS_REDEX te)

| decompose_fact_comp (PARENS (EXPR_COMP se), fec)

= decompose_expr_comp (se, EEC3 fec)

Figure 6: Decomposition of an arithmetic expression

26

(* eval : expr -> expr_val *)

(* eval’ : decomposed -> expr_val *)

fun

eval e

= eval’ (decompose_expr e)

and

eval’ (VALUE te)

= te

| eval’ (EXPR_DECOMPOSITION

(eec, ADD_REDEX (FACT_VAL’ (INT n1),

TERM_VAL’ (FACT_VAL’ (INT n2)))))

= eval (plug_expr

(EXPR_VAL (TERM_VAL’ (FACT_VAL’ (INT (n1 + n2)))), eec))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT 0)), e1, e2)))

= eval (plug_expr (e1, eec))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)), e1, e2)))

= eval (plug_expr (e2, eec))

| eval’ (TERM_DECOMPOSITION

(tec, MUL_REDEX (INT n1, FACT_VAL’ (INT n2))))

= eval (plug_term (TERM_VAL (FACT_VAL’ (INT (n1 * n2))), tec))

| eval’ (FACT_DECOMPOSITION

(fec, FLIP_REDEX))

= eval (plug_fact (FACT_VAL (INT (Oracle.flip ())), fec))

| eval’ (FACT_DECOMPOSITION

(fec, PARENS_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)))))

= eval (plug_fact (FACT_VAL (INT n), fec))

Figure 7: Evaluation of an arithmetic expression

Figure 7 displays the evaluation function, which attempts to decompose its
input expression into an evaluation context and a redex. If the expression is a
value (and thus cannot be decomposed), then the result is found. Otherwise, the
redex is contracted, the contractum is plugged into the context, and evaluation is
iterated. Contracting a redex amounts to adding two integers, selecting between
two expressions, multiplying two integers, calling an oracle (which is unspecified
here; our implementation is state-based), or skipping parentheses. No terms are
stuck.

A.4 Refocusing

We now construct the refocus functions. We start from the ML definition of the
grammar, in Figure 2, which fits the format expected for the construction.

Let us determine the reduction sequence of each syntactic construct.

27

The main syntactic constructs: Both addition and multiplication evaluate
their arguments from left to right. The conditional expression is special
in that it only evaluates its first argument. The oracle has no argument.
The parentheses have one argument and evaluate it. All of these syntactic
constructs create redexes.

The auxiliary syntactic constructs: The coercions between terms and ex-
pressions and between factors and expressions have one argument. This
argument is evaluated.

The refocus functions follow the grammatical structure of the source lan-
guage. Their skeleton is thus as follows.

fun refocus_expr (EXPR_VAL te, eec)

= refocus_expr_val (te, eec)

| refocus_expr (EXPR_COMP se, eec)

= refocus_expr_comp (se, eec)

and refocus_expr_val (te, eec)

= ...

and refocus_expr_comp (ADD (t, e), eec)

= ...

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= ...

| refocus_expr_comp (TERM_COMP’ st, eec)

= ...

and refocus_term (TERM_VAL tt, tec)

= refocus_term_val (tt, tec)

| refocus_term (TERM_COMP st, tec)

= refocus_term_comp (st, tec)

and refocus_term_val (tt, tec)

= ...

and refocus_term_comp (MUL (f, t), tec)

= ...

| refocus_term_comp (FACT_COMP’ sf, tec)

= ...

and refocus_fact (FACT_VAL tf, fec)

= refocus_fact_val (tf, fec)

| refocus_fact (FACT_COMP sf, fec)

= refocus_fact_comp (sf, fec)

and refocus_fact_val (tf, fec)

= ...

and refocus_fact_comp (FLIP, fec)

= ...

| refocus_fact_comp (PARENS e, fec)

= ...

In the rest of this section, we complete each missing case in this definition.

1. If a constructor needs to evaluate zero sub-terms, then the result of the
production is a value or a redex.

28

(a) The case of values is already taken care of because the grammar dif-
ferentiates between values and computations. All functions refocus x

call refocus x val if given a value, and call refocus x comp if given a
computation.

(b) If the result of a production is a redex, then we have found a de-
composition. Here, only the oracle fits the bill. We thus return a
decomposition.

refocus_fact_comp (FLIP, fec)

= FACT_DECOMP (fec, FLIP_REDEX)

2. If the constructor needs to evaluate more than zero sub-terms then the
first sub-expression must be evaluated.

refocus_expr_comp (ADD (t, e), eec)

= refocus_term (t, TEC1 (e, eec))

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= refocus_expr (e0, EEC2 (e1, e2, eec))

| refocus_expr_comp (TERM_COMP’ st, eec)

= refocus_term_comp (st, TEC3 eec)

refocus_term_comp (MUL (f, t), tec)

= refocus_fact (f, FEC1 (t, tec))

| refocus_term_comp (FACT_COMP’ sf, tec)

= refocus_fact_comp (sf, FEC2 tec)

| refocus_fact_comp (PARENS e, fec)

= refocus_expr (e, EEC3 fec)

3. Likewise, each refocus x val is defined by cases on the inner elementary
evaluation context.

refocus_expr_val (te, EEC0)

= ...

| refocus_expr_val (te, EEC1 (tt, eec))

= ...

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= ...

| refocus_expr_val (te, EEC3 fec)

= ...

refocus_term_val (tt, TEC1 (e, eec))

= ...

| refocus_term_val (tt, TEC2 (tf, tec))

= ...

| refocus_term_val (tt, TEC3 eec)

= ...

29

refocus_fact_val (tf, FEC1 (t, tec))

= ...

| refocus_fact_val (tf, FEC2 tec)

= ...

(a) If all the sub-terms needed by a constructor are evaluated and the
production constructs a value, we refocus on this value.

| refocus_term_val (tt, TEC3 eec)

= refocus_expr_val (TERM_VAL’ tt, eec)

| refocus_fact_val (tf, FEC2 tec)

= refocus_term_val (FACT_VAL’ tf, tec)

(b) If all the sub-terms needed by a constructor are evaluated and the
production constructs a redex, we have found a decomposition.

| refocus_expr_val (te, EEC1 (tt, eec))

= EXPR_DECOMP (eec, ADD_REDEX (tt, te))

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= EXPR_DECOMP (eec, IFZ_REDEX (te, e1, e2))

| refocus_expr_val (te, EEC3 fec)

= FACT_DECOMP (fec, PARENS_REDEX te)

| refocus_term_val (tt, TEC2 (tf, tec))

= TERM_DECOMP (tec, MUL_REDEX (tf, tt))

(c) If the constructor needs to evaluate more sub-terms, we refocus on
the next sub-expression to be reduced.

refocus_term_val (tt, TEC1 (e, eec))

= refocus_expr (e, EEC1 (tt, eec))

refocus_fact_val (tf, FEC1 (t, tec))

= refocus_term (t, TEC2 (tf, tec))

4. Finally, we turn to the empty context:

refocus_expr_val (te, EEC0)

= VALUE te

The refocus functions are now complete (see Figure 8).
The main evaluation function is displayed in Figure 9. Rather than decom-

posing the result of the plug functions, eval’ refocuses from a contractum to
the next decomposition and iterates.

30

fun refocus_expr (EXPR_VAL te, eec)

= refocus_expr_val (te, eec)

| refocus_expr (EXPR_COMP se, eec)

= refocus_expr_comp (se, eec)

and refocus_expr_val (te, EEC0)

= VALUE te

| refocus_expr_val (te, EEC1 (tt, eec))

= EXPR_DECOMPOSITION (eec, ADD_REDEX (tt, te))

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= EXPR_DECOMPOSITION (eec, IFZ_REDEX (te, e1, e2))

| refocus_expr_val (te, EEC3 fec)

= FACT_DECOMPOSITION (fec, PARENS_REDEX te)

and refocus_expr_comp (ADD (t, e), eec)

= refocus_term (t, TEC1 (e, eec))

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= refocus_expr (e0, EEC2 (e1, e2, eec))

| refocus_expr_comp (TERM_COMP’ st, eec)

= refocus_term_comp (st, TEC3 eec)

and refocus_term (TERM_VAL tt, tec)

= refocus_term_val (tt, tec)

| refocus_term (TERM_COMP st, tec)

= refocus_term_comp (st, tec)

and refocus_term_val (tt, TEC1 (e, eec))

= refocus_expr (e, EEC1 (tt, eec))

| refocus_term_val (tt, TEC2 (tf, tec))

= TERM_DECOMPOSITION (tec, MUL_REDEX (tf, tt))

| refocus_term_val (tt, TEC3 eec)

= refocus_expr_val (TERM_VAL’ tt, eec)

and refocus_term_comp (MUL (f, t), tec)

= refocus_fact (f, FEC1 (t, tec))

| refocus_term_comp (FACT_COMP’ sf, tec)

= refocus_fact_comp (sf, FEC2 tec)

and refocus_fact (FACT_VAL tf, fec)

= refocus_fact_val (tf, fec)

| refocus_fact (FACT_COMP sf, fec)

= refocus_fact_comp (sf, fec)

and refocus_fact_val (tf, FEC1 (t, tec))

= refocus_term (t, TEC2 (tf, tec))

| refocus_fact_val (tf, FEC2 tec)

= refocus_term_val (FACT_VAL’ tf, tec)

and refocus_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| refocus_fact_comp (PARENS e, fec)

= refocus_expr (e, EEC3 fec)

Figure 8: Refocusing over an arithmetic expression

31

(* refocus_expr : expr * expr_evcont -> decomposed *)

(* refocus_expr_val : expr_val * expr_evcont -> decomposed *)

(* refocus_expr_comp : expr_comp * expr_evcont -> decomposed *)

(* refocus_term : term * term_evcont -> decomposed *)

(* refocus_term_val : term_val * term_evcont -> decomposed *)

(* refocus_term_comp : term_comp * term_evcont -> decomposed *)

(* refocus_fact : fact * fact_evcont -> decomposed *)

(* refocus_fact_val : fact_val * fact_evcont -> decomposed *)

(* refocus_fact_comp : fact_comp * fact_evcont -> decomposed *)

(* eval : expr -> expr_val *)

(* eval’ : decomposed -> expr_val *)

fun

eval e

= eval’ (refocus_expr (e, EEC0))

and

eval’ (VALUE te)

= te

| eval’ (EXPR_DECOMPOSITION

(eec, ADD_REDEX (FACT_VAL’ (INT n1),

TERM_VAL’ (FACT_VAL’ (INT n2)))))

= eval’ (refocus_expr

(EXPR_VAL (TERM_VAL’ (FACT_VAL’ (INT (n1 + n2)))), eec))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT 0)), e1, e2)))

= eval’ (refocus_expr (e1, eec))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)), e1, e2)))

= eval’ (refocus_expr (e2, eec))

| eval’ (TERM_DECOMPOSITION

(tec, MUL_REDEX (INT n1, FACT_VAL’ (INT n2))))

= eval’ (refocus_term (TERM_VAL (FACT_VAL’ (INT (n1 * n2))), tec))

| eval’ (FACT_DECOMPOSITION

(fec, FLIP_REDEX))

= eval’ (refocus_fact (FACT_VAL (INT (Oracle.flip ())), fec))

| eval’ (FACT_DECOMPOSITION

(fec, PARENS_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)))))

= eval’ (refocus_fact (FACT_VAL (INT n), fec))

Figure 9: Evaluation of an arithmetic expression, refocused

32

A.5 Summary

We have considered arithmetic expressions with precedence and we have spec-
ified their meaning with a syntactic theory. We then applied the algorithm of
Section 3.5 to write refocusing functions that map an evaluation context and a
contractum into either a value or a decomposition into an evaluation context
and a new redex. The result is a compositional evaluator that operates in one
pass over its input.

References

[1] Rod M. Burstall and John Darlington. A transformational system for de-
veloping recursive programs. Journal of ACM, 24(1):44–67, 1977.

[2] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, 1992.

[3] Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes.
In Amr Sabry, editor, Proceedings of the Third ACM SIGPLAN Workshop
on Continuations, Technical report 545, Computer Science Department,
Indiana University, pages 35–39, London, England, January 2001. Also
available as the technical report BRICS RS-00-35.

[4] Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. In
Mark van den Brand and Rakesh M. Verma, editors, Informal proceedings
of the Second International Workshop on Rule-Based Programming (RULE
2001), volume 59.4 of Electronic Notes in Theoretical Computer Science,
Firenze, Italy, September 2001. Extended version available as the technical
report BRICS RS-02-04.

[5] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Department of Computer Science, Indiana University, Bloom-
ington, Indiana, August 1987.

[6] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi. Unpublished lecture notes. http://www.ccs.neu.edu/
home/matthias/3810-w02/readings.html, 1989-2001.

[7] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD
machine, and the λ-calculus. In Martin Wirsing, editor, Formal Description
of Programming Concepts III, pages 193–217. Elsevier Science Publishers
B.V. (North-Holland), Amsterdam, 1986.

[8] John Greiner. Semantics-based parallel cost models and their use in prov-
ably efficient implementations. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, April 1997. Techni-
cal Report CMU-CS-97-113.

33

[9] Gilles Kahn. Natural semantics. Technical Report 601, INRIA, Sophia
Antipolis, France, February 1987.

[10] Lasse R. Nielsen. A study of defunctionalization and continuation-passing
style. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Den-
mark, July 2001. BRICS DS-01-7.

[11] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[12] Amr Sabry and Matthias Felleisen. Reasoning about programs in continu-
ation-passing style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

[13] Joseph Stoy. Some mathematical aspects of functional programming. In
John Darlington, Peter Henderson, and David A. Turner, editors, Func-
tional Programming and its Applications. Cambridge University Press,
1982.

[14] Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, 1989.

[15] Philip Wadler. The essence of functional programming (invited talk). In
Andrew W. Appel, editor, Proceedings of the Nineteenth Annual ACM Sym-
posium on Principles of Programming Languages, pages 1–14, Albuquerque,
New Mexico, January 1992. ACM Press.

[16] Mitchell Wand. Correctness of procedure representations in higher-order
assembly language. In Stephen Brookes, Michael Main, Austin Melton,
Michael Mislove, and David Schmidt, editors, Proceedings of the 7th In-
ternational Conference on Mathematical Foundations of Programming Se-
mantics, number 598 in Lecture Notes in Computer Science, pages 294–311,
Pittsburgh, Pennsylvania, March 1991. Springer-Verlag.

[17] Yong Xiao, Zena M. Ariola, and Michel Mauny. From syntactic theo-
ries to interpreters: A specification language and its compilation. In
Nachum Dershowitz and Claude Kirchner, editors, Informal proceedings
of the First International Workshop on Rule-Based Programming (RULE
2000), Montréal, Canada, September 2000. Available online at http:
//www.loria.fr/~ckirchne/=rule2000/proceedings/.

[18] Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to
interpreters: Automating proofs of decomposition lemma. Higher-Order
and Symbolic Computation, 14(4):387–409, 2001.

34

Recent BRICS Report Series Publications

RS-02-4 Olivier Danvy and Lasse R. Nielsen.Syntactic Theories in Prac-
tice. January 2002. 34 pp. This revised report supersedes the
earlier BRICS report RS-01-31.

RS-02-3 Olivier Danvy and Lasse R. Nielsen.On One-Pass CPS Trans-
formations. January 2002. 18 pp.

RS-02-2 Lasse R. Nielsen.A Simple Correctness Proof of the Direct-Style
Transformation. January 2002.

RS-02-1 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
The <bigwig> Project. January 2002. 36 pp. This revised
report supersedes the earlier BRICS report RS-00-42.

RS-01-55 Daniel Damian and Olivier Danvy.A Simple CPS Transforma-
tion of Control-Flow Information. December 2001.

RS-01-54 Daniel Damian and Olivier Danvy.Syntactic Accidents in Pro-
gram Analysis: On the Impact of the CPS Transformation. De-
cember 2001. 41 pp. To appear in theJournal of Functional
Programming. This report supersedes the earlier BRICS re-
port RS-00-15.

RS-01-53 Zolt́an Ésik and Masami Ito. Temporal Logic with Cyclic
Counting and the Degree of Aperiodicity of Finite Automata. De-
cember 2001. 31 pp.

RS-01-52 Jens Groth.Extracting Witnesses from Proofs of Knowledge in
the Random Oracle Model. December 2001. 23 pp.

RS-01-51 Ulrich Kohlenbach. On Weak Markov’s Principle. December
2001. 10 pp.

RS-01-50 Jǐr ı́ Srba. Note on the Tableau Technique for Commutative
Transition Systems. December 2001. 19 pp. To appear in
Nielsen and Engberg, editors,Foundations of Software Sci-
ence and Computation Structures, FoSSaCS ’02 Proceedings,
LNCS 2303, 2002.

RS-01-49 Olivier Danvy and Lasse R. Nielsen.A First-Order One-Pass
CPS Transformation. December 2001. 21 pp. Extended version
of a paper to appear in Nielsen and Engberg, editors,Foun-
dations of Software Science and Computation Structures, FoS-
SaCS ’02 Proceedings, LNCS 2303, 2002.

