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Note on the Tableau Technique for

Commutative Transition Systems?

Jǐŕı Srba??

BRICS? ? ?

Department of Computer Science
University of Aarhus

Ny Munkegade bldg. 540, 8000 Aarhus C, Denmark
srba@brics.dk

Abstract. We define a class of transition systems called effective com-
mutative transition systems (ECTS) and show, by generalising a tableau-
based proof for BPP, that strong bisimilarity between any two states of
such a transition system is decidable. It gives a general technique for
extending decidability borders of strong bisimilarity for a wide class of
infinite-state transition systems. This is demonstrated for several process
formalisms, namely BPP process algebra, lossy BPP processes, BPP sys-
tems with interrupt and timed-arc BPP nets.

1 Introduction

Semantics of various formalisms for description of concurrent processes
like process algebra, Petri nets, pushdown systems and many others is
usually given in terms of labelled transition systems. This provides a
common ground for studying such systems, and the usually considered
problems as model checking and equivalence checking (see e.g. [BCMS01])
can be defined purely in terms of labelled transition systems. In this
paper we focus on the equivalence checking problem and show a general
approach for extending known decidability borders of strong bisimilarity
for commutative-based process formalisms. In particular, we examine the
class of transition systems generated by algebras with the operator of
parallel composition and we discuss its extensions with lossiness, interrupt
and with time features.

It is known that strong bisimilarity is undecidable for a typical rep-
resentative of fully parallel models — Petri nets [Jan95]. Nevertheless, in
[Chr93,CHM93] Christensen, Hirshfeld and Moller proved using a tableau
? Full version of [Srb02a].
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technique, that bisimilarity is decidable for an important fragment of
Petri nets called communication free Petri nets. The complexity of this
algorithm is still open — no primitive recursive upper bound is known.
PSPACE-hardness of the problem was recently shown in [Srb02b]. The
class of transition systems definable by communication free Petri nets can
be equivalently described in terms of process algebra with a commuta-
tive operator for parallel composition and recursion. It is this formalism,
usually called Basic Parallel Processes (BPP), that is used in the orig-
inal tableau-based proof in [CHM93]. For an overview on the tableau
technique consult e.g. [JM99].

We abstract from the specific BPP syntax and generalise the proof
for a class of transition systems called effective commutative transition
systems (ECTS). We give six simple conditions on a transition system
to be an ECTS and if all of them are satisfied, bisimilarity between any
two states of the transition system is decidable. There is no need to know
the syntactic description of the system. Moreover, the generalisation is
achieved in several ways: (i) states can be tuples of bounded multisets
of natural numbers and not only tuples of natural numbers, (ii) we do
not insist on a specific computation of successors of a given state — any
effectively computable and finite set of successors is acceptable, and (iii)
an auxiliary equivalence relation on states is introduced in order to check
invariants for pairs in a bisimulation relation.

Semantics of many formalisms can be defined as an ECTS and this
yields immediately decidability of bisimilarity. We demonstrate this on
four examples — BPP process algebra, lossy BPP processes, BPP sys-
tems with interrupt and timed-arc BPP nets — thus extending in sev-
eral ways the known decidability border which lies somewhere between
BPP systems and state-extended BPP systems (state-extended BPP sys-
tems are a strict subclass of Petri nets where bisimilarity is still undecid-
able [BCMS01,JM99]).

2 General Method

Let N0 = {0, 1, . . .} be the set of natural numbers. A multiset of N0 is
a function M : N0 → N0. Let i ∈ N0, then M(i) denotes the number of
occurrences of i in the multiset M . The empty multiset ∅ is a function
such that ∅(i) = 0 for all i ∈ N0. The multiset union of two multisets M1

and M2 is defined by (M1]M2)(i) = M1(i)+M2(i) for all i ∈ N0. By B∞
we denote the set of all multisets of N0. Let m ∈ N0. We define a set Bm

of all multisets of {0, 1, . . . ,m}, i.e., M ∈ Bm iff M ∈ B∞ and M(i) = 0
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for all i ∈ N0 such that i > m. We call a multiset M ∈ B∞ finite if there
is some m ∈ N0 such that M ∈ Bm. For finite multisets we sometimes use
an alternative set-like notation: e.g. a multiset {0, 1, 1, 4, 4, 4} is the same
as a multiset M such that M(0) = 1, M(1) = 2, M(4) = 3 and M(i) = 0
for i ∈ N0 r {0, 1, 4}.

Let M,N ∈ Bm. We write M ≺` N iff there is k, 0 ≤ k ≤ m, such
that M(k) < N(k) and M(i) = N(i) for all i, 0 ≤ i < k. Let M,N ∈ Bm

then M 6= N implies that either M ≺` N or N ≺` M . We write M �c N
iff M(i) ≤ N(i) for every i, 1 ≤ i ≤ m, i.e., iff there is M ′ ∈ Bm such
that N = M ] M ′.

Let m,n ∈ N0 and n > 0. We define a structure S = (Bn
m,⊕, ∅n) where

Bn
m is a set of n-tuples of elements from Bm. Let α = (M1,M2, . . . ,Mn) ∈

Bn
m and β = (N1,N2, . . . ,Nn) ∈ Bn

m, then α ⊕ β = (M1 ] N1,M2 ]
N2, . . . ,Mn ] Nn). Of course, α ⊕ β ∈ Bn

m. The structure S is a commu-
tative monoid. If α ∈ Bn

m then αi, 1 ≤ i ≤ n, is the i’th coordinate of α.
We introduce two orderings on Bn

m. Let α, β ∈ Bn
m, then α <` β iff there

is k, 1 ≤ k ≤ n, such that αk ≺` βk and αi = βi for every i, 1 ≤ i < k;
and α ≤c β iff αi �c βi for every i, 1 ≤ i ≤ n.

Observe that <` is a well-founded ordering (there is no infinite se-
quence α1, α2, . . . such that α1 >` α2 >` . . .) since ≺` is well-founded.
Moreover for any α 6= β either α <` β or β <` α. Also notice that α ≤c β
iff there is α′ ∈ Bn

m such that β = α ⊕ α′. We write α <c β iff α ≤c β
and α 6= β. The following lemma is a simple generalisation of Dickson’s
Lemma [Dic13].

Lemma 1. Every infinite sequence of elements from Bn
m has an infinite

nondecreasing subsequence w.r.t. ≤c.

A labelled transition system is a 4-tuple (S,Act,−→, Eqv) where S is a set
of states (or processes), Act is a set of labels (or actions), −→⊆ S×Act×S
is a transition relation, written α

a−→ β, for (α, a, β) ∈−→, and Eqv ⊆
S × S is an equivalence relation on states.

Our definition of labelled transition systems is a generalisation of
labelled transition systems with final states — see an overview paper
[BCMS01]. Let F ⊆ S be a set of final states. In order to recover the
definition from [BCMS01] we define (α, β) ∈ Eqv iff α ∈ F and β ∈ F , or
α 6∈ F and β 6∈ F .

Let α ∈ S. We write α 6−→ whenever there is no β ∈ S and a ∈ Act
such that α

a−→ β. As usual we extend the transition relation to the
elements of Act∗. We define a norm of α ∈ S by N (α) = min{|w| | w ∈
Act∗ such that ∃β ∈ S. α

w−→ β 6−→}. By definition min ∅ = ∞.
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Let T = (S,Act,−→, Eqv) be a labelled transition system. A binary
relation R ⊆ S×S is a bisimulation iff whenever (α, β) ∈ R then for each
a ∈ Act: if α

a−→ α′ then ∃β′ ∈ S such that β
a−→ β′ and (α′, β′) ∈ R;

if β
a−→ β′ then ∃α′ ∈ S such that α

a−→ α′ and (α′, β′) ∈ R; and
(α, β) ∈ Eqv.

States α, β ∈ S are bisimulation equivalent or bisimilar in a transition
system T , written α ∼T β, iff (α, β) ∈ R for some bisimulation R. If T is
clear from the context, we write only α ∼ β instead of α ∼T β.

Remark 1. Sometimes the bisimilarity checking problem is formulated in
this way: we are given a pair of labelled transition systems T1 and T2 with
states α1 from T1 and α2 from T2, and the question α1 ∼ α2 is asked. In
this case, we can consider a disjoint union of T1 and T2 (i.e. the sets of
states of T1 and T2 are disjoint) as a new transition system T and ask the
question α1 ∼T α2.

Let (S,Act,−→, Eqv) be a labelled transition system. The stratified bisim-
ulation relations [Mil89] ∼k⊆ S × S for k ∈ N0 are defined as follows:

– α ∼0 β for all α, β ∈ S such that (α, β) ∈ Eqv, i.e., ∼0= Eqv
– α ∼k+1 β iff for each a ∈ Act: if α

a−→ α′ then ∃β′ ∈ S such that
β

a−→ β′ and α′ ∼k β′; if β
a−→ β′ then ∃α′ ∈ S such that α

a−→ α′

and α′ ∼k β′; and (α, β) ∈ Eqv.

Given a labelled transition system T = (S,Act,−→, Eqv) we define a set
next(α, a) = {β ∈ S | α

a−→ β} for α ∈ S and a ∈ Act. We also define
next(α, ∗) =

⋃
a∈Act next(α, a). The system T is image-finite iff the set

next(α, a) is finite for every α ∈ S and a ∈ Act. The following lemma is
a standard one.

Lemma 2. Let (S,Act,−→, Eqv) be an image-finite labelled transition
system and α, β ∈ S. Then α ∼ β iff α ∼k β for all k ∈ N0.

Let us introduce the following class of labelled transition systems.

Definition 1 (Effective Commutative Transition System). A la-
belled transition system T = (S,Act,−→, Eqv) is an effective commuta-
tive transition system (ECTS) iff there exist n,m ∈ N0, n > 0 such that
the following conditions are satisfied:

(1) S = Bn
m,

(2) Act is a finite set,
(3) given α, β ∈ S it is decidable whether (α, β) ∈ Eqv,
(4) next(α, a) is effectively constructible for every α ∈ Bn

m and a ∈ Act,
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(5) T is image-finite,
(6) if α ∼k β then (α⊕ γ) ∼k (β ⊕ γ) for every α, β, γ ∈ Bn

m and k ∈ N0.

Let us call the elements of Bn
m processes. Since any ECTS is image-finite

(5), the fact that ∼k are congruences (6) together with Lemma 2 implies:
(6’) if α ∼ β then (α ⊕ γ) ∼ (β ⊕ γ) for every α, β, γ ∈ Bn

m.

Theorem 1. Let T = (Bn
m,Act,−→, Eqv) be an ECTS. Given A,B ∈

Bn
m, it is decidable whether A ∼ B.

Proof. The proof is by tableau-technique and it is a generalisation of the
tableau-based proof used by Christensen, Hirshfeld and Moller in order
to demonstrate decidability of bisimilarity for BPP [Chr93,CHM93].

A tableau for (A,B) ∈ B2n
m is a maximal proof tree rooted with (A,B)

and built according to the following rules. Let (α, β) be a node in the tree.
A node (α, β) is either terminal (leaf) or nonterminal. The following nodes
are terminal:

– (α,α) is a successful leaf for any α ∈ Bn
m (note that always (α,α) ∈

Eqv),
– (α, β) is a successful leaf if next(α, ∗)∪next(β, ∗) = ∅ and (α, β) ∈ Eqv,
– (α, β) is an unsuccessful leaf if for some a ∈ Act it is the case that

next(α, a)∪next(β, a) 6= ∅, and either next(α, a) = ∅ or next(β, a) = ∅,
– (α, β) is an unsuccessful leaf if (α, β) 6∈ Eqv.

We say that a node is an ancestor of (α, β) if it is on the path from the
root to (α, β) and at least one application of the rule EXPAND (defined
later) separates them. If (α, β) is not a leaf then we reduce it using the
following RED rules as long as possible.

REDL
(α, β)

(γ ⊕ ω, β)
if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such
that γ <` δ and α = δ ⊕ ω for some ω ∈ Bn

m

REDR
(α, β)

(α, γ ⊕ ω)
if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such
that γ <` δ and β = δ ⊕ ω for some ω ∈ Bn

m

If no other reduction RED is applicable and the resulting node is not
a leaf, we apply the rule EXPAND for a set of relations Sa, a ∈ Act,
where Sa ⊆ next(α, a) × next(β, a) such that ∀α′ ∈ next(α, a).∃β′ ∈
next(β, a). (α′, β′) ∈ Sa and ∀β′ ∈ next(β, a).∃α′ ∈ next(α, a). (α′, β′) ∈
Sa.

EXPAND
(α, β)

{(α′, β′) | a ∈ Act ∧ (α′, β′) ∈ Sa}
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The set notation used in the rule EXPAND means that each element
(α′, β′) in the conclusion of the rule becomes a new child in the proof
tree. Now, we start again applying the RED-rules to every such child
(which is not a leaf) as long as possible. Note that reduction rules are
applicable to a node iff the node is not terminal (leaf).

Lemma 3. Any tableau for (A,B) is finite and there are only finitely
many tableaux.

Proof. Observe that any tableau for (A,B) is finitely branching because
of the assumption (5) and the condition that Act is finite (2), which im-
plies that for a given a ∈ Act any relation Sa is finite and there are
finitely many such relations. Should the tableau be infinite, there is an
infinite branch, which gives an infinite sequence of vectors from B2n

m . Since
the rules RED can be used only finitely many times in a sequence (they
decrease the <` order, which is well founded), there must be an infinite
subsequence of vectors on which the rule EXPAND was applied. Using
Lemma 1, this sequence must contain an infinite nondecreasing subse-
quence p1 ≤c p2 ≤c . . .. However, the rule EXPAND cannot be applied
on p2 since one of the rules RED is applicable. This is a contradiction.

Since there are only finitely many relations Sa for an a ∈ Act available
for the EXPAND rule and finitely many possibilities for an application of
the RED rule, there are always finitely many possibilities how to extend
already existing partial tableau. Suppose that there are infinitely many
tableaux starting from (A,B). Then there must be a tableau for (A,B)
with an infinite branch, which contradicts that every tableau is finite. ut

We call a tableau for (A,B) successful if it is maximal (no further rules
are applicable) and all its leaves are successful.

Lemma 4 (Completeness). If A ∼ B then there is a successful tableau
for (A,B).

Proof. We construct a tableau from the root (A,B) such that every node
(α, β) in the tableau satisfies α ∼ β. Hence this tableau cannot contain
any unsuccessful leaf and it must be finite because of Lemma 3. Suppose
that (α, β) is already a node in the tableau such that α ∼ β and consider
the rule REDL applied on (α, β). We may assume that γ ∼ δ, which means
using (6’) that (γ ⊕ ω) ∼ (δ ⊕ ω) = α ∼ β. Hence (γ ⊕ ω) ∼ β. Similarly
for REDR. From the definition of ∼ follows that the rule EXPAND is
also forward sound, i.e., if α ∼ β then we can choose for every a ∈ Act a
relation Sa such that (α′, β′) ∈ Sa implies that α′ ∼ β′. ut
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Lemma 5 (Soundness). If there is a successful tableau for (A,B) then
A ∼ B.

Proof. For the sake of contradiction assume that there is a successful
tableau for (A,B) and A 6∼ B. We show that we can construct a path
from the root (A,B) to some leaf, such that for any pair (α, β) on this
path α 6∼ β.

If A 6∼ B then using Lemma 2 there is a minimal k such that A 6∼k B.
Notice that if α 6∼k β such that k is minimal and we apply the rule
EXPAND, then at least one of its children (α′, β′) satisfies that α′ 6∼k−1

β′. We choose such a child to extend our path from the root.
If we apply REDL on (α, β) where α 6∼k β and k is minimal, then the

corresponding ancestor (γ, δ) is separated by at least one application of
EXPAND and so γ ∼k δ. This implies that (γ ⊕ω) 6∼k β, otherwise using
the assumption (6) we get that α = (δ ⊕ ω) ∼k (γ ⊕ ω) ∼k β, which is a
contradiction with α 6∼k β. The same is true for REDR. Thus there must
be a path from the root to some leaf such that for any pair (α, β) on this
path α 6∼ β. This is a contradiction with the fact that the path contains
a successful leaf. ut
We have proved that it is decidable whether A ∼ B, since it is the case
iff there is a successful tableau for (A,B). There are only finitely many
tableaux and all of them are finite, moreover the conditions (3) and (4)
ensure that they are effectively constructible. ut

3 Applications

In this section we consider several specific classes of commutative tran-
sition systems. We study in particular BPP and lossy BPP processes,
interrupt BPP systems and timed-arc BPP nets.

3.1 BPP and deadlock-sensitive BPP

The class of Basic Parallel Processes (BPP) [Chr93] is a natural subclass
of PA (Process Algebra [BW90]) where only the operator of parallel com-
position is used. It is a well known fact that bisimilarity is decidable for
BPP [Chr93,CHM93]. We give the definition of BPP by means of process
rewrite systems [May00a], which is more convenient for our purposes than
the usual one by process equations used by Milner [Mil89]. We remind the
reader of the fact that these two definitions are equivalent in the sense
that they define the same class of processes up to bisimilarity.
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(X
a−→ E) ∈ ∆

X
a−→ E

E
a−→ E′

E||F a−→ E′||F

Fig. 1. SOS rules for BPP

Let Act and Var be countable sets of actions and process constants
such that Act ∩ Var = ∅. We define a class of process expressions EVar

over Var by the following abstract syntax E ::= ε | X | E||E, where ε
is the empty process and X ranges over Var. The operator ‘||’ stands for a
parallel composition. We do not distinguish between process expressions
related by a structural congruence ≡ ⊆ EVar×EVar, which is the smallest
congruence over process expressions such that the following laws hold:

– ‘||’ is associative and commutative, and
– ‘ε’ is a unit for ‘||’.

A BPP process rewrite system (PRS) [May00a] is a finite set ∆ ⊆
Var × Act × EVar of rules, written X

a−→ E for (X,a,E) ∈ ∆. Let
us denote the set of actions and process constants that appear in ∆ as
Act(∆) resp. Var(∆) (note that these sets are finite).

A process rewrite system ∆ determines a labelled transition system
T (∆) = (EVar(∆)/≡,Act(∆),−→, Eqv) where states are ≡-equivalence
classes of process expressions over Var(∆), Act(∆) is the set of labels,
the transition relation −→ is the least relation satisfying the SOS rules in
Figure 1 (recall that ‘||’ is commutative and in what follows we often abuse
the notation and write only E instead of [E]≡, i.e., the equivalence class
represented by E). There are two possibilities for defining the equivalence
relation Eqv. In the usual setting Eqv = (EVar(∆)/≡) × (EVar(∆)/≡) is
the universal relation (thus it is in fact unused) and we call this class
BPP. Another possibility is to define Eqv by

Eqv = {(E,F ) ∈ (EVar(∆)/≡) × (EVar(∆)/≡) | E = [ε]≡ iff F = [ε]≡}.

We call this class deadlock-sensitive BPP. A study of strict (deadlock-
sensitive) and nonstrict (deadlock-nonsensitive) bisimilarity for a sequen-
tial analogue of BPP called Basic Process Algebra (BPA) is provided
in [Srb01].

We show that given a BPP system ∆, we can interpret its seman-
tics as a commutative transition system such that states are elements
of Bn−1 = B1

n−1 where n = |Var(∆)|. Because of the structural congru-
ence ≡, any process expression E over Var(∆) can be represented by
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a vector of n natural numbers. Suppose a fixed ordering on Var(∆) =
{X0,X1, . . . ,Xn−1}. Then the corresponding vector contains on i’th co-
ordinate the number of occurrences of the variable Xi in E. Formally, we
define a mapping φ : EVar(∆) → B1

n−1 by

φ(ε) = ∅
φ(Xi) = M such that M(i) = 1 and M(j) = 0 for j 6= i

φ(E1||E2) = φ(E1) ⊕ φ(E2).

The following proposition is an easy observation.

Proposition 1. Let E,F ∈ EVar(∆). Then E ≡ F iff φ(E) = φ(F ).

Hence any rule (X a−→ E) ∈ ∆ can be represented by φ(X) a−→ φ(E).
The system ∆, where n = |Var(∆)|, generates a commutative labelled
transition system T c(∆) = (B1

n−1,Act(∆),−→, Eqv), where α
a−→ β iff

there exists a rule (X a−→ E) ∈ ∆ such that α = φ(X) ⊕ ω and β =
φ(E) ⊕ ω for some ω ∈ B1

n−1. The relation Eqv for BPP and deadlock-
sensitive BPP is defined in the same fashion as above.

Example 1. Let us consider ∆ =

{X0
a−→ X0||X1||X2||X1, X0

a−→ ε, X1
b−→ ε, X2

c−→ ε}.
Then n = 3 and e.g. φ(X0) = {0}, φ(X0||X1||X2||X1) = {0, 1, 1, 2} and
φ(ε) = ∅. A sequence of transitions

X0
a−→ X0||X1||X2||X1

a−→ X0||X1||X2||X1||X1||X2||X1
b−→

X0||X2||X1||X1||X2||X1
c−→ X0||X1||X1||X2||X1

has a straightforward analogue in B1
2:

{0} a−→ {0, 1, 1, 2} a−→ {0, 1, 1, 1, 1, 2, 2} b−→
{0, 1, 1, 1, 2, 2} c−→ {0, 1, 1, 1, 2}.

Obviously, T (∆) and T c(∆) are isomorphic labelled transition sys-
tems.

Theorem 2. Given a BPP1 process rewrite system ∆ (or a deadlock-
sensitive BPP process rewrite system ∆) and a pair of processes P1, P2 ∈
EVar(∆)/≡, it is decidable whether P1 ∼T (∆) P2.

Proof. It can be easily verified that T c(∆) defined above is an ECTS.
Then we use Theorem 1. ut
1 For BPP this is already proved in [Chr93,CHM93]. We repeat the theorem in order

to demonstrate that our technique is general enough to cover already known results.
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(X
a−→ E) ∈ ∆

X
a−→ E

E
a−→ E′

E||F a−→ E′||F E
drop−→ F

if ∃F ′6=ε s.t. E = F ||F ′

Fig. 2. SOS rules for lossy BPP

3.2 Lossy BPP

The notion of unreliability, in particular lossiness, has been intensively
studied with a number of interesting results. Let us mention e.g. mod-
els like Lossy Channel Systems [AJ96] or Lossy Vector Addition Sys-
tems [BM99,May00b]. Lossy BPP systems were studied in [May00b] in
the context of model checking problems. In lossy BPP we allow process
constants disappear spontaneously at any time. We give a formal defini-
tion of lossy BPP systems first.

A lossy BPP process rewrite system is a finite set ∆ ⊆ Var×Act×EVar

of rules, written X
a−→ E for (X,a,E) ∈ ∆.

A process rewrite system ∆ determines a labelled transition system
T (∆) = (EVar(∆)/≡,Act(∆) ∪ {drop},−→, Eqv) where states are ≡-
equivalence classes of process expressions over Var(∆), Act(∆) ∪ {drop}
is the set of labels with a distinguished label drop 6∈ Act(∆) modelling
lossiness, the transition relation −→ is defined by the SOS rules in Fig-
ure 2 (we again abuse the notation and write only E instead of [E]≡)
and Eqv for lossy BPP can be defined as in the case of BPP — deadlock
sensitive or deadlock nonsensitive.

Example 2. Let ∆ =

{X0
a−→ X0||X0, X0

b−→ ε}.
Then X0 −→∗ Xk

0 for any k ∈ N0 where X0
0 = ε and Xk+1

0 = X0||Xk
0 .

Also, Xk
0

drop−→ Xk′
0 for any k′, 0 ≤ k′ < k, in particular, Xk

0
drop−→ ε and

ε 6−→. This means that any reachable state in T (∆) has norm at most
1. Moreover, Xk

0 6∼T (∆) Xk′
0 for any k 6= k′. Hence there cannot be any

BPP process bisimilar to X0 (there are only finitely many nonbisimilar
BPP states of norm less or equal to 1). On the other hand this property
in general disallows to find a bisimilar lossy BPP process for a given
BPP process. Thus the classes BPP and lossy BPP are, as expected,
incomparable w.r.t. bisimilarity.

We are now ready to define semantics of lossy BPP in terms of commu-
tative transition systems, similarly as for BPP. Let ∆ be a lossy BPP sys-
tem, where n = |Var(∆)|. By T c(∆) = (B1

n−1,Act(∆)∪ {drop},−→, Eqv)

10



we denote a commutative transition system, where α
a−→ β iff either (i)

there is a rule (X a−→ E) ∈ ∆ such that α = φ(X)⊕ω and β = φ(E)⊕ω
for some ω ∈ B1

n−1, or (ii) β <c α and a = drop. The relation Eqv for
lossy BPP is defined in the same fashion as mentioned above (deadlock
sensitive or deadlock nonsensitive).

Obviously, T (∆) and T c(∆) are isomorphic labelled transition sys-
tems. This implies the following decidability theorem for lossy BPP sys-
tems.

Theorem 3. Given a lossy BPP process rewrite system ∆ (either dead-
lock sensitive or deadlock nonsensitive) and a pair of processes P1, P2 ∈
EVar(∆)/≡, it is decidable whether P1 ∼T (∆) P2.

Proof. We show that T c(∆) is an ECTS and then we use Theorem 1 and
the isomorphism between T (∆) and T c(∆).

To verify conditions (1) – (5) of Definition 1 is easy. Let us now ex-
amine the condition (6). Assume that α ∼k β for some k ∈ N0 and let
γ ∈ B1

n−1. By induction on k we show that also α ⊕ γ ∼k β ⊕ γ.
Base case: If k = 0 then it is enough to show that if (α, β) ∈ Eqv then
also (α ⊕ γ, β ⊕ γ) ∈ Eqv. This is true for both deadlock sensitive and
nonsensitive Eqv.
Inductive step: Let k > 0 and α ∼k β. Of course, (α⊕ γ, β ⊕ γ) ∈ Eqv.
We will analyse the transitions from α⊕ γ only (the arguments for β ⊕ γ
are symmetric).

Let α ⊕ γ
a−→ κ and a 6= drop. Then either κ = α′ ⊕ γ and α

a−→ α′,
or κ = α ⊕ γ′ and γ

a−→ γ′. In the first case, because of our assumption
that α ∼k β, also β

a−→ β′ such that α′ ∼k−1 β′. Thus β ⊕ γ
a−→ β′ ⊕ γ

and using the induction hypothesis α′ ⊕ γ ∼k−1 β′ ⊕ γ. The second case
where κ = α ⊕ γ′ is analogical.

Let α⊕ γ
drop−→ κ. Then κ = α′ ⊕ γ′ such that α′ ≤c α and γ′ ≤c γ, and

α′ ⊕ γ′ <c α⊕ γ. If α′ = α then β ⊕ γ
drop−→ β ⊕ γ′ and using the induction

hypothesis and the fact that α ∼k−1 β we get that α⊕γ′ ∼k−1 β⊕γ′. Let

α <c α′. Since α ∼k β and α
drop−→ α′, also β

drop−→ β′ such that α′ ∼k−1 β′.
Hence β⊕γ

drop−→ β′⊕γ′ and using the induction hypothesis we know that
α′ ⊕ γ′ ∼k−1 β′ ⊕ γ′. ut

3.3 Interrupt BPP

In this subsection we investigate mode transfer operators in BPP process
algebra, in particular the interrupt operator. Quoting [BB00]:“A useful
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feature in programming languages and specification languages is the abil-
ity to denote mode switches. In particular, most languages have means
to describe the disrupt and interrupt of the normal execution of a sys-
tem.” Various mode transfer operators were considered in the litera-
ture [BBK86,BB00,Ber89,CE98,Die94]. We define interrupt BPP systems
that extend the pure BPP systems with an interrupt vector and a mech-
anism for handling the interrupt. The motivation is that every state is
annotated with a set of allowed interrupts and if no interrupt appears, a
normal execution of the process is performed. At any time an interrupt
can be raised by performing the action int. A normal execution of the
process is interrupted and the raised interrupt is handled. During this all
interrupts are disallowed. After the interrupt is finished, the action iret is
performed and a normal execution of the interrupted process continues.

Formally, an interrupt BPP process rewrite system ∆ is a pair (∆1,∆2)
where ∆1 is a finite set ∆1 ⊆ Var × Act × EVar × 2Var(∆2) and ∆2 is
a BPP system. We write (X a−→ E, enable) for (X,a,E, enable) ∈ ∆1.
By Var(∆1) we denote the set of variables that occur in the first and the
third component of ∆1.

A process rewrite system ∆ = (∆1,∆2) determines a labelled transi-
tion system T (∆) =

(
(EVar(∆1)/≡)×2Var(∆2)×{0, 1}×(EVar(∆2)/≡),

Act(∆1) ∪ Act(∆2) ∪ {int, iret},−→, Eqvu
)

where states are 4-tuples
(E1, IV, IF,E2) such that E1 is a BPP process, IV is an interrupt vector,
IF is an interrupt flag (0 means normal execution and 1 means interrupt
call) and E2 is ε if IF = 0 or it contains the interrupt handling process
in the case IF = 1. We assume that int, iret 6∈ Act(∆1) ∪ Act(∆2). The
SOS rules for −→ are defined in Figure 3 (E again represents [E]≡ and
‘||’ is commutative) and for the sake of simplicity let us assume that Eqvu

is the universal relation on states.

Example 3. Let ∆ =({
(X0

a−→ X0||X0, {Y0}), (X0
b−→ ε, {Y1})

}
,

{
Y0

c−→ ε, Y1
d−→ Y1

})
.

Consider an initial state (X0, ∅, 0, ε). Then the following sequence of tran-
sitions is possible in T (∆):

(X0, ∅, 0, ε) a−→ (X0||X0, {Y0}, 0, ε) b−→ (X0, {Y0, Y1}, 0, ε) int−→

(X0, {Y0, Y1}, 1, Y0)
c−→ (X0, {Y0, Y1}, 1, ε) iret−→ (X0, {Y0, Y1}, 0, ε) int−→

(X0, {Y0, Y1}, 1, Y1)
d−→ (X0, {Y0, Y1}, 1, Y1)

d−→ · · · .

12



(X
a−→ E1, enable) ∈ ∆1

(X, IV, 0, ε)
a−→ (E1, IV ∪ enable, 0, ε)

(E1, IV, 0, ε)
a−→ (E′

1, IV ′, 0, ε)

(E1||F1, IV, 0, ε)
a−→ (E′

1||F1, IV ′, 0, ε)

X ∈ IV

(E1, IV, 0, ε)
int−→ (E1, IV, 1, X) (E1, IV, 1, ε)

iret−→ (E1, IV, 0, ε)

(X
a−→ E2) ∈ ∆2

(E1, IV, 1, X)
a−→ (E1, IV, 1, E2)

(E1, IV, 1, E2)
a−→ (E1, IV, 1, E′

2)

(E1, IV, 1, E2||F2)
a−→ (E1, IV, 1, E′

2||F2)

Fig. 3. SOS rules for interrupt BPP

It is an easy observation that there is no BPP process bisimilar to the
initial state (X0, ∅, 0, ε) of T (∆) — we use similar arguments as in Exam-
ple 2.

We remind the reader of the fact that for any BPP system we can find
a bisimilar interrupt BPP system simply by disallowing interrupts at all
— we define enable = ∅ in every rule of the BPP system. Hence the class
of interrupt BPP is strictly more expressive (w.r.t. bisimilarity) than the
class of BPP.

We demonstrate now, how to give an alternative semantics in terms
of a commutative transition system T c. The idea is that the normal pro-
cess execution is simulated one-to-one in T c and the interrupt calls are
checked using the relation Eqv — thus there are no actions int and iret.
Let ∆ = (∆1,∆2) be an interrupt BPP system such that Var(∆1) =
{X0, . . . ,Xn1−1} and Var(∆2) = {Y0, . . . , Yn2−1}. In what follows we de-
note by T (∆2) the deadlock sensitive transition system generated by
the BPP process ∆2. Since bisimilarity in T (∆2) is decidable (Theo-
rem 2), we may assume w.l.o.g. that Yi 6∼T (∆2) Yj for all i, j such that
0 ≤ i < j ≤ n2 − 1. Let n = max{n1 − 1, n2 − 1}.

Let T c(∆) = (B2
n,Act(∆1)∪Act(∆2),−→, Eqv). The intuition is that

in the first component of a state (M,N) ∈ B2
n we remember a BPP

expression of normal process execution and in the second component we
remember an interrupt vector IV in the following sense: N(i) = 0 if
Yi 6∈ IV , and N(i) > 0 if Yi ∈ IV . For α = (M,N) ∈ B2

n, let IV (α) =
{Yi | 0 ≤ i ≤ n2 − 1 ∧ N(i) > 0} and let cut(α) = (M,N ′) ∈ B2

n such
that

N ′(i) =

{
0 if N(i) = 0
1 if N(i) > 0

13



for all i ∈ N0. We define

α = (M,N) a−→ (M ′,N ′) = α′

iff (E, IV (α), 0, ε) a−→ (E′, IV (α′), 0, ε) such that a 6∈ {int, iret}, φ(E) =
M , φ(E′) = M ′, and cut(α′) = α′. The last condition (cut(α′) = α′)
ensures that T c(∆) becomes image-finite. Finally we define Eqv as such
a relation that for states α, β ∈ B2

n: (α, β) ∈ Eqv iff IV (α) = IV (β).
The following property is an immediate consequence of the definition.

Property 1. Let α ∈ B2
n. Then α ∼T c(∆) cut(α).

Proposition 2. Let ∆ = (∆1,∆2) be an interrupt BPP system. Then it
holds that (E, ∅, 0, ε) ∼T (∆) (F, ∅, 0, ε) iff (φ(E), ∅) ∼T c(∆) (φ(F ), ∅) for

any E,F ∈ EVar(∆1).

Proof. It is obvious that any transition under a where a 6∈ {int, iret} in
T (∆) can be simulated naturally in the system T c(∆) and vice versa. An
interrupt call in T (∆) is checked using the relation Eqv and whenever
(α, β) 6∈ Eqv in T c(∆) then we can distinguish the corresponding states
in T (∆) by an appropriate interrupt call. ut
We can now present the following decidability theorem for interrupt BPP.

Theorem 4. Given an interrupt BPP process rewrite system ∆ and a
pair of processes (E, ∅, 0, ε), (F, ∅, 0, ε) in T (∆), it is decidable whether
(E, ∅, 0, ε) ∼T (∆) (F, ∅, 0, ε).
Proof. By Proposition 2 it is enough to show that T c(∆) is an ECTS
and use Theorem 1. The validity of conditions (1) – (5) of Definition 1 is
straightforward. Remains to verify condition (6). We proceed by induction
on k. Let α ∼k β and γ ∈ B2

n. We show that α ⊕ γ ∼k β ⊕ γ.
Base case: If k = 0 then it is enough to show that if (α, β) ∈ Eqv then
also (α ⊕ γ, β ⊕ γ) ∈ Eqv. This is trivially true.
Inductive step: Let k > 0 and α ∼k β. Of course, (α⊕ γ, β ⊕ γ) ∈ Eqv.
We will analyse the transitions from α⊕ γ only (the arguments for β ⊕ γ
are symmetric).

Let α ⊕ γ
a−→ κ. Then either κ = cut(α′ ⊕ γ) and α

a−→ α′, or
κ = cut(α⊕ γ′) and γ

a−→ γ′. In the first case, because of our assumption
that α ∼k β, also β

a−→ β′ such that α′ ∼k−1 β′. Hence β ⊕ γ
a−→

cut(β′⊕γ). Using the induction hypothesis we get α′⊕γ ∼k−1 β′⊕γ and
by Property 1 this implies that cut(α′ ⊕ γ) ∼k−1 cut(β′ ⊕ γ). The second
case where κ = cut(α ⊕ γ′) is similar. ut
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Remark 2. We used BPP processes for interrupt handling (the system
∆2). In fact, any process algebra where bisimilarity is decidable can be
used.

3.4 Timed-Arc BPP

In this subsection we establish decidability of bisimilarity for a timed
extension of BPP systems, called timed-arc BPP. It is worth mention-
ing another positive decidability result for timed BPP. The authors in
[BLS00] show that performance equivalence (a version of timed bisimilar-
ity) is decidable in a polynomial time for BPP processes where actions
have a certain time duration. However, their definition of timed BPP does
not allow to interpret ordinary BPP systems as timed ones since a dura-
tion of an action cannot be equal to 0 and must be strictly positive. We
define timed-arc BPP as a natural subclass of timed-arc Petri nets where
time (age) is associated to tokens and transitions are labelled by time
intervals, which restrict the age of tokens available for firing a transition
— see e.g. [BLT90,Han93]. Our definition implies that timed-arc BPP are
a strict extension (w.r.t. bisimilarity) of ordinary BPP systems, as it is
demonstrated later.

First, we introduce labelled timed-arc Petri nets, following definitions
from [RdFEA00] and then we define timed-arc BPP as its subclass where
each transition has exactly one input place. A labelled timed-arc Petri net
(LTAPN) is a tuple N = (P, T, F, c, L, λ,Σ), where

– P is a finite set of places,
– T is a finite set of transitions such that T ∩ P = ∅,
– F ⊆ (P × T ) ∪ (T × P ) is a flow relation,
– c : F |P×T → N0 × (N0 ∪{∞}) is a time constraint on transitions such

that for each arc (p, t) ∈ F holds that t1 ≤ t2 where c(p, t) = (t1, t2),
– L is a finite set of labels,
– λ : T → L is a labelling function, and
– Σ ⊆ N0 is a recursive set of allowed time-elapsing steps.

Let x ∈ N0 and c(p, t) = (t1, t2). We write x ∈ c(p, t) whenever t1 ≤
x ≤ t2. We also define •t = {p | (p, t) ∈ F} and t• = {p | (t, p) ∈ F}. A
marking M on N is a function M : P → B where B denotes the set of
all finite multisets on N0. Each place is thus assigned a certain number
of tokens, and each token is annotated with a natural number (age). Let
x ∈ B and a ∈ N0. We define x<+a such that we add the value a to every
element of x, i.e., x <+ a = {b + a | b ∈ x}.
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Let us now define the dynamics of LTAPNs. We introduce two types
of transition rules: firing of a transition and time-elapsing. Let N =
(P, T, F, c, L, λ,Σ) be a LTAPN, M a marking and t ∈ T . We say that t
is enabled by M iff

∀p ∈ •t. ∃x ∈ M(p). x ∈ c(p, t).

If t is enabled by M then it can be fired, producing a marking M ′ (written
M [t〉M ′) such that

∀p ∈ P. M ′(p) =
(
M(p) r C−(p, t)

)
∪ C+(t, p)

where C− and C+ are chosen to satisfy the following equations (note
that there may be more possibilities and that all the operations are on
multisets):

C−(p, t) =
{ {x} such that x ∈ M(p) and x ∈ c(p, t) if p ∈ •t

∅ otherwise

C+(t, p) =
{ {0} if p ∈ t•

∅ otherwise.

Note that the tokens added to places t• are of age 0. We define also time-
elapsing transitions τk, k ∈ Σ, as follows: M [τk〉M ′ iff ∀p ∈ P. M ′(p) =
M(p) <+ k.

Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. We define the corresponding
labelled transition system T (N) = ([P → B], L∪{τk | k ∈ Σ},−→, Eqvu),
where states are markings of N , actions are labels from L together with
symbols for time-elapsing, and M

a−→ M ′ iff either M [t〉M ′ and a = λ(t),
or M [τk〉M ′ and a = τk for some k ∈ Σ. For simplicity we define Eqvu to
be the universal relation.

Definition 2. A timed-arc BPP is a LTAPN (P, T, F, c, L, λ,Σ) such
that |•t| = 1 for all t ∈ T .

Example 4. Consider a timed-arc BPP net

N = ({p1, p2}, {t1, t2}, F, c, {a, b}, λ, {1})

where F , c and λ are defined in Figure 4. Names of places (circles) are
p1 and p2 (from left to right) and names of transitions (squares) are t1
and t2 (from left to right) such that λ(t1) = a and λ(t2) = b. Notice
that •t1 = {p1} and •t2 = {p2}, so the net is indeed a timed-arc BPP.
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ONMLHIJK0

[0,0]
**

akk //ONMLHIJK [0,0] // b

Fig. 4. A timed-arc BPP net N

Let ({0}, ∅) be an initial marking — since |P | = 2 we can identify any
marking M : P → B with a pair (M(p1),M(p2)). Now e.g.

({0}, ∅) a−→ ({0}, {0}) a−→ ({0}, {0, 0}) b−→

({0}, {0}) τ1−→ ({1}, {1}) τ1−→ ({2}, {2}) τ1−→ . . . .

Using similar arguments as in Example 2, there cannot be any BPP pro-
cess bisimilar to the initial marking. On the other hand, for any BPP
process there is a timed-arc BPP net bisimilar to it — we use the fact
that any BPP process is essentially a Petri net where |•t| = 1 for every
transition t and then we define all the time constrains as [0,∞] and set
Σ = ∅. So the class of timed-arc BPP is strictly more expressive (w.r.t.
bisimilarity) than the BPP class.

Assuming a fixed ordering on P = {p1, . . . , pn}, there is a natural
one-to-one correspondence between [P → B] and Bn. Let M : P → B
then we define (N1, . . . ,Nn) ∈ Bn by Ni = M(pi) for 1 ≤ i ≤ n and vice
versa. In what follows we freely interchange these equivalent notations.

The system T (N) is almost a commutative labelled transition system.
There are only two problems: (i) states are not elements from Bn

m for some
fixed m ∈ N0 and (ii) the set of actions can be infinite. The following
arguments show how to avoid these problems.

Definition 3. Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. We define its
maximal guard mg(N) ∈ N0 as the maximal time constraint that appears
in N , i.e.,

mg(N) = max
(
{t1, t2 | ∃f ∈ F |P×T . c(f) = (t1, t2)} r {∞}

)
.

Let M ∈ [P → B]. We define a compression of M , CM ∈ [P → Bmg(N)+1],
by

CM (p)(k) =




M(p)(k) if k < mg(N) + 1∑∞
i=mg(N)+1 M(p)(i) if k = mg(N) + 1

0 if k > mg(N) + 1.
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Lemma 6. Let N = (P, T, F, c, L, λ,Σ) be a LTAPN and M1,M2 ∈
[P → B]. If CM1 = CM2 then M1 ∼T (N) M2.

Proof. It is a routine exercise to verify that R = {(M1,M2) ∈ [P →
B] × [P → B] | CM1 = CM2} is a bisimulation. ut

Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. By m we denote the number
mg(N)+1. We define a commutative transition system T c(N) = (Bn

m, L∪
{τk | k ∈ Σ ∧ k < m} ∪ Tm,−→, Eqvu) where Tm = {τm} if there is
k ∈ Σ such that k ≥ m, otherwise Tm = ∅ (note that the construction
of Tm is effective since Σ is a recursive set). We define M

a−→ M ′ for
M,M ′ ∈ Bn

m iff either (i) M [t〉M ′ and a = λ(t), or (ii) M [τk〉M ′′ where
m > k ∈ Σ or τk ∈ Tm, such that M ′ = CM ′′ and a = τk.

Proposition 3. Let N be a LTAPN and M1,M2 a pair of markings on
N . Then M1 ∼T (N) M2 iff CM1 ∼T c(N) CM2 .

Proof. Immediately from Lemma 6. Also note that in T (N) for any k ≥
m = mg(N) + 1 holds that if M

τm−→ M ′ and M
τk−→ M ′′, then CM ′ =

CM ′′ . ut
We are now ready to show decidability of bisimilarity for timed-arc BPP.

Theorem 5. Given a timed-arc BPP net N = (P, T, F, c, L, λ,Σ) and a
pair of markings M1,M2 on N , it is decidable whether M1 ∼T (N) M2.

Proof. By Proposition 3 it is enough to prove that T c(N) is an ECTS. To
verify conditions (1) – (5) of Definition 1 is easy. Let us now examine the
condition (6). We proceed by induction on k. Let α ∼k β and γ ∈ Bn

m.
We show that α ⊕ γ ∼k β ⊕ γ.
Base case: If k = 0 then it is enough to show that if (α, β) ∈ Eqvu then
also (α ⊕ γ, β ⊕ γ) ∈ Eqvu. This is trivially true.
Inductive step: Let k > 0 and α ∼k β. Of course, (α⊕γ, β⊕γ) ∈ Eqvu.
We will analyse the transitions from α⊕ γ only (the arguments for β ⊕ γ
are symmetric).

Let α ⊕ γ
a−→ κ such that a 6= τl for l ∈ N0. Then either κ = α′ ⊕ γ

and α
a−→ α′, or κ = α ⊕ γ′ and γ

a−→ γ′. (Note that there are not more
possibilities since |•t| = 1 for any t ∈ T .) In the first case, because of
our assumption that α ∼k β, also β

a−→ β′ such that α′ ∼k−1 β′. Hence
β⊕γ

a−→ β′⊕γ. Using the induction hypothesis we get α′⊕γ ∼k−1 β′⊕γ.
The second case where κ = α ⊕ γ′ is similar.

Let α⊕ γ
τl−→ α′ ⊕ γ′ for some l, m ≥ l. Of course, α

τl−→ α′ and since
α ∼k β also β

τl−→ β′ such that α′ ∼k−1 β′. Hence β ⊕ γ
τl−→ β′ ⊕ γ′ and

using the induction hypothesis we get α′ ⊕ γ′ ∼k−1 β′ ⊕ γ′. ut
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Remark 3. It remains an open problem whether bisimilarity is decidable
for timed-arc BPP with continuous time, i.e., if we allow e.g. Σ = R

+
0 .

On the other hand, if we keep the discrete time setting and consider
distributed timed-arc BPP nets, bisimilarity remains decidable. For the
definition of distributed timed-arc Petri nets see [NSS01].

4 Conclusion

We suggested a subclass of labelled transition systems called effective
commutative transition systems (ECTS) where bisimilarity is decidable,
and we showed that semantics of many extensions of BPP process algebra
can be defined within the ECTS class. This approach seems to be feasible
also for other natural extensions of BPP: the crucial condition to be satis-
fied is probably (6), saying that ∼k are congruences. This condition fails
e.g. for Petri nets, and indeed strong bisimilarity becomes undecidable
here [Jan95].

Decidability of weak bisimilarity of BPP is still a well known open
problem. Here the problematic condition is (5), stating that the transi-
tion system is image-finite, which is not the case for weak bisimilarity.
Nevertheless, we can still instead of potentially infinite set of successors
next(α, a) examine only its finite subset such that soundness and com-
pleteness of the tableau system is preserved. This possibility was exploited
by Stirling in [Sti01] for weak bisimilarity of normed BPP, however, with
additional technical restrictions. To design finite subsets of next(α, a) pre-
serving soundness and completeness even in the general case might be a
reasonable way to attack this problem.
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