
B
R

IC
S

R
S

-01-30
L.R

.N
ielsen:

A
S

elective
C

P
S

Transform
ation

BRICS
Basic Research in Computer Science

A Selective CPS Transformation

Lasse R. Nielsen

BRICS Report Series RS-01-30

ISSN 0909-0878 July 2001

Copyright c© 2001, Lasse R. Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/30/

A Selective CPS Transformation∗

Lasse R. Nielsen
BRICS †

Department of Computer Science, University of Aarhus ‡

July 2001

Abstract

The CPS transformation makes all functions continuation-passing,
uniformly. Not all functions, however, need continuations: they only
do if their evaluation includes computational effects. In this paper we
focus on control operations, in particular “call with current contin-
uation” and “throw”. We characterize this involvement as a control
effect and we present a selective CPS transformation that makes func-
tions and expressions continuation-passing if they have a control effect,
and that leaves the rest of the program in direct style. We formalize
this selective CPS transformation with an operational semantics and
a simulation theorem à la Plotkin.

Keywords: CPS-transformation, program transformation, colon translation, cor-
rectness proof.

∗To appear the proceedings of MFPS XVII, ENTCS vol. 45
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: lrn@brics.dk

1

Contents

1 Introduction 3
1.1 Related work . 3
1.2 Overview . 4

2 Definitions 4
2.1 Syntax . 4
2.2 Semantics . 5
2.3 The CPS transformation . 6

3 The selective CPS transformation 7
3.1 Annotated source language 8
3.2 The Selective CPS Transformation 10
3.3 Semantics of annotated syntax 10

4 Proof of correctness 12
4.1 The selective colon-translations 12
4.2 Colon-translation lemmas . 15
4.3 Proof of correctness . 19

5 Conclusion 20
5.1 Perspectives . 20
5.2 Future work . 21

List of Figures

1 Abstract syntax of the source language 4
2 The typing rules of the source language. 5
3 Semantics of the source language 6
4 The CPS transformation . 7
5 Effect type system . 10
6 The selective CPS transformation 11
7 The selective colon translation on expressions 13
8 The selective colon translation on contexts. 14

2

1 Introduction

This paper defines, and proves correct, a selective Continuation-Passing
Style (CPS) transformation, i.e., one that preserves part of the program
in direct style. It uses information about a program’s effect-behavior to
guide the transformation. The particular computational effect we use is the
control-transfer effect exemplified by “call with current continuation” [3].

1.1 Related work

Selectively CPS transforming a program is not a new idea.
Danvy and Hatcliff defined a selective CPS transformation based on

strictness analysis [6]. When dealing with the effect of non-termination, a
strict function is indifferent to the evaluation order of its argument, and as
such arguments of strict functions could be transformed by a call-by-value
transformation while the rest of the program was transformed by a call-by-
name transformation. The same authors also investigated CPS transforma-
tion based on totality information, defining a selective transformation [7].
There is no immediate generalization of strictness to other effects than non-
termination, though, whereas triviality (the absence of effects) generalizes
immediately to all other computational effects, as we have exemplified with
control effects.

Kim, Yi, and Danvy implemented a selective CPS transformation for the
core language of SML of New Jersey to reduce the overhead of their CPS-
transformation which λ-encoded the exception effects of SML [15]. The
implementation is very similar to the present work, though they treat ex-
ceptions instead of control operations and base the annotation on a specific
exception analysis.

Recent work has focused on selective transformations for different rea-
sons.

Reppy introduced a local CPS transformation in an otherwise direct-
style compiler to improve the efficiency of nested loops [18]. Kim and Yi
defined coercions between direct style and CPS terms with no other effects
than non-termination, allowing arbitrary subexpressions to be transformed,
and facilitating interfacing to external code in both direct style and CPS.
The selective transformation was proven correct [14].

The present paper defines a selective CPS transformation for the sim-
ply typed λ-calculus extended with recursive functions and computational
effects, namely callcc and throw, into λ-calculus with only recursive
functions, i.e., with only non-termination as an effect. The transformation

3

is based on an effect analysis, and it is proven correct with respect to the
dynamic behavior of the program. We conjecture that the methodology ex-
tends to other types of effects, only differing in the details of the encoding
of effectful primitives into λ-expressions.

1.2 Overview

Section 2 gives the syntax and semantics of a small, typed functional lan-
guage with control effects, and shows the traditional (non-selective) CPS
transformation. Section 3 extends the language with effect annotations
which are verified by an effect system, and defines the selective CPS trans-
formation guided by these annotations. Section 4 proves the correctness of
the selective CPS transformation using Plotkin-inspired colon translations,
and Section 5 concludes.

2 Definitions

We define the source and target language of our selective CPS transfor-
mation, giving the syntax and type predicates as well as an operational
semantics.

2.1 Syntax

The source language is a call-by-value typed functional language with re-
cursive functions and the canonical control operators: callcc and throw.
The syntax is given in Figure 1, where x and f range over a set of identifiers
and c ranges over a set of constants.

e ::= c | x | fun f x.e | e @ e | callcc x.e | throw e e

Figure 1: Abstract syntax of the source language

We identify expressions up to renaming of bound variables, i.e., fun f x.x =
fun g y.y. We use the shorthand λx.e for a function-abstraction fun f x.e
where f does not occur in e.

We require expressions to be well typed with regard to the typing rules
in Figure 2, similar to those given by Harper, Duba, and MacQueen [12].

4

The syntax of types is given by the grammar:

τ ::= b | τ→τ | 〈τ〉

where b ranges over a set of base types, and 〈τ〉 is the type of continuations
expecting a value of type τ.

In the rules ConstType is a mapping from constants to base types,
giving the type of a constant, and Γ is a mapping from identifiers to types.

Γ(x) = τ
Γ ` x : τ

ConstType(c) = b
Γ ` c : b

Γ; x : τ1; f : τ1→τ2 ` e : τ2
Γ ` fun f x.e : τ1→τ2

Γ ` e1 : τ1→τ2 Γ ` e2 : τ1
Γ ` e1 @ e2 : τ2

Γ; x : 〈τ〉 ` e : τ
Γ ` callcc x.e : τ

Γ ` e1 : 〈τ〉 Γ ` e2 : τ
Γ ` throw e1 e2 : τ2

Figure 2: The typing rules of the source language.

We define a program to be a closed expression of type b0, an arbitrary
base type, and we only prove the correctness of the transformation on entire
programs.

2.2 Semantics

The source language has a left-to-right call-by-value(CBV) operational se-
mantics given using evaluation contexts. We introduce an intermediate value
to the syntax to represent captured continuations, and define the values and
contexts recursively, and give the context-based reduction rules (Figure 3).

Notice that continuations are represented as contexts, so throwing a
continuation amounts to reinstating a context.

This semantics uses evaluation contexts in a way similar to Felleisen [9],
capturing the fact that for any expression, there is at most one enabled
reduction at a time.

Subject reduction (e : τ and e → e ′ implies e ′ : τ where the rules have
been extended to include contexts), can be proven by a completely standard
proof, which has been omitted.

5

Extended expressions, values, and evaluation contexts:

e ::= . . . | 〈E〉
v ::= c | fun f x.e | 〈E〉
E ::= [] | E @ e | v @ E | throw E e | throw v E

Reduction rules:

E[(fun f x.e) @ v] → E[e [fun f x.e/f] [v/x]]

E[callcc x.e] → E[e [〈E〉/x]]

E[throw 〈E1〉 v] → E1[v]

Figure 3: Semantics of the source language

2.3 The CPS transformation

The CPS transformation can be used to transform a program in the source
language into a program in a similar language without callcc and throw,
while preserving the computational behavior of the source program. That is,
the translated program, when applied to an initial continuation, terminates
if the source program did, and the result of the transformed program, which
is of a base type, is the same as that of the original program.

The CPS-transformation has other interesting properties:

• It generates programs that can be evaluated under both a call-by-
name (CBN) and a CBV semantics and yield the same result, which
corresponds to the result of the source program. A number of CPS
transformations exist, each corresponding to an evaluation-order for
the source language [13].

• It generates programs where all applications are tail-calls, i.e., no ap-
plication is in an argument position.

CPS transformations are used in many places, but primarily in compilers
to give an intermediate representation [1, 21] and as a way to simplify the
language of a program before applying other transformations or analyzes to
it [4]. It is the last application that is the motivation for the present work.

The standard CBV CPS transformation is defined in Figure 4.

6

C[[c]] = λk.k @ Ct[[c]]
C[[x]] = λk.k @ Ct[[x]]

C[[fun f x.e]] = λk.k @ Ct[[fun f x.e]]
C[[e1 @ e2]] = λk.C[[e1]] @ λv.C[[e2]] @ λv′.v @ v′ @ k

C[[callcc x.e]] = λk.λx.C[[e]] @ k @ k
C[[throw e1 e2]] = λk.C[[e1]] @ λv.C[[e2]] @ v

Ct[[x]] = x
Ct[[c]] = c

Ct[[fun f x.e]] = fun f x.C[[e]]

Figure 4: The CPS transformation

The Ct[[·]] function is used to coerce values and identifiers into CPS form,
which consists of transforming the bodies of function abstractions. Values
and identifiers share the property that Reynolds called “being trivial” [19]
and Moggi called “being a value” (as opposed to a computation) [16], in the
sense that they have no computational effects, including nontermination.
The C[[·]] function is used on expressions with potential effects, the “serious”
expressions.

3 The selective CPS transformation

As stated in the previous section, we treat trivial and serious expressions
differently. Trivial expressions are those that have no computational ef-
fects and serious expressions are those that might have effects. The safe
approximation used by the standard CPS transformation assumes that any
application might have effects, which is not unreasonable when one considers
nontermination as an effect.

In the source language we have added control effects, and it makes sense
only to focus on those, and let the termination behavior be preserved by
only evaluating the result in a CBV semantics. If we do so, we can use an
effect analysis to find the parts of the program that are guaranteed to be free
of the control effects generated by callcc and throw. In the following we
will use the words “trivial” and “non-trivial” about the absence or possible
presence of control effects only, while ignoring the partiality effect of non-
termination. That is, an expression that has an infinite reduction sequence

7

can still be said to be “trivial” with regards to control effects. We are
not aiming for evaluation-order independence, rather the source and target
languages are assumed to have the same evaluation-order (call-by-value),
so the translation need not take any measures to preserve or prevent non-
termination in otherwise effect-free expressions.

This section defines effect-annotated expressions, an effect type system to
check the consistency of the annotation, and a selective CPS transformation
that keeps trivial applications in direct style.

3.1 Annotated source language

We annotate a program with annotations taken from the set {T,N}, which
is a partial order with the ordering relation N < T.

We mark some applications as trivial, with a T, and some as (potentially)
non-trivial, with an N. The trivial ones are kept in direct style, and as such
do not expect to receive a continuation.

For an expression, an effect analysis can tell us one of three things:

• Some evaluation of the expression will certainly give rise to effects
(meaning, in this case, the reduction sequence of the expression con-
tains evaluations of callcc or throw expressions),

• no evaluation of the expression will give rise to effects, or

• we just don’t know either way, which can happen since the problem is
generally undecidable.

These three options corresponds to a three pointed domain, where both cer-
tainty of effects and certainty of absence of effects are above the uncertainty.
The present transformation aims to keep the expressions in the second case
in direct style. Since any effectful expression must be put into CPS, we must
treat the first and third cases equally, and they are both marked N. Uni-
fying these two cases gives rise to the stated ordering where greater means
more information is known: certainty of the absence of effects as opposed
to only possible presence, only losing information when the two cases are
unified.

A ::= T | N
e ::= c | x | funA f x.e | (e @A e)A | callcc x.e | throw e e

These are the minimal annotations needed for our purpose. We treat
values and identifiers (the traditional trivial expressions) as if they were

8

annotated as such, i.e., (e)T is a match for any trivial expression, just as
(e)N matches the two control operators.

We require that an expression annotated as trivial actually is so, i.e.,
whenever it is evaluated, the reduction sequence contains no steps corre-
sponding to reductions of callcc or throw expressions. Since we use this
annotation as a basis for the selective CPS transformation, we will want to
CPS transform all expressions that are not marked trivial.

We have to treat functions and applications with special care. When
a lambda abstraction is applied at an application point, the body of the
abstraction is also evaluated at that point. If the body is not trivial, then
neither is the application, and after selective CPS transformation, the trans-
formed application must pass a continuation to the transformed body, and
the body should expect a continuation.

In a higher-order program, more than one abstraction can be applied
at the same application point, and after transformation, all of these ab-
stractions must either expect a continuation or not. That means that all
functions that can end up in a given application must be transformed in
the same way. That divides the abstractions into two groups, those trans-
formed into CPS, i.e., expecting a continuation, and those kept in direct
style, i.e., not expecting a continuation. Some abstractions with a trivial
body might be transformed to expect a continuation in order to match the
other abstractions that reach the same application points.

We will say that the annotation is “consistent” (with regards to the
behavior of the program) if:

• All expressions marked trivial are trivial,

• all abstractions marked trivial, or non-trivial, are only applied at ap-
plication points marked trivial, or non-trivial respectively, and

• all abstractions whose body are marked non-trivial, are themselves
marked as non-trivial.

To check all this, we use an extension of the type system to an effect type
system that guarantees that the annotation is consistent. The types are also
annotated, so the grammar of types is:

τ ::= b | τ
A→τ | 〈τ〉

The effect system is shown in Figure 5.
If an expression is typeable in the original type system, then there exists

at least one annotation that is typeable in the effect system, namely the one
where all functions and applications are marked non-trivial.

9

Γ(x) = τ
Γ ` x : τ,T

ConstType(c) = b
Γ ` c : b,T

Γ[x : τ1][f : (τ1
A1→τ2)] ` e : τ2,A A1 ≤ A

Γ ` fun f x.e : τ1
A1→τ2,T

Γ ` e1 : τ1
A3→τ2,A1 Γ ` e2 : τ1,A2 A ≤ min(A1,A2,A3)

Γ ` e1 @ e2 : τ2,A

Γ[x : 〈τ〉] ` e : τ,A
Γ ` callcc x.e : τ,N

Γ ` e1 : 〈τ〉 ,A1 Γ ` e2 : τ,A2
Γ ` throw e1 e2 : τ2,N

Figure 5: Effect type system

The ≤ in the rule for function abstractions is exactly due to the restric-
tion on which functions can flow where. Functions with trivial bodies can be
annotated with an N, allowing them to flow into an application expecting to
pass a continuation, but this is reflected in the type, which is the only thing
that is known at the application point. There are two different annotated
function types, one for each annotation, and only one of these is allowed at
each application point.

The ≤ on the rule for applications is discussed in the next section,
We only consider well-annotated expressions from here on, i.e., expres-

sions that are allowed by the effect typing rules.

3.2 The Selective CPS Transformation

We define a CPS transformation that transforms well-annotated expressions
and leaves trivial applications in direct style (Figure 6).

3.3 Semantics of annotated syntax

We do not change the semantics of the language, since the annotation is just
a mark on the expressions, and it is only used by the CPS transformation.
Still, in order to prove the correctness of the transformation, we define a
reduction relation on annotated expressions that updates the annotation as
well.

10

S[[eT]] = k @ St[[eT]]
S[[(e1 @N e2)N]] = λk.S[[e1]] @ (λv.S[[e2]] @ (λv′.v @ v′ @ k))
S[[(e1 @T e2)N]] = λk.S[[e1]] @ (λv.S[[e2]] @ (λv′.k @ (v @ v′)))
S[[callcc x.e]] = λk.(λx.S[[e]] @ k) @ k

S[[throw e1 e2]] = λk.S[[e1]] @ (λv.S[[e2]] @ v)

St[[x]] = x
St[[c]] = c

St[[funN f x.e]] = fun f x.S[[e]]
St[[funT f x.e]] = fun f x.St[[e]]

St[[(e1 @T e2)T]] = St[[e1]] @ St[[e2]]

Figure 6: The selective CPS transformation

E
[
((funA1 f x.(e)A3) @A2 v)A

] → E
[
(e)A3

[
funA1 f x.(e)A3/f

]
[v/x]

]

E
[
callcc x.(e)A

] → E
[
(e)A [〈E〉/x]

]

E[throw 〈E′〉 v] → E′[v]

The point of this reduction relation is that values and identifiers are always
marked trivial, and no expression marked trivial can ever reduce to one
marked as non-trivial.

With these reduction rules, an expression marked non-trivial can reduce
to one marked trivial, typically by reducing it to a value. If that happens
to one of the subexpressions of an application, we can suddenly be in the
situation where both of the subexpressions are trivial as well as the bodies of
the functions expected to be applied there, and the entire application could
now be consistently annotated as trivial. The weakening in the effect-typing
rule for applications is there to avoid that such a change would mandate
changes to annotations not local to the reduction taking place.

All these properties make a proof of Subject Reduction a trivial extension
of the proof for the unannotated syntax.

One reason for having both annotations and an effect system, and not,
e.g., only the effect system, is for ease of representation. Even if a reduced
program allows a more precise effect-analysis than the original program,
the transformation is based on the original program, and the annotated
reduction keeps the original annotation throughout the reduction sequence.

11

4 Proof of correctness

To prove the correctness of the transformation, we must first specify a notion
of correctness. In this case we require that the transformed program reduces
to the same result as the original program.

Theorem 1 (Correctness of the Selective CPS Transformation) If e
is a closed and well-annotated expression of type b0 then

e →∗ v ⇔ S[[e]] @ (λx.x) →∗ v

In Plotkin’s original proof, the result of the transformed program would
be St[[v]], but since the program has a type where the only values are con-
stants, and all constants satisfy St[[c]] = c, we can state the theorem as above.

4.1 The selective colon-translations

The proof uses a method similar to Plotkin’s in his original proof of the
correctness of the CPS transformation [17]. It uses a so-called “colon-
translation” to bypass the initial administrative reductions and focus on
the evaluation point.

The intuition that drives the normal CPS transformation is that if e
reduces to v then (C[[e]] @ k) should evaluate to (k @ Ct[[v]]). Plotkin captured
this in his colon translation where if e → e ′ then e : k →∗ e ′ : k, and at the
end of the derivation, values satisfied v : k = k @ Ψ(v), where Ψ(·) is what
we write St[[·]].

The idea of the colon translation is that in e : k, the k represents the
context of e, which in the transformed program has been collected in a
continuation: a function expecting the result of evaluating e. The colon
separates the source program to the left and the transformed program to
the right of it. In the selective CPS transform, some contexts are not turned
into continuations, namely the contexts of expressions marked trivial, since
such expressions are not transformed to CPS expressions, and as such does
not expect a continuation.

Therefore we have two colon translations, one for non-trivial expressions,
with a continuation function after the colon, and one for trivial expressions
with an evaluation context after the colon. The definition is shown in Fig-
ure 7. In both cases, what is to the left of the colon is a piece of source
syntax, and what is to the right is a representation of the context of that
expression in the source program translated to the target language. If the

12

expression is trivial, the source context is represented by a context in the tar-
get language, and the translation of the expression is put into this context.
If the expression is not trivial, then the source context is represented by a
continuation function which is passed to the translation of the expression.

eT : k = eT : [k @ []]
(e1 @N e2)N : k = e1 : λv.S[[e2]] @ (λv′.v @ v′ @ k) e1 not a value
(v1 @N e2)N : k = e2 : λv′.St[[v1]] @ v′ @ k e2 not a value
(v1 @N v2)N : k = St[[v1]] @ St[[v2]] @ k
(e1 @T e2)N : k = e1 : λv.S[[e2]] @ (λv′.k @ (v @ v′)) e1 not a value
(v1 @T e2)N : k = e2 : λv′.k @ (St[[v1]] @ v′) e2 not a value
(v1 @T v2)N : k = k @ (St[[v1]] @ St[[v2]])
callcc x.e : k = (λx.S[[e]] @ k) @ k

throw e1 e2 : k = e1 : λv.S[[e2]] @ v e1 not a value
throw v1 e2 : k = e2 : St[[v1]] e2 not a value
throw v1 v2 : k = St[[v1]] @ St[[v2]]

x : E = E[x]
c : E = E[c]

funN f x.e : E = E[fun f x.S[[e]]]
funT f x.e : E = E[fun f x.St[[e]]]

(e1 @T e2)T : E = e1 : E
[
([] @T St[[e2]])T

]
e1 not a value

(v1 @T e2)T : E = e2 : E
[
(St[[v1]] @T [])T

]
e2 not a value

(v1 @T v2)T : E = E
[
(St[[v1]] @T St[[v2]])T

]

Figure 7: The selective colon translation on expressions

In Plotkin’s colon translation, v : k = k @ Φ(v). This also holds for
this colon translation pair, since v : k = v : [k @ []], since v is trivial, and
v : [k @ []] = k @ v by the definition of the e : E-translation.

The e : E-translation is not as significant as the e : k-translation, since
all it does is apply the St-function to the argument, i.e., if e is a trivial
expression then e : E = E[St[[e]]]. There are no administrative reductions to
bypass in direct style.

We plan to use the colon translations on the result of reducing on the
annotated expressions, so we extend it to work on continuation values, 〈E〉,

13

which are values and as such trivial.
〈
E′〉 : E = E

[
E′ : id

]

where id = λx.x and E : k defines either a continuation function or a context
as displayed in Figure 8, in which ET represents any non-empty context with
a top-most annotation as trivial.

[] : k = k
ET : k = ET : [k @ []]

(E @N e2)N : k = E : λv.S[[e2]] @ (λv′.v @ v′ @ k)
(E @T e2)N : k = E : λv.S[[e2]] @ (λv′.k @ (v @ v′))
(v1 @N E)N : k = E : (λv′.St[[v1]] @ v′ @ k)
(v1 @T E)N : k = E : (λv′.k @ (St[[v1]] @ v′))
throw E e2 : k = E : λv.S[[e2]] @ v
throw v1 E : k = E : St[[v1]]

[] : E = E
(E @T e2)T : E′ = E : E′[[] @ St[[e2]]]
(v1 @T E)T : E′ = E : E′[St[[v1]] @ []]

Figure 8: The selective colon translation on contexts.

The E : k-translation yields either continuation functions or contexts,
depending on the annotation of the innermost levels of the context argument,
and the E : E-translation always gives a context, but requires that the first
argument’s outermost annotation is trivial.

These colon-translations satisfy a number of correspondences.

Proposition 1 For all contexts E1, E2, and E3, and continuation functions
(closed functional values) the following equalities hold.

E1[E2[]] : k = E2 : (E1 : k)
E1[E2[]] : E3 = E2 : (E1 : E3)

Proof: The proof is by simple induction on the context E1.

• If E1 = [] then (E1[E2[]] : k) = (E2 : k) = (E2 : (E1 : k)) and (E1[E2[]] :
E3) = (E2 : E3) = (E2 : (E1 : E3)).

14

• If E1 =
[
(E @N e2)N

]
then

E1[E2[]] : k = (E[E2] @N e2)N : k
= E[E2] : λv.S[[e2]] @ (λv′.v @ v′ @ k) (def. of E : k)
= E2 : (E : λv.S[[e2]] @ (λv′.v @ v′ @ k)) (I.H.)
= E2 : (

[
(E @N e2)N

]
: k) (def. E : k)

• The remaining cases are similar.

One would expect that similar equalities hold for the colon translations
on expressions, i.e., E[e] : k = e : (E : k) and E[e] : E′ = e : (E : E′), and
indeed these equalities hold in most cases. The exception is when E is non-
empty and the “innermost” expression of the context is not annotated as
trivial, e.g., E1

[
([] @ e1)N

]
for some context E1 and expression e1, and e

is a value. Normally the e : k translation descends the left-hand side and
rebuilds the context on the right hand side, either as a continuation function
or as a context, depending on the annotation. The exception mentioned,
E[e] : k, the focus of the colon translation, the expression on the left hand
side of the colon, would never descend all the way down to a value. We have
made special cases for v @ e to bypass administrative reductions, so E[v] : k
would not equal v : (E : k), because the latter introduces an administrative
reduction. Reducing that administrative reduction, applying k to St[[v]], does
lead to v : (E : k) again in one or more reduction steps. That is, if e is a value
and E is not a trivial context then e : (E : k) = (E : k) @ St[[e]] →∗ E[e] : k,
and likewise for the e : E-relation.

Proposition 2 For all contexts E and E′, expressions e, and continuation
functions k

e : (E : k) →∗ E[e] : k
e : (E : E′) →∗ E[e] : E′ (if e trivial)

and →∗ is →0, i.e., equality, if e is not a value.

Proof: Omitted.

4.2 Colon-translation lemmas

Plotkin used four lemmas to prove his simulation and indifference theorems.
We only prove simulation, which corresponds to Plotkin’s simulation, since
we already know that indifference does not hold for a selective CPS transfor-
mation (at least unless the selectivity is based on the effect of nontermination
as well).

15

Lemma 1 (Substitution) If Γ[x : τ1] ` e : τ2,A and ` v : τ1,T is a closed
value then

S[[e]] [St[[v]]/x] = S[[e [v/x]]]
St[[e]] [St[[v]]/x] = St[[e [v/x]]] (if e is trivial)

Proof: The proof is by induction on the structure of e, using the distributive
properties of substitution and taking the trivial cases before the non-trivial
ones (because the S[[·]] translation defers trivial subexpressions to the St

transformation). The details have been omitted.

Lemma 2 (Initial reduction) If Γ ` e : τ,A and k is a continuation
function of appropriate type then

S[[e]] @ k →∗ e : k
E[St[[e]]] = e : E (if e is trivial)

Proof: Again, the proof is by induction on the structure of e with the S[[·]]
case taken after the St case for trivial expressions.

The E[St[[·]]] = · : E case: There are four cases covering all trivial expres-
sions:

• If e is a value or an identifier then e : E = E[St[[e]]] by definition
of e : E.

• If e = (e1 @T e2)T (e1 not a value) then

(e1 @T e2)T : E = e1 : E[[] @ St[[e2]]] (def. e : E)
= E[St[[e1]] @ St[[e2]]] (I.H.)
= E

[St[[(e1 @T e2)T]]
]

(def. Ψ)

• If e = (v1 @T e2)T (e2 not a value) then

(v1 @T e2)T : E = e2 : E[St[[v1]] @ []] (def. e : E)
= E[St[[v1]] @ St[[e2]]] (I.H.)
= E

[St[[(v1 @T e2)T]]
]

(def. Ψ)

• If e = (v1 @T v2)T then

(v1 @T v2)T : E = E[St[[v1]] @ St[[v2]]] (I.H.)
= E

[St[[(v1 @T v2)T]]
]

(def. Ψ)

This accounts for all trivial expressions.

16

The S[[·]] @ k →∗ · : k case: There is one sub-case for each non-trivial ex-
pression, and one case for all trivial expressions:

• If e is trivial then S[[e]] @ k = k @ St[[e]] = e : [k @ []] = e : k
from the above cases and the definition of e : k.

• If e = (e1 @N e2)N (e1 not a value) then

S[[(e1 @N e2)N]] @ k
→ S[[e1]] @ (λv.S[[e2]] @ (λv′.v @ v′ @ k)) (def. S[[·]])
→∗ e1 : (λv.S[[e2]] @ (λv′.v @ v′ @ k)) (I.H.)
= (e1 @N e2)N : k (def. e : k)

• If e = (v1 @N e2)N (e2 not a value) then

S[[(v1 @N e2)N]] @ k
→ S[[v1]] @ (λv.S[[e2]] @ (λv′.v @ v′ @ k)) (def. S[[·]])
→ (λv.S[[e2]] @ (λv′.v @ v′ @ k)) @ St[[v1]] (def. S[[v]])
→ S[[e2]] @ (λv′.St[[v1]] @ v′ @ k)
→∗ e2 : λv′.St[[v1]] @ v′ @ k (I.H.)
= (v1 @N e2)N : k (def. e : k)

• If e = (v1 @N v2)N then the proof is similar to the previous case
except two values need to be applied to continuations instead of
just one.

• If e = (e1 @T e2)N then the proofs are similar to the ones for e =
(e1 @T e2)N except that the innermost application is k @ (v @ v′)
instead of (v @ v′) @ k.

• If e = callcc x.e1 then S[[callcc x.e1]] @ k → (λx.S[[e1]] @ k) @ k =
callcc x.e1 : k.

• If e = throw e1 e2 the proofs are similar to the ones for appli-
cation.

Lemma 3 (Simulation) If E[e] → E′[e ′] is one of the reduction rules for
the annotated language, then

E[e] : id →∗ E′[e ′
]

: id

and if the reduction is not of a throw expression, then the →∗ is actually
one or more steps.

17

Proof: Counting annotations, there are five cases:

• If e = (funN f x.e1 @N v)N then

E
[
(funN f x.e1 @N v)N

]
: id

= (funN f x.e1 @N v)N : (E : id) (Prop. 2)
= St[[funN f x.e1]] @ St[[v]] @ (E : id) (def. e : k)
= fun f x.S[[e1]] @ St[[v]] @ (E : id) (def. Ψ)
→ S[[e1]]

[St[[funN f x.e1]]/f
]
[St[[v]]/x] @ (E : id)

= S[[e1

[
funN f x.e1/f

]
[v/x]]] @ (E : id) (Lemma 1)

→∗ e1

[
funN f x.e1/f

]
[v/x] : (E : id) (Lemma 2)

→∗ E
[
e1

[
funN f x.e1/f

]
[v/x]

]
: id (Prop. 2)

• If e = (funT f x.e1 @T v)N then we know that e1 is trivial, since oth-
erwise the function would be annotated N, and E : k is a continuation
since E has no trivial inner sub-contexts.

E
[
(funT f x.e1 @T v)N

]
: id

= (funT f x.e1 @T v)N : (E : id) (Prop. 2)
= (E : id) @ (St[[funT f x.e1]] @ St[[v]]) (def. e : k)
= (E : id) @ (fun f x.St[[e1]] @ St[[v]]) (def. Ψ)
→ (E : id) @ St[[e1]]

[St[[funT f x.e1]]/f
]
[St[[v]]/x]

= (E : id) @ St[[e1

[
funT f x.e1/f

]
[v/x]]] (Lemma 1)

→∗ e1

[
funT f x.e1/f

]
[v/x] : [(E : id) @ []] (Lemma 2, e1 trivial)

= e1

[
funT f x.e1/f

]
[v/x] : (E : id) (def. e : k)

→∗ E
[
e1

[
funN f x.e1/f

]
[v/x]

]
: id (Prop. 2)

• If e = (e1 @T e2)T then either E : k is a context or a continuation. If
it is a continuation the proof proceeds just as the previous case. If it
is a context then

E
[
(funT f x.e1 @T v)T

]
: id

= (funT f x.e1 @T v)T : (E : id) (Prop. 2)
= (E : id)

[St[[funT f x.e1]] @ St[[v]]
]

(def. e : k)
= (E : id)[fun f x.St[[e1]] @ St[[v]]] (def. Ψ)
→ (E : id)

[St[[e1]]
[St[[funT f x.e1]]/f

]
[St[[v]]/x]

]

= (E : id)
[St[[e1

[
funT f x.e1/f

]
[v/x]]]

]
(Lemma 1)

→∗ e1

[
funT f x.e1/f

]
[v/x] : (E : id) (Lemma 2, e1 trivial)

→∗ E
[
e1

[
funN f x.e1/f

]
[v/x]

]
: id (Prop. 2)

18

• If e = callcc x.e1 then

E[callcc x.e1] : id
= callcc x.e1 : (E : id) (Prop. 2)
= (λx.S[[e1]] @ (E : id)) @ (E : id) (def. e : k)
→ S[[e1]] @ (E : id) [(E : id)/x]
= S[[e1]] [(E : id)/x] @ (E : id) (E : k is closed)
= S[[e1]] [St[[〈E〉]]/x] @ (E : id) (def. St[[〈E〉]])
= S[[e1 [〈E〉/x]]] @ (E : id) (Lemma 1)
→∗ e1 [〈E〉/x] : (E : id) (Lemma 2)
→∗ E[e1 [〈E〉/x]] : id (Prop. 2)

• If e = throw 〈E′〉 v then

E[throw 〈E′〉 v] : id = St[[〈E′〉]] @ St[[v]] (def. e : k)
= (E′ : id) @ St[[v]] (def. St[[〈E〉]])
= v : [(@ E′ : id)[]] (def. v : E)
= v : (E′ : id) (def. (e)T : k)
→∗ E′[v] : id (Prop. 2)

In all cases except throw, there is at least one reduction step.

4.3 Proof of correctness

To prove the correctness of the selective CPS transformation, we use the
simulation lemma in two ways.

Proof: The proof of e →∗ c =⇒ S[[e]] @ id →∗ c follows directly from
the lemma 2 and repeated use of lemma 3. Assume e →∗ c.

S[[e]] @ id →∗ e : id (Lemma 2)
→∗ c : id (Lemma 3, repeated)
= c : [id @ []] (def. (e)T : k)
= id @ c (def. c : E)
→ c

.
The other direction of correctness, S[[e]] @ id →∗ c =⇒ e →∗ c, is shown

by contraposition. Assuming that for no c does e →∗ c, that is, e diverges,
allows us to show that the same holds for S[[e]].

The proof that transformation preserves divergence also follow from
Lemmas 2 and 3. Since S[[e]] @ id →∗ e : id it suffices to show that e : id has
an arbitrary long reduction sequence.

19

Assume that e diverges. We show that for any n there exists an m such
that if e →m e1 then (e : id) →∗ (e1 : id) in n or more reduction steps.

This is proven by induction on n. The base case (n = 0) is trivial. For
the induction case (n + 1) look at the n case. There exists m such that
e →m e1 and e : id →∗ e1 : id. Look at the reduction sequence from e1.

• If the first reduction step (e1 → e2) is not the reduction of a throw
expression, then e1 : id →+ e2 : id, and m + 1 gives us our n + 1 or
longer reduction sequence of e : id.

• If the first reduction step (e1 → e2) is of a throw expression, then
e1 : id →∗ e2 : id. In that case we look at the next step in the same
way. Either we find a reduction that is not a throw, and we get the
m needed for the proof, or there is nothing but reductions of throw
expressions in the infinite reduction sequence of e1.

There can not be an infinite sequence of reductions of throw expres-
sions, since reducing a throw expression necessarily reduces the size
of the entire program. A substitution into a context corresponds to
the application of a linear function, and it reduces the size of the ex-
pression if one counts it as, e.g., number of distinct subexpressions or
number of throw-expressions.

That means that e : id has an infinite reduction sequence.

5 Conclusion

We have proven the correctness of a selective CPS transformation based
on an effect analysis. Similar proofs can be made for other λ-encodings
and computational effects (e.g., with monads), where the immediate choice
would be the effect of non-termination. This is the effect that is encoded by
the traditional CPS transformation of languages with no other effects, and if
one has an annotation of such a program, marking terminating (effect-free)
expressions to keep in direct style, then the method works just as well.

5.1 Perspectives

Danvy and Hatcliff’s CPS transformation after strictness analysis [6] gen-
eralizes the call-by-name and the call-by-value CPS transformations. The
same authors’ CPS transformation after totality analysis [7] generalizes the
call-by-name CPS transformation and the identity transformation. In the

20

same manner, the present work generalizes the call-by-value CPS trans-
formation and the identity transformation, and proves this generalization
correct.

Danvy and Filinski introduced the one-pass CPS-transformation [5] that
removes the administrative reductions from the result by performing them
at transformation time. This optimization can be applied to the selective
CPS-transformation presented here as well. A proof of the correctness of the
one-pass CPS-transformation also using Plotkin’s colon translation exists [8].
We expect that the methods used for proving correctness of the selective-
and the one-pass CPS transformations are orthogonal, and can easily be
combined.

The selective CPS transformation presented here is based on an effect
analysis and should generalize to other computational effects than control,
e.g., state or I/O. The proof will not carry over to other effects, since it relies
on the choice of λ-encoding of the effect primitives, but we expect that the
structure of the proof can be preserved.

The approach taken is “Curry-style” in the sense that we have given a
language and its operational meaning, and only after the fact we have asso-
ciated types and effect annotation to the untyped terms. A “Church-style”
approach, such as Filinski’s [10, 11], would have defined the language with
explicit types and effect annotation, so that only well-typed, consistently
annotated programs are given a semantics.

5.2 Future work

It is possible to prove results similar to the present ones for other choices of
effects and combinations of effects. A sensible choice would be a monadic
effect of state and control, since it is sufficient to implement all other choices
of layered monads [11]. A proof similar to the present one for both state
and control effects would be a logical next step.

Acknowledgments: The method of extending the colon translation to
selective CPS transformation was originally developed in cooperation with
Jung-taek Kim and Kwangkeun Yi from KAIST in Korea, and with Olivier
Danvy from BRICS in Denmark. The present work would not have been
possible without their inspiration. Thanks are also due to Andrzej Filinski
and to the anonymous referees for their comments.

21

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge Univer-
sity Press, New York, 1992.

[2] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM
Symposium on Principles of Programming Languages, Portland, Ore-
gon, January 1994. ACM Press.

[3] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for
a higher-level semantic algebra. In John Reynolds and Maurice Nivat,
editors, Algebraic Methods in Semantics, pages 237–250. Cambridge
University Press, 1985.

[4] Daniel Damian and Olivier Danvy. Syntactic accidents in program anal-
ysis. In Philip Wadler, editor, Proceedings of the 2000 ACM SIGPLAN
International Conference on Functional Programming, pages 209–220,
Montréal, Canada, September 2000. ACM Press.

[5] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[6] Olivier Danvy and John Hatcliff. CPS transformation after strict-
ness analysis. ACM Letters on Programming Languages and Systems,
1(3):195–212, 1993.

[7] Olivier Danvy and John Hatcliff. On the transformation between di-
rect and continuation semantics. In Stephen Brookes, Michael Main,
Austin Melton, Michael Mislove, and David Schmidt, editors, Proceed-
ings of the 9th Conference on Mathematical Foundations of Program-
ming Semantics, number 802 in Lecture Notes in Computer Science,
pages 627–648, New Orleans, Louisiana, April 1993. Springer-Verlag.

[8] Olivier Danvy and Lasse R. Nielsen. A higher-order colon translation.
In Herbert Kuchen and Kazunori Ueda, editors, Fifth International
Symposium on Functional and Logic Programming, number 2024 in
Lecture Notes in Computer Science, pages 78–91, Tokyo, Japan, March
2001. Springer-Verlag. Extended version available as the technical re-
port BRICS RS-00-33.

[9] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Programming

22

Languages. PhD thesis, Department of Computer Science, Indiana Uni-
versity, Bloomington, Indiana, August 1987.

[10] Andrzej Filinski. Representing monads. In Boehm [2], pages 446–457.

[11] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 175–188, San Antonio, Texas,
January 1999. ACM Press.

[12] Robert Harper, Bruce F. Duba, and David MacQueen. Typing
first-class continuations in ML. Journal of Functional Programming,
3(4):465–484, October 1993.

[13] John Hatcliff and Olivier Danvy. A generic account of continuation-
passing styles. In Boehm [2], pages 458–471.

[14] Jung-taek Kim and Kwangkeun Yi. Interconnecting Between CPS
Terms and Non-CPS Terms. In Sabry [20].

[15] Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing the over-
head of ML exceptions by selective CPS transformation. In Greg Mor-
risett, editor, Record of the 1998 ACM SIGPLAN Workshop on ML and
its Applications, Baltimore, Maryland, September 1998. Also appears
as BRICS technical report RS-98-15.

[16] Eugenio Moggi. Computational lambda-calculus and monads. In Pro-
ceedings of the Fourth Annual IEEE Symposium on Logic in Computer
Science, pages 14–23, Pacific Grove, California, June 1989. IEEE Com-
puter Society Press.

[17] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1:125–159, 1975.

[18] John Reppy. Local CPS conversion in a direct-style compiler. In Sabry
[20].

[19] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. Higher-Order and Symbolic Computation, 11(4):363–
397, 1998. Reprinted from the proceedings of the 25th ACM National
Conference (1972).

23

[20] Amr Sabry, editor. Proceedings of the Third ACM SIGPLAN Work-
shop on Continuations CW’01, number 545 in Technical Report, Com-
puter Science Department, Indiana University, Bloomington, Indiana,
December 2000.

[21] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report
AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, May 1978.

24

Recent BRICS Report Series Publications

RS-01-30 Lasse R. Nielsen.A Selective CPS Transformation. July 2001.
24 pp. To appear in Brookes and Mislove, editors,27th Annual
Conference on the Mathematical Foundations of Programming
Semantics, MFPS ’01 Proceedings, ENTCS 45, 2000. A prelim-
inary version appeared in Brookes and Mislove, editors,Pre-
liminary Proceedings of the 17th Annual Conference on Math-
ematical Foundations of Programming Semantics, MFPS ’01,
(Aarhus, Denmark, May 24–27, 2001), BRICS Notes Series
NS-01-2, 2001, pages 201–222.

RS-01-29 Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A Unify-
ing Approach to Goal-Directed Evaluation. July 2001. 23 pp.
To appear in New Generation Computing, 20(1), November
2001. A preliminary version appeared in Taha, editor, 2nd
International Workshop on Semantics, Applications, and Im-
plementation of Program Generation, SAIG ’01 Proceedings,
LNCS 2196, 2001, pages 108–125.

RS-01-28 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. A Fully
Equational Proof of Parikh’s Theorem. June 2001.

RS-01-27 Mario Jose Ćaccamo and Glynn Winskel.A Higher-Order Cal-
culus for Categories. June 2001. Appears in Boulton and Jack-
son, editors,Theorem Proving in Higher Order Logics: 14th In-
ternational Conference, TPHOLs ’01 Proceedings, LNCS 2152,
2001, pages 136–153.

RS-01-26 Ulrik Frendrup and Jesper Nyholm Jensen.A Complete Ax-
iomatization of Simulation for Regular CCS Expressions. June
2001. 18 pp.

RS-01-25 Bernd Grobauer. Cost Recurrences for DML Programs. June
2001. 51 pp. Extended version of a paper to appear in Leroy,
editor, Proceedings of the 6th ACM SIGPLAN International
Conference on Functional Programming, 2001.

RS-01-24 Zolt́an Ésik and Zoltán L. Németh.Automata on Series-Parallel
Biposets. June 2001. 15 pp. To appear in Kuich, editor,5th
International Conference, Developments in Language Theory
DLT ’01 Proceedings, LNCS, 2001.

