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Abstract

We give a geometric representation of free De Morgan bisemigroups,
free commutative De Morgan bisemigroups and free De Morgan bisemi-
lattices, using labeled graphs.

Keywords: bisemigroup, bisemilattice, free algebra, De Morgan’s
laws, cograph, series-parallel graph.
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1 Introduction

J. A. Brzozowski and Z. Ésik have introduced in [?] an algebra C capable of rep-
resenting and counting hazards in asynchronous circuits. The algebra C has two
binary operations ⊕ and ⊗, a unary operation −, called quasi-complementation,
and the constants 0 and 1 such that both (C,⊕, 0) and (C,⊗, 1) are commu-
tative monoids, − is an involution satisfying De Morgan’s laws with respect
to the operations ⊕ and ⊗, and such that 0 = 1. In [?], such algebras were
called commutative De Morgan bisemigroups, a generalization of De Morgan
bisemilattices studied, in connection with circuits, in [?]. We conjecture that
the variety of De Morgan bisemigroups is in fact generated by the algebra C,
so that an equation holds in C if and only if it is provable from the defining
equations of De Morgan bisemigroups.

∗This research was supported by BRICS and the National Foundation of Scientific Research
of Hungary under grant no. T30511. Permanent address: Dept. of Computer Science,
University of Szeged, 6701 Szeged, P.O.B. 652, Hungary.
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In this paper, building on the geometric description of free commutative bisemi-
groups and free bisemigroups [?, ?, ?], we provide a concrete geometric descrip-
tion using labeled graphs and digraphs of the free De Morgan bisemigroups, free
commutative De Morgan bisemigroups, and free De Morgan bisemilattices. In
particular, we show that the free De Morgan bisemigroup on a set A may be
represented as an algebra of isomorphism classes of A∪A-labeled sets, where A
is a disjoint copy of A, equipped with two transitive digraph structures, in fact
two N -free partial orders, such that any two elements of the set are related by
exactly one of the two orders. The two binary operations are the series products
with respect to the two orders, and the operation of quasi-complementation ex-
changes the two orders and complements the labels. The free commutative De
Morgan bisemigroup on A has a similar description using A∪A-labeled graphs.
Our study of algebras of labeled graphs, posets and biposets is also related to
recent work on two-dimensional extensions of automata theory by Lodaya, Weil,
Hashiguchi, Kuske and others, see [?, ?, ?, ?, ?].

2 Preliminaries

Recall that bisemigroup is an algebra B = (B,⊕,⊗) equipped with binary asso-
ciative operations ⊕ and ⊗. (Bisemigroups with a a common neutral element for
the two associative operations were called double monoids in [?] and bimonoids
in [?]. Some authors use the term binoid.) A commutative bisemigroup is a
bisemigroup in which both operations are commutative. A bisemilattice [?] is
a commutative bisemigroup in which both operations are idempotent. (Plonka
[?] introduced the term quasi-lattice for these structures.) In a bisemilattice, we
will sometimes denote the operations by t and ∧. Morphisms of bisemigroups
preserve the operations.

A De Morgan bisemigroup [?] is an algebra D = (D,⊕,⊗,− , 0, 1) such that
(D,⊕,⊗) is a bisemigroup, and the quasi-complementation operation − : D → D
and the constants 0, 1 satisfy

x ⊕ 0 = 0 ⊕ x = x (1)
x ⊗ 1 = 1 ⊗ x = x (2)
x ⊗ 0 = 0 ⊗ x = 0 (3)
x ⊕ 1 = 1 ⊕ x = 1 (4)

and

x = x (5)
x ⊕ y = x ⊗ y (6)
x ⊗ y = x ⊕ y. (7)
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It then follows that

0 = 1 (8)
1 = 0. (9)

A commutative De Morgan bisemigroup is a De Morgan bisemigroup which is
a commutative bisemigroup, and a De Morgan bisemilattice is a De Morgan
bisemigroup which is a bisemilattice. Morphisms of De Morgan bisemigroups,
commutative De Morgan bisemigroups and De Morgan bisemilattices also pre-
serve the constants and the quasi-complementation. Note that any De Morgan
bisemigroup is determined by the operations ⊕ and − and the constant 0.

In any bisemilattice B = (B,t,∧), the binary operations determine two partial
orders w and ≤ defined by x w y if and only if x t y = x and x ≤ y if and only
if x ∧ y = x, for all x, y ∈ B. The operations are in turn determined by the
partial orders in that x t y is the l.u.b. of x and y with respect to the partial
order w, and x∧ y is the g.l.b. of x and y with respect to ≤. It is known that a
bisemilattice is a lattice if and only if the partial orders w and ≤ coincide. When
B is a De Morgan bisemilattice, 0 is least and 1 is greatest with respect to both
partial orders. It is clear that any homomorphism of bisemilattices preserves w
and ≤. Moreover, for x, y in a De Morgan bisemilattice,

x w y ⇔ x ≤ y. (10)

This latter property is characteristic: If B is a bisemilattice equipped with a
unary operation − and constants 0 and 1 satisfying (??) – (??), then B is a De
Morgan bisemilattice if and only if (??) and (??) hold.

Lemma 2.1 Suppose that S and S′ are De Morgan bisemigroups. Suppose that
X ⊆ S is closed with respect to quasi-complementation.

1. Then X generates S if and only if every s ∈ S − {0, 1} can be generated
from X by ⊕ and ⊗.

2. Suppose that S is generated by X. Then a function h : S → S′ is a De
Morgan bisemigroup homomorphism if and only if h preserves 0, 1, the
quasi-complementation on the elements of X, and the operations ⊕ and
⊗.

For all undefined notions of universal algebra, see any standard text such as
[?, ?].
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3 Labeled graphs

We take a graph to be a pair (G,∼G) consisting of a finite nonempty set and an
irreflexive symmetric relation ∼G on the set G of vertices. The elements of ∼G

are called edges. Suppose that A is a set. An A-labeled graph is a graph (G,∼G)
equipped with a labeling function `G : G → A. A morphism of A-labeled graphs
is a function which preserves the edges and the labeling. An isomorphism is a
bijective morphism whose inverse is also a morphism. We identify any two
isomorphic A-labeled graphs.

Suppose that G and H are A-labeled graphs. Since we work with isomorphism
classes of labeled graphs, in the definitions of the operations ⊕ and ⊗, below
we may without loss of generality assume that G and H are disjoint. We define

G ⊕ H = (G ∪ H,∼G⊕H , `G⊕H),

where

∼G⊕H = ∼G ∪ ∼H

`G⊕H(u) =
{

`G(u) if u ∈ G
`H(u) if u ∈ H.

Moreover, we define

G ⊗ H = (G ∪ H,∼G⊗H , `G⊗H),

where

∼G⊗H = ∼G ∪ ∼H ∪G × H ∪ H × G,

and where `G⊗H is defined in the same way as `G⊕H . We also define an operation
of quasi-complementation:

G = (G,∼G, `G),

where `G = `G and

∼G = {(u, v) ∈ G × G : u 6= v, (u, v) 6∈∼G}.
The collection of all A-labeled graphs, equipped with the above operations,
satisfies all of the defining equations of commutative De Morgan bisemigroups
not involving 0 and 1. Thus, if we add elements 0 and 1 such that (??) – (??),
(??) and (??) hold, then we obtain a commutative De Morgan bisemigroup GA.

Remark 3.1 The graphs in the smallest subalgebra of GA containing the sin-
gletons are called labeled cographs, or complement reducible graphs. Since if G
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is a singleton graph, G = G, it follows that a labeled graph is a cograph if and
only if it can be generated from the singletons by any two of the operations ⊕,⊗
and −. It is also known, see [?, ?], that a (labeled) graph is a cograph if and
only if it is P4-free, i.e., when it contains no subgraph isomorphic to a path on
4 vertices.

Remark 3.2 An A-labeled graph may also be represented as a system (G,≈G

,∼G, `G) where G is a finite nonempty set, ≈G and ∼G are disjoint irreflexive
and symmetric relations on G, and `G is a labeling function G → A. Moreover,
it is required that for any two distinct vertices u, v, either u ≈ v or u ∼ v holds,
i.e., that (G,≈G ∪ ∼G) is a complete graph. The ⊕ and ⊗ operations can then
be defined so that

G ⊕ H = (G ∪ H,≈G⊕H ,∼G⊕H , `G⊕H),

where

≈G⊕H = ≈G ∪ ≈H ∪G × H ∪ H × G

∼G⊕H = ∼G ∪ ∼H ,

and

G ⊗ H = (G ∪ H,∼G⊗H ,≈G⊗H , `G⊗H),

where

≈G⊗H = ≈G ∪ ≈H

∼G⊗H = ∼G ∪ ∼H ∪G × H ∪ H × G,

and where `G⊕H and `G⊗H are defined above. Quasi-complementation is given
by

G = (G,≈G,∼G, `G),

where `G = `G and

≈G = ∼G

∼G = ≈G .

For later use we note:

Lemma 3.3 The following cancellation laws hold in GA, for all H 6= 0, 1.

1. If G1 ⊕ H = G2 ⊕ H, then G1 = G2.
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2. If G1 ⊗ H = G2 ⊗ H, then G1 = G2.

Proof. If G1 ⊕ H and G2 ⊕ H are isomorphic, then G1 and G2 have the same
number of connected components. Moreover, there is a bijection between the
connected components of G1⊕H and G2⊕H which assigns to any component of
G1 ⊕H an isomorphic component of G2 ⊕H . But then, by finiteness, there is a
similar bijection between the components of G1 and G2, proving that G1 and G2

are isomorphic. The second claim follows from the first by taking complements.
2

In order to represent the free commutative De Morgan bisemigroup by cographs,
we modify the operation of quasi-complementation. Suppose that A is a set and
A = {a : a ∈ A} is a disjoint copy of A. We define a new quasi-complementation
operation on the set of A ∪ A-labeled graphs. Given G = (G,∼G, `G), define
G = (G,∼G, `G), where

∼G = {(u, v) ∈ G × G : u 6= v, (u, v) 6∈∼G} (11)

`G(u) = `G(u), u ∈ G. (12)

Here we write a = a, for all a ∈ A. As before, we define 0 = 1 and 1 = 0.
The resulting algebra, denoted GA,A, is a again a commutative De Morgan
bisemigroup. Let CDBSA denote the least subalgebra of GA,A containing the
singleton graph labeled a, for each a ∈ A. By Remark ??, an A∪A-labeled graph
G belongs to CDBSA if and only if G is P4-free. Since GA,A is a commutative
De Morgan bisemigroup, so is CDBSA. In the next result, we identify each
letter in A ∪ A with the corresponding labeled graph having a single vertex.

Theorem 3.4 CDBSA is freely generated by A in the variety of all commuta-
tive De Morgan bisemigroups.

Proof. Suppose that S is a commutative De Morgan bisemigroup and h is a
function A → S. We show how to extend h to a homomorphism h] : CDBSA →
S. First, we define h](0) = 0 and h](1) = 1. Moreover, we define h](a) = h(a)
and h](a) = h(a), for each a ∈ A. Suppose now that G ∈ CDBSA has 2 or more
vertices. If G is not connected, write G in the form G = G1 ⊕ . . . ⊕ Gn, where
the Gi are all of the connected components of G. We have Gi ∈ CDBSA, for
all i = 1, . . . , n. Define h](G) = h](G1) ⊕ . . . ⊕ h](Gn). If G is connected, then
G can be written as G = G1 ⊗ . . .⊗Gn, where the Gi are disconnected. In this
case, define h](G) = h](G1) ⊗ . . . ⊗ h](Gn). That h] is well-defined follows by
the associativity and commutativity of the operations. It is now immediate that
h] preserves ⊕ and ⊗. The fact that h] also preserves quasi-complementation
follows from Lemma ??. 2
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When A has a single element, GA may be considered to be a commutative De
Morgan bisemigroup of unlabeled graphs, and the constants 0 and 1. Let G
denote this commutative De Morgan bisemigroup and let CG denote the sub-
algebra of G determined by the cographs and the constants. It is natural to ask
whether there are equations that hold in G but fail to hold in all commutative
De Morgan bisemigroups, i.e., whether the variety of commutative bisemigroups
is generated by G. Below we answer this question. We will show that both G
and CG generate the variety of commutative De Morgan bisemigroups.

Proposition 3.5 When A is a countable set, there is an embedding of the free
commutative De Morgan bisemigroup CDBSA into CG.

Proof. Let a1, a2, . . . be a fixed enumeration of A, and for each n ≥ 1, define

Gn = • ⊗ (

(n+1)−times︷ ︸︸ ︷
• ⊕ . . . ⊕ •),

where • denotes the singleton graph. Note that the complement of Gn in CG
is

Gn = • ⊕ (

(n+1)−times︷ ︸︸ ︷
• ⊗ . . . ⊗ •).

Let f denote the homomorphism CDBSA → CG determined by the assignment
an 7→ Gn, n ≥ 1.

For a graph G ∈ CDBSA, f(G) can be constructed by replacing each vertex
of G labeled an by a copy of Gn, and each vertex labeled an by a copy of Gn.
Thus, if u and v are connected by an edge in G, then any vertex of the graph
replacing u will be connected in f(G) to each vertex of the graph replacing v.
Clearly, each Gn and Gn contains both vertices that are connected by an edge,
and disconnected vertices. Using this fact, it follows that when G ∈ CDBSA is
connected and G is not a singleton, then f(G) contains both a complete graph
on three vertices, and a graph isomorphic to P3, the path on three vertices.
Also, if G is connected, then so is f(G), unless G consists of a single vertex
labeled an, for some n. Thus, when G is connected and is not a singleton, no
connected component of f(G) is isomorphic to any of the Gn or to a connected
component of any of the Gn.

We claim that f is injective. To prove this, suppose that H, K ∈ CDBSA,
H 6= K are graphs with the minimum number of vertices such that f(H) =
f(K). If H or K is a singleton, then H = K, since there is no nontrivial way
of generating any of the Gn and Gn from the graphs Gm, Gm, m ≥ 1 by the
operations ⊕ and ⊗. Thus we may assume that neither H nor K is a singleton.
Suppose that H is disconnected, say H = H1 ⊕ . . .⊕Hm, where m > 1 and the
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Hi are connected. Then K is also disconnected, since otherwise f(K) would be
connected, but f(H) is not. Let K = K1⊕. . .⊕Kn, where the Kj are connected.
If one of the Hi has a single vertex, then by the preceding argument, there is
a j with Hi = Kj. Removing these components from H and K, the resulting
graphs H ′ and K ′ are distinct and satisfy f(H ′) = f(K ′), by Lemma ??. Since
also H ′ 6= K ′, this contradicts our assumption on H and K. We conclude that
none of the Hi is a singleton. In the same way, none of the Kj is a singleton.
But then all of the graphs f(Hi) and f(Kj) are connected, so that f(H) = f(K)
only if m = n and there is a permutation i1, . . . , in of the integers 1, . . . , n such
that f(Hj) = f(Kij ), for all j = 1, . . . , n. But since H 6= K, there is a j with
Hj 6= Kij . This is again a contradiction. If H is connected, consider H and K.
They have the same number of vertices as H and K, and f(H) = f(K). But
since H is disconnected, we can derive a contradiction as before. 2

Theorem 3.6 The variety of commutative De Morgan bisemigroups is gener-
ated by either one of the algebras G and CG.

Proof. Since CG is a subalgebra of G and G is a commutative De Morgan
bisemigroup, it suffices to prove that the variety generated by CG contains the
free commutative De Morgan bisemigroup CDBSA generated by a countable
set A. But this holds by Proposition ??. 2

4 Labeled directed graphs

In order to give a representation of the free De Morgan bisemigroups, we will
now consider labeled 2-digraphs (G, ρG, τG, `G), where G is a finite nonempty
set, ρG and τG are irreflexive antisymmetric relations on G, and `G : G → A.
We also require that for any two distinct vertices u, v ∈ G, either u and v
are related by ρG, or else u and v are related by τG, but not by both. An
isomorphism G → H of A-labeled 2-digraphs G, H is a bijection f : G → H
which preserves the labeling and such that for all u, v ∈ G, (u, v) ∈ ρG if and only
if (f(u), f(v)) ∈ ρH and similarly, (u, v) ∈ τG if and only if (f(u), f(v)) ∈ τH .
We identify any two isomorphic A-labeled 2-digraphs. The operations ⊕ and ⊗
are defined as follows, where without loss of generality we again assume that G
and H are disjoint:

G ⊕ H = (G ∪ H, ρG⊕H , τG⊕H , `G⊕H),

where

ρG⊕H = ρG ∪ ρH ∪ G × H

τG⊕H = τG ∪ τH ,
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and

G ⊗ H = (G ∪ H, ρG⊗H , τG⊗H , `G⊗H),

where

ρG⊗H = ρG ∪ ρH

τG⊗H = τG ∪ τH ∪ G × H,

and where `G⊕H and `G⊗H are defined above. Quasi-complementation is given
by

G = (G, ρG, τG, `G),

where `G = `G and

ρG = τG

τG = ρG.

Let DA denote the structure that results by adding 0 and 1 to A-labeled 2-
digraphs such that (??) – (??) and (??), (??) hold. Clearly, DA is a De Morgan
bisemigroup. When A is a disjoint copy of A, we may also define the De Morgan
bisemigroup DA,A which is the same as DA∪A except that the labeling function
of the quasi-complement is given by (??). Let DBSA denote the subalgebra of
DA,A generated by the singleton 2-digraphs corresponding to the elements of
A.

Remark 4.1 The paper [?] contains a common generalization of the geometric
characterization of series-parallel digraphs (or posets) [?, ?] and cographs [?, ?].
It follows from this general result that an A-labeled 2-digraph (G, ρG, τG, `G)
belongs to the subalgebra of DA generated by the singletons if and only if both
ρG and τG are transitive (so that they define partial orders), and ρG is N -free.
Thus there are no distinct vertices u, v, w, z such that the order relations between
them are given by uρGw, vρGw, vρGz. It then follows τG is also N -free. (Recall
that we are assuming that any two vertices of a 2-digraph (G, ρG, τG, `G) are
related by exactly one of ρG and τG.) The same conditions characterize the
2-digraphs in DBSA.

Theorem 4.2 DBSA is freely generated by A in the class of all De Morgan
bisemigroups.

The proof is similar to that of Theorem ??.

Consider now the De Morgan bisemigroup D of unlabeled 2-digraphs, and its
subalgebra ND generated by the singleton 2-digraph. We have:
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Theorem 4.3 The variety of De Morgan bisemigroups is generated by both D
and ND.

This can be proven following the lines of the proof of Proposition ?? and Theo-
rem ??. One shows that when A is a countable set {a1, a2, . . .}, the homomor-
phism g : DBSA → ND determined by the assignment

an 7→ • ⊕ (
n−times︷ ︸︸ ︷

• ⊗ . . . ⊗ •), n ≥ 1

is injective. Indeed, this fact follows from Proposition ??, since the homomor-
phism f given in the proof of Proposition ?? is the composite of the homomor-
phism g with a homomorphism CG → ND.

5 Free De Morgan bisemilattices

In order to obtain a geometric representation of the free De Morgan bisemi-
lattices, we will consider labeled graphs with a particular property. We call
an A-labeled graph G ⊕-irreducible if G is connected, i.e., when there exist
no labeled graphs G1 and G2 with G = G1 ⊕ G2. Similarly, we call G ⊗-
irreducible, if G is ⊕-irreducible, i.e., when there exist no labeled graphs G1 and
G2 with G = G1 ⊗ G2. If G is both ⊕-irreducible and ⊗-irreducible, then we
call G irreducible. The ⊕-components of G are the connected components of G.
The ⊗-components of G are the quasi-complements of the ⊕-components of G.
Thus, denoting the ⊕-components by Gi and the ⊗-components by Hj , where
i = 1, . . . , n and j = 1, . . . , m, we can write

G = G1 ⊕ . . . ⊕ Gn

G = H1 ⊗ . . . ⊗ Hm,

where each Gi is ⊕-irreducible and each Hj is ⊗-irreducible.

We say that an A-labeled graph G has inherently nonisomorphic components
if it is irreducible, or for each way of writing G = G1 ⊕ . . . ⊕ Gn or G =
G1 ⊗ . . . ⊗ Gn, the labeled graphs Gi are pairwise nonisomorphic and have
inherently nonisomorphic components. Clearly, if G is not ⊕-irreducible then
G has inherently nonisomorphic components if and only if the ⊕-components of
G are pairwise nonisomorphic and have inherently nonisomorphic components.
And if G is not ⊗-irreducible then G has inherently nonisomorphic components
if and only if the ⊗-components of G are pairwise nonisomorphic and have
inherently nonisomorphic components.

Suppose that G, H have inherently nonisomorphic components. Up to iso-
morphism, let C1, . . . , Cm denote all of the ⊕-components of G and H , and
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D1, . . . , Dn the ⊗-components of G and H . We define

G t H = C1 ⊕ . . . ⊕ Cm

G ∧ H = D1 ⊗ . . . ⊗ Dn.

It is easy to see that G has inherently nonisomorphic components if and only if
G has. It follows that the quasi-complementation operation is well-defined on
A-labeled graphs having inherently nonisomorphic components. When we add
0 and 1, there results a De Morgan bisemilattice IGA. In a similar way, we can
define the De Morgan bisemilattice IGA,A.

For any G, H ∈ IGA or G, H ∈ IGA,A, we have G w H if and only if G = 1 or
H = 0 or every ⊕-component of H is a ⊕-component of G, and G ≤ H if and
only if G = 0 or H = 1 or every ⊗-component of H is a ⊗-component of G.
(The relations w and ≤ were defined in Section ??.) Thus, GuH = infw{G, H}
always exists. Moreover, when G u H is a graph, its set of ⊕-components is
the intersection of the sets of ⊕-components of G and H . In the same way,
G ∨ H = sup≤{G, H} also exists.

Proposition 5.1 Suppose that G, H ∈ IGA, or G, H ∈ IGA,A. If G and H
are cographs, then G t H and G ∧ H are also cographs.

Proof. GtH contains a P4 if and only if G or H does, and similarly for G∧H .
2

Thus, those A ∪ A-labeled cographs that have inherently nonisomorphic com-
ponents form a subalgebra of IGA,A. Let DBSLA denote this subalgebra.

Proposition 5.2 For any G ∈ GA,A, we have G ∈ DBSLA if and only if G
can be generated from the singletons corresponding to the letters in A and the
constants 0, 1 by the operations t,∧ and −.

Thus, DBSLA is the subalgebra of IGA,A generated by the singletons corre-
sponding to the letters in A.

Theorem 5.3 For each set A, DBSLA is the free De Morgan bisemilattice on
A.

Proof. We have already noted that DBSLA is a De Morgan bisemilattice. By
Theorem ??, there is a homomorphism h : CDBSA → DBSLA which maps
the labeled graph corresponding to each letter in A to itself. By Proposition ??,
h is surjective. To complete the proof we need to show that whenever θ is
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a congruence relation on CDBSA such that the quotient CDBSA/θ is a De
Morgan bisemilattice, i.e., such that ⊕ and ⊗ are idempotent on CDBSA/θ,
then the kernel of h is included in θ. But this follows from the fact that for all
such congruence relations θ and any G ∈ CDBSA, Gθ h(G). Indeed, this is
clear when G is a singleton. We proceed by induction on the number of vertices
of G. When G has two or more vertices, then G is either not ⊕-irreducible or not
⊗-irreducible. We only consider the first case. If G is not ⊕-irreducible, then
we can write G = G1 ⊕ . . .⊕Gn, n > 1, where the Gi are ⊕-irreducible labeled
graphs in CDBSA. By induction, Gi θ h(Gi) holds for each i = 1, . . . , n. Let
{i1, . . . , im} denote a maximal subset of {1, . . . , n} such that h(Gi1), . . . , h(Gim)
are pairwise nonisomorphic. Since the h(Gi) are connected, we have

G = G1 ⊕ . . . ⊕ Gn

θ h(G1) ⊕ . . . ⊕ h(Gn)
θ h(Gi1 ) ⊕ . . . ⊕ h(Gim)
= h(G1) t . . . t h(Gn)
= h(G). 2

Call a De Morgan bisemilattice S a De Morgan bilattice [?] if x u y and x ∨ y
exist for all x, y ∈ S. Moreover, call a De Morgan bilattice S locally distributive
[?] if (S,t,u) and (S,∧,∨) are distributive lattices.

Corollary 5.4 Every free De Morgan bisemilattice is a locally distributive De
Morgan bilattice.
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RS-01-38 Zolt́an Ésik. Free De Morgan Bisemigroups and Bisemilattices.
October 2001. 13 pp.

RS-01-37 Ronald Cramer and Victor Shoup.Universal Hash Proofs and
a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption. October 2001. 34 pp.

RS-01-36 Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob.Cache
Oblivious Search Trees via Binary Trees of Small Height. Octo-
ber 2001.

RS-01-35 Mayer Goldberg. A General Schema for Constructing One-
Point Bases in the Lambda Calculus. September 2001. 6 pp.

RS-01-34 Flemming Friche Rodler and Rasmus Pagh.Fast Random Ac-
cess to Wavelet Compressed Volumetric Data Using Hashing.
August 2001. 31 pp.

RS-01-33 Rasmus Pagh and Flemming Friche Rodler.Lossy Dictionar-
ies. August 2001. 14 pp. Short version appears in Meyer auf
der Heide, editor, 9th Annual European Symposiumon on Al-
gorithms, ESA ’01 Proceedings, LNCS 2161, 2001, pages 300–
311.

RS-01-32 Rasmus Pagh and Flemming Friche Rodler.Cuckoo Hash-
ing. August 2001. 21 pp. Short version appears in Meyer auf
der Heide, editor, 9th Annual European Symposiumon on Al-
gorithms, ESA ’01 Proceedings, LNCS 2161, 2001, pages 121–
133.

RS-01-31 Olivier Danvy and Lasse R. Nielsen.Syntactic Theories in Prac-
tice. July 2001. 37 pp. Extended version of an article to appear
in the informal proceedings of theSecond International Work-
shop on Rule-Based Programming, RULE 2001 (Firenze, Italy,
September 4, 2001).


