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Imperative Programming Languages
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Preface

This report presents research conceived during a few months the fall 2001
when I was visiting BRICS at the University of Århus. I would like em-
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Abstract

During the last decade Cook, Bellantoni, Leivant and others have developed
the theory of implicit computational complexity, i.e. the theory of predica-
tive recursion, tiered definition schemes, etcetera. We extend and modify
this theory to work in a context of imperative programming languages, and
characterise complexity classes like P, linspace, pspace and the classes in
the Grzegorczyk hiearchy. Our theoretical framework seems promising with
respect to applications in engineering.
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1 Preliminaries

We assume some basic knowledge about subrecursion theory, in particular
about the Grzegorczyk hierarchy. Readers unfamiliar with these subjects
are referred to Grzegorczyk [9], Rose [29], Odifreddi [26] or Clote [6]. We
summarise some basic definitions and facts from Rose.

For unary functions f , fk denotes kth iterate of f , that is, f 0(x) = x and
fk+1(x) = f(fk(x)). The sequence E1, E2, E3, . . . of number-theoretic func-
tions is defined by E1(x) = x2 + 2 and En+2(x) = Ex

n+1(2). We have the
following monotonicity properties: x + 1≤En+1(x), En+1(x)≤En+1(x + 1),
En+1(x) ≤ En+2(x) and Et

n+1(x) ≤ En+2(x + t) for all n, x, t.

A function f is defined by bounded (limited) recursion from functions g, h, b
if f(~x, 0)=g(~x), f(~x, y + 1)=h(~x, y, f(~x)), and f(~x, y) ≤ b(~x, y) for all ~x, y.

The nth Grzegorczyk class En, n ≥ 2, is the least class of functions containing
the initial functions zero, successor, projections, maximum and En−1, and is
closed under composition and bounded recursion. The 0th Grzegorczyk class
E0 is the least class of functions containing the initial functions zero, suc-
cessor, projections and is closed under composition and bounded recursion.
The 1st Grzegorczyk class E1 is the least class of functions containing the
initial functions zero, successor, projections, addition and is closed under
composition and bounded recursion.

By Ritchie [28] the class E2 characterises the class linspacef of functions
computable by a Turing machine in linear space; E3 equals the Kalmár-
elementary functions (cf.[29]). Every f ∈ En satisfies f(~x) ≤ Ek

n−1(max(~x))
for a fixed number k. Thus, every function in E2 is bounded by a polynomial,
and En 6∈En, showing that each En is a proper subset of En+1. Every f ∈ E0

satisfy f(x1, . . . , fk) ≤ xi + k for some fixed numbers k and i (where 1 ≤ i ≤
k), every f ∈ E1 satisfy f(~x) ≤ k max(~x) + l for some fixed numbers k and l.
Thus, we also have E0 ⊂ E1 ⊂ E2. The union of all the Grzegorczyk classes
is identical to the set of primitive recursive functions.

If F is a class of functions, F? denotes the corespondent relational class, i.e.

F? = {f | f ∈ F and ran(f) = {0, 1}} .

The class E i+1 contains a universal function for the class E i whenever i ≥ 2.
Thus, we have E i

? ⊂ E i+1
? for i ≥ 2. It is not known whether any of the

inclusions E0
? ⊆ E1

? ⊆ E2
? are strict. See e.g. Rose [29] or Kutylowski [14].
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Functions f1, . . . , fk are defined by simultaneous recursion from g1, . . . , gk

and h1, . . . , hk if fi(~x, 0)=gi(~x) and fi(~x, y+1)=hi(~x, y, f1(~x, y), . . . , fk(~x, y))
for i = 1, . . . , k. If in addition each fi is bounded by a function bi, that is,
fi(~x, y) ≤ bi(~x, y) for all ~x, y, then f is said to be defined by bounded simul-
taneous recursion from g1, . . . , gk, h1, . . . , hk, b1, . . . , bk. Note that for i = 1
the definition scheme for bounded simultaneous recursion degenerates to the
scheme for bounded recursion. Hence every class closed under bounded simul-
taneous recursion is also closed under bounded recursion, but not necessarily
vice versa.

While each class En+2 is closed under bounded simultaneous recursion, one
application of unbounded simultaneous recursion from functions in En+2

yields functions in En+3.

We also assume some familiarity with complexity-theoretic classes like P (the
class of problems decided by a Turing machine working in polynomial time
in the length of input), linspace (the class of problems decided by a Turing
machine working in linear space in the length of input), pspace (the class
of problems decided by a Turing machine working in polynomial space in
the length of input), conspace (the class of problems decided by a Tur-
ing machine which working in constant space). We use pf, linspacef and
pspacef denotes the correspondent classes of functions. On some occasions
we view these classes as classes a of number theoretic functions, i.e. functions
from tuples of natural numbers into the natural numbers, on other occasions
we view these classes as classes of functions from tuples of words over an
alphabet into the words of an alphabet. The readers not familiar with these
classes should consult e.g. Odifreddi [26].

We will use informal Hoare-like sentences to specify or reason about impera-
tive programs, that is, we will use the notation {A} P {B}, the meaning being
that if the condition given by the sentence A is fulfilled before P is executed,
then the condition given by the sentence B is fulfilled after the execution
of P. For example, {~X = ~w} P {~X = ~w′} reads as if the data ~w are stored
in the registers (or variables) ~X, respectively, before the execution of P, then
data ~w′ are stored in ~X after the execution of P. Another typical example is
{~X = ~w} P {|X1| ≤ f1(|~w|), . . . , |Xn| ≤ fn(|~w|)} meaning that if the data ~w are
stored in the registers ~X, respectively, before the execution of P, then the data
stored in Xi after the execution of P has a length bounded by fi(|~w|). Here fi

is function with range N, and |~w| abbreviates as usual the list |w1|, . . . , |wn|.
As usual |x| denote the length of the data x.
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We use V(P) to denote the set of variables occurring in a program P.

A program P computes a functions f when {~X = ~x}P{Y = f(~x)} for some
~X, Y ∈ V(P). If {~X = ~x}P{Y = f(~x)} we will also occasionally refer to f as
the function P computes into Y. This is a slightly sloppy use of words since P

might very well compute many functions into Y, e.g. if Z ∈ V(P) and Z 6∈ {~X}
then we also have {~X = ~x, Z = z}P{Y = g(~x, z) = f(~x)} for some function
g. When we construct programs, we occasionally need what we call fresh
variables. That a variable is fresh simply means that the variable is not used
elsewhere.

Let P and Q be imperative programs where the registers holds values of N.
Assume (P) ⊆ (Q), say V(P) = X and V(Q) = ~X,~Y. We say that Q is a bound
on P, denoted P � Q, if

{~X = ~x} P {~X = ~z} and {~X = ~x,~Y = ~y} Q {~X = ~u} implies ~x ≤ ~u.

2 Introduction

Implicit computational complexity theory can be viewed as theory on how
to design programming languages that capture complexity classes. There
are of course much more to implicit computational complexity than this,
e.g. proof theoretical aspects, philosophical aspects, etcetera. We are talking
about a broad and rich research area, but still, if we should explain the
area to a layman or an engineer, it would not be too misleading to say that
this is an area where we search for programming languages that captures
complexity classes. The engineer would probably respond that this seems
like a worthy endeavour, and then he1 would expect us to come up with a
nice practical programming language which he can use in his daily work.
If we view the formalisms developed in Bellantoni-Cook [1], Leivant [17],
and several other entries in the bibliography, as programming languages, we
do not have exactly what an engineer conceives as practical programming
languages. He would probably have problems to carry out simple tasks, like
multiplying two numbers, in any of these formalisms.

What would be the most precious gift implicit computational complexity
theory possibly could give to an engineer? Well, perhaps we could give
him a neat practical programming language reminiscent of Pascal or C, a

1We assume that women do not exist.
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language which permits him to write programs more or less in way he is
used to, but still a language which endows him with means to easily retrieve
useful information about the computational complexity of the programs. The
language should be rich and able to express as many algorithms as possible,
also algorithms of high computational complexity because sometimes the
engineer indeed wants to implement such algorithms. (He makes sure that
such programs only are executed on inputs they can cope with.) Will there
ever be possible to provide such a language which engineers actually will
use, either to develop programs that compiles into executable code on some
electronic gadgets, or as a pen and paper language for analysing algorithms
before they eventually are implemented by other means? As we will see, there
are theoretical results and mathematical insights that put obstacles in the
way of such a programming language, in spite of these results and insights
we are able to present a theoretical framework which seems promising for
developing languages satisfying the needs and requirements of engineering.

The main ideas are simple: We introduce programming languages capable of
computing a huge class of functions e.g. every primitive recursive functions.
We introduce measures on programs.

Definition 2.1. Given any programming language L, a measure on L is a
computable function π: L-programs → N. We say that the program P has
π-measure n if π(P) = n. End of definition.

The idea is that a measure should tell us something about the computa-
tional complexity of a program, for example, if P has π-measure 0, then
every function computed by P is in the complexity class C where C might be
pf, linspacef, the Kalmár elementary functions, or any other complexity
class. One might ask how successful such a project can be. Is it for for ex-
ample possible to find a nontrivial programming language and a measure π
such that every program with polynomial running time (and only programs
with polynomial running time) will receive π-measure 0? Unfortunately, the
answer to this question is not an unqualified yes, it depends on what we mean
by a nontrivial programming language. By ordinary computability-theoretic
methods we shall prove some negative results. Thereafter we shall see that
the situation is not as bad as these results may indicate at the first glance.

We start off by defining some generic languages.

Definition 2.2 (Loop programs). We have an infinite supply of program vari-
ables (registers). We will normally use X, Y, Z, A, B, C, U, V with or without
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subscripts and superscripts to denote variables. For any variables X and Y

we have the following imperatives (primitive instructions): nil(X), suc(X),
pred(X), X:= Y.

A loop language is a set of programs generated by the following syntactical
rules:

• every imperative is a program

• if P is a program with no occurrence of the variable X in an imperative,
then the loop loop X [P] is a program

• if P1, P2 are programs, then the sequence P1; P2 is a program

L0 is the loop language which only has the imperative suc(X) (for any vari-
able X). L1 is the loop language which has the imperatives suc(X) and X:= Y

(for any variables X and Y). L is the loop language which has the imperatives
nil(X), suc(X), pred(X) and X:= Y (for any variables X and Y).

Loop programs have a standard semantics, e.g. like Pascal or C programs.
The imperative nil(X) sets the register X to zero. The imperative suc(X)

increments the number stored in X by one, while pred(X) decrements any
nonzero number stored in X by one, X:= Y is ordinary assignment. Impera-
tives and loops in a sequence are executed one by one from the left to the
right. The meaning of a loop statement loop X [P] is that P is executed x
times whenever the number x is stored in X, besides, X keeps the value x
during the execution of the loop body P. End of definition.

Example 2.3. If a variable X governs a loop, then X cannot occur in an im-
perative in the body of the loop. Still X is allowed to govern a loop in the
body. The following L-program square the number stored in the register X.

{X = x} nil(Y); loop X [ loop X [ suc(Y) ] ]; X:= Y {X = x2}
End of example.

Definition 2.4. Let P be a program in a loop language and let C be a complex-
ity class. P is C-feasible if every function computed by P is in C. P is honestly
C-feasible if every subprogram of P is C-feasible. P is dishonestly C-feasible, or
C-dishonest for short, if P is C-feasible, but not honestly C-feasible. When-
ever convenient we will leave out the reference to a particular complexity
class and talk about feasible programs, honestly feasible programs, etcetera.
End of definition.

7



Note that if a function is computable by a feasible program, then it is also
computable by an honestly feasible program.

C-dishonest programs fall into two groups. One group consists of those pro-
grams which only compute functions in C, but the execution of the program
require more resources than the complexity class C admits. The other group
consists of programs which always are executed within the resource bounds
C admits, but some subprograms exceed these bounds if executed separately.
Typical of the latter group are programs of the form R; if <test> [Q] where
R is an honestly C-feasible program, <test> is a test that always fails, and Q is
an arbitrary program which is not C-feasible. Another example is a program
of the form P;Q where Q runs in time O(2x), but where P is an honestly pf-
feasible program which assures that Q always is executed on ”logarithmically
large input”. The program P;Q is dishonestly pf-feasible.

Obviously, we cannot expect to separate (by purely syntactical means) the
feasible programs from the non-feasible ones if we take into account dishonest
programs. Thus, it seems reasonable to restrict our discussion to the honestly
feasible programs, and after all, it is the computational complexity inherent
in the code we really want to analyse and recognise. But even then, our
project is bound to fail.

Definition 2.5. Let C be a complexity class, let C be a programming language,
and let π be a measure on C. The pair (π, C) is called

• C-sound if every C-program with π-measure 0 is C-feasible,

• C-complete if every honestly feasible C-program has π-measure 0, and

• C-adequate if every function in C can be computed by a C-program
with π-measure 0.

End of definition.

Note that if we have a pair (π, C) which is both C-sound and C-adequate, we
have a characterisation theorem for the class C, i.e. f ∈ C iff f can be com-
puted by a C-program with π-measure 0. Now, let us restrict our discussion
to the linear space computable functions for a while, i.e. the Grzegorczyk
class E2. (Recall that E2 = linspacef.)

Theorem 2.6. Let C be any programming language extending L0, and
(π, C) be a E2-sound and E2-adequate pair. Then (π, C) is E2-incomplete,
that is, there exists an honestly E2-feasible program P ∈ C such that π(P) > 0.
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Proof. Assume a effective enumeration {ρi}i∈ω of the Turing machines with
alphabet {0, 1}. Let n be a fixed natural number. It is well-known that there
is a function fn in E2 satisfying fn(x) = 1 if ρn (on the empty input) halts
within x steps, and fn(x) = 0 else. It is also well-known that it is undecidable
whether ρi halts. Since (π, C) is adequate and sound, there is an honestly
feasible program Q ∈ C with π-measure 0 such that

{Y = y} Q {if ρn does not halt within y steps then Z = 0 else Z = 1}
Moreover, such a program Q can be effectively constructed from n, that is,
there exists an algorithm for constructing Q from n. Since C extends L0, the
program

P :≡ loop X [Q; loop Z [loop V [suc(W)]];

loop W [suc(V)]]

is also in C, where X, V, W are fresh variables. Now, if ρn never halts then
loop V [suc(W)] will never be executed, whatever the inputs to P. Thus,
if ρn never halts, then P is honestly feasible. In contrast, if ρn halts after
s steps, say, then part loop V [suc(W)] and part loop W [suc(V)] will be
executed each time the body of the outermost loop is executed whenever
Y = y ≥ s. Each such execution implies that the number stored in the
register V is at least doubled, and then the function computed into V is not
in E2. (For any f ∈ E2 we have f(~x) ≤ q(~x) for some polynomial q, but the
function computed into V cannot be bounded by a polynomial.) Thus, if ρn

eventually halts, then P is not feasible. In other words, P is honestly feasible
if and only if ρn never halts. As P is effectively constructible from n, we
conclude that (π, C) cannot be complete. For if (π, C) were complete, then
ρn would never halt if and only if π(P) = 0. This would yield an algorithm
which decides whether ρn halts: Construct P from n and then check whether
ν(P)>0. Such an algorithm does not exist.

Theorem 2.6 regards loops languages and the linear space computable func-
tions, but similar theorems can be proved for any other interesting program-
ming languages and complexity classes. So, maybe it will be wise to put
an end to our project then? In a way we have lost before we even started.
Still, we will continue our research project since we belive we can achieve
completeness in practice. For a significant amount of natural programs, and
in particular for programs that actually will be written for commercial and
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industrial purposes, we belive we can find sound and complete measures for
interesting complexity classes, that is measures when applied on such natural
programs always yield the the best possible answers. Moreover, for sound
and adequate pairs (π, C) there might be possible to prove that the measure
π is complete for an interesting sublanguage C ′ of C. This type partial com-
pleteness results (or lack of such results) will give a mathematical indication
of how well (or bad) we are doing.

3 The µ-measure and some fundamental

definitions.

Note 3.1. In the previous section we defined the loop languages L0, L1 and L.
Any program in any of these languages can be written uniquely in the form
P1; . . . ; Pk such that each Pi is either a loop or an imperative, and where
k = 1 whenever P is an imperative or a loop. End of note.

Definition 3.2. The relations ≺P and
P→ are binary relations over V(P). The

relation X ≺P Y holds iff P has a subprogram loop X [Q] where suc(Y) is a

subprogram of Q. The relation
P→ is the transitive closure of ≺P. We call

P→
the control relation (of P), and if X ≺P Y we say that X controls Y.

α is a clique of degree 1 in the program P iff α is a minimal subset of V(P)
satisfying

(i) there is a 1-principal variable in α, where a variable X is 1-principal iff

X
P→ X

(ii) if X is a 1-principal variable in α and X
P→ Y, then Y ∈ α.

Let α be a clique (of any degree) in the program P. The cover set α̂ ⊂ V(P)
of the clique α is defined by α̂ = {X | X ≺P Y for every Y ∈ α}.
α is a clique of degree n + 1 in the program P iff α is a minimal subset of
V(P) satisfying

(i) there is a n + 1-principal variable in α, where a variable X is n + 1-
principal when there exists a clique β of degree n in P such that X ∈ β̂

and Y
P→ X for some Y ∈ β
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(ii) if X is a n + 1-principal variable in α and X
P→ Y, then Y ∈ α.

We define the µ-measure µ(P) of an L0-program P by

• µ(suc(X)) = 0 for every variable X.

• Let P ≡ Q1;Q2. Then µ(P) = max(µ(Q1), µ(Q2)).

• Let P ≡ loop X [Q]. Then

µ(P) =

{
µ(Q) + 1 if Q has a clique of degree µ(Q) + 1,
µ(Q) otherwise

End of definition.

We shall elucidate Definition 3.2 by some examples and explanations. Let
µ(P) = n > 0. The functions computed by P which are not in the Grzegorczyk
class En+1 will be precisely those functions computed into the variables in
the n-cliques of P, i.e. if {~X = ~x}P{Y = f(~x)} and Y ∈ α for some n-clique α
of P, then f 6∈ En+1 (but f ∈ En+2). Let P0 be the program

loop A [suc(B)]; loop B [suc(A)]

The µ-measure of P0 is 0, so every function computed by P0 is in E2. There
is one 1-clique α in P0, namely α = {A, B}. The cover set α̂ of α is empty.

We put P0 inside loop controlled by a variable X and get the program

P1 ≡ loop X [ loop A [suc(B)]; loop B [suc(A)] ]

Then we have µ(P1) = 1 since the body of the outermost loop has µ measure 0
and contains a 1-clique. Still there is only one clique in the program, namely
the 1-clique α = {A, B}, but the cover set of α is not empty anymore. Now
we have α̂ = {X}. The functions computed by P1 into A, B are not in E2

whereas the function computed into X is in E2. We have

{A = a, B = b, X = x} P0 {A = f(a, b, x), B = g(a, b, x), X = x}
and the reader can check that neither f nor g is bounded by a polynomial,
thus neither f nor g is in E2.

We extend the body of the outermost loop in P1 and get the program P2 ≡
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loop X [ loop A [suc(C)];

loop A [suc(B)];

loop B [suc(A)];

loop U [suc(V)] ]

Still we have only one 1-clique α, but now the variable C is also in the clique,
i.e. α = {A, B, C}. We still have α̂ = {X}. Note that the value the program
computes into C cannot be bounded by a polynomial in the input since the
value the program computes into A is not bounded by such a polynomial.
Thus the functions computed into C are not in E2. The function computed
into U and V are in E2, e.g. we have

{X = x, U = u, V = v} P2 {V = v + (x × u)} .

Let us study the program

Q0 ≡ loop Y [ P2; loop V [suc(U)] ] .

The µ measure of Q0 is also 1, but here we find two cliques of degree 1, the
clique α = {A, B, C} and the clique β = {U, V}. Further, we have the cover
sets α̂ = {X, Y} and β̂ = {Y}. Now, if we extend the body of the outermost
loop of Q0 such that we get the program

Q1 ≡ loop Y [P2; loop V [suc(U)]; loop A [suc(X)]]

then we have a program with µ-measure 2. Why? Well, in the body of the
outermost loop of Q1, i.e. in the program

P2; loop V [suc(U)]; loop A [suc(X)]

we find the 1-clique α = {A, B, C} and the cover set α̂ = {X}. (This clique is
inside P2.) Besides, we see that A controls X since the subprogram

loop A [ suc(X) ]

is a part of the body. So, a variable (A) in a 1-clique (α) controls a variable
(X) in the cover set (α̂) of the 1-clique, and hence there is a clique γ of degree
2 in the body. Thus, the program Q1 has µ measure 2. The sole principal
variable of γ is X and every variable X controls, and no other variable, should
be in γ, i.e. γ = {A, B, C, X, V}. The cover set of γ in Q1 contains only one
variable. We have γ̂ = {Y}. The functions the program Q1 computes into the
variables in γ will be hyper exponential, i.e. they will not be bounded by any
Kalmár elementary function.
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Definition 3.3. Let V(P) = ~X. We use #P(~x) to denote the number of steps
in the execution of the imperative program P on the input ~X = ~x, i.e. the
number of primitive imperatives which is executed.

Let π be a measure and let C be a loop language. We say that the pair (π, C)
is sound (with respect to the Grzegorczyk hierarchy) when

π(P) ≤ n ⇒ #P ∈ En+2

for every n ∈ N and every P ∈ C.

We say that the pair (π, C) is complete (with respect to the Grzegorczyk
hierarchy) when

#P ∈ En+2 ⇒ π(P) ≤ n

for every n ∈ N and every P ∈ C.

We say that the pair (π, C) is adequate (with respect to the Grzegorczyk
hierarchy) when every function in En+2 can be computed by a C-program
with π-measure ≤ n (for every n ∈ N). End of definition.

4 Soundness and completeness of (µ, L0)

Definition 4.1. We say that a loop loop X [Q] with µ-measure n+1 is simple
if Q has µ-measure n. A program P1; . . . ; Pk with µ-measure n+1 is flattened
out if each component Pi either is a simple loop or has µ-measure strictly
less than n + 1, i.e. µ(Pi) ≤ n. End of definition.

For any program P in L0 we have {X = x}P{X ≥ x}. This entails a lot of
monotonicity properties for programs in L0, for instance, if Q0 � Q1, then we
also have R0; Q0; R1 � R0; Q1; R1 . Such monotonicity properties of L0 will
be used frequently in the sequel, and in particular in the proof of the next
lemma.

Lemma 4.2 (Flattening lemma). Let P be an L0-program such that
µ(P) > 0. Then there exists a flattened out L0-program P′ such that

- P′ is flattened out

- P � P′

- µ(P′) ≤ µ(P).
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Proof. We define the rank of a loop P denoted rk(P) by

rk(P) =

{
0 if µ(P) = 0
k otherwise

where k is the number of times the word loop occurs in P.

We will prove

(Claim) If the loop P ≡ loop X [Q] is not simple, then there are loops P1

and P2 such that

(i) rk(P) > rk(P1) and rk(P) > rk(P2)

(ii) µ(P) ≥ µ(P1) and µ(P) ≥ µ(P2)

(iii) P � P1; P2

Let us see how the very lemma follows from (Claim). Let R0 ≡ Q1; . . . ; Qm

be a program with µ-measure n + 1 which is not flattened out. Then there
must be a loop Qi among the components Q1; . . . Qm such that Qi is not a
simple loop and µ(Qi) = n + 1. Clause (iii) of the claim yields loops P1 and
P2 such that and P � P1; P2. Let

R1 ≡ Q1; . . . ; Qi−1; P1; P2; Qi+1; . . . ; Qm .

Then we have R0 � R1. If the program R1 is not flattened out, we can use
the same procedure once more to get a program R2 such that R0 � R1 � R2.
And thus we might proceed, constructing programs R1, R2, R3, . . . such that
R0 � Ri. The process terminates when we encounter a flattened out program
R•. Clause (i) of the claim ensures that we eventually will encounter such a
flattened out program. The program Ri+1 is the program Ri where one loop
in a sequence of loops (and primitive instructions) is replaced by two loops
of strictly lower rank, and thus it follows straightaway from the definition of
rank in the beginning of this proof, that the process must terminate. Finally,
clause (ii) of the claim ensures that the result of process, i.e. the flattened out
program R• has µ-measure less or equal to R0. This proves that the lemma
follows from (Claim).

We turn to the proof of (Claim). The proofs splits into two cases. The case
(1) where Q is a loop loop Y [R] and the case (2) where Q is a sequence
Q1; . . . ; Qm.
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Case (1). We have P ≡ loop X [loop Y [R]]. Let Z be a fresh variable,
let P1 ≡ loop X [loop Y [suc(Z)]. and let P2 ≡ loop Z [R]. It is easy to
see that (Claim) holds.

Case (2). This is the hard case. We have P ≡ loop X [Q], where Q ≡
Q1; . . . ; Qm for some m ≥ 2. Since P is not a simple loop, we have µ(P) =
µ(Q) = n + 1. Thus, there must be a component Qi in Q1; . . . ; Qm such
that µ(Qi) = n + 1. Furthermore, Qi has the form Qi ≡ loop Y [R], where
R contains an n + 1-clique α and Y ∈ α̂. Now, it must be the case that no

V in the clique α controls Y in the program Q, i.e. we have V 6 Q→ Y for every
V ∈ α. If this were not the case, there would be a clique of degree n +2 in Q,
and then the µ-measure P would be n + 2. Let Z be a fresh variable, and let
R’ be R, where every loop controlled by a variable in the clique α is deleted.
Note that since α has degree n + 1, the number of occurrences of the word
loop in R’ will be strictly less than the number in R. (There is no reason
to formalise what it means to delete a loop. Any sensible way of deleting a
loop will work. The body of the loop may or may not be deleted.) Let

P1 ≡ loop X [ Q0; . . . ; Qi−1; loop Y [suc(Z); R’]; Qi+1; . . . ; Qk ] .

When we execute P and P1 on the same input, the loop loop Y [suc(Z); R’]

in P1 will be executed exactly as many times as the loop loop Y [R] in P

because the variable Y is not controlled by any variable in α. Hence, let

P2 ≡ loop Z [ Q0; . . . ; Qi−1; R; Qi+1; . . . ; Qk ]

and we have P � P1; P2. It is easy to see that we also have rk(Pi) < rk(P)
and µ(Pi) ≤ µ(P) for i = 1, 2. This completes the proof of (Claim).

Theorem 4.3. Every function computed by an L0-program with µ-measure
n is in the Grzegorczyk class En+2.

Proof. We prove the theorem by induction on n. Assume f is computed by a
program P with µ-measure 0. Then the program P has the form P1; . . . ; Pk

(for some k ≥ 1) where no Pi contains a clique of degree 1. This entails

that the control relation
Pi→ is a partial ordering (for i = 1, . . . , k). Use

induction on this ordering to prove that any function computed by Pi is in
E2. It follows that any function computed by P is in E2, since E2 is closed

under composition. (The induction over the partial ordering
Pi→ is tedious and
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contains some unpleasant details, but no big surprises show up and everything
is quite straightforward. The reader interested in the details should consult
Kristiansen-Niggl [13] where such an induction is used to prove a similar
result.)

We turn to the induction step. Assume f is computed by a program P with
µ-measure n+1. By Lemma 4.2 there exists a flattened out program P′ such
that P � P′ and µ(P′) ≤ n+1. The program P′ has the form P1; . . . ; Pk (for
some k ≥ 1) where Pi is a simple loop or has µ-measure strictly less than n+1
(for i = 1, . . . , k). It suffices to prove that each Pi only computes functions
in En+3. If Pi has µ-measure strictly less than n + 1, it follows straightaway
from the inductions hypothesis that Pi does not compute functions outside
En+3. If Pi is a simple loop, then Pi has the form loop X [Q] where µ(Q) = n.
By the induction hypothesis every function computed by Q is in En+2. Any
function computed by Pi can be defined by one application of simultaneous
recursion over functions computed by Q. Hence any function computed by Pi

is in En+3 since one application of simultaneous recursion over functions in
En+2 yields a function in En+3.

Definition 4.4. We define the sequence of functions K0, K1, K2, . . . from by
K0(x) = 2(x + 1) and Kn+1(x) = Kx

n(0).

We say that a Hoare statement {A}P{B} holds almost everywhere if there
exists a fixed number k such that {A}P{B} holds whenever all the inputs
to the program P is greater or equal to k. We put the tag (a.e) next to a
Hoare statement to mark that the statement just is supposed to hold almost
everywhere. (A Hoare statement without such a tag is of course supposed to
hold for all possible inputs.) End of definition.

Example 4.5. Let P be the program loop Z [loop X [suc(Y)]]. We have
{X = x}P{Y ≥ x} (a.e) because the statement holds when all inputs is greater
or equal to 1. The statement may not be true for inputs where Z = 0.So
the statement does not hold for all possible inputs, but it does hold almost
everywhere. End of example.

Lemma 4.6. We have Kn+1 6∈ En+2 for n ∈ N (but we do have Kn ∈ En+2).

Proof. This proof is a standard exercise. We skip the details.

Lemma 4.7. Let P be a loop, and let α be a clique of degree n in P. For
every Y ∈ α̂ and X ∈ α we have

{Y = y} P {X ≥ Kn(y . 1)} (a.e)
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Proof. We prove this lemma by induction on n. Assume n = 1. (There is no
such thing as a 0-clique.) Let α be an arbitrary 1-clique in P and let A be a

principal variable of α and let B ∈ α be such that A
P→ B and B

P→ A. (Such
A and B exist when α is a 1-clique.) Let

Q ≡ loop A [suc(B)]; loop B [suc(A)] .

Then

{A = a, B = b} Q {A = a + b + a
(a.e)

≥ 2(a + 1) = K0(a)} .

Further, let Q1 ≡ loop Y [Q]. Then we have

{Y = y, A = a} Q1 {A ≥ Ky
0 (a) ≥ Ky

0 (0) = K1(y)} (a.e)

and if Y is any variable in the cover set α̂ and {Y = y}P{A = a} then
a ≥ K1(y). Hence we have {Y = y}P{A ≥ K1(y)}(a.e) for any Y ∈ α̂. Now, A

is a principal variable of α, so if X ∈ α then A
P→ X. It follows that we have

{Y = y}P{X ≥ K1(y
. 1)} (a.e) for any X ∈ α and Y ∈ α̂. This concludes the

proof for n = 1, and we can turn to the induction step.

Let α be any clique of degree n + 1 in the loop P. Then there exists a
subprogram P0 ≡ loop U [Q] such that µ(Q) = n, µ(P0) = n + 1 and an
n + 1-clique α0 is in Q. The clique α0 is a subclique of α, i.e. α0 ⊂ α. Now,
Q has the form Q1; . . . ; Qm for some m ≥ 2. Pick a component Qi among
Q1; . . . ; Qm such that µ(Qi) = n, and there is an n-clique β in Qi such that

A
Q→ B for some A ∈ β and B ∈ β̂. Such a Qi exists since µ(P0) = n + 1.

Furthermore, B is a principal variable for the clique α0. By the induction
hypothesis we have

{B = b}Qi{A ≥ Kn(b . 1)} . (a.e)

Let Y be any variable in the cover set α̂ and let P1 ≡ loop Y [B:= A; Qi].
(B:= A is ordinary assignment. It does not affect our argument that assign-
ment is not a part of the language L0.) First, we note that

{Y = y, A = a}P1{A ≤ K
y

n(a)} (a.e)

where Kn(x) = Kn(x . 1). Further, we note that Kn(Kn(x) . 1) ≥
Kn(Kn(x . 1)). Hence

K
y

n(a) ≥ Ky
n(a . y) ≥ Ky

n(0) = Kn+1(y) .
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Altogether this entails that {Y = y}P1{A ≥ Kn+1(y)} (a.e). It is easy to see
that P1 � P, and thus we have proved that {Y = y}P{A ≥ Kn+1(y)} (a.e)

holds for any Y ∈ α̂ and the variable A ∈ α. Now, A
P→ B and B is a

principal variable of the clique α0. The variable B will control (in P) any
variable in the clique α, and thus A controls (in P) any variable in the clique
α. Moreover, P is a loop. It follows that {Y = y}P{X ≥ Kn+1(y

. 1)} (a.e)
for any X ∈ α, Y ∈ α̂.

Theorem 4.8 (Soundness and Completeness of (µ, L0)). We have

µ(P) ≤ n ⇔ #P ∈ En+2

for every n ∈ N and every P ∈ L0.

Proof. Suppose µ(P) ≤ n. Let A be a fresh variable, and let Q be P where each
occurrence of an imperative on the form suc(X) is replaced by the program
suc(X); suc(A). Let f be the function which Q computes into A, i.e. we have

{~X = ~x, A = a} Q {A = f(~x, a)} .

It is easy to see that Q has µ-measure less or equal n, and thus we have
f ∈ En+2 by Theorem 4.3. Now, f(~x, a) = a + #P(~x). It follows that
#P ∈ En+2

Suppose µ(P) > n. Then a subprogram Q of P is a loop containing a clique
of degree n + 1. By Lemma 4.7 there will be variables Y and X such that

{Y = y} Q {X ≥ Kn+1(y
. 1)} (a.e) .

The function Kn+1 is not in En+2. (Lemma 4.6.) It follows that #P cannot
be in En+2, i.e. we have #P 6∈ En+2

The µ-measure introduced above is considerably more sophisticated than
a similar measure (also called µ-measure) in Kristiansen-Niggl [13]. The
measure in [13] is sound, but not complete, for a language corresponding to
L0.
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5 The ν-measure and how to deal with

assignment

Recall that L1 is the language L0 extended by the assignment imperative
.. := ... An interesting feature of the theory we are developing is that
the measures on programs still will be well defined when we extend the
language in a natural way. The µ-measure is still well defined for L1, but the
next example shows that the pair (µ, L1) is not sound with respect to the
Grzegorczyk hierarchy.

Example 5.1. The program

loop X [ loop Y [suc(Z)]; Y:= Z ]

computes a function into Y which are not bounded by a polynomial, and thus
not bounded by any function in E2. (So the number of steps in an execution
of the program is not bounded by a function in E2 either.) Still the µ-measure
of the program is 0. End of example.

So we need a measure ν that makes the pair (ν, L1) sound. We will achieve

ν by redefining the control relation
P→. In any other respect the ν-measure

will be defined exactly as the µ-measure, e.g. the notions of clique, cover set
etc. will not be redefined.

The naive way to redefine the control relation would be to say that the
relation X ≺P Y holds if P has a subprogram loop X [Q] where suc(Y) is a
subprogram of Q or if Y:= X is a subprogram of P; and then define the relation
P→ as the transitive closure of ≺P. If we do so, the pair (ν, L1) will certainly be
sound, still this solution turns out to be thoroughly unsatisfactory. Example
5.2 shows a natural and innocent little program of very low computational
complexity, which receives ν-measure 1 if we assume this naive definition
of the control relation. The example speaks for itself, moreover, the naive
definition would not enable us to prove several of the theorems in the sequel.

Example 5.2. Let P be the program

loop X [ C:= A; A:= B; B:= C ]

Then we have {X = x, A = a, B = b}P{A = f(x, a, b, )} where f(x, a, b) equals
a if x is even and b if x is odd. End of example.
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So, how should one define define the control relation ? The next definition
shows a way which turns out to be satisfactory.

Definition 5.3. The relations ≺P and
P→ are binary relations over V(P). The

relation X ≺P Y holds iff P has a subprogram loop X [Q] where suc(Y) is a
subprogram of Q. Let X:=PY denote that X:= Y is a subprogram of P. The

relation
P→ is the smallest relation such that

• if X ≺P Y, then X
P→ Y

• P→ is transitive

• if X:=PY and Z
P→ Y, then Z

P→ X

We keep the definitions from 3.2 of principal variable, n-clique and cover set

(in P). These notions depends solely on the relations ≺P and
P→. Finally,

we define the ν-measure as we defined the µ-measure, i.e. we define the ν-
measure of a program P, denoted ν(P), by

• ν(imp) = 0 for every imperative imp.

• Let P ≡ Q1; Q2. Then ν(P) = max(ν(Q1), ν(Q2)).

• Let P ≡ loop X [Q]. Then

ν(P) =

{
ν(Q) + 1 if Q has a clique of degree ν(Q) + 1
ν(Q) else

End of definition.

A bit informally stated, the ν-measure is the µ-measure with the extension:

if X:= Y occur in P, then X inherits all the
P→-predecessors of Y. The program

in Example 5.1 has ν-measure 1, whereas the program in Example 5.2 has
ν-measure 0. Everything seems fine, and as we soon will prove, the pair
(ν, L1) is indeed sound.

Programs in L1 do not possess the same nice monotonicity properties as the
the programs in L0. E.g. we do not have {X = x}P{X ≥ x} for arbitrary
P ∈ L1 and X ∈ V(P). The program in Example 5.2 yields a counterexample.
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This clutters the proof of soundness for the pair (ν, L1). We will introduce a
new loop language LM with convenient monotonicity properties, redefine the
measure ν for this language, and then prove that the pair (ν, LM) is sound
with respect to the Grzegorczyk hierarchy. It will follow easily that the pair
(ν, L1) is also sound.

Definition 5.4. Let LM be the loop language with the imperatives suc(X)

and X:= max(X,Y) for any variables X and Y. The semantics of the imper-
ative X:= max(X,Y) is indicated by the syntax, i.e. we have {X = x, Y =
y}X:= max(X,Y){X = max(x, y), Y = y}. Note that X:= max(Y,Z) is not an
imperative of LM .

We define the measure ν for LM exactly as we defined ν for L1, except that
X:=PY now denotes that X:= max(X,Y) is a subprogram of P. (There is no
need to repeat the definition.) End of definition.

Lemma 5.5 (Flattening lemma). Let P be an LM -program such that
µ(P) > 0. Then there exists a flattened out LM -program P′ such that

- P′ is flattened out

- P � P′

- ν(P′) ≤ ν(P).

Proof. This lemma is similar to Lemma 4.2. The proofs of the two lemmas
are also very similar. First we define “rank” as we did in the proof of 4.2,
i.e. the rank of a loop P denoted rk(P) by

rk(P) =

{
0 if ν(P) = 0
k otherwise

where k be the number of times the word loop occurs in P. Then we need
to prove a claim similar to the claim in proof of 4.2.

(Claim) If the loop P ≡ loop X [Q] is not simple, then there exist loops P1

and P2 such that

(i) rk(P) > rk(P1) and rk(P) > rk(P2)

(ii) ν(P) ≥ ν(P1) and ν(P) ≥ ν(P2)

(iii) P � P1; P2
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The desired result follows from (Claim) by the same argument we used above.
The proof (Claim) is also very similar to the corresponding proof above.
The proofs splits into two cases. Case (i) is more or less identical to the
corresponding case above. Case (ii) is also similar to the corresponding case
above, but an additional argument is required to establish rk(P1) < rk(P).
The augment is quite easy: When a program contains a clique (of any degree)
there will be a least one loop in the program. (This is obvious, a program
which is just a sequence of imperatives cannot have a clique.) The program
P1 is the program

loop X [ Q0; . . . ; Qi−1; loop Y [suc(Z); R’]; Qi+1; . . . ; Qk ]

where the subprogram R’ is obtained by removing loops form a certain
program R. All loops controlled by the variables in a certain clique in R

are removed, so there will be at least one loop to remove. It follows that
rk(P1) < rk(P). This concludes the proof of Lemma 5.5.

Theorem 5.6 (Soundness of (ν, L1)). We have

µ(P) ≤ n ⇒ #P ∈ En+2

for every n ∈ N and every P ∈ L1.

Proof. Let P be a L1 program with ν-measure n. Obviously there exists a
LM program P′ with ν-measure n such that P � P′. By Lemma 5.5 we can
assume that P′ is flattened out. Henceforth we can proceed as in the proof of
Theorem 4.3, and prove by induction on n that every function computed by
an L1-program with ν-measure n is in the Grzegorczyk class En+2. Thereafter
we can proceed as the left-right direction in the proof of Theorem 4.8.

Unfortunately, the pair (ν, L1) is not complete. The program

P ≡ loop X [ loop A [suc(B)] ]

has ν-measure 0, and thus #P ∈ E2 by Theorem 5.6. We expand P to the
program Q ≡

loop X

[ loop A [suc(B)]

C:= A; A:= B; A:= C; (* swap the values of A and B *)

C:= A; A:= B; A:= C; (* swap the values of A and B *) ]
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and get a program with ν-measure 1, but obviously we also have #Q ∈ E2.
Thus, the pair (ν, L1) is not complete. On the other hand, the language
L1 is not adequate, and hence we cannot use the argument in the proof of
Theorem 2.6 to prove that no complete measure for L1 exist. We have an
open problem.

Open problem 5.7. Does there exist a measure π such that the pair (π, L1)
is sound and complete with respect to the Grzegorczyk hierarchy?

6 Soundness and adequacy of (ν, L)

Recall that L is the loop language where suc(..), pred(..), nil(..) and
..:= .. are the imperatives. Note that the ν-measure is well defined for
L-programs.

Theorem 6.1 (Soundness of (ν, L)). We have

ν(P) ≤ n ⇒ #P ∈ En+2.

for every n ∈ N and every P ∈ L.

Proof. Assume P ∈ L and ν(P) ≤ n. Let Z be a fresh variable and let P0 be
P where each occurrence of a an imperative imp is replaced by imp; suc(Z).
Let P1 ≡ nil(Z); P0. It is easy to see that ν(P1) = ν(P) and that P1 computes
the function #P. It is also easy to see that there exists a LM -program P2 such
that P1 � P2 and ν(P2) = ν(P1). (Delete each string on the form nil(X);

and each string on the form pred(X); from P1. Let Q denote the resulting
program. Let P2 be Q where each imperative on the form X:= Y is replace
by X:= max(X,Y).) By lemma 5.5 we can assume that P2 is flattened out.
Henceforth we can proceed as in the proof of Theorem 4.3, and use induction
on n to prove that every function computed by P2 is in En+2. It follows that
#P ∈ En+2.

Theorem 6.2 (Adequacy of (ν, L)). Every function in En+2 can be com-
puted by a L-program with ν-measure n.

Proof. We skip this proof. A proof of a similar result can be found in
Kristiansen-Niggl [13].
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It follows straightaway from Theorem 6.1 and Theorem 6.2 that we can char-
acterise the Grzegorczyk hierarchy at and above the linear space level in terms
of L-programs. We have En+2 = Ln for all n ∈ N where Ln is the set of func-
tion computed by an L-program with ν-measure n. It also follows from the
two theorems (and Theorem 2.6) that the pair (ν, L) cannot be complete
with respect to the Grzegorczyk hierarchy.

There are a number of rather obvious, but still interesting, ways to extend the
language L such that the pair (ν, L) remains sound (and of course adequate).
We can add if-then and if-then-else structures:

........ if <test> then [......] else [.....] .......

The expressions permitted in <test> can be very sophisticated. The only
requirement is that <test> must be a relation in E2 and that the evaluation
of <test> does not mess the content of any registers. None of these require-
ments are very restrictive. We can add a statements which will terminate
loops, e.g. the construction

..... loop X [ .......; exit <test>; .........] .....

where the loop governed by X terminates immediately when <test> is eval-
uated to true. Further, can we extend our arsenal of imperatives with a
number of operations usually available in Pascal-like languages, e.g.

• {X = x} sqrt(X) {X = b√xc} (square root)

• {X = x, Y = y} div(X,Y) {X = if y > 0 then bx
y
c else 0, Y = y}

(division)

• {X = x, Y = y} mod(X,Y) {X = x − (bx
y
c × y), Y = y} (remainder)

• {X = x, Y = y} sub(X,Y) {X = x . y, Y = y } (modified subtraction)

Note that all the proposed imperatives fulfil the requirements: (1) the im-
perative will never increase the value of a register, and (2) the imperative
does not compute functions outside E2. Indeed we are free to extend the
language L by any imperative not violating these two requirements, and still
retain soundness of the pair (ν, L). We can also permit constants anywhere
it makes sense, e.g. as the second parameter in the subtraction imperative or
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at the right hand side of an assignment. The imperative X:= c, where c is a
fixed natural number, should not be viewed as an assignment, but as a basic
imperative setting the value of X to c (like nil(X) sets the value to 0). Thus,
introduction of imperatives of the form X:= c, where c is a constant, will not
affect the definition of the ν-measure. Perhaps it is not entirely obvious that
the pair (ν, L) still will be sound when such assignments are permitted, but
it will.

No doubt, many other extensions which will bring L closer to a high level
Pascal-like language and still not violate soundness of the pair (ν, L) are
possible. The following properties of L are used in the proof of Theorem
6.1: (1) For very program P ∈ L there exists a program P′ ∈ LM such that
P � P′. (2) No imperative in L computes functions outside E2. Roughly
speaking, these two properties of L (together with a number of other obvious
properties) are all we need to prove soundness of the pair (ν, L).

When we include the few trivial extensions we have proposed above in L,
then L becomes a nice little language which engineers and students of ap-
plied computer science will recognise. Of course the language is not well
equipped in many respects, but the language is actually useful as a tool for
analysing the complexity of number-theoretic problems. Let us take the de-
cision problem PRIME as an example, i.e. is it the case whether x is prime.
A natural algorithm that solves the problem is easy to implement in L. The
first algorithm which falls into our mind is perhaps to check for each number
u from 2 to b√(x)c whether u divides x. As soon as we find a number in the
given interval which divides x, we know that x is not prime. If we can search
through the whole interval without finding such a number, we know that x
is prime. It is straight forward to implement this algorithm in the extended
version of L. Let P ≡

Y:= X; sqrt(Y); sub(Y,1); U:= 2;

loop Y [ Z:= X; mod(Z,U); exit Z=0; Z:= 1; suc(U) ]

It is easy to check that implementation is correct, i.e. that we have

{X = x > 1} P {Z = if x is prime then 1 else 0} .

Then we can check the ν-measure of P. This is a mechanical process, and in
the present case it is easy to see that ν(P) = 0. Hence, we have established
that PRIME is a problem in linspace by a straightforward implementation of
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the first algorithm which fell into our minds (accompanied by some trivial and
mechanisable argumentation). The standard way to establish that a problem
is in linspace is to find a suitable algorithm, implement the algorithm on a
Turing machine, and then verify that the Turing machine work in linear time
in the length of the input. Now, this is not easy unless you are a trained
complexity theorist.

So, a language like L together with a measure like µ is a useful tool when
it comes to analysing the complexity of natural problems. Other formalisms
developed in implicit computational complexity theory do not provide such
tools. (Well, at least not so useful tools.) We will probably be better off
analysing the computational complexity of a problem by ordinary mathe-
matical reasoning than to trying to find a program which solves the problem
in a formalism of e.g. Bellantoni-Cook.

7 Stack programs computing on the symbols

of an alphabet

To capture the important complexity classes p and pf we need the stack
programming language introduced in Kristiansen-Niggl [13]. We presuppose
an arbitrary but fixed alphabet Σ and define a programming language com-
puting on stacks over Σ. Intuitively, variables serve as stacks, each holding
an arbitrary word over Σ. Like loop languages, stack languages are based
on loops where the (maximal) number of times the body of a loop will be
executed is determined before the execution of a loop starts.

Definition 7.1 (Stack programs). We have an alphabet Σ. We have an infinite
supply of program variables (stacks). We will normally use X, Y, Z, A, B, C, U, V
with or without subscript and superscripts to denote variables. For any
variables X, Y and any a ∈ Σ we have the following imperatives (primitive
instructions): push(a,X), pop(X), nil(X), X:= Y.

A stack language is a set of programs generated by some of the following
syntactical rules:

(I) Every imperative is a stack program.

(II) If P1, P2 are stack programs, then so is the sequence statement P1; P2.
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(III) If P is a stack program, then so is every conditional statement

if top(X)≡a [P]

.

(IV) If P is a stack program with no occurrence of the variable X in an
imperative, then so is the loop statement foreach X [P].

The semantics of stack programs are as follows:

• the subprograms in a sequence P1; . . . ; Pk are executed one by one from
the left to the right (Note that every stack program can be written
uniquely in the form P1; . . . ; Pk such that each component Pi is either
a loop, an imperative, or a conditional.)

• the semantics of imperatives and conditionals are as follows:

– push(a,X) pushes letter a on top of stack X,

– pop(X) removes the top symbol on stack X, if any, otherwise (X is
empty) the statement is ignored,

– nil(X) empties stack X,

– if top(X)≡a [P] executes the body P if the top symbol on stack
X is identical to letter a, otherwise the conditional statement is
ignored,

• loop statements foreach X [P] has a “call by value” semantics: let U

be a fresh variable and let P′ be P where each occurrence of X is replaced
by U, then the semantics of foreach X [P] is given by the program

U:= X; P′; pop(U); . . . ; P′; pop(U)︸ ︷︷ ︸
|X| times

S0 is the stack language generated by rule (I), (II) and (IV) from the sole
imperative push(a,X) (for any stack X and any a ∈ Σ). (So, there will be
no conditionals in S0-programs.) S1 is the stack language generated by rule
(I), (II), (III) and (IV) from the imperatives push(a,X) and X:= Y (for any
variables X, Y and any a ∈ Σ). S is the full stack language containing all the
imperatives listed above (push(a,X), pop(X), nil(X), X:= Y), and closed
under rule (I), (II), (III) and (IV). End of definition.
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So, when a loop foreach X [P] is executed, the subprogram P works on a
local copy of the stack X, and when the loop terminates the stack X has the
same value as immediately before the execution of the loop started. This call-
by-value semantics ensures that S0-programs are length-monotonic, that is,
if P is a S0-program with variables ~X, then {~X= ~w} P {~X=~u} implies |~w|≤|~u|
(component-wise), and if |~w|≤|~w′|, {~X= ~w} P {~X=~u} and {~X= ~w′} P {~X=~u′},
then |~u| ≤ |~u′|. These monotonicity properties are essential in the proofs of
the theorems in the sequel.

We will now proceed and define the µ-measure and the ν-measure for stack
programs. The definitions are identical to the corresponding definitions for
loop programs, except that the push-imperative has taken the place of the
suc-imperative, and that the loop foreach ... has taken the place of the
loop loop ....

Definition 7.2. The relations ≺P and
P→ are binary relations over V(P). The

relation X ≺P Y holds iff

P has a subprogram foreach X [Q] where Q has a subprogram on the
form push(b,Y).

The relation
P→ is the transitive closure of ≺P.

Cliques, cover sets, etcetera are defined exactly as for loop programs (defini-
tion 3.2). We define the the µ-measure µ(P) of an S0-program P by

• µ(push(a,X)) = 0 for every variable X and every a ∈ Σ.

• Let P ≡ Q1;Q2. Then µ(P) = max(µ(Q1), µ(Q2)).

• Let P ≡ foreach X [Q]. Then

µ(P) =

{
µ(Q) + 1 if Q has a clique of degree µ(Q) + 1
µ(Q) else

End of definition.

We can now state and prove theorems, which in a perfectly good sense are
soundness theorems, or completeness theorems, for stack languages and their
measures.
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Theorem 7.3 (Soundness and Completeness of (µ, S0)). We have

µ(P) ≤ n ⇔ #P(~x) ≤ f(|~x|) for some f ∈ En+2.

for every n ∈ N and every P ∈ S0.

Proof. Analogous to the proof of 4.8.

Corollary 7.4. Let P ∈ S0. Every function computed by P is in pf if and
only if P has µ-measure 0.

Proof. Assume P has µ-measure 0. By Theorem 7.3 there is a function f ∈ E2

such that #P(~x) ≤ f(|~x|), and then we also have #P(~x) ≤ q(|~x|) for some
polynomial q since every function in E2 is bounded by a polynomial. So, the
number of steps in the execution of the stack program P is bounded by a
polynomial in the length of the input. It is a standard exercise to prove that
P can be simulated by a Turing machine also working in polynomial time. It
follows that every function computed by P is in pf.

Assume that every function computed by P is in pf. Then we have #P(|~x|) ≤
q(|~x|) for some polynomial q. (Assume that such a q does not exists. Then
then at least one loop in P will be controlled by a stack which length is not
bounded by any polynomial in the length of the input. But then, since S0-
programs are length-monotonic, the program P computes a function which is
not in pf.) Every polynomial is bounded by a function in E2. Hence, P has
µ-measure 0 by Theorem 7.3.

Definition 7.5. We shall define the measure ν for the programming languages
S1 and S. The definition is analogous to the definition of the ν-measure for
loop programs.

Let ≺P be defined as in Definition 7.2. Let X:=PY denote that X:= Y is a

subprogram of P. The relation
P→ is the smallest relation such that

- if X ≺P Y, then X
P→ Y

-
P→ is transitive

- if X:=PY and Z
P→ Y, then Z

P→ X
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Then we define clique, cover set, etcetera exactly as above, and finally we
define the ν-measure ν(P) of the program P by

• ν(imp) = 0 for every imperative imp.

• Let P ≡ Q1;Q2. Then ν(P) = max(ν(Q1), ν(Q2)).

• Let P ≡ if top(X)≡a [Q]. Then ν(P) = ν(Q).

• Let P ≡ foreach X [Q]. Then

ν(P) =

{
ν(Q) + 1 if Q has a clique of degree ν(Q) + 1
ν(Q) else

End of definition.

Theorem 7.6 (Soundness of (ν, S)). We have

ν(P) ≤ n ⇒ #P(~x) ≤ f(|~x|) for some f ∈ En+2.

for every n ∈ N and every P ∈ S1.

Proof. Analogous to the proof of Theorem 6.1. Introduce a language SM

with nice monotonicity properties such that for every program P ∈ S there
exists a program Q ∈ SM such that ν(P) = ν(Q) and P � Q. Prove a flattening
lemma for SM , i.e. a lemma corresponding to Lemma 5.5. Thereafter proceed
as in the proof of Theorem 6.1.

To be able to state adequacy results for stack programs we introduce a new
hierarchy.

Definition 7.7. For every n ∈ N we define Hn to be the class of functions
from tuples of strings over Σ into strings over Σ which can be computed by
a Turing machine which works in time f for some f ∈ En, i.e. the number
of steps in the execution of the Turing machine on input w is bounded by
f(|w|) for some f ∈ E2. (Now, |w| denotes as usual the length of the string
w, so H2 = pf.) End of definition.

Theorem 7.8 (Adequacy of (ν, S)). Every function in Hn+2 can be com-
puted by a S-program with ν-measure n (for every n ∈ N).
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Proof. We skip this proof. A proof of a similar result can be found in
Kristiansen-Niggl [13].

Corollary 7.9. (i) A function is in pf if and only if it can be computed by
an S-program with ν-measure 0. (ii) A problem is in p if and only if it can
be decided by a program with ν-measure 0.

Proof. Recall that H2 = pf. Hence, the corollary follows straightaway from
Theorem 7.6 and Theorem 7.8.

8 Subelementary complexity classes

In this section we will focus on some subclasses of the Kalmár elementary
functions. In order to have a suitable framework for our analysis we will
introduce a modified version of the Grzegorczyk hierarchy. In this hierarchy
we have the Kalmár elementary relations on level 4; we have pspace on level
3; we have linspace on level 2, 1 and 0.

Definition 8.1. We define the sequence {Gi}i∈N of number-theoretic functions
by G0(x) = x + 1, G1(x) = 2x + 1, G2 = x2 + 2, G3(x) = 2(|x|2), G4(x) = 2x,
and Gi+1(x) = Gx

i (2) for i ≥ 4. (The function |x| is usually defined as the
number bits of required to represent the number x, i.e. |x| = dlog2 xe.) The
ith modified Grzegorczyk class Gi, is the least class of functions containing the
initial functions zero, successor, projections, maximum and Gi, and is closed
under composition and bounded simultaneous recursion. We dub {Gi}i∈N the
modified Grzegorczyk hierarchy. End of definition.

Theorem 8.2. (i) For every n ∈ N and f ∈ Gn there exists a fixed number
k such that f(~x) ≤ Gk

n(max(~x)). Thus, we have Gn ⊂ Gn+1 for any n ∈ N.
(ii) E0 ⊂ G0. (iii) E2 = G2, and thus G2 equals linspacef. (iv) Gn+1 = En

for n ≥ 3. In particular, G4 equals the class of Kalmár-elementary functions.
(v) G0

? = G1
? = G2

? . Thus, each of these classes equals linspace. (vi) G3 =
pspacef.

Proof. (i) Use induction on the definition of f . (ii) It is obvious that E0 ⊆ G0.
Further, max is one of the initial functions in G0, but E0 does not contain
max. To see this, assume max ∈ E0. Then there exist constants k and
i ∈ {1, 2} such that max(x1, x2) ≤ xi + k. This is a nonsense. (iii) and (iv).
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It is obvious that E2 ⊆ G2 and that E i ⊆ Gi+1 for i ≥ 3. The right-to-left
inclusions follows from the fact that E i is closed under bounded simultaneous
recursion for all i ≥ 2. (v) Muchnick [24] studies the vectorised Grzegorczyk
hierarchy Ev,0, Ev,1, Ev,2, . . .. He proves that Ev,i

? = E2
? for i = 0, 1, 2. Thus

(v) holds since it is obvious that Ev,i
? ⊆ Gi

?. (vi) We skip this proof.

Note 8.3. (i) We would have achieved the same hierarchy if we had defined
G4(x) = Gx

3(2). Thus, we could have defined the backbone functions in a
uniform way from level 4 and upwards. Transparency is the sole motive for
defining G4(x) to equal 2x. (ii) The modified Grzegorczyk hierarchy is not
an unnatural hierarchy compared to the original hierarchy. The class G3 is in
a way artificially inserted into the hierarchy, but one should note, so is E2 in
the original hierarchy. One application of of unbounded primitive recursion
over functions in E1 might yield a function on the Kalmár-elementary level,
i.e. a function which is not in E2. Thus, one could argue that E2 is artifi-
cially inserted into the the hierarchy. We cannot uniformly define the original
hierarchy all the way from the very the bottom without loosing the linspace-
level. In the modified hierarchy we have in addition to the linspace-level
(G2) inserted a pspace-level (G3). One unbounded application of simultane-
ous (or primitive) recursion over functions in Gi for i = 1, 2, 3 might yield a
function on the Kalmár-elementary level, i.e. on the 4th level of the hierarchy.
(iii) The classes in the modified hierarchy retain all the closure properties of
classes in the original hierarchy, and the class G3 is no exception. (More
on generalised Grzegorczyk classes can be found in Kristiansen [12].) (iv)
The classes G0 and G1 are by definition closed under bounded simultaneous
recursion, whereas it is an open problem whether E0 and E1 are closed under
such recursion. Thus it also becomes an open problem if G1 = E1. End of
note.

Definition 8.4. Let L be defined as in the previous sections, i.e. as the loop
language with the imperatives suc(X), X:= Y, pred(X) and nil(X). Let L∅

be the set of L programs P such that the relation
P→ is empty, and let Lir

be the set of L programs P such that the relation
P→ is irreflexive. Let Ln be

the set of programs with ν-measure n. If L• is a set of loop programs, then
L• denotes the set of functions which can be computed by the programs in
L•. End of definition.

Theorem 8.5. Lir
? = L0

? = G2
? = linspace.
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Proof. It is quite obvious that Lir = L0. It follows from 6.2 that L0 = E2 =
linspacef. Theorem 8.2 says that G2 = E2.

Lemma 8.6. Let P be an L-program where V(P) = ~X. Let m be a fixed
number such that no register during an execution of P on input ~X = ~x exceeds
m. Then there exists Q ∈ L∅ such that

{~X = ~x}P{~X = ~x′} ⇔ {~X = ~x, M = m}Q{~X = ~x′} .

Proof. Let U and V be a fresh variables. Let P′ be P where every subprogram
on the form pred(Z) is replaced by the subprogram

nil(U); loop Z [ V:= U;suc(U) ]; Z:= V .

Then we have {~X = ~x}P{~X = ~y} iff {~X = ~x}P′{~X = ~y} and there are no
occurrences of pred(..) in P′. Now, let M be a fresh variable, let the function
τ from L-programs (with no occurrences of pred(..)) into L-programs be
defined by

- τ(P; Q) = τ(P); τ(Q)

- τ(loop W [P]) = loop W [τ(P)]

- τ(W:= Y) = τ(W:= Y)

- τ(nil(W)) = W:= M

- τ(suc(W)) = pred(W)

and let P′′ = τ(P′). The program P′′ has no occurrences of the statement
suc(..), and for all sufficiently large m we have {~X = ~x}P{~X = ~y} iff {~X =
~x, M = m}P′′{X1 = m − y1, . . . , Xl = m − yl} where ~X = X1, . . . , Xl. Let U be a
fresh variable and let

Ri ≡ U:= M; loop Xi[pred(U)]; Xi:= U

Finally, let
Q ≡ P′′; R1; . . . ; Rl .

Then, we have {~X = ~x}P{~X = ~x′} iff {~X = ~x, M = m}Q{~X = ~x′}.
Lemma 8.7. The function max(x, y) can be computed by a program in L∅.
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Proof. Let P be the program

U:= X; loop Y [pred(U)];

nil(V); suc(V); loop U [pred(V)];

Z:= X; loop V [Z:= Y]

Then P is in L∅ and {X = x, Y = y}P{Z = max(x, y)}.
Theorem 8.8. G0 = L∅.

Proof. First we prove G0 ⊆ L∅. Assume f ∈ G0. It is easy to see that there
exists an L-program P such that {~Z = ~z}P{Y = f(~z)}. It is also easy to see
that there is fixed number k such that no register exceeds the value max(~z)+k
during an execution of P on input ~Z = ~z. Lemma 8.7 entails that there exists
a program imax in L∅ such that {~X = ~x} imax {~X = ~x, M = max(~x) + k}, and
then Lemma 8.6 entails that f can be computed by a program in L∅. This
completes the proof of G0 ⊆ L∅.

The proof of L∅ ⊆ G0 is straightforward. Let L∅− be the set of L∅ pro-
grams with no occurrence of imperatives on the form suc(X). Use induc-
tion over the syntax of programs to prove that for each P ∈ L∅− where
V(P) = {X1, . . . , Xn} = ~X there exists functions f1, . . . , fn ∈ G0 such that

{~X = ~x} P {X1 = f1(~x) ≤ max(~x), . . . , X1 = fn(~x) ≤ max(~x)} .

The desired result follows easily.

Corollary 8.9. L∅
? = Lir

? = linspace.

Proof. The equalities follow from the theorems 8.5, 8.8 and 8.2.

Note 8.10. The previous corollary implies that we cannot characterise any
smaller complexity class than linspace solely by imposing restrictions on
the relation “X controls Y” in any language containing L.

Definition 8.11. Recall that S denotes the set of stack programs (defined in
a previous section). Let S∅ be the set of S-programs P such that the relation
P→ is empty, and let Sir be the set of S-programs P such that the relation
P→ is irreflexive. Let Sn be the set of program with ν-measure n. If S• is
a set stack of programs, then S• denotes the set of functions which can be
computed by programs in S•. End of definition.
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Theorem 8.12. S0
? = Sir

? = p.

Proof. Corollary 7.9 states that S0
? = p. It is easy to prove that S0

? =
Sir

? .

We have seen that L∅
? = Lir

? . In contrast, the next theorem tells that S∅
? is

strictly included in Sir
? .

Theorem 8.13. conspace ⊂ S∅
? ⊂ Sir

? = p.

Proof. Every one-way finite automaton can be simulated by a program in S∅.
Thus, conspace ⊆ S∅

? . (conspace equals the class of languages recognised
by such automatons, see Odifreddi [26].) Let

A = {w | |w| = x2 for some x ∈ N} .

Membership in A can be decided by a program in S∅, but not by a finite
automaton. Hence conspace ⊂ S∅

? . It is trivial that S∅
? ⊆ Sir

? . Let wR

denote the word w reversed. Let B = {w | w = wR }. Membership in B can
obviously be decided by a Turing machine working in polynomial time, but
no program in S∅ can decide membership in B. Thus S∅

? ⊂ Sir
? = p.

The languages L and S can be merged into one imperative programming
language I. The resulting language I computes both on numbers and on
symbols in the alphabet {0, 1}. (All our result can be generalised to arbi-
trary alphabets with cardinality ≥ 2.) Still, the language will have only one
type of variables. Whether a variable X hold a natural number or a stack
over the fixed alphabet {0, 1} depends on the point of view. Used in an
L-construction, e.g. suc(X), we view X as a number variable; used in an S-
construction, e.g. push(0,X), we view X as a stack variable. In order to make
this strategy work we need a suitable bijection between the natural numbers
an the strings over the alphabet {0, 1}.
Definition 8.14. We use W to denote the set of words, i.e. the set of strings
over bits (the alphabet {0, 1}). We use ε to denote the empty word. As
usual, |w| denotes the length of the word w, and wi denotes the ith bit of
the word w starting from 0 in the rightmost position. Thus, if |w| = 4, then
w = w3, w2, w1, w0. We use juxtaposition to concatenate words. So, e.g. w0
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denotes the word w extendend by 0 in the rightmost position. The function
σ : W → N is defined by

σ(w) = 2n + wn−12
n−1 + · · · + w12

1 + w02
0 − 1

where n = |w|. End of definition.

The function σ is a bijection and the numbers 0, 1, 2, 3, . . . are respectively
mapped to the words ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . ..

Lemma 8.15. (1) σ is a bijection. (2) σ(w) ≤ 2|w|+1. (3) σ(w0) = 2(σ(w)+
1) − 1 and σ(w1) = 2(σ(w) + 1).

Proof. We leave (1) and (2) to the reader. Let n = |w|. Then

σ(w0) = 2n+1 + wn−12
n + · · ·+ w02

1 + (0 × 20) − 1 def. of σ(w0)
= 2(2n + wn−12

n−1 + · · · + w02
0) − 1

= 2(2n + wn−12
n−1 + · · · + w02

0 − 1 + 1) − 1
= 2(σ(w) + 1) − 1 def. of σ(w)

This proves σ(w0) = 2(σ(w) + 1) − 1. A similar argument proves σ(w1) =
2(σ(w) + 1)

Note 8.16. We push and pop bits on the right hand side of a word, e.g.
{X = w}push(0,X){X = w0} and {X = w1}pop(X){X = w}.
Definition 8.17 (General imperative programs). The syntax of the program-
ming language I are inductively defined as follows:

• Every imperative among nil(X), suc(X), pred(X), pop(X), push(b,X)
X:= Y is an program (for any variables X, Y and b ∈ {0, 1}) .

• If P is a program with no occurrence of the variable X in an imperative,
then so is the loop loop X [P] (for any variables X).

• If P is a program, then so is every conditional if top(X)≡ b [P] (for
every variable X and b ∈ {0, 1}).

• If P is a program with no occurrence of the variable X in an imperative,
then so is the loop foreach X [P] (for any variables X).

• If P1, P2 are programs, then so is the sequence P1; P2.
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The semantics of I are a straightforward merging of the semantics of the
languages L and S. Note that since σ(ε) = 0, the imperative nil(X) will
turn X into the empty stack when X is viewed as an stack, and set X to 0 if X
is viewed as a natural number. End of definition.

Example 8.18. The following program computes the function G4. (Recall
that G4(x) = 2x.)

{X = x} nil(Y); loop X [push(0,Y)]; suc(Y){Y = 2x} . (∗)
The next program computes the length function |w|.

{X = w} nil(Y); foreach X [suc(Y)]{Y = |w|} . (∗∗)
End of example.

Definition 8.19. We define relation
P→ for programs in I. (The definition is

analogous to the definition of the corresponding relations for programs in L
and S.)

The relations ≺P and
P→ are binary relations over V(P). The relation X ≺P Y

holds iff at least one of (i) and (ii) holds:

(i) P has a subprogram loop X [Q] where suc(Y) or push(b,Y) are sub-
programs of Q.

(ii) P has a subprogram foreach X [Q] where suc(Y) or push(b,Y) are
subprograms of Q.

Let X:=PY denote that X:= Y is a subprogram of P. The relation
P→ is the

smallest relation such that

- if X ≺P Y, then X
P→ Y

-
P→ is transitive

- if X:=PY and Z
P→ Y, then Z

P→ X

Let I∅ denote the set of I-programs P where the relation
P→ is empty, and let

Iir denote the set of I-programs P where the relation
P→ is irreflexive. Let

37



Iir- denote the set of I-programs P such that P ∈ Iir and no subprogram of
P on the form loop X [Q] has a subprogram on the form push(b,Y). If I•

is a set of imperative programs, then I• denotes the class of functions which
can be computed by the programs in I•. End of definition.

Example 8.20. The program (**) in Example 8.18 is in Iir-. The program
(*) in the same example is in Iir, but not in Iir-. The following program
which computes the function G3 is in Iir-. (Recall that G3(x) = 2|x|

2
, and if

0n denotes a string of n zeros, then σ(0n) = 2n − 1.)

{X = x}
nil(Y); Z:= X; foreach X [foreach Z [push(0,Y)]]; suc(Y)

{Y = 2|x|
2}

End of example.

Theorem 8.21. The class Iir equals the class of Kalmàr elementary func-
tions G4.

Proof. Use induction on the syntactical build-up of a program P ∈ Iir to
prove that for every function f computed by P we have f(~x) ≤ Gk

4(max(~x))
for some fixed number k. It follows easily that Iir ⊆ G4 since G4 is closed
under composition and bounded simultaneous recursion.

Assume f ∈ G4. Use induction on a definition of f to prove that f(~x) can be
computed by a program P ∈ L such that during the computation no register
exceeds the value Gk

4(max(~x)) for some fixed number k. By Lemma 8.6 there
is a program Q ∈ L∅ (and thus Q ∈ Iir) such that

{~X = ~x}P{~X = ~x′} ⇔ {~X = ~x, M ≥ Gk
4(max(~x))}Q{~X = ~x′} .

Example 8.18 shows that the function G4 can be computed by a program in
Iir. Hence, a program in Iir can also compute the function Gk

4(max(~x)). It
follows that f can be computed by a program in Iir. Thus we have proved
G4 ⊆ Iir.

Theorem 8.22. The class Iir- equals the class of polynomial space com-
putable functions G3, i.e. pspacef.

Proof. This proof is identical to the proof of Theorem 8.21 where “4” is
replaced by “3”, “ir” is replaced by “ir-” and “Example 8.18” is replaced by
“Example 8.20”.

38



In order to state some normal form results, we shall introduce the notion
of a core language and core programs. Roughly speaking, the core language
is the part of the programming language we need to compute fast growing
functions.

Definition 8.23. The set of core programs is a subset of the set of I-programs.
A core program is defined by

• every imperative among suc(X), push(0,X), push(1,X) is a core pro-
gram (for any variable X).

• If P is a core program with no occurrence of the variable X in an im-
perative, then so are loop X [P] and foreach X [P] (for any variables
X).

• If P1, P2 are core programs, then so is P1; P2.

Assume V(P) = ~X. We us !P(~x) to denote the least natural number m such
that no register exceeds m during an execution of the program P on input
~X = ~x.

Assume V(P) ⊆ V(Q). Let us say, V(P) = ~X and V(Q) = ~X,~Y. We use P ∼ Q to
denote that Q computes the same functions as P with respect to the variables
~X, i.e. the relation P ∼ Q holds if and only if

{~X = ~x}P{~X = ~z} ⇔ {~X = ~x,~Y = ~y}Q{~X = ~z} .

End of definition.

Lemma 8.24. Let Lan be any of the programming languages Iir-, Iir, Lir,
Ln (for n ∈ N), Sir, and Sn (for n ∈ N). Let V(P) = ~X. If P ∈ Lan, then
there exists a core program Q ∈ Lan such that {~X = ~x}Q{~X = ~x, Z ≥ !P(~x)}
(where Z is any fresh variable).

Proof. We leave this proof to the reader.

Lemma 8.25. For each P ∈ I (and thus we might have P ∈ S) there exists
Q ∈ L such that P ∼ Q and !Q(~x, 0, . . . , 0) ≤ !P(~x) + k for some fixed number
k.
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Proof. Let Y be a fresh variable. Lemma 8.15 says that σ(s0) = 2(σ(s)+1)−1.
Thus, if Q0 is the program

suc(X); nil(Y); loop X [suc(Y); suc(Y)]; X:= Y; pred(X)

we have push(0,X) ∼ Q0. Furthermore, we

!Q0
(x, 0) ≤ !push(0,X)(x) + 1 .

Obviously, we also have Q1 ∈ L such that push(1,X) ∼ Q1 and such that
we have the required bound on !Q1

. Let P0 be P where each occurrence of
push(0,X) is replaced by Q0 and each occurrence of push(1,X) is replaced
by Q1. Then we have P ∼ P0 and !P0

(~x,~0) ≤ !P(x) + k for some fixed k.

Now we have a program P0 without “push”. We can proceed in the same
way to remove the occurrences of “pop” and the constructions on the form
if top(X)≡a [R] and foreach X [R]. It is a rather straightforward process.

Theorem 8.26 (Normal Form). Let Lan be any of the programming
languages Iir-, Iir, Lir, Ln (for n ∈ N), Sir, and Sn (for n ∈ N). For any
P ∈ Lan there exists a core program C ∈ Lan and a program Q ∈ L∅ such
that P ∼ C; Q.

Proof. Assume P ∈ Lan. By Lemma 8.25 there is an L-program Q0 such that
P ∼ Q0 and !Q0

(~x,~0) ≤ !P(~x)+k for some fixed k. Then, by Lemma 8.6 there

exists Q ∈ L∅ such that

{~X = ~x}P{~X = ~x′} ⇔ {~X = ~x, M = m}Q{~X = ~x′}

whenever m ≥ !P(~x)+k. By Lemma 8.24 there exists a core program C ∈ Lan
such that {~X = ~x}C{~X = ~x, M ≥ !P(~x) + k}. Hence

{~X = ~x}P{~X = ~x′} ⇔ {~X = ~x}C; Q{~X = ~x′}

i.e. we have P ∼ C; Q, where Q ∈ L∅ and C is a core program in Lan.

Corollary 8.27 (Normal Form). For every program P ∈ Iir- there are
programs Q0 ∈ Sir and Q1 ∈ L∅ such that P ∼ Q0;Q1.
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Proof. By Theorem 8.26 there exists a core program C ∈ Iir- and a program
Q1 ∈ L∅ such that P ∼ C;Q1. The proof of the theorem shows that C has the
property {~X = ~x}C{~X = ~x, M ≥ !P(~x) + k} and that the theorem will hold for
any program C′ with this property. Since C ∈ Iir-, there will be a program
in Sir satisfying the property, i.e. there is a program Q0 ∈ Sir such that
{~X = ~x}Q0{~X = ~x, M ≥ !P(~x) + k}. Hence, we have also have P ∼ Q0;Q1 where
Q0 ∈ Sir and Q1 ∈ L∅.

Corollary 8.28. If p 6= pspace, then linspace \ p 6= ∅.

Proof. We assume linspace \ p = ∅, and thus L∅ = linspace ⊆ p = Sir,
and prove that p = pspace.

Pick an arbitrary problem α in pspace. Now, pspace = Iir-
? and thus there

is a program P ∈ Iir- which solves the problem. According to Corollary 8.27
there are programs Q ∈ Sir and R ∈ L∅ such that P ∼ Q;R. Now, since we
have linspace ⊆ p by our assumption, every zero-one function computed by
R can be computed by a program in Sir. Hence, there is a program P′ ∈ Sir

which solves the problem α, and thus α ∈ p. This proves pspace ⊆ p. The
inclusion p ⊆ pspace is trivial. Hence p = pspace.

Corollary 8.28 is of course a very well known fact. Indeed, many problems
in linspace are known to be pspace complete. Still, it is nice to see that
such a corollary follows from our theory on programming languages.

9 Uniform translations between formalisms

Several formalisms have been introduced in order to give implicit characteri-
sations of complexity classes, e.g. predicative recursion (Bellantoni-Cook [1]),
tiered definition schemes (Leivant [17]), measures on lambda terms (Niggl
[25]) and measures on primitive recursive definitions (Bellantoni-Niggl [5]).
In contrast to these formalism, the imperative languages introduced in this
report are flexible programming languages closely related to a von Neumann
computer architecture. It is likely that programs and definitions of functions
in several other formalism easily and uniformly can be translated into our
imperative languages. Theorem 9.2 exemplifies the type of translation results
we are discussing. We consider the theorem to be a mere exercise preparing
us for more sophisticated results along the same line.
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There can be several benefits of discovering such translations. It might yield
a valuable analysis of actual computations of functions defined in a formal-
ism, e.g. an analysis of the flow of data, or a refined analysis of the space
requirements. Another benefit might be an easy and transparent proof that
functions defined in a certain formalism is in a certain complexity class, e.g.
it is a corollary of Theorem 9.2 below that the set of functions defined by
predicative recursion over natural numbers is included in linspacef. The
theorem states that every function defined by such recursion can be computed
by a program in Lir, and Lir equals linspacef.

Definition 9.1. Let B be the Bellantoni-Cook class of function definitions
over N generated by the definition schemes

- Safe composition: f(~x;~a) = h(~r(~x; );~t(~x;~a))

- Predicative recursion on numbers:

f(0, ~x;~a) = g(~x;~a) f(y + 1, ~x;~a) = h(y, ~x;~a, f(y, ~x;~a))

from the initial functions 0 (constant), πm,n
j (x1, . . . , xn; xn+1, . . . , xn+m) (pro-

jections), s(; a) (successor), p(; a) (predecessor) and c(; a, b, c) (conditional,
c(; a, b, c) = b if a = 0 and c(; a, b, c) = c if a 6= 0 ).

We say that an element in a partial ordering is minimal if it has no prede-
cessors, and maximal if it has no successors. End of definition.

Theorem 9.2. For every f ∈ B we can uniformly construct an L-program
P such that

{~X = ~x,~A = ~a} P {O = f(~x;~a)}
and the relation

P→ is irreflexive (and thus an ordering relation). Moreover,

the variables ~X are minimal elements in the ordering
P→, and the variables ~A

and O are maximal elements.

Proof. We use induction on a definition of f to prove the theorem strength-
ened by the assertion

(*) the program P does not contain the subprogram suc(Z) for any Z ∈ ~X.

The following programs shows that the theorem and (*) hold when f is an
initial function.
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- nil(O){O = 0}
- {A = a} suc(A); O:=A {O = s(; a)}
- {A = a} pred(A); O:=A {O = p(; a)}
- {~X = ~x} O:=Xj {O = πm,n

j (x1, . . . , xn; xn+1, . . . , xn+m)}
- {A = a, B = b, C = c} O:= B; for A [ O:= C ] {O = c(; a, b, c)}

Suppose f is defined by safe composition. It should be sufficient to carry out
the proof for the case

f(x, y; a, b) = h(r1(x, y; ), r2(x, y; ); t1(x, y; a, b), t2(x, y; a, b))

. The induction hypothesis gives programs R1, R2, T1, T2 such that

{XRi = x, YRi = y} Ri {ORi = ri(x, y; )}

and
{XTi = x, YTi = y, ATi = a, BTi = b} Ti {OTi = ti(x, y; a, b)}

for i = 1, 2. Furthermore, the induction hypothesis yields a program H such
that

{XH = x, YH = y, AH = a, BH = b} H {OH = h(x, y; a, b)} .

We have renamed variables such that each variable occur in at most one
of the programs. (The notation XQ indicates that the variable XQ does not
occur in any other program than Q.) Let X, Y, A, B, O be fresh variables. The
theorem and (*) hold when P is the program

XR1:= X; YR1:= Y; R1; XR2:= X; YR2:= Y; R2;

XT1:= X; YT1:= Y; AT1:= A; BT1:= B; T1;

XT2:= X; YT2:= Y; AT2:= A; BT2:= B; T2;

XH:= OR1; YH:= OR2; AH:= OT1; BH:= OT2; H; O:= OH

Suppose f(0, ~x;~a) = g(~x;~a) and f(y+1, ~x;~a) = h(y, ~x;~a, f(y, ~x;~a)). In order
to avoid cluttered notation, we say that ~x is the single variable x and that
~a is the single variable a. The induction hypothesis yields programs G and H

such that
{XG = x, AG = a, } G {OG = g(x; a)}
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and
{YH = y, XH = x, AH = a, BH = b} H {OH = h(y, x; a, b)}

where we have renamed variables such that no variable occur both in G and
H. Let X, Y, A, W, O be fresh variables and let P be the program

XG:= X; AG:= A; G; BH:= OG; nil(W)

for Y [ YH:= W; XH:= X; AH:= A; H;

BH:= OH; suc(W) ];

O:= OH

Then the theorem and (*) hold for P. In particular, the relation
P→ will be

irreflexive since both BH and OH are maximal elements in the ordering
H→.
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