
B
R

IC
S

R
S

-01-43
D

am
g̊ard

&
N

ielsen:
F

rom
K

now
n-P

laintextS
ecurity

to
C

hosen-P
laintextS

ecurity

BRICS
Basic Research in Computer Science

From Known-Plaintext Security to
Chosen-Plaintext Security

Ivan B. Damgård
Jesper Buus Nielsen

BRICS Report Series RS-01-43

ISSN 0909-0878 November 2001

Copyright c© 2001, Ivan B. Damg̊ard & Jesper Buus Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/43/

From Known-Plaintext Security to Chosen-Plaintext

Security

Ivan Damg̊ard Jesper B. Nielsen∗

November, 2001

Abstract

We present a new encryption mode for block ciphers. The mode is
efficient and is secure against chosen-plaintext attack (CPA) already if
the underlying symmetric cipher is secure against known-plaintext attack
(KPA). We prove that known (and widely used) encryption modes as
CBC mode and counter mode do not have this property. In particular,
we prove that CBC mode using a KPA secure cipher is KPA secure, but
need not be CPA secure, and we prove that counter mode using a KPA
secure cipher need not be even KPA secure. The analysis is done in a
concrete security framework.

1 Introduction

Which techniques can be applied to build encryption modes that are more
secure than the underlying block cipher? In particular, how can we go from a
KPA secure block cipher to a CPA secure encryption mode?

One motivation for looking at this problem is that even though a block
cipher was designed to be CPA secure, using it in a way relying only on the
KPA security of the block cipher gives an additional protection — security
should generally be relative to the weakest possible assumption. Also, w.r.t.
the concrete security framework, the KPA security of a scheme might be better
than the CPA security. This is indeed the case for most ciphers if the security
is measured by the cipher’s resistance to common cryptanalytic techniques
such as linear and differential cryptanalysis. Finally, we also find the question
interesting from a theoretical point of view.

One idea that comes to mind is to try to build a pseudo-random function
FK (with K being the key) from the block cipher, and let the ciphertext for
M be (R,FK(R) ⊕M), where R is a random string. For such an encryption

∗{ivan,buus}@brics.dk.

1

algorithm, a CPA is equivalent to a KPA since both attacks simply imply
that the adversary gets to see (R,FK(R)). Note that, although we could in
principle use the block cipher itself as FK , this would be much too inefficient:
we must have a function that expands significantly its input, to keep usage of
random bits and ciphertext expansion low.

Building such a pseudo-random function is straightforward if the block
cipher is secure under a CPA: choose a random block R, apply the cipher to
R,R + 1, R + 2, . . . and define the sequence of cipher blocks to be the output.
This is just the well known counter mode of encryption. Unfortunately, the
proof that this is secure relies on the assumption that the block cipher is CPA
secure, and does not work assuming only KPA security. Indeed we will in
Section 4 prove that counter mode based on a KPA secure block cipher is not
necessarily even KPA secure.

Despite this problem, we can give some intuitive arguments indicating
that the pseudo-random function idea is essentially the only hope if we want
an efficient solution.

We will restrict ourselves to what we call known I/O modes, that is, en-
cryption modes where, given corresponding plaintext and ciphertext, one can
easily compute the input and output of all encryption operations done when
producing the ciphertext. CBC mode is such a mode, like most other known
modes. Cipher feedback mode (CFB) is only known I/O in some variants, but
this is due to the fact that only small parts of the output is used, leading to
loss of efficiency. Also modes that use iterated encryption such as triple-DES
are not strictly speaking known I/O, but in such cases it seems more reason-
able to treat the entire iterated encryption as a block cipher, that is, to treat
triple-DES as a single block cipher, for instance.

So an encryption mode can be thought of as a function that takes n blocks
of plaintext as input and returns a random string R and n′ blocks of ciphertext.
It would be unreasonable if the mode could be be secure without doing at least
n encryptions, so a CPA on the mode leads, by the known I/O assumption,
to a KPA on the block cipher used, involving at least n blocks. Let M be the
sequence of plaintext blocks, and M ′ the sequence of blocks that go into the
block cipher. If the adversary fixes M , the entropy of the distribution of M ′

is at most the entropy of R.
Let us assume that the block cipher is KPA secure w.r.t. the uniform

distribution of plaintext blocks. Then we may argue that the KPA on the block
cipher that the adversary obtains through the encryption mode is harmless,
provided that all n′ ≥ n blocks in M ′ are uniformly distributed. But this
would require that the length (entropy) of R is at least n blocks, and this is
hardly interesting in practice. On the other hand, if R is shorter than M ′,
we may still have a chance if the adversary cannot distinguish M ′ from a
random string. But this means that the encryption mode in fact implements

2

a pseudo-random function of precisely the type we asked for above!
So we may as well try directly to construct such a function, and in Section

3 we do exactly that. We construct a new mode for generating a pseudo-
random string using a block cipher. The mode, called Pseudo-Random Tree
(PRT) mode, is efficient and can be based on any secure pseudo-random func-
tion family, in particular any KPA secure block cipher. It only requires the
communicating parties to store one key of the underlying function family and
uses a number of random bits comparable to the widely used CBC mode and
counter (CTR) mode. In Section 3 we analyse the security of PRT mode in a
framework for concrete security from [BDJR97].

In [BDJR97] notions of CPA security and CCA security of block ciphers
and symmetric encryption are developed in a concrete security framework, and
the security of three well-known encryption modes, CBC mode and CTR mode
(in its deterministic and probabilistic variants), are analysed. We extend this
work. In Section 2 we give a definition of KPA security within their framework,
and in Section 4 we analyse the KPA security of CBC mode and CTR mode,
and compare the security of these modes with that of PRT mode.

Our results can be summaries as follows.

1. KPA security of the permutation family P implies KPA security of CBC
mode based on P .

2. KPA security of the permutation family P does not imply CPA security
of CBC mode based on P .

3. KPA security of the function family F does not imply even KPA security
of CTR mode based on F .

4. KPA security of the function family F implies CPA security of PRT
mode based on F .

In Section 5 we give a short discussion of the possibility of basing Chosen-
Ciphertext Attack (CCA) secure encryption on KPA secure primitives.

2 Notions of Security

The following definitions are straightforward extensions of definitions from
[BDJR97, Des00] to consider also KPA security. Of the four notions of secu-
rity considered in [BDJR97] we have chosen real-or-random (ROR) indistin-
guishability, as it is proven to be the strongest notion.

A symmetric encryption scheme SE = (K, E ,D) consists of three random-
ized algorithms. The key generation algorithm K returns a key K; we write
K ← K. The encryption algorithm E takes as input the key K and a plaintext

3

M and returns a ciphertext C; we write C ← EK(M). The decryption al-
gorithm D takes as input the key K and a string C and returns a unique
plaintext M or ⊥; we write x ← DK(C). We require that DK(EK(M)) = M
for all M ∈ {0, 1}∗.

Definition 1 (ROR-KPA, ROR-CPA) Let SE = (K, E ,D) be a symmet-
ric encryption scheme. Let b ∈ {0, 1}. Let A be an adversary that has access
to an oracle. Let RK,b be the oracle which on input l ∈ N , if b = 1, outputs
(x, EK(x)) for uniformly random x ∈ {0, 1}l, and, if b = 0, outputs (x, EK(r))
for uniformly random x, r ∈ {0, 1}l. Let OK,b be the oracle which on input
x ∈ {0, 1}∗, if b = 1, outputs EK(x), and, if b = 0, outputs EK(r) for uniformly
random r of the same length x. Now consider the following experiments:

proc Expror-kpa- b
SE,A ≡

K ← K
d← ARK,b

return d

proc Expror-cpa- b
SE,A ≡

K ← K
d← AOK,b

return d

We define the advantage of the adversary via

Advror-kpa
SE,A = Pr[Expror-kpa- 1

SE,A = 1]− Pr[Expror-kpa- 0
SE,A = 1]

Advror-cpa
SE,A = Pr[Expror-cpa- 1

SE,A = 1]− Pr[Expror-cpa- 0
SE,A = 1] .

We define the advantage function of the scheme as follows. For any integers
t, q, µ,

Advror-kpa
SE (t, q, µ) = max

A

{
Advror-kpa

SE,A

}

Advror-cpa
SE (t, q, µ) = max

A

{
Advror-cpa

SE,A

}
,

where the maximum is over all A with “time complexity” t, making at most q
queries to the oracle, these totaling at most µ bits.

By the “time complexity” we mean the worst case total running time of the
experiment with b = 1, plus the size of the code of the adversary, in some fixed
RAM model of computation. We stress that the total execution time of the
experiment includes the time of all operations in the experiment, including
the time for key generation and the encryptions done by the oracle. For a
discussion of this time complexity, see [Des00].

A function family with key-space K, input-length l, and output-length L is
a map F : K × {0, 1}l → {0, 1}L. For each key K ∈ K we define a map
FK : {0, 1}l → {0, 1}L by FK(·) = F (K, ·). We write f

R← F for the operation
K

R← K; f ← FK . We call F a family of permutations if for all K ∈ K,

4

FK is a permutation. We use Randl→L to denote the family of all functions
{0, 1}l → {0, 1}L.

If a random function from the function family looks as a random function
from Randl→L, we call the family a pseudo-random function family. We define
this notion formally for KPAs. The definitions for CPAs and CCAs can be
found in [BDJR97], but will not be used in the present paper. The security
of permutation families is also defined relative to Randl→L and not relative to
random permutations. W.r.t. asymptotic security this makes no difference,
where as there is a small difference w.r.t. concrete security. For a discussion
of this see [BDJR97].

Definition 2 (PRF-KPA) Let F be a function family with input-length l
and output-length L. Let b ∈ {0, 1}. Let D be a distinguisher that has access
to an oracle. Let Rf be the oracle which on input gen generates a uniformly
random s ∈ {0, 1}l and outputs (s, f(s)). Now consider the following experi-
ment:

proc Expprf-kpa- b
F,D ≡

f0
R← Randl→L; f1

R← F

d← DRfb

return d

We define the advantage of the distinguisher via

Advprf-kpa
F,D = Pr[Expprf-kpa- 1

F,D = 1]− Pr[Expprf-kpa- 0
F,D = 1] .

We define the advantage function of the function family as follows. For any
t, q,

Advprf-kpa
F (t, q) = max

D

{
Advprf-kpa

F,D

}
.

where the maximum is over all D with time complexity t, making at most q
queries to the oracle.

A variable-length output function family with key-space K and input-length
l is a map F : K ×N × {0, 1}l → {0, 1}∗. For each key K ∈ K we define
a map FK : N × {0, 1}l → {0, 1}∗ by FK(·, ·) = F (K, ·, ·). We require that
|F (·, L, ·)| = L for all inputs. We use VO-Randl to denote the following
variable-length output function family. The key-space is {0, 1}l → {0, 1}∗ and
for key f , r ∈ {0, 1}l , and L ∈ N we set F (f, L, r) to be the first L bits of
f(r).

Definition 3 (VO-PRF-KPA) Let F be a variable-length output function
family with input-length l. Let b ∈ {0, 1}. Let D be a distinguisher that has
access to an oracle. Let Rf be the oracle which on input L ∈ N generates
a uniformly random r ∈ {0, 1}l and outputs (r, f(L, r)). Now consider the
following experiment:

5

proc Expvo-prf-kpa- b
F,D ≡

f0
R← VO-Randl; f1

R← F

d← DRfb

return d

We define the advantage of the distinguisher via

Advvo-prf-kpa
F,D = Pr[Expvo-prf-kpa- 1

F,D = 1]− Pr[Expvo-prf-kpa- 0
F,D = 1] .

We define the advantage function of the function family as follows. For any
t, q, µ,

Advvo-prf-kpa
F (t, q, µ) = max

D

{
Advvo-prf-kpa

F,D

}
.

where the maximum is over all D with time complexity t, making at most q
queries to the oracle, these totaling at most µ bits.

3 PRT Mode

In this section we describe the PRT encryption mode.

3.1 Variable-Length Output Pseudo-Random Function Encryp-
tion

Actually PRT mode is rather a construction of a VO-PRF-KPA secure variable-
length output function family from a PRF-KPA secure function family. The
encryption will then be done using the variable-length output function family
as

VO-PRF-ENC[F]K(M) = (r, FK(r, |M |) ⊕M) ,

where r is uniformly random in {0, 1}l. We start by relating the ROR-CPA
security of VO-PRF-ENC[F] to the VO-PRF-KPA security of F .

Theorem 1 Suppose F is a variable-length output function family. If F is
VO-PRF-KPA secure, then VO-PRF-ENC[F] is ROR-CPA secure.1 Specifi-
cally, for any t, q, µ,

Advror-cpa
VO-PRF-ENC[F](t, q, µ) ≤ Advvo-prf-kpa

F (t, q, µ) +
q(q − 1)

2l+1
.

1Actually, we have not assigned a meaning to the claim that VO-PRF-ENC[F] is ROR-
CPA secure if F is VO-PRF-KPA secure, as we have no definition of security: In this paper
we consider a concrete security framework without a security parameter. If, however, we
introduced a security parameter k, then in the asymptotic security framework, all of t, q, µ,
l, and L would be polynomial in k and typically l = Θ(k). We would then define security by
requiring that the advantage of all probabilistic polynomial time (in k) adversaries is negligi-
ble (in k). The claim would then follow from the specific bound on Advror-cpa

VO-PRF-ENC[F](t, q, µ)
given by the theorem. In the following we will use the term “secure” in this rather colloquial
way.

6

proc PRTγ1,...,γd
[F]K1

0 ,...,K1
γ1−1,K2

0 ,...,Kd
γd−1

(R1
0) ≡

w1 ← 1
for i = 1 to d do

for j = 0 to γi − 1 do fi,j ← FKi
j
od

wi+1 ← wiγi

for j = 0 to wi+1 − 1 do Ri+1
j ← fi,(j mod γi)(R

i
j div γi

) od
od
return R2

0 . . . R2
w2−1R

3
0 . . . Rd+1

wd+1−1

Figure 1: Fixed-length PRT mode.

Proof: We prove the specific bound. Consider an ROR-CPA distinguisher
D expecting access to an oracle RK,b for the VO-PRF-ENC[F] scheme. We
construct a distinguisher D having access to a VO-PRF-KPA oracle Rf for
the variable-length output function family F as follows. The distinguisher D
runs the code of D. Each time D request an encryption of message M , request
a pair (r,R), where r is uniformly random in {0, 1}l and R = f(|M |, r). Then
return c = (r,M ⊕R). When D returns with some value d, return d.

If b = 1, then f is a random function from F and the values c are distributed
exactly as values from RK,1. This implies that

Pr[Expvo-prf-kpa- 1
F,D = 1] = Pr[Expror-cpa- 1

VO-PRF-ENC[F],D
= 1] . (1)

If on the other hand b = 0, then f is a uniformly random function from
VO-Randl. In that case the values c are distributed as values from RK,0, as
long as there are no collisions among the r-values returned by Rf . Let C
denote the event that there are such collisions. We then have that

Pr[Expvo-prf-kpa- 0
F,D = 1|¬C] = Pr[Expror-cpa- 0

VO-PRF-ENC[F],D
= 1|¬C] .

Using that Pr[C] ≤ q(q−1)
2l+1 , we then have that

Pr[Expror-cpa- 0

VO-PRF-ENC[F],D
= 1] ≥ Pr[Expvo-prf-kpa- 0

F,D = 1]− q(q − 1)
2l+1

. (2)

The theorem easily follows from (1) and (2). �

3.2 Fixed-Length PRT Mode

We first describe a fixed-length version of PRT mode, which we will denote by
PRTγ1,...,γd

[F]. For notational convenience, we describe the mode for the case,

7

R1
0

R2
0 R2

1

R3
0 R3

2R3
1 R3

3

K2
0 K2

1 K2
1K2

0

K1
0 K1

1

K4
0 K4

1

K3
0 K3

1

K2
0 K2

1

K1
0 K1

1

KeysPRT

Figure 2: The mode PRT2,2,2,2[F].

where the input-length and the output-length of the function family F are the
same. The construction and analysis generalize in a straightforward manner
to consider the more general case, where the input-length is smaller or even
larger than the output-length. We call d the depth of the pseudo-random tree
and require that d > 0. We call γi the branching of level i and require that
γi > 0. PRT mode with parameters γ1, . . . , γd is described in Fig. 1. The
mode PRT2,2,2,2[F] is sketched in Fig. 2.

We introduce some terminology, which will be used throughout the paper.
We call the value wi computed during the evaluation the width of level i, we
call the value (Ri

0, . . . , R
i
wi−1) ∈ ({0, 1}l)wi the blocks of level i, and we call the

value (Ki
0, . . . ,K

i
γi−1) the keys of level i. We let γ =

∑d
i=1 γi. If we consider

q trees, then by level i in the forest, we mean level i of all the q trees. By a
collision at level i (in the forest), we mean two identical blocks at level i (in
the forest), and by a collision (in the forest), we mean two identical blocks
positioned at the same level (in the forest). Finally, we call the levels indexed
i, where i ≤ d, the internal levels. Let w =

∑d+1
i=1 wi, let w′ =

∑d
i=1 wi, let

W =
∑d+1

i=1 w2
i , and let W ′ =

∑d
i=1 w2

i .
We are going to define γ + 1 hybrid versions of PRT mode. Hybrid h

will use random functions for the first h functions in the list fK1
0
, . . . , fK1

γ1−1
,

fK2
0
, . . . , fKd

γd−1
, as opposed to using pseudo-random functions. The hybrid

using h random functions is described in Fig. 3.
We first show that a “birthday attack” can be mounted against PRT mode,

even if the PRF is perfect, i.e. even if all branching is done using uniformly
random functions.

8

proc PRTh
γ1,...,γd

[F]f0,...,fh−1,Ki
j ,...,Kd

γd−1
(R1

0) ≡
k ← 0
w1 ← 1
for i = 1 to d do

for j = 0 to γi − 1 do
if k < h then fi,j ← fk

k ← k + 1
else fi,j ← FKi

j
fi od

wi+1 ← wiγi

for j = 0 to wi+1 − 1 do Ri+1
j ← fi,(j mod γi)(R

i
j div γi

) od
od
return R2

0 . . . R2
w2−1R

3
0 . . . Rd+1

wd−1

Figure 3: PRT mode, hybrid h.

Proposition 1

Advprf-kpa
PRTγ

γ1,...,γd
[F]

(t, q) ≥ 0.632(q2W ′ − qw′)− 2
2l+1

.

Proof: The strategy of the adversary will be based on the fact that in a
pseudo-random forest, the sub-trees under collisions will be identical, whereas
this is unlikely in random forests (for collisions at an internal level).

The strategy of the adversary will be to ask for q trees, and then determine
whether at some level in the forest there exists two identical blocks at the same
level with different sub-trees. If so, return 0, otherwise, return 1.

The probability of returning 1 when seeing a pseudo-random forest is 1.
The advantage will therefore be the probability of returning 0, when seeing a
random forest.

Let j denote the index of the first level with collisions, let j = d + 1 if no
level has collisions. Let pi be the probability that j = i given that j ≥ i. We
compute pi. If j ≥ i, then there are no collisions at level i−1 of the forest and
thus the blocks of level i are uniformly random and independent. Since there
are qwi blocks at level i of the forest, it follows directly from the birthday
bound and the fact that 1− e−x ≥ (1− e−1)x, that

pi ≥ 1− e
− qwi(qwi−1)

2l+1 ≥ (1− e−1)
qwi(qwi − 1)

2l+1
.

It thus follows that the probability of collision at an internal level is larger
than

(1− e−1)
d∑

i=1

qwi(qwi − 1)
2l+1

.

9

Given that there is a collision at an internal level in the forest, it follows that
the probability that all sub-trees under identical blocks are equal is less than
2−l, as we have required that γi > 0. Therefore the probability of returning 0
is larger than

(1− e−1)
d∑

i=1

qwi(qwi − 1)
2l+1

− 2−l ,

which proves the proposition. �
We now show that the birthday attack is essentially the best possible attack

if the underlaying PRF is perfect.

Lemma 1 For any t, q,

Advprf-kpa
PRTγ

γ1,...,γd
[F]

(t, q) <
(q2 + 2q)W ′ − qw′

2l+1
.

Proof: It is easy to see that if there is no collision at any internal level of the
forest, then the joint output of the q evaluations of PRTγ

γ1,...,γd
[F]f0,...,fγ−1 is

a uniformly random string. Using a conditional probability argument similar
to that in the proof of Theorem 1, it is therefore enough to upper bound the
probability that such collision occurs.

Assume that e evaluations have been made without producing collisions at
any level. This means that level i of the forest consists of ewi different blocks.
We compute the probability pi,e+1 of collision at level i or lower in evaluation
e + 1. It is easy to see that

p1,e+1 ≤ e

2l

pi,e+1 ≤ pi−1,e+1 +
(e + 1

2)w2
i − 1

2wi

2l

pd,e+1 ≤ (e + 1
2)W ′

2l
− w′

2l+1
.

It then follows that the probability of any collision at an internal level can be
bounded by

∑q
e=1(e + 1

2)W ′

2l
− qw′

2l+1
=

(q2 + 2q)W ′ − qw′

2l+1
.

�
Lemma 1 compares PRT mode with uniformly random functions to a uni-

formly random function. We are now going to compare the consecutive hybrids
of PRT mode. For this purpose consider the following experiment:

10

proc Expprf-kpa-h
F,D ≡

f
R← PRTh

γ1,...,γd
[F]

d← DRf

return d

For h = 1, . . . , γ we let

Advprf-kpa-h
F,D = Pr[Expprf-kpa- h

F,D = 1]− Pr[Expprf-kpa- (h−1)
F,D = 1] ,

and we let
Advprf-kpa- h

F (t, q) = max
D

{
Advprf-kpa- h

F,D

}
,

where the maximum is over all D with time complexity t and making at most
q queries to the oracle.

Lemma 2 Suppose F is a function family with input-length l and output-
length l. Let 0 < h ≤ γ, and let i be the level on which the h’th function is
used. Then for any t, q,

Advprf-kpa-h
F (t, q) ≤ Advprf-kpa

F (t, wiq) .

Proof: Assume that we are given access to an oracleRf returning pairs (R,S),
where R is uniformly random and S = f(R) and f is a random function from
either F or Randl→l. Assume further more that we have a distinguisher D
expecting to play one of the hybrid experiments. We construct a distinguisher
D working as follows.

We start running D. Each time D requests an evaluation, we compute
a tree as in hybrid h in Fig. 3. We pick the h − 1 first functions uniformly
random from Randl→l, and we pick the γ − h last functions at random from
F . The h’th function is replaced by the oracle Rf .

To make the process efficient we implement f ← Randl→l in a lazy manner,
by simply creating an empty dictionary. Each time f is evaluated on a value R,
we look up R in the dictionary, and if R is a member we return the associated
value, and otherwise we generate a uniformly random value S, add (R,S) to
the dictionary, and return S.

Since the oracle Rf does not allow us to evaluate it on a given point R, but
returns random evaluations (R,S), we need to be careful about how we use
the oracle. Each time a value R, on which we will later need to evaluate the
h’th function, is chosen at random (as the output of a lazy evaluated random
function at level i−1) we proceed as follows. Instead of generating R directly,
we query the oracle Rf and get a random evaluation (R,S). We then use R
as the random value. When we later need to evaluate the h’th function on R,

11

we simply use S as the output. When at some point D returns some value d,
we let D return d.

By construction, if f is a uniformly random function, then D is run in the
experiment Expprf-kpa- h

F,D
, and if f is a random function from F , then D is run

in the experiment Expprf-kpa- (h−1)

F,D
. As D queries the oracle wi times for each

query from D, we have that Advprf-kpa- h
F (t, q) ≤ Advprf-kpa

F (t, wiq), where t is
the running time of D (including the time spend by the oracle), when D has
running time t (including the time spend by the oracle). Since the dictionaries
can be maintained in constant time on a RAM, we can safely assume that
the computations done by D in computing the hybrid is less than that used
computing an actual PRT. Thus t ≤ t, and the lemma follows. �

Theorem 2 Suppose F is a function family with input-length l and output-
length l. If F is PRF-KPA secure, then PRTγ1,...,γd

[F] is PRF-KPA secure.
Specifically, for any t, q,

Advprf-kpa
PRTγ1,...,γd−1

[F](t, q) <

d∑
i=1

(γiAdvprf-kpa
F (t, wiq)) +

(q2 + 2q)W ′ − qw′

2l+1

≤ γAdvprf-kpa
F (t, wq) +

3(wq)2

2l+1
.

Proof: Using that

Advprf-kpa
PRTγ1,...,γd

[F]
(t, q) ≤

γ∑
h=1

Advprf-kpa- h
F (t, q) + Advprf-kpa

PRTγ
γ1,...,γd

[F]
(t, q) ,

the theorem follows directly from Lemmas 1 and 2. �

3.3 Variable-Length Output PRT

Until now, we have described PRT mode as a fixed-length PRF. It is however
possible to construct a variable-length output version, by generating the keys
for branching at level i+1 by using some of the pseudo-random blocks of level
i. These blocks are then of course not used as output from the pseudo-random
generator. Assuming, for notational convenience, that random blocks can also
be used as keys, an instance of the variable-length version can be sketched as
in Fig. 4. The key of the system is (K1

0 ,K1
1 ,K1

2 ,K1
3) and the seed is R1

0. It is
easy to see that given the key, all keys can be generated using no more than
4d evaluations of F , and after the keys have been generated, given the seed,
any block can be random accessed using at most d evaluations of F .

12

K1
1

K2
0 K2

1 K2
2 K2

3

K3
0 K3

2K3
1 K3

3

K2
2 K2

3 K2
3K2

2

K1
2 K1

3 K1
2 K1

3

K1
0 K1

2 K1
3

Key Tree

R1
0

R2
0 R2

1

R3
0 R3

2R3
1

K2
2 K2

3 K2
2

K1
2 K1

3

PRT

K2
3

R3
3

Figure 4: Variable-length PRT Mode. Only the leftmost tree is used as the
pseudo-random output. The key tree is used to generate a variable number of
level keys.

If the parties only share one key K for a symmetric encryption scheme,
then the sender can choose (K1

0 ,K1
1 ,K1

2 ,K1
3) at random and encrypt as

(R1
0, EK(K1

0), EK(K1
1), EK(K1

2), EK(K1
3),PRTK1

0 ,K1
1 ,K1

2 ,K1
3
(|M |, R1

0)⊕M) .

The variable-length output mode can be proven secure using the technique
of Theorem 2. The only difference now being that the levels have become four
blocks wider. We get the following theorem.

Theorem 3 Suppose F is a function family with input-length l and output-
length l. If F is PRF-KPA secure, then PRT[F] is VO-PRF-KPA secure.
Specifically, for any t, q, d,

Advvo-prf-kpa
PRT[F] (t, q, q(2d+1 − 1)l) < 2dAdvprf-kpa

F (t, 2d+2q) +
3(q2d+1)2

2l
,

assuming that each of the q generations are of at most (2d+1 − 1)l bits (a full
depth-d PRT).

Combined with Theorem 1 we then get the following theorem.

Theorem 4 Suppose F is a function family with input-length l and output-
length l. If F is PRF-KPA secure, then VO-PRF-ENC[PRT[F]] is ROR-CPA
secure. Specifically, for any t, q, d,

Advror-cpa
VO-PRF-ENC[PRT[F]](t, q, q(2

d+1 − 1)l) < 2dAdvprf-kpa
F (t, 2d+2q) +

4(q2d+1)2

2l
.

assuming that each of the q encryptions are of at most (2d+1 − 1)l bits.

13

proc CBC[P]K(M) ≡
m← d|M |/le
n← ml − |M |
r

R← {0, 1}n
M ←M‖r
c0

R← {0, 1}l
for i = 0 to m− 1 do

xi ←M [il..((il + l − 1)] ⊕ ci

ci+1 ← PK(xi)
od
return (n, c0‖c1‖ . . . ‖cm)

proc CTR[F]K(M) ≡
m← d|M |/Le
n← |M | − (m− 1)L

r
R← {0, 1}l

for i = 1 to m do
ri ← FK(r + 1 mod 2l)

od
R← r1‖ . . . ‖rm−1‖rm[1..n]
return (r,M ⊕R)

Figure 5: CBC[P] mode and CTR[F] mode.

4 Analysis and Comparison of CBC, CRT, and PRT

We are going to prove the results given by the below table, where the en-
try MODE /ATKimpl being set to ATKmode means that the encryption mode
MODE is ATKmode secure when the underlying function family is ATKimpl

secure, and that there exists a function family or permutation family G, as
appropriate, being ATKimpl secure for which MODEG is not ATK secure for
any attack ATK stronger than ATKmode.

MODE /ATKimpl PRF-KPA PRF-CPA
CBC ROR-KPA ROR-CPA
CTR insecure ROR-CPA
PRT ROR-CPA ROR-CPA

The bottom row and the right-most column follows from known results
from [BDJR97] and Section 3. We now prove in Theorems 5 and 6 that
PRF-KPA security of the underlying permutation family implies ROR-KPA
security of CBC mode and that it implies no stronger security. We then prove
in Theorem 7 that counter mode based on a PRF-KPA secure function family
is not necessarily ROR-KPA secure. The CBC and CTR encryption modes
are given in Fig. 5.

Theorem 5 Suppose P is a permutation family with length l. If P is PRF-
KPA secure, then CBC[P] is ROR-KPA secure. Specifically, for any t, q,

Advror-kpa
CBC[P](t, q, µ) ≤ Advprf-kpa

P (t, ν) +
ν(ν − 1)

2l+2
,

where ν = bµ/lc+ q.

14

Proof: Consider an ROR-KPA distinguisher D expecting access to an oracle
RK,b for the CBC[P] scheme. We construct a distinguisher D having access
to a PRF-KPA oracle Rf for the permutation family P as follows. The distin-
guisher D runs the code of D. Each time D requests an encryption of length
m′, request m = dm′/le pairs (xi, f(xi)) from Rf . Then generate a random
l-bit string c0 and for i = 1, . . . ,m let ci = f(xi) and let pi = xi ⊕ ci−1. Then
output (M,C) = (p1‖ . . . ‖pm, (ml −m′, c0‖c1‖ . . . ‖cm).

In all cases M is uniformly random and C is distributed exactly as a CBC
encryption of p using f . So, if f = PK is a random permutation from P ,
then (M,C) is distributed exactly as values from RK,1, and if f is a random
function, then C is uniformly random and independent of M , unless M has
collisions among the blocks. Using a conditional probability argument similar
to that in the proof of Theorem 1, the theorem then follows. �

Theorem 6 For any permutation family P with length l, there exists a per-
mutation family P such that P is PRF-KPA secure if P is PRF-KPA secure,
but CBC[P] is not ROR-CPA secure. Specifically, for any t, q and for some
small t′,

Advprf-kpa

P
(t, q) ≤ Advprf-kpa

P (t, 2q) +
16q2

2l+1

Advror-cpa

CBC[P]
(t′, 1, 4l) ≥ 1− 2−2l .

Proof: Given some permutation family P , consider the permutation family
P given by PK(x1, x2) = (P−1

K (x2), PK(x1)).
Proof of the first claim: Given a PRF-KPA oracle for P , we simulate a PRF-
KPA oracle for P as follows. Given request for evaluation, ask for two random
evaluations (x1, y1), (x2, y2) and return ((x1, y2), (x2, y1)). If we have access
to a permutation from the permutation family, the distribution is correct.
If we have access to a random function, then the output is distributed as
independent pairs ((x1, x2), P (x1, x2)), where P is uniformly random from
Rand2l→2l, unless there are collisions among the 4q values returned by the
oracle for P . This proves the first claim.
Proof of the second claim: Ask for an encryption of the all-zero-string of length
4l. If the encryption is of the form ((x1, x2), (y1, y2), (x1, x2)), then answer 1,
otherwise answer 0. If the answer is not of this form we known that it is
random. The probability of being on this form for random values is 2−2l,
which proves the second claim. �

Theorem 7 For any permutation family P with length l, there exists a per-
mutation family P such that P is PRF-KPA secure if P is PRF-KPA secure,

15

but CTR[P] is not ROR-KPA secure. Specifically, for any t, q and for some
small t′,

Advprf-kpa

P
(t, q) ≤ Advprf-kpa

P (t, 2q) +
4q2

2l+1

Advror-kpa

CTR[P]
(t′, 1, 6l) ≥ 1− 2−l+1 .

Proof: Given some permutation family P , consider the permutation family
P given by PK(x1, x2) = (PK(x1), PK(x2)).
Proof of the first claim: Consider a PRF-KPA distinguisher D for the family
P . We construct a distinguisher D with access to a PRF-KPA oracle Rf

for the family P . The distinguisher D tries to simulate a PRF-KPA oracle
Rf for the family P to D. Each time D requests a generation, D requests
two generations from Rf and receives (x1, f(x1)) and (x2, f(x2)), and then
D returns ((x1, x2), (f(x1), f(x2))) to D. After D returns with a value d, D
returns d.

If b = 1, then f is a random permutation from P and the values
((x1, x2), (f(x1), f(x2))) are distributed as random values from Rf . If on the
other hand b = 0, then f is a uniformly random function. In that case the
values ((x1, x2), (f(x1), f(x2))) are distributed as independent values, where
each (x1, x2) is a uniformly random 2l-bit string and (f(x1), f(x2)) is a uni-
formly random 2l-bit string independent of all other values, as long as there
are no collisions among the xi-values returned by Rf . This proves the first
claim.
Proof of the second claim: Ask for an encryption of length 6l. Let (x, (r, y))
be the answer and compute z = y ⊕ x. If b = 1, then z = P (r)P (r +
1 mod 22l)P (r + 2 mod 22l). Writing r = r1r2, where r1 and r2 have length
l, there must be r′ among r, (r + 1 mod 22l), where r′2 < 2l − 1. This implies
that r′ = r′1r

′
2, r

′ + 1 = r′1(r
′
2 + 1 mod 2l) and thus P (r′)P (r′ + 1 mod 22l) =

P (r′1)P (r′2)P (r′1)P (r′2 + 1). Writing z = z1z2z3z4z5z6, we thus have that, if
b = 1, then either z1 = z3 or z3 = z5. If on the other hand b = 0, then x is
independent of y and thus z = y ⊕ x is a uniformly random value, and the
probability that z1 = z3 or z3 = z5 is no larger than 2−l+1, which proves the
second claim. �

5 CCA Security

Having constructed CPA secure encryption, we can construct CCA secure
encryption using a number of known techniques. All these techniques however
seem to require something stronger than a KPA secure cipher. We find it an
interesting open question whether CCA secure encryption can be based solely
on a KPA secure block cipher.

16

As an example we can construct a CCA secure encryption scheme Ecca from
a CPA secure encryption scheme Ecpa and a Message Authentication Code
(MAC) A, by letting Ecca

K1,K2
(M) = Ecpa

K1
(M‖AK2(M)). A MAC Akma which

is Known-Message Attack (KMA)2 secure against existential forgery is enough.
From a KMA secure MAC we can construct a Chosen-Message Attack (CMA)
secure MAC as follows, see [CDT96]. On input a message M , generate R

R←
{0, 1}|M | and id

R← {0, 1}k and let Acma
K1,K2

(M) = (Akma
K1

(id‖R), Akma
K2

(id‖(M ⊕
R))). It is however an open question whether a KMA secure MAC can be
constructed from a KPA secure block cipher. All known constructions seem
to fail.

Also other constructions of CCA secure encryption fail if based solely on
a KPA secure block cipher. We look at two concrete constructions to give an
idea why this is so.

In [Des00] Desai introduces two paradigms for constructing CCA secure
symmetric encryption. His paradigms are interesting in that they produce
CCA secure encryption schemes in which every string is a valid ciphertext.
This allows for a smaller ciphertext expansion than in non-malleable encryp-
tion schemes. However, no scheme in which every string is a valid ciphertext
can be based solely on a KPA block cipher, it seems. The reason being that
when the decryption oracle is queried, a simulator is forced to decrypt, which
seems to require access to a CPA oracle for the underlying function, to e.g.
generate a PRT. The scheme in [Des00] also fails for more specific reasons as
it is based on a CRT mode construction, c.f. Theorem 7.

Considering non-malleable schemes, the constructions fail for almost the
same reason. Consider e.g. the scheme Ecca

K (M) = Ecpa
K (M‖h(M)), where h is

a (two universal) hash function, see e.g. [Sho96]. Here it seems computation-
ally infeasible for a distinguisher to produce a correct ciphertext. If, however,
we assume that a distinguisher does so anyway, it requires that a simulator
can actually determine that this has happened to turn this exceptional event
into a distinguishing advantage. However, determining whether a ciphertext
is correct again seems to require a decryption, which in turn requires access
to a CPA oracle for the underlying function.

References

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete secu-
rity treatment of symmetric encryption. In 38th Annual Symposium
on Foundations of Computer Science, Miami Beach, FL, 19–22 Oc-
tober 1997. IEEE.

2The adversary sees MACs of random messages and has oracle access to a MAC verifier.

17

[CDT96] R. Cramer, I. Damg̊ard, and T.P. Pedersen Efficient and Provable
Security Amplifications. In Proceedings of 4th Cambridge Security
Protocols Workshop, pages 101–109, April 1996. Springer-Verlag.
Lecture Notes in Computer Science Volume 1189.

[Des00] A. Desai. New paradigms for constructing symmetric encryption
schemes secure against chosen-ciphertext attack. In Mihir Bel-
lare, editor, Advances in Cryptology - Crypto 2000, pages 394–412,
Berlin, 2000. Springer-Verlag. Lecture Notes in Computer Science
Volume 1880.

[Sho96] V. Shoup. On fast and provably secure message authentication
based on universal hashing. In Neal Koblitz, editor, Advances in
Cryptology - Crypto ’96, pages 313–328, Berlin, 1996. Springer-
Verlag. Lecture Notes in Computer Science Volume 1109.

18

Recent BRICS Report Series Publications

RS-01-43 Ivan B. Damg̊ard and Jesper Buus Nielsen. From Known-
Plaintext Security to Chosen-Plaintext Security. November
2001. 18 pp.

RS-01-42 Zolt́an Ésik and Werner Kuich. Rationally Additive Semirings.
November 2001. 11 pp.

RS-01-41 Ivan B. Damg̊ard and Jesper Buus Nielsen.Perfect Hiding and
Perfect Binding Universally Composable Commitment Schemes
with Constant Expansion Factor. October 2001. 43 pp.

RS-01-40 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part II: Administrative Reductions. October
2001. 9 pp.

RS-01-39 Olivier Danvy and Mayer Goldberg. There and Back Again.
October 2001. 14 pp.

RS-01-38 Zolt́an Ésik. Free De Morgan Bisemigroups and Bisemilattices.
October 2001. 13 pp.

RS-01-37 Ronald Cramer and Victor Shoup.Universal Hash Proofs and
a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption. October 2001. 34 pp.

RS-01-36 Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob.Cache
Oblivious Search Trees via Binary Trees of Small Height. Octo-
ber 2001.

RS-01-35 Mayer Goldberg. A General Schema for Constructing One-
Point Bases in the Lambda Calculus. September 2001. 6 pp.

RS-01-34 Flemming Friche Rodler and Rasmus Pagh.Fast Random Ac-
cess to Wavelet Compressed Volumetric Data Using Hashing.
August 2001. 31 pp.

RS-01-33 Rasmus Pagh and Flemming Friche Rodler.Lossy Dictionar-
ies. August 2001. 14 pp. Short version appears in Meyer auf
der Heide, editor, 9th Annual European Symposiumon on Al-
gorithms, ESA ’01 Proceedings, LNCS 2161, 2001, pages 300–
311.

