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Non-Committing Encryption is Too Easy in
the Random Oracle Model

Jesper Buus Nielsen

December 6, 2001

Abstract

The non-committing encryption problem arises in the setting
of adaptively secure cryptographic protocols, as the task of im-
plementing secure channels. We prove that in the random oracle
model, where the parties have oracle access to a uniformly ran-
dom function, non-committing encryption can be implemented
efficiently using any trapdoor permutation.

We also prove that no matter how the oracle is instantiated in
practice the resulting scheme will never be non-committing, and
we give a short discussion of the random oracle model in light of
this.

1 Introduction

1.1 Non-Committing Encryption

One way of constructing a secure protocol for the cryptographic model is
to take a protocol which is secure in the information theoretical model,
where secure channels are assumed, and then compile this protocol for
the cryptographic model by adding encryption to the channels.

The motivation for such an approach has been, that only statically
secure general multiparty computation protocols have been constructed
for the cryptographic model directly, whereas adaptively secure protocols
for the information theoretical model were published already in [BGW88,
CCD8S|.

The goal is therefore to replace the secure channels of the informa-
tion theoretical model by open channels, by using an adaptively secure
protocol for encrypting all communication on the open channels.



It is obviously not enough to encrypt the messages using standard
public key encryption. The reason is that this allows an adversary to
observe a ciphertext from P; to P, say, and later send it as a ciphertext
from some corrupt party P; to P, thereby making P; send the same
message as P,, which would be impossible for P; if the communication
had been over secure channels. If, however we use a chosen ciphertext
attack (CCA) secure encryption scheme and include in the messages the
identity of the sender to protect against copying, then we will have a
statically secure implementation|[Can01].

However, no CCA secure encryption scheme is known for which this
protocol is adaptively secure in the non-erasure model, where the parties
are not trusted to be able to erase parts of their state reliably. The
problem is that after sending an encryption E(m,r) of a message m the
sending party is generally committed to m.

Assume that the protocol, where P, sends a uniformly random public
key to Py and P returns ¢ = Ep;(i||m), were adaptively secure in the mul-
tiparty computation model of e.g. [Can01]. Consider the adversary that
corrupts no party and the environment, which activates the sender with
an arbitrary message m and waits for the protocol to generate output.
We let the adversary output the observed public key pk and encryption
c. Then the environment corrupts the sender and the adversary gives to
the environment the observed random bits 7 such that ¢ = Ep,(m, ).

Now, by the definition of security there should exist a simulator such
that the simulator executed in the ideal process with the same environ-
ment produces an output indistinguishable from that of the adversary.
But in the ideal process for secure communication the parties basically
share a secure channel, and thus the simulator does not see anything
during the execution, and it must generate pk and ¢ independently of
m. Then on the corruption of the sender, the simulator sees m and com-
putes r,, to give to the environment. Since the environment cannot tell
the difference from the real execution it follows that pk is computationally
indistinguishable from a real public key, that r,, is computationally indis-
tinguishable from a uniformly random string, and that ¢ = E,(m,rp,).
This means that the encryption scheme has the property that one can
generate a 'fake’ public key pk and a 'fake’ encryption ¢ such that ¢ can
later be claimed to contain any message m.

The problem with the above protocol is that the r,,, which the envi-
ronment should be shown as the internal state of the sender, cannot be
computed for typical encryption schemes. If however, we considered the



cryptographic model with erasure, we could specify as part of the pro-
tocol that r should be erased. Then the adversary and environment will
not see r in the protocol execution and therefore the simulator should not
compute 7, in the simulation either. This removes the problem and, as
already observed, we can obtain an efficient adaptive security preserving
reduction to the information theoretical model. This was first shown by
Beaver and Haber in [BH92]. There, a semantically secure encryption
scheme is used and all keys, random bits, and other values are deleted
after the message is send.

However, in many settings trusting the parties to be able to erase
parts of their state might be unrealistic, due to e.g. physical limita-
tions on erasure and weak operating systems. The first adaptive security
preserving reduction to the information theoretical model without using
erasure is by Canetti et al.[CFGN96]. They define a non-committing
encryption scheme to be a protocol which securely implements the en-
cryption functionality in the cryptographic model in the presence of ad-
versaries that might corrupt the sender and the receive adaptively. They
construct a solution based on what they call common domain trapdoor
systems and show how to build non-committing encryption based on the
RSA and the DH assumption. Their scheme has expansion factor Q(k?),
i.e. the communication complexity of their scheme is Q(k?) bits per
plaintext bit to be communicated.

The protocols based on the RSA and DH assumptions are the most
efficient in terms of rounds. They are both two-round protocols, which
is optimal when no secret information is shared in advance. In the first
round the receiver send a public key and in the second round the sender
sends an encryption of the message under the public key.

The protocol based on general common-domain trapdoor systems uses
an interactive protocol to set up the public keys and uses three more
rounds.

Later Beaver[Bea91] proposed a simpler and more efficient scheme
based on the DDH assumption. His scheme has expansion factor O(k)
and is a three-round protocol. In [DN00] Damgard and Nielsen gener-
alized the ideas of Beaver to construct non-committing encryption with
a similar complexity based on the RSA assumption and showed how
to construct non-committing encryption from any collection of trapdoor
permutations (with the technical condition, that the domain of the per-
mutation can be sampled in an invertible manner).



1.1.1 Ouwur Result

In this paper we show that in the random oracle model non-committing
encryption can be implemented using any collection of trapdoor permu-
tations. The protocol is non-interactive (one-round) and has a constant
expansion factor. Our protocol is reminiscent of a construction of chosen
ciphertext secure encryption in [BR93], only we extend the basic seman-
tically secure system in a different manner. A message will be transmit-
ted as (mad, f(x), H(mid||t]|]|x||m)), where f is trapdoor permutation
(where f~!is only known by the receiver), H is a pseudo-random func-
tion, mid is a message id, ¢ and j are the unique identities of the sender
respectively the receiver, and z is a uniformly random element in the
domain of f. If the function H is modeled as random oracle, i.e. a uni-
formly random function to which the parties and the adversary only have
oracle access, then this scheme can be shown to be a non-committing en-
cryption scheme. This scheme is as efficient as the protocol in [BH92] for
the erasure model. This proves that in the random oracle model, secure
channels can be implemented as efficiently as in the erasure model.

1.2 The Random Oracle Model

The idea behind the random oracle model is that by modeling primitives
as DES, MD5 or SHA using the strong assumption that they (properly
used /modified) behave like random oracles to model the properties that
these primitives actually seems to have in practice, one can build efficient
and secure protocols based on these primitives. The model has been
used to argue the security of a number of constructions. Examples are
the OAEP encryption mode for RSA[BR95], the Fiat-Shamir heuristic
for zero-knowledge proofs[F'S86], and the efficient Byzantine agreement
protocol of Cachin, Kursawe, and Shoup|CKS00].

In [BR93] it is said about the methodology of proving schemes secure
in the random oracle model and then instantiating the oracle with a
carefully chosen function in practice that ‘It is our thesis that this method,
when carried out, leads to secure and efficient protocols. Indeed, protocols
constructed under this paradigm have so far proven “secure” in practice.
But we stress that all claims of provable security are claims made within
the random oracle model, and instantiating the oracle with h is only a
heuristic whose success we trust from experience.’



1.2.1 Ouwur Result

The second result of our paper is a negative one. We show that no matter
how the random oracle is instantiated in the standard model, our encryp-
tion protocol will not be non-committing. This shows that security in
the random oracle model does not always allow a secure implementation
in the standard model.

This is to some extend anticipated in [BR93], where it is said, that
"We stress that the protocol problem I1 and protocol P must be “indepen-
dent” of the hash function we are to use. It is easy to construct unnatural
problems or protocols whose description and goals depend explicitely on
h so that the protocol is secure in the random oracle model but fails when
the random oracle is instantiated with the hash function. The notion of
“independence” will not be formalized in this paper.’

Our result is however of a different nature than this. First of all
we do not find adaptively secure encryption in the non-erasure model,
or our suggested protocol, unnatural, and second, the problem does not
depend on H at all. Indeed we prove that any function will fail to be an
“independent” function, no matter the definition of “independence”.

Other examples of constructions which are secure in the random ora-
cle model, and not in the standard model, were known prior to our work.
We will compare our result to these, and will give a short discussion of
the random oracle model based on this comparison.

1.3 Organization

In Section 2 we define collections of trapdoor permutations and state
a lemma which will come in handy later. In Section 3 we give a short
sketch of the multiparty computation model that we use and cast the
problem of non-committing encryption in this framework. In Section 4
we describe our non-committing encryption protocol and prove it secure
in the random oracle model. In Section 5 we prove that our protocol will
never be non-committing in the standard model. Finally in Section 6 we
compare our result to previous results, and give a short discussion the
random oracle model.



2 Trapdoor Permutations

Definition 1 (Collection of trapdoor permutations) We call a tu-
ple (K, F, G, X) a collection of trapdoor permutations with security param-
eter k, if K is an infinite index set, F' = { for, : Dpr — Dpi }prex 15 a set
of permutations, the key/trapdoor-generator G and the domain-generator
X are PPT algorithms, and the following hold:

Easy to generate and compute G generates pairs of keys and trap-
doors, (pk,sk) < G(k), where pk € K N {0,1}**) for some fized
polynomial p(k). Furthermore, there is a polynomial time algorithm
which on input pk and x € Dy, computes fyr(x).

Easy to sample domain X samples elements in the domains of the
permutations, we write © < X (pk), where z is uniformly random
m Dpk;-

Hard to invert For (pk,sk) «— G(k), x «— X(pk), and for any PPT
algorithm A the probability that A(pk, fy(x)) = x is negligible in
k.

But easy with trapdoor There is a polynomial time algorithm which
on input pk, sk, fy(x) computes x, for all (pk,sk) € G(k) and x €
D,y

Let A be any algorithm, and consider the following game, which
we will call the trapdoor game. The game is between A and the tuple
(K, F,G,X). The algorithm A can ask for a number of public key gen-
erations and element generations, and the goal of A is to invert a per-
mutation, for which it does not know the trapdoor information, on an
element it did not generate itself.

Key Generation On a key generation request, A is given pk for a uni-
formly random key (pk, sk) < G(k,rg) (here rg denotes the random
bits used by G).

Give Up on pk On a give up request on pk, where pk was generated in
a key generation request, A is given rg.

Element Generation for pk On an element generation request for pk,
A receives a uniformly random element y = f,,(z), where z was
generated as x «— X (pk,rx).



Give Up on y On a give up request on y, where y was generated in an
element generation request, A is given ry.

Wining If A manage to return an element x such that y = f,,(x), where
pk is a key from a key generation request on which A has not given
up and where y is from an element generation request on which A
has not given up, then A wins the game.

It is straightforward to prove the following lemma.

Lemma 1 The tuple (K, F, G, X) is a collection of trapdoor permutations
iff for all PPT algorithms A, the probability that A wins over (IC, F, G, X)
in the trapdoor permutation game is negligible.

3 Non-Committing Encryption

3.1 The General Framework

We will cast the non-committing encryption problem in the framework
for universally composable asynchronous multiparty computation from
[Can01]. In this framework the security of a protocol is defined in three
steps.

First the real-life execution of the protocol is defined. Here the pro-
tocol 7 is modeled by n interactive Turing machines (ITMs) Py,..., P,
called the parties of the protocols. Also present in the execution is an
adversary A and an environment Z modeling the environment in which
A is attacking the protocol. The environment gives inputs to honest par-
ties, receives outputs from honest parties, and can communication with
A at arbitrary points in the execution. Both A and Z are PPT ITMs.

Second an ideal process is defined. In the ideal process an ideal func-
tionality F is present to which all the parties have a secure communi-
cation channel. The ideal functionality is an I'TM defining the desired
input-output behavior of the protocol. Also present is an ideal adversary
S, the environment Z, and n so-called dummy parties Pi,...,P, —all
PPT ITMs. The only job of the dummy parties is to take inputs from
the environment and send them to the ideal functionality and take mes-
sages from the ideal functionality and output them to the environment.
This basically makes the ideal process a trivially secure protocol with the
same input-output behavior as the ideal functionality.



The security of the protocol is then defined by requiring that the pro-
tocol emulates the ideal process. We say that the protocol securely realizes
the ideal functionality.

The framework also defines the hybrid models, where the execution
proceeds as in the real-life execution, but where the parties in addi-
tion have access to an ideal functionality. An important property of the
framework is that an ideal functionality in a hybrid model can securely
be replaced by a sub-protocol securely realizing that ideal functionality.

Below we add a few more details. For a more elaborate treatment of
the general framework, see [Can01].

The framework as we will be using it models asynchronous authen-
ticated communication over point-to-point channels, erasure free com-
putation, and an active adaptive adversary. In the real-life execution
all parties are assumed to share an open point-to-point channel. In the
ideal process all parties are assumed to have a secure channel to the ideal
functionality. These assumptions are modeled by the way the execution
proceeds.

The environment Z is the driver of the execution. It can either pro-
vide a honest party, P; or P;, with an input or send a message to the
adversary. If a party is given an input, that party is then activated.
The party can then, in the real-life execution, send a message to another
party or give an output to the environment. In the ideal process an
activated party just copies its input to the ideal functionality and the
ideal functionality is then activated, sending messages to the parties and
the adversary according to it program. After the party and/or the ideal
functionality stops, the environment is activated again.

If the adversary, A or S, is activated it can do several things. It can
corrupt a honest party, send a message on behalf of a corrupt party, de-
liver any message send from one party to another, or communicate with
the environment. On corrupting a party the adversary sees the entire
communication history of that party including the random bits used in
the execution. After the corruption the adversary sends and receives
messages on behalf of the corrupted party. The adversary controls the
scheduling of the message delivery. In the real-life execution the adver-
sary A can see the contents of all message and may decide which messages
should be delivered and when — it can however not change messages or
add messages to a channel. In the ideal process the adversary S cannot
see the contents of the messages as the channels are assumed to be se-
cure. It can only see that a message has been send and can then decide



when the message should be delivered, if ever.

If the adversary delivers a message to some party, then this party
is activated and the environment resumes control when the party stops.
At the beginning of the protocol all parties, the adversary, and the en-
vironment is given as input the security parameter £ and random bits.
Furthermore the environment is given an auxiliary input z. At some point
the environment stops activating parties and outputs some bit. This bit
is taken to be the output of the execution. We use REAL; 4 z(k, 2)
to denote the random variable describing the real-life execution and use
IDEAL# s z(k, 2) to denote the random variable describing the ideal pro-
cess.

We are now ready to state the definition of securely realizing an ideal
functionality. For this purpose let REAL; 4 z denote the distribution
ensemble {REAL; 4 z(k, ) }ken 2c{0,1}+ and let IDEAL# s z denote the
distribution ensemble {IDEAL£ s z(k, 2) }ren 2cfo,1)+- We recall the def-
inition of computationally indistinguishable distribution ensembles over

{0,1}.

Definition 2 (indistinquishable ensembles) We say distribution en-
sembles X = {X(k,2)}ken zcqo1y and Y = {Y(k, 2)}ren 2c{01}+ over

{0,1} are indistinguishable (written X ~Y ) if for any c € N there ea-
ists ko € N such that |Pr[X(k,z) = 1] — Pr[Y(k,2) = 1]| < k¢ for all
k> ko and all z.

Definition 3 ([Can01]) We say that 7 securely realizes F if for all real-
life adversaries A there exists an ideal-process adversary S such that for

all environments Z we have that IDEALfz s z ~ REAL; 4 z.

3.2 The Random Oracle Model

The random oracle model is the real-life model extended with an ideal
functionality H, called the random oracle, parameterized with two do-
mains X and Y. On input z € X from any party (including the ad-
versary) the random oracle outputs a uniformly random element y € Y
independent of all other evaluations (except that if queried on the same
x twice the same value y will be returned), to the calling party and the
adversary.
In our protocol we will take X = {0,1}* and Y = {0, 1}*.



3.3 The Non-Committing Encryption Functionality

The non-committing-encryption (NCE) functionality is simply the oracle,
which on input (send, mid, j, m) from P; delivers (receive,mid,i,m) to
P; and delivers (receive,mid, i, |m|) to A, where |m| denotes the bit-
length of m.

4 The Protocol

On initialization of the protocol each party P; generates (pk;, sk;) < G(k)
and sends pk; to all other parties. After the key distribution phase the
protocol proceeds as follows.

Send On input (send, mid, j, m) party P; will generate a uniformly ran-
dom element x < X(pk;), compute (mid, fur,;(x), H(mid||i||j]|x) ®
m), and send this value to P;.!

Receive If P; receives a message (mid,y, R) from P;, where y € Dy ,”
then P; computes z = fs_ki(y) and m = R @ H(mid||i|j||z) and
outputs (receive, mid, i, m).

Theorem 1 The above protocol securely realizes the NCE functionality
in the random oracle model.

Proof: Let A be any PPT adversary. We construct an ideal process
adversary S, which running in the ideal process will simulate an execution
of the real-life protocol to A and let A do the communication with Z to
convince Z that it is viewing a real-life execution.

Since the protocol runs in the random oracle model, S will also have
to simulate a random oracle H. It simply does this by defining H(h) to
be some uniformly random value r € {0, 1}*, when H(h) is needed. The
definition of H is stored in a dictionary.

'We use || to denote some injective and easily parsable encoding {0,1}*x{0,1}* —
{0,1}*.

2We require from the collection of trapdoor permutations, that one can check
y € Dy, given just the public key. Intuitively this is needed for security because a
corrupt party P; might use a honest P; to determine whether y € Dy, by observing
P;’s behavior on the message (mid, y, R) — remember that by the security preserving
composition property, security in the framework of [Can01] implies that the protocol
is secure in any context, in particular contexts where it can be observed whether
Pj accepts the message or not. Therefore the information whether y € Dy, or not
should already be available to P; when sending the message.
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The simulator § will simulate the key-distribution phase by generat-
ing random keys as in the protocol. In fact, to make the proof of security
easier we will assume that S, besides running in the ideal process, par-
ticipates in a trapdoor game. The public keys for the parties will then be
obtained from the trapdoor game using n key generation requests. The
trapdoors will therefore not be known to S.

To be able to simulate without the trapdoors we represent H in a
particular way using two dictionaries raw and img. At the beginning of
the simulation both dictionaries are empty, and H is undefined on all
values.

We record a new definition H(h) := r as follows.

e If h can be parsed as mid||i||j||z, where i and j are indices of parties
and z € Dyy,,> then the entry (mid||i||j||ly,r), where y = fy, (), is
added to img.

e If h cannot be parsed as described above, then (h,r) is added to
raw.

We say that H(h) is defined and H(h) = r iff h = mid||i||j||z and
(mid||i]|j|| for; (), ) € img or h cannot be parsed as specified above and
(h,r) € raw.

Because fyi, is a permutation, this representation is consistent —
H(h) = r will only become defined if explicitly recorded.

Equally important, this representation allows to define and evaluate
H on h = mid||i||j||z given just (mid,i,j,y), where y = fyi,(z). To look
up H on mid||i||j]|x, simply look up mid||i||j|ly in img, and to define H
on mid||i||j||x, simply add an entry with key mid||i||j|ly to img. We call
these manipulations oblivious.

The simulation proceeds as follows.

Random Oracle Evaluation If A asks for an evaluation of the ran-
dom oracle on some string h, then if H(h) is defined, return H(h),
otherwise generate uniformly random r € {0,1}*, set H(h) := r,
and return 7.

Send On input (send, mid, j, |m|) from the NCE functionality we know
that P; has input (send,mid, j, m) for some m € {0,1}™! to the
NCE functionality, which has then send (receive, mid,i,m) to P;.

3This is the point in the proof, where we use that x € Dy, can be checked given
just the public key.

11



o If ]5J is corrupt, then S will deliver the message to 15]- to learn
m and will then simulate by following the protocol using m as
the message.

o If 15]- is honest, then S simulates the protocol to A by sending
the message (mid,y, R), where y is obtained as a uniformly
random element in the image of fu, from the trapdoor game
and R € {0,1}* is chosen uniformly at random.

If at a later point P; or P; is corrupted then:

— If P, was corrupted, then S corrupts P, in the ideal process
and learns m.
The simulator then gives up on y and learns x, r such that
Yy = fpr,(v) and x = X(pk,r). The simulator then gives
up on pk; and learns sk;, r such that (pk;, sk;) = G(k, ).
Then the simulator gives this internal view of P; to A and
defines H (mid||i||j||x) := R & m.

— If P; was corrupted, then S corrupts 15]- in the ideal pro-
cess and learns m.
The simulator then gives up on pk; and learns sk;, r such
that (pk;, sk;) = G(k,r). Then the simulator gives this
internal view of P; to A and defines H(mid||i| j||z) :=
R®m.

If H(mid||i]|j||z) was already defined (to a value different from
R @ m), then the simulator gives up the simulation.

Receive On the message (mid,y, R) from P; to P; the simulator S needs
to make the ideal functionality output (receive,mid,i,m) to P;,
where m = R @ H(mid|ij]| £, (v))-

e If P, is honest, then (mid,y, R) was send by § itself and in
that case the message (receive,mid,i,m) has already been
send to ZSJ in the ideal process. The simulator then simply
delivers this message to ]5]

o If P, is corrupt, then decrypt as follows. If H is not defined
on mad||i||j|] f;,;(y), then obliviously define it to a uniformly
random value. Then obliviously look up H (mid||i|| ]| fs’k; (y))
and let m = R® H(mzd”z”y”f;é(y))

Then input (send,mid,j,m) to P; in the ideal process and
deliver the message (receive, mid,i,m) to P;.

12



It is easy to see that if the simulation is not given up, then it is
distributed exactly as a real-life execution. So, if S does not give up the
simulation, then the final output of Z will be identically distributed in
the real-life execution with adversary A and in the ideal process with
adversary S.

It is therefore enough to prove that the probability that the simulation
is given up is negligible. Assume for the sake of contradiction that the
simulation is given up with significant* probability. This means that with
significant probability

1. The simulator obtained y = fy,(2) from the trapdoor game and
send (mid,y, R) from honest P, to honest P;.

2. The dictionary was defined on the value mid||i||j||«= before S needed
to define it on that value.

Since P; is guaranteed to be honest up to the point in the simulation
where S needs to define the dictionary on the value mid||i||j||x, we can
exclude the probability that the simulator has defined H on mid||i||j||=
twice, as it would involve choosing the same value y in the image of
Jpk; twice under the uniform distribution, which happens with negligible
probability. Therefore the other definition of H on mid||i||j||x was made
by the adversary in a Random Oracle Evaluation. The first definition
of H on mid||i||j||x was therefore not oblivious, and thus = = f;k; (y) is
known. Since both P; and P; are honest up to the point where the simula-
tion is given up, the simulator has not given up on y or pk;. This allows
the simulator to win the trapdoor game with significant probability, a
contradiction to Lemma 1.[]

5 Instantiating the Random Oracle

We have proven our construction secure in the random oracle model.
The pending question is then whether we can construct a proper func-
tion family H, such that using a random function from H instead of
a random oracle is secure — still yields a non-committing encryption
scheme. Unfortunately we cannot. We can even prove that this is not
due to our inability to construct a proper family H or our inability to
prove that it works for a proper family H.

4We call a quantity significant if it is not negligible.

13



Put shortly, the reason is that the value
(f (), H (mad||il|j]|=) © m)

determines m uniquely for anyone who sees the value and knows H, as f
is a permutation. For this particular instantiation, there might be other
more basic reasons though for the scheme to be insecure — the scheme is
not even guaranteed to semantically secure. We can remedy this by using
a perfect one-way probabilistic hash function[Can97, CMR98|. This is a
function H, where z is 'hashed’ as y = H(z,r), where r is a uniformly
random string. A security notion for these hash functions guarantees that
H(z, ) looks uniformly random even if r is known and partial knowledge
of x is known (which might be the case if e.g. f(z) is known.) Exam-
ples of perfect one-way probabilistic hash functions are constructed in
[Can97, CMR98], and a result from [Can97] allow us to conclude that if
we encrypt as
(f (@), r, H(mid||i]|j||z,r) & m)

for a particular type of perfect one-way probabilistic hash function, then
the scheme is semantically secure.

Since, as detailed above, it might potentially by stronger to use prob-
abilistic function families, we will do so. Still however, m is uniquely de-
termined by (f(z),r, H(mad||¢||j]|z,r) & m) and there is not much hope
that the scheme should be non-committing.

One attempt to try to escape this is to use n(n — 1) functions H, ;
instead, where H;; is only known to P, and P;. These functions are
then drawn from a probabilistic function family at the beginning of the
protocol and distributed by a trusted party. However:

Theorem 2 Let H be any probabilistic function family. Then the ran-
dom oracle non-committing encryption scheme, using a secret random
function from H for each pair of parties in place of the oracle, is not a
non-committing encryption scheme.

Proof: Assume for simplicity that for a fixed value of the security pa-
rameter, the description of functions from H all have some fixed length
[ (polynomial in k). The analysis generalizes to the case where one con-
siders instead the expected length of a random function from H.
Consider the protocol with two parties P, and P, and consider the
environment Z, which activates P; on a uniformly random message m €
{0, 1}'*1. Consider the adversary A, which first delivers all messages of

14



the protocol such that P, will output m. During this the adversary sees
a message (y,r, R). The adversary will output (y,r, R) along with pks
to the environment. Then the adversary corrupts P; and P, and sends
the internal view of P, and P, to the environment. This view includes z
such that y = fur,(x), Hi2 such that m = Hys(z,7) @ R,” rg such that
(pko, ska) < G(k,7g), and ry such that z <« X (k,ry). The environment
outputs a bit e, where e = 1 iff it sees these values.
Note that
Pr[REAL g z(k,2) =1]=1.

It is therefore (by far) enough to prove that for all® ideal process adver-
saries S,

Pr[IDEALs z(k, 2) = 1] <

| —

For this purpose, let S be any ideal process adversary. Let E denote
the event that in the ideal process IDEALg z(k, z), the ideal process
adversary S returns to Z values (y, r, R, pks, sks, rg, x,rx, Hy 2) such that
these values are on the expected syntactic form and (pks, sks) = G(k,rg),
r=X(k,rx), and y = fp,(z). By definition of Z it is enough to prove
that 1

Pr[IDEALs z(k, z) = 1|E] < 3

To prove this consider the ideal process IDEALg z(k, z) conditioned
on the event F. At some point in the simulation & will send a value
(y,r, R,pks) to Z. Then P, and P, are corrupted. This means that S
is given m and delivers values skq, rg, x,7xHi 2 to Z, where (pka, sks) =
G(k,rg), x = X(k,rx), and y = fur,(x). In particular this means that
[k, 18 guaranteed to be a permutation (with inverse f;,é) and that y is
in its image. This implies that the value of x became uniquely defined
when S handed (y,r, R, pks) to Z. Since (y,r, R, pky) was handed to Z
before the parties were corrupted, the value is independent of m. Since
the possible values of m is at least twice the possible values of H, this
means that with probability at least % the value of m is such that there
exists no H for which m = H(z,r) @& R. This proves the theorem.[]

Put shortly, the entropy of H;; should be larger than the entropy
of the communication between P, and P». In that case it would how-
ever be more efficient for the parties to just use Vernam’s one-time pad
encryption with the description of H; ; as the pad.

5For brevity we drop mid, 4, and j as input to Hy .
6Though irrelevant, the result even holds for computationally unbounded ideal
adversaries.
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Note, that if such a protocol should be able to handle an unbounded
number of bits of communication, then the pad should be generated
during the evaluation using an adaptively secure coin-flip protocol. This
is exactly the form of the non-committing encryption protocols in [Bea91,
DNO00], where a bit is communicated from P; to P; by P; and P; first
generating a shared secret random bit R and P; then sending R & m to
P;. This therefore yields no new view on the non-committing encryption
problem.

6 A Short Discussion of the Random Ora-
cle Model

6.1 Comparison to Previous Negative Results

Our result is primarily a negative one. We show that there exists pro-
tocols which are secure in the random oracle model and are not secure
in the standard model, no matter how the random oracle is instantiated.
Other examples of primitives secure in the random oracle model and not
in the standard model were known prior to our work.

First of all, the Fiat-Shamir heuristic[FS86] for transferring tree-move
public-coin zero-knowledge proofs into non-interactive ones is provably
secure in the random oracle model, but by the result in [GK90] these
protocols cannot be zero-knowledge in the standard model unless NP is
in BPP.

Yet another negative result is that of [CGH98]. In [CGH9S8| an en-
cryption scheme and a signature scheme are constructed, which are secure
in the random oracle model, but is not secure in the standard model no
matter the instantiation. Their schemes are however highly unnatural.
They are constructed as to try to “detect” whether they are in the ran-
dom oracle model or not, and then behave insecurely if they are in the
random oracle model.

One strength of the result from [CGH98] over ours is that in [CGH9S]
it is the semantic security and the security against forgery of the encryp-
tion scheme respectively the signature scheme that are violated in the
standard model, whereas it in our example it is the less standard non-
committing property that is violated. Their result thus establishes that
even standard security properties does not carry over from the random
oracle model to the standard model.
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Another strength of the result from [CGH9S8]| is that it uses the ran-
dom oracle in an essentially weaker way than it is used in [F'S86] and
in our proof. Specifically, in [FS86] and in our simulator, it is used es-
sentially that one can control the random oracle, by defining the value
of H(h) to be some value appropriately chosen by the simulator. E.g.
we set it to R @& m to be consistent with some plaintext learned by the
simulator after H “should” have been defined.

Since, the property that the random oracle can be lazily defined by
the simulator is a property that a fixed function is guaranteed not to
have, one could therefore get the impression that the negative results are
due to this very strong use of the control over the oracle in the proof.

Indeed the proof in [CGHI8]| also exploits this control over random
oracle, but only indirectly through the use of the CS-proofs of [Mic00]
for the random oracle model. It is however easy to see that the result
from [CGH98] still stands if these “non-interactive” proofs for the ran-
dom oracle model are replaced by interactive CS-proofs (which can be
constructed in the standard model under the assumption that collision
resistant hash functions exits[Mic00]).

After this modification, the proof in [CGH98| does not exploit the
control over the oracle. Indeed the oracle could as well be an oracle
external to the simulator/proof, i.e. a uniformly random function to
which also the simulator/proof only has oracle access.

True, the use of interactive CS-proofs makes the schemes in [CGH9S]
even more unnatural (now sending a ciphertext/signature to the de-
crypter/verifier involves a four-move protocol.) However, their result
shows that even if the simulator/proof also uses the oracle in a black-
box manner natural security properties still does not carry over to the
standard model.

6.2 Conclusion

It seems that the thesis of [BR93], even though not phrased like that, is
that standard security properties of natural (encryption and signature)
schemes carry over from the random oracle model to the standard model
by a careful instantiation of the random oracle, at least for all practical
reasons — i.e. even though the schemes may not facilitate a formal proof
of security, they are “secure” to use in practice. Indeed this thesis is

what e.g. allows us to conjecture the semantic security-in-practice of the
OAEP-RSA scheme[BR95].

17



We do not think that any of the negative results above contradict this
thesis, either the schemes are highly unnatural or the properties lost in
the instantiation are properties not initially intended to be considered in
the framework.

An interesting open question is therefore whether we can identify
“standard security properties” of some subset of “natural schemes” (all
this maybe being defined by a restriction on how the oracle is used in
the scheme and/or in the simulator,) which carry over to the standard
model by a “careful instantiation”.
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