
B
R

IC
S

R
S

-01-29
D

anvy
etal.:

A
U

nifying
A

pproach
to

G
oal-D

irected
E

valuation

BRICS
Basic Research in Computer Science

A Unifying Approach to
Goal-Directed Evaluation

Olivier Danvy
Bernd Grobauer
Morten Rhiger

BRICS Report Series RS-01-29

ISSN 0909-0878 July 2001

Copyright c© 2001, Olivier Danvy & Bernd Grobauer & Morten
Rhiger.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/29/

A Unifying Approach

to Goal-Directed Evaluation ∗

Olivier Danvy, Bernd Grobauer, and Morten Rhiger

BRICS †

Department of Computer Science
University of Aarhus ‡

July 13, 2001

Abstract

Goal-directed evaluation, as embodied in Icon and Snobol, is built
on the notions of backtracking and of generating successive results, and
therefore it has always been something of a challenge to specify and im-
plement. In this article, we address this challenge using computational
monads and partial evaluation.

We consider a subset of Icon and we specify it with a monadic se-
mantics and a list monad. We then consider a spectrum of monads that
also fit the bill, and we relate them to each other. For example, we de-
rive a continuation monad as a Church encoding of the list monad. The
resulting semantics coincides with Gudeman’s continuation semantics of
Icon.

We then compile Icon programs by specializing their interpreter (i.e.,
by using the first Futamura projection), using type-directed partial eval-
uation. Through various back ends, including a run-time code generator,
we generate ML code, C code, and OCaml byte code. Binding-time anal-
ysis and partial evaluation of the continuation-based interpreter automat-
ically give rise to C programs that coincide with the result of Proebsting’s
optimized compiler.

∗To appear in New Generation Computing, Vol. 20 No. 1, Nov. 2001. A preliminary version
is available in the proceedings of SAIG 2001.

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {danvy,grobauer,mrhiger}@brics.dk
Home pages: http://www.brics.dk/~{danvy,grobauer,mrhiger}

1

Contents

1 Introduction 3

2 Semantics of a Subset of Icon 4
2.1 A subset of the Icon programming language 4
2.2 Monads and semantics . 4
2.3 A monad of sequences . 6
2.4 A monadic semantics . 6
2.5 A spectrum of semantics . 7

2.5.1 A list-based interpreter 7
2.5.2 A stream-based interpreter 7
2.5.3 A continuation-based interpreter 7
2.5.4 An interpreter with explicit success and failure continuations 8

2.6 Correctness . 10
2.7 Conclusion . 11

3 Semantics-Directed Compilation 11
3.1 Type-directed partial evaluation 12

3.1.1 Specializing Icon terms using type-directed partial evalu-
ation . 12

3.1.2 Avoiding code duplication 14
3.2 Generating C programs . 15
3.3 Generating byte code . 19

3.3.1 Run-time code generation in OCaml 19
3.3.2 Compiling flow charts into OCaml byte code 20

3.4 Conclusion . 20

4 Conclusions and Issues 20

List of Figures

1 Monad operators and their types 5
2 The list monad . 5
3 Monadic semantics for a subset of Icon 6
4 The continuation monad . 8
5 A continuation semantics . 9
6 A semantics with success and failure continuations 10
7 The abstract syntax of Icon terms 12
8 Signature of primitive operations 13
9 Parameterized interpreter . 14
10 Grammar of residual programs 17
11 Translating residual programs into C (Statements) 18
12 Translating residual programs into C (Expressions) 19

2

1 Introduction

Goal-directed languages combine expressions that can yield multiple results
through backtracking. Results are generated one at a time: an expression can
either succeed and generate a result, or fail. If an expression fails, control is
passed to a previous expression to generate the next result, if any. If so, control
is passed back to the original expression in order to try whether it can succeed
this time. Goal-directed programming specifies the order in which subexpres-
sions are retried, thus providing the programmer with a succint and powerful
control-flow mechanism. A well-known goal-directed language is Icon [11].

Backtracking as a language feature complicates both semantics and imple-
mentation. Gudeman [13] gives a continuation semantics of a goal-directed
language; continuations have also been used in implementations of languages
with control structures similar to those of goal-directed evaluation, such as Pro-
log [3, 15, 30]. Proebsting and Townsend, the implementors of an Icon compiler
in Java, observe that continuations can be compiled into efficient code [1, 14],
but nevertheless dismiss them because “[they] are notoriously difficult to under-
stand, and few target languages directly support them” [23, p.38]. Instead, their
compiler is based on a translation scheme proposed by Proebsting [22], which
is based on the four-port model used for describing control flow in Prolog [2].
Icon expressions are translated to a flow-chart language with conditional, direct
and indirect jumps using templates; a subsequent optimization which, amongst
other things, reorders code and performs branch chaining, is necessary to pro-
duce compact code. The reference implemention of Icon [12] compiles Icon into
byte code; this byte code is then executed by an interpreter that controls the
control flow by keeping a stack of expression frames.

In this article, we present a unified approach to goal-directed evaluation:

1. We consider a spectrum of semantics for a small goal-directed language.
We relate them to each other by deriving semantics such as Gudeman’s [13]
as instantiations of one generic semantics based on computational mon-
ads [21]. This unified approach enables us to show the equivalence of
different semantics simply and systematically. Furthermore, we are able
to show strong conceptual links between different semantics: Continuation
semantics can be derived from semantics based on lists or on streams of
results by Church-encoding the lists or the streams, respectively.

2. We link semantics and implementation through semantics-directed compi-
lation using partial evaluation [5, 17]. In particular, binding-time analysis
guides us to extract templates from the specialized interpreters. These
templates are similar to Proebsting’s, and through partial evaluation, they
give rise to similar flow-chart programs, demonstrating that templates are
not just a good idea—they are intrinsic to the semantics of Icon and can
be provably derived.

The rest of the paper is structured as follows: In Section 2 we first describe
syntax and monadic semantics of a small subset of Icon; we then instantiate the

3

semantics with various monads, relate the resulting semantics to each other, and
present an equivalence proof for two of them. In Section 3 we describe semantics-
directed compilation for a goal-directed language. Section 4 concludes.

2 Semantics of a Subset of Icon

An intuitive explanation of goal-directed evaluation can be given in terms of lists
and list-manipulating functions. Consequently, after introducing the subset of
Icon treated in this paper, we define a monadic semantics in terms of the list
monad. We then show that also a stream monad and two different continuation
monads can be used, and we give an example of how to prove equivalence of the
resulting monads using a monad morphism.

2.1 A subset of the Icon programming language

We consider the following subset of Icon:

E ::= i | E1 + E2 | E1 to E2 | E1 <= E2 | if E1 then E2 else E3

Intuitively, an Icon term either fails or succeeds with a value. If it succeeds, then
subsequently it can be resumed, in which case it will again either succeed or fail.
This process ends when the expression fails. Informally, i succeeds with the value
i; E1 + E2 succeeds with the sum of the sub-expressions; E1 to E2 (called a
generator) succeeds with the value of E1 and each subsequent resumption yields
the rest of the integers up to the value of E2, at which point it fails; E1 <= E2

succeeds with the value of E2 if it is larger than the value E1, otherwise it fails;
if E1 then E2 else E3 produces the results of E2 if E1 succeeds, otherwise
it produces the results of E3.

Generators can be nested. For example, the Icon term 4 to (5 to 7) gener-
ates the result of the expressions 4 to 5, 4 to 6, and 4 to 7 and concatenates
the results.

In a functional language such as Scheme, ML or Haskell, we can achieve the
effect of Icon terms using the functions map and concat. For example, if we
define

fun to i j = if i<=j then i::(to (i+1) j) else nil

in ML, then evaluating concat (map (to 4) (to 5 7)) yields [4, 5, 4, 5,
6, 4, 5, 6, 7] which is the list of the integers produced by the Icon term 4
to (5 to 7).

2.2 Monads and semantics

Computational monads were introduced to structure denotational semantics [21].
The basic idea is to parameterize a semantics over a monad; many language ex-
tensions, such as adding a store or exceptions, can then be carried out by sim-
ply instantiating the semantics with a suitable monad. Further, correspondence

4

unitM : α → α M
mapM : (α → β) → α M → β M
joinM : (α M)M → α M

Figure 1: Monad operators and their types

Standard monad operations:

unitL x = [x]

mapL f [] = []
mapL f (x :: xs) = (f x) :: (mapL f xs)

joinL [] = []
joinL (l :: ls) = l @ (joinL ls)

Special operations for sequences:

emptyL = []

if emptyL [] ys zs = ys
if emptyL (x :: xs) ys zs = zs

appendL xs ys = xs @ ys

Figure 2: The list monad

proofs between semantics arising from instantiation with different monads can
be conducted in a modular way, using the concept of a monad morphism [28].

Monads can also be used to structure functional programs [29]. In terms of
programming languages, a monad M is described by a unary type constructor
M and three operations unitM, mapM and joinM with types as displayed in
Figure 1. For these operations, the so-called monad laws have to hold.

In Section 2.4 we give a denotational semantics of the goal-directed language
described in Section 2.1. Anticipating semantics-directed compilation by partial
evaluation, we describe the semantics in terms of ML, in effect defining an
interpreter. The semantics [[·]]M : Exp → int M is parameterized over a monad
M, where α M represents a sequence of values of type α.

5

[[·]]M : Exp → int M

[[i]]M = unitM i
[[E1 toE2]]M = bind2M (λxy.toM x y) [[E1]]M [[E2]]M
[[E1 +E2]]M = bind2M (λxy.unitM (x + y)) [[E1]]M [[E2]]M

[[E1 <=E2]]M = bind2M (λxy.leqM x y) [[E1]]M [[E2]]M
[[ifE0 thenE1

elseE2]]M = if emptyM [[E0]]M [[E1]]M [[E2]]M

where

bind2M f xs ys = joinM (mapM (λx.joinM (mapM (f x) ys)) xs)
leqM i j = if i ≤ j then unitM j else emptyM

toM i j = if i > j then emptyM

else appendM (unitM i) (toM (i + 1) j)

Figure 3: Monadic semantics for a subset of Icon

2.3 A monad of sequences

In order to handle sequences, some structure is needed in addition to the three
generic monad operations displayed in Figure 1. We add three operations:

emptyM : α M
if emptyM : α M → β M → β M → β M

appendM : α M → α M → α M

Here, emptyM stands for the empty sequence; if emptyM is a discriminator
function that, given a sequence and two additional inputs, returns the first
input if the sequence is empty, and returns the second input otherwise; appendM

appends two sequences.
A straightforward instance of a monad of sequences is the list monad L,

which is displayed in Figure 2; for lists, “join” is sometimes also called “flatten”
or, in ML, “concat”.

2.4 A monadic semantics

A monadic semantics of the goal-directed language described in Section 2.1. is
given in Figure 3. We explain the semantics in terms of the list monad. A literal
i is interpreted as an expression that yields exactly one result; consequently, i is
mapped into the singleton list [i] using unit . The semantics of to, + and <= are
given in terms of bind2 and a function of type int → int → int list. The type of
function bind2 L is

(α → β → γ list) → α list → β list → γ list,

6

i.e., it takes two lists containing values of type α and β, and a function mapping
α×β into a list of values of type γ. The effect of the definition of bind2 L f xs ys
is (1) to map f x over ys for each x in xs and (2) to flatten the resulting list of
lists. Both steps can be found in the example at the end of Section 2.1 of how
the effect of goal-directed evaluation can be achieved in ML using lists.

2.5 A spectrum of semantics

In the following, we describe four possible instantiations of the semantics given
in Figure 3. Because a semantics corresponds directly to an interpreter, we thus
create four different interpreters.

2.5.1 A list-based interpreter

Instantiating the semantics with the list monad from Figure 2 yields a list-based
interpreter. In an eager language such as ML, a list-based interpreter always
computes all results. Such behavior may not be desirable in a situation where
only the first result is of interest (or, for that matter, whether there exists a
result): Consider for example the conditional, which examines whether a given
expression yields at least one result or fails. An alternative is to use laziness.

2.5.2 A stream-based interpreter

Implementing the list monad from Figure 2 in a lazy language results in a monad
of (finite) lazy lists; the corresponding interpreter generates one result at a time.
In an eager language, this effect can be achieved by explicitly implementing a
data type of streams, i.e., finite lists built lazily: a thunk is used to delay
computation.

α stream ≡ End | More of (α × (111 → α stream))

The definition of the corresponding monad operations is straightforward.

2.5.3 A continuation-based interpreter

Gudeman [13] gives a continuation-based semantics of a goal-directed language.
We can derive this semantics by instantiating our monadic semantics with the
continuation monad C as defined in Figure 4. The type-constructor α C of the
continuation monad is defined as (α → R) → R, where R is called the answer
type of the continuation.

A conceptual link between the list monad and the continuation monad with
answer type β list → β list can be made through a Church encoding [4] of the
higher-order representation of lists proposed by Hughes [16]. Hughes observed
that when constructing the partially applied concatenation function λys .xs @ ys
rather than the list xs , lists can be appended in constant time. In the resulting
representation, the empty list corresponds to the function that appends no ele-
ments, i.e., the identity, whereas the function that appends a single element is

7

Standard monad operations:

unitC x = λk.k x
mapC f xs = λk.xs (λx.k (f x))
joinC ls = λk.ls (λx.x k)

Special operations for sequences:

emptyC = λk.λl.l
if emptyC xs ys zs = λk.λl.xs (λ .λ .ys k l) (zs k l)
appendC xs ys = λk.(xs k) ◦ (ys k)

Figure 4: The continuation monad

represented by a partially applied cons function:

nil = λys .ys
cons x = λys .x :: ys

Church-encoding a data types means abstracting over selector functions, in this
case “ :: ”:

nil = λsc.λys .ys
cons x = λsc.λys .sc x ys

The resulting representation of lists can be typed as

(α → β → β) → β → β,

which indeed corresponds to α C with answer type β → β. Notice that nil and
cons for this list representation yield emptyC and unitC, respectively. Similarly,
the remaining monad operations correspond to the usual list operations.

Figure 5 displays the definition of [[·]]C where all monad operations have been
inlined and the resulting expressions β-reduced.

2.5.4 An interpreter with explicit success and failure continuations

A tail-recursive implementation of a continuation-based interpreter for Icon uses
explicit success and failure continuations. The result of interpreting an Icon
expression then has type

(int → (111 → α) → α) → (111 → α) → α,

where the first argument is the success continuation and the second argument
the failure continuation. Note that the success continuation takes a failure con-
tinuation as a second argument. This failure continuation determines the re-
sumption behavior of the Icon term: the success continuation may later on apply

8

[[·]]C : Exp → (int → β → β) → β → β

[[i]]C = λk.k i
[[E1 toE2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.toC i j k))
[[E1 +E2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.k (i + j)))

[[E1 <=E2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.leqC i j k))
[[ifE0 thenE1

elseE2]]C2 = λk.λl.[[E0]]C2 (λ .λ .[[E1]]C2 k l) ([[E2]]C2 k l)

where
leqC i j = λk.if i ≤ j then (k j) else (λl.l)
toC i j = λk.if i > j then (λl.l)

else (k i) ◦ (toC (i + 1) j k)

Figure 5: A continuation semantics

its failure continuation to generate more results. The corresponding continu-
ation monad C2 has the same standard monad operations as the continuation
monad displayed in Figure 4, and the sequence operations

emptyC2
= λk.λf.f ()

if emptyC2
xs ys zs = λk.λf.xs (λ .λ .zs k f) (λ().ys k f)

appendC2
xs ys = λk.λf.(xs k)(λ().ys k f)

Just as the continuation monad from Figure 4 can be conceptually linked to the
list monad, the present continuation monad can be linked to the stream monad
by a Church encoding of the data type of streams:

end = λsm.λse.se()
more x xs = λsm.λse.sm x xs

The fact that the second component in a stream is a thunk suggests one to give
the selector function sm the type int → (111 → α) → β; the resulting type for end
and more x xs is then

(int → (111 → α) → β) → (111 → β) → β.

Choosing α as the result type of the selector functions yields the type of a
continuation monad with answer type (111 → α) → α.

The interpreter defined by the semantics [[·]]C2 is the starting point of the
semantics-directed compilation described in Section 3. Figure 6 displays the
definition of [[·]]C2 where all monad operations have been inlined and the resulting
expressions β-reduced. Because the basic monad operations of C2 are the same
as those of C, the semantics based on C2 and C only differ in the definitions of
leq , to , and in how if is handled.

9

[[·]]C2 : Exp → (int → (111 → α) → α) → (111 → α) → α

[[i]]C2 = λk.k i
[[E1 toE2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.toC2 i j k))
[[E1 +E2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.k (i + j)))

[[E1 <=E2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.leqC2
i j k))

[[ifE0 thenE1

elseE2]]C2 = λk.λf.[[E0]]C2 (λ .λ .[[E1]]C2 k f) (λ().[[E2]]C2 k f)

where

leqC2
i j = λk.λf.if i ≤ j then k j f else f ()

toC2 i j = λk.λf.if i > j then f ()
else (k i) (λ().toC2 (i + 1) j k f)

Figure 6: A semantics with success and failure continuations

2.6 Correctness

So far, we have related the various semantics presented in Section 2.5 only con-
ceptually. Because the four different interpreters presented in Section 2.5 were
created by instantiating one parameterized semantics with different monads, a
formal correspondence proof can be conducted in a modular way building on
the concept of a monad morphism [28].

Definition 1 (Monad morphism) If M and N are two monads, then h :
α M → α N is a monad morphism if it preserves the monad operations1, i.e.,

h ◦ unitM = unitN

h ◦ mapM f = mapN f ◦ h
h ◦ joinM = joinN ◦ h ◦ mapM h

h emptyM = emptyN

h ◦ if emptyM = λxs.λys .λzs .if emptyN(h xs)(h ys)(h zs)
h ◦ appendM = λxs.λys .appendN(h xs)(h ys)

The following lemma shows that the semantics resulting from two different
monad instantiations can be related by defining a monad morphism between
the two sequence monads in question.

Lemma 2 Let M and N be monads of sequences as specified in Section 2.3. If
h is a monad morphism from M to N, then (h [[E]]M) = [[E]]N for every Icon
expression E.

1We strengthen the definition of a monad morphism somewhat by considering a sequence-
preserving monomorphism that also preserves the monad operations specific to the monad of
sequences.

10

Proof: By induction over the structure of E. A lemma to the effect that
h (toM i j) = toN i j is shown by induction over i − j for i ≥ j. �
We use Lemma 2 to show that the list-based interpreter from Section 2.5.1 and
the continuation-based interpreter from Section 2.5.3 always yield comparable
results:

Proposition 3 Let show : α C → α L be defined as

show f = f (λx.λxs.appendL (unitL x) xs) emptyL.

Then (show [[E]]C) = [[E]]L for all Icon expressions E.

Proof: We show that (1) h : α L → α C, which is defined as

h [] = emptyC

h (x :: xs) = appendC (unitC x) (h xs)

is a monad morphism from L to C, and (2) the function (show ◦h) is the identity
function on lists. The proposition then follows immediately with Lemma 2. �

2.7 Conclusion

Taking an intuitive list-based semantics for a subset of Icon as our starting point,
we have defined a stream-based semantics and two continuation semantics. Be-
cause our inital semantics is defined as the instantiation of a monadic semantics
with a list monad, the other semantics can be defined through a stream monad
and two different continuation monads, respectively. The modularity of the
monadic semantics allows us to relate the semantics to each other by relat-
ing the corresponding monads, both conceptually and formally. To the best of
our knowledge, the conceptual link between list-based monads and continuation
monads via Church encoding has not been observed before.

It is known that continuations can be compiled into efficient code relatively
easily [1, 14]; in the following section we show that partial evaluation is suffi-
cient to generate efficient code from the the continuation semantics derived in
Section 2.5.4.

3 Semantics-Directed Compilation

The goal of partial evaluation is to specialize a source program p : S × D → R
of two arguments to a fixed “static” argument s : S. The result is a residual
program ps : D → R that must yield the same result when applied to a “dy-
namic” argument d as the original program applied to both the static and the
dynamic arguments, i.e., [[ps(d)]] = [[p(s, d)]].

Our interest in partial evaluation is due to its use in semantics-directed com-
pilation: when the source program p is an interpreter and the static argument s

11

is a term in the domain of p then ps is a compiled version of s represented in the
implementation language of p. It is often possible to implement an interpreter
in a functional language based on the denotational semantics.

Our starting point is a functional interpreter implementing the denotational
semantics in Figure 6. The source language of the interpreter is shown in Fig-
ure 7. In Section 3.1 we present the Icon interpreter written in ML. In Sec-
tion 3.1, 3.2, and 3.3 we use type-directed partial evaluation to specialize this
interpreter to Icon terms yielding ML code, C code, and OCaml byte code as
output. Other partial-evaluation techniques could be applied to yield essentially
the same results.

structure Icon = struct
datatype icon = LIT of int

| TO of icon * icon
| PLUS of icon * icon
| LEQ of icon * icon
| IF of icon * icon * icon

end

Figure 7: The abstract syntax of Icon terms

3.1 Type-directed partial evaluation

We have used type-directed partial evaluation to compile Icon programs into
ML. This is a standard exercise in semantics-directed compilation using type-
directed partial evaluation [9].

Type-directed partial evaluation is an approach to off-line specialization of
higher-order programs [8]. It uses a normalization function to map the (value of
the) trivially specialized program λd.p(s, d) into the (text of the) target program
ps.

The input to type-directed partial evaluation is a binding-time separated pro-
gram in which static and dynamic primitives are separated. When implemented
in ML, the source program is conveniently wrapped in a functor parameterized
over a structure of dynamic primitives. The functor can be instantiated with
evaluating primitives (for running the source program) and with residualizing
primitives (for specializing the source program).

3.1.1 Specializing Icon terms using type-directed partial evaluation

In our case the dynamic primitives operations are addition (add), integer com-
parison (leq), a fixed-point operator (fix), a conditional functional (cond), and
a quoting function (qint) lifting static integers into the dynamic domain. The
signature of primitives is shown in Figure 8. For the residualizing primitives

12

we let the partial evaluator produce functions that generate ML programs with
meaningful variable names [8].

The parameterized interpreter is shown in Figure 9. The main function eval
takes an Icon term and two continuations, k : tint → (tunit → res) → res
and f : tunit → res, and yields a result of type res. We intend to specialize
the interpreter to a static Icon term and keeping the continuation parameters
k and f dynamic. Consequently, residual programs are parameterized over two
continuations. (If the continuations were also considered static then the residual
programs would simply be the list of the generated integers.)

signature PRIMITIVES = sig
type tunit
type tint
type tbool
type res

val qint : int -> tint
val add : tint * tint -> tint
val leq : tint * tint -> tbool
val cond : tbool * (tunit -> res) * (tunit -> res) -> res
val fix : ((tint -> res) -> tint -> res) -> tint -> res

end

Figure 8: Signature of primitive operations

The output of type-directed partial evaluation is the text of the residual
program. The residual program is in long beta-eta normal form, that is, it does
not contain any beta redexes and it is fully eta-expanded with respect to its
type.

Example 4 The following is the result of specializing the interpreter with re-
spect to the Icon term 10 + (4 to 7).

fn k => fn f =>
fix (fn loop0 =>

fn i0 =>
cond (leq (i0, qint 7),

fn () => k (add (qint 10, i0))
(fn () => loop0 (add (i0, qint 1))),

fn () => f ()))
(qint 4)

13

functor MakeInterp(P : PRIMITIVES) = struct
fun loop (i, j) k f =

P.fix
(fn walk =>

fn i =>
P.cond (P.leq (i, j),

fn _ =>
k i (fn _ =>

walk (P.add (i, P.qint 1))),
f))

i

fun select (i, j) k f =
P.cond (P.leq (i, j), fn _ => k j f, f)

fun sum (i, j) k = k (P.add (i, j))

fun eval (LIT i) k = k (P.qint i)
| eval (TO(e1, e2)) k =

eval e1 (fn i => eval e2 (fn j => loop (i, j) k))
| eval (PLUS(e1, e2)) k =

eval e1 (fn i => eval e2 (fn j => sum (i, j) k))
| eval (LEQ(e1, e2)) k =

eval e1 (fn i => eval e2 (fn j => select (i, j) k))
| eval (IF(e1, e2, e3)) k =

fn f =>
eval e1

(fn _ => fn _ => eval e2 k f)
(fn _ => eval e3 k f)

end

Figure 9: Parameterized interpreter

3.1.2 Avoiding code duplication

The result of specializing the interpreter in Figure 9 may be exponentially large.
This is due to the continuation parameter k being duplicated in the clause for
IF. For example, specializing the interpreter to the Icon term 100 + (if 1 <
2 then 3 else 4) yields the following residual program in which the context
add(100, ·) occurs twice.

fn k => fn f =>
cond (leq (qint 1, qint 2),

fn () => k (add (qint 100, qint 3)) (fn () => f ()),
fn () => k (add (qint 100, qint 4)) (fn () => f ()))

14

Code duplication is a well-known problem in partial evaluation [17]. The
equally well-known solution is to bind the continuation in the residual program,
just before it is used. We introduce a new primitive save of two arguments, k
and g, which applies g to two “copies” of the continuation k.

signature PRIMITIVES = sig
...
type succ = tint -> (tunit -> res) -> res
val save : succ -> (succ * succ -> res) -> res

end

The final clause of the interpreter is modified to save the continuation pa-
rameter before it proceeds, as follows.

fun eval (LIT i) k = k (P.qint i)
...

| eval (IF(e1, e2, e3)) k =
fn f =>

save k
(fn (k0, k1) => eval e1

(fn _ => fn _ => eval e2 k0 f)
(fn _ => eval e3 k1 f))

Specializing this new interpreter to the Icon term from above yields the
following residual program in which the context add(100, ·) occurs only once.

fn k => fn f =>
save (fn v0 =>

fn resume0 =>
k (add (qint 100, v0)) (fn () => resume0 ()))

(fn (k0_0, k1_0) =>
cond (leq (qint 1, qint 2),

fn () => k0_0 (qint 3) (fn () => f ()),
fn () => k1_0 (qint 4) (fn () => f ())))

Two copies of continuation parameter k are bound to k0 0 and k1 0 before the
continuation is used (twice, in the body of the second lambda). In order just to
prevent code duplication, passing one “copy” of the continuation parameter is
actually enough. But the translation into C introduced in Section 3.2 uses the
two differently named variables, in this case k0_0 and k1_0, to determine the
IF-branch inside which a continuation is applied.

3.2 Generating C programs

Residual programs are not only in long beta-eta normal form. Their type

(tint → (tunit → res) → res) → (tunit → res) → res

15

imposes further restrictions: A residual program must take two arguments, a
success continuation k : tint → (tunit → res) → res and a failure continua-
tion f : tunit → res, and it must produce a value of type res. When we also
consider the types of the primitives that may occur in residual programs we see
that values of type res can only be a result of

• applying the success continuation k to an integer n and function of type
tunit → res;

• applying the failure continuation f;

• applying the primitive cond to a boolean and two functions of type tunit →
res;

• applying the primitive fix to a function of two arguments, loopn : tint →
res and in : tint, and an integer;

• (inside a function passed to fix) applying the function loopn to an integer;

• applying the primitive save to two arguments, the first being a function
of two arguments, vn : tint and resumen : tunit → res, and the second
being a function of a pair of arguments, k0

n and k1
n, each of type tint →

(tunit → res) → res;

• (inside the first function passed to save) applying the function resumen;
or

• (inside the second function passed to save) applying one of the functions
k0

n or k1
n to an integer and a function of type tunit → res.

A similar analysis applies to values of type tint: they can only arise from
evaluating an integer n, a variable in, or a variable vn or from applying add to
two argument of type tint. As a result, we observe that the residual programs
of specializing the Icon interpreter using type-directed partial evaluation are
restricted to the grammar in Figure 10. (The restriction that the variables
loopn, in, vn, and resumen each must occur inside a function that binds them
cannot be expressed using a context-free grammar. This is not a problem for our
development.) We have expressed the grammar as an ML datatype and used this
datatype to represent the output from type-directed partial evaluation. Thus,
we have essentially used the type system of ML as a theorem prover to show
the following lemma.

Lemma 5 The residual program generated from applying type-directed partial
evaluation to the interpreter in Figure 9 can be generated by the grammar in
Figure 10.

The idea of generating grammars for residual programs has been studied by,
e.g., Malmkjær [20] and is used in the run-time specializer Tempo to generate
code templates [6].

16

I ::= fn k => fn f => S
S ::= k E (fn () => S)

| f ()
| cond (E, fn () => S, fn () => S)
| fix (fn loopn => fn in => S) E
| loopn E

| save (fn vn => fn resumen => S) (fn (k0
n, k1

n) => S)
| resumen ()
| ki

n E (fn () => S), where i ∈ {0, 1}
E ::= qint n | in | vn | add (E, E) | leq (E, E)

Figure 10: Grammar of residual programs

The simple structure of output programs allows them to be viewed as pro-
grams of a flow-chart language. We choose C as a concrete example of such a
language. Figure 11 and 12 show the translation from residual programs to C
programs.

The translation replaces function calls with jumps. Except for the call to
resumen (which only occurs as the result of compiling if-statements), the name
of a function uniquely determines the corresponding label to jump to. Jumps to
resumen can end up in two different places corresponding to the two copies of
the continuation. We use a boolean variable gaten to distinguish between the
two possible destinations. Calls to loopn and kn pass arguments. The names
of the formal parameters are known (in and vn, respectively) and therefore
arguments are passed by assigning the variable before the jump.

In each translation of a conditional a new label l must be generated. The
entire translated term must be wrapped in a context that defines the labels succ
and fail (corresponding to the initial continuations). The statements following
the label succ are allowed to jump to resume. The translation in Figure 11 and
12 generates a C program that successively prints the produced integers one by
one. A lemma to the effect that the translation from residual ML programs into
C is semantics preserving would require giving semantics to C and to the subset
of ML presented in Figure 10 and then showing equivalence.

Example 6 Consider again the Icon term 10 + (4 to 7) from Example 4. It
is translated into the following C program.

i0 = 4;
loop0: if (i0 <= 7) goto L0;

goto fail;

L0: value = 10 + i0;
goto succ;

17

|fn k => fn f => S|I =




|S|S
succ: printf("%d ", value);

goto resume;

fail: printf("\n");

exit(0);

|k E (fn () => S)|S =




value = |E|E;
goto succ;

resume: |S|S
|f ()|S =

{
goto fail;

|cond (E, fn () => S, fn () => S′)|S =




if (|E|E) goto l;

|S′|S
l: |S|S

|fix (fn loopn => fn in => S) E|S =

{
in = |E|E;

loopn: |S|S

|loopn E|S =

{
in = |E|E;
goto loopn;∣∣∣∣save (fn vn => fn resumen => S)

(fn (k0
n, k1

n) => S′)

∣∣∣∣
S

=

{
|S′|S

succn: |S|S

|resumen ()|S =

{
if (gaten) goto resume1

n;

goto resume0
n;

|ki
n E (fn () => S)|S =




gaten = i;

vn = |E|E;
goto succn;

resumei
n: |S|S

Figure 11: Translating residual programs into C (Statements)

18

|qint n|E = n
|in|E = in

|vn|E = vn

|add (E, E′)|E = |E|E + |E′|E
|leq (E, E′)|E = |E|E <= |E′|E

Figure 12: Translating residual programs into C (Expressions)

resume: i0 = i0 + 1;
goto loop0;

succ: printf("%d ", value);
goto resume;

fail: printf("\n");
exit(0);

The C target programs corresponds to the target programs of Proebsting’s
optimized template-based compiler [22]. In effect, we are automatically gener-
ating flow-chart programs from the denotation of an Icon term.

3.3 Generating byte code

In the previous two sections we have developed two compilers for Icon terms,
one that generates ML programs and one that generates flow-chart programs.
In this section we unify the two by composing the first compiler with the third
author’s automatic run-time code generation system for OCaml [25] and by
composing the second compiler with a hand-written compiler from flow charts
into OCaml byte code.

3.3.1 Run-time code generation in OCaml

Run-time code generation for OCaml works by a deforested composition of tra-
ditional type-directed partial evaluation with a compiler into OCaml byte code.
Deforestation is a standard improvement in run-time code generation [6, 19, 26].
As such, it removes the need to manipulate the text of residual programs at spe-
cialization time. As a result, instead of generating ML terms, run-time code gen-
eration allows type-directed partial evaluation to directly generate executable
OCaml byte code.

Specializing the Icon interpreter from Figure 9 to the Icon term 10 + (4
to 7) using run-time code generation yields a residual program of about 110
byte-code instructions in which functions are implemented as closures and calls
are implemented as tail-calls. (Compiling the residual ML program using the
OCaml compiler yields about 90 byte-code instructions.)

19

3.3.2 Compiling flow charts into OCaml byte code

We have modified the translation in Figure 11 and 12 to produce OCaml byte-
code instructions instead of C programs. The result is an embedding of Icon
into OCaml.

Using this compiler, 10 + (4 to 7) yields 36 byte-code instructions in which
functions are implemented as labelled blocks and calls are implemented as an
assignment (if an argument is passed) followed by a jump. This style of target
code was promoted by Steele in the first compiler for Scheme [27].

3.4 Conclusion

Translating the continuation-based denotational semantics into an interpreter
written in ML and using type-directed partial evaluation enables a standard
semantics-directed compilation from Icon terms into ML. A further compilation
of residual programs into C yields flow-chart programs corresponding to those
produced by Proebsting’s Icon compiler [22].

4 Conclusions and Issues

Observing that the list monad provides the kind of backtracking embodied in
Icon, we have specified a semantics of Icon that is parameterized by this monad.
We have then considered alternative monads and proven that they also provide
a fitting semantics for Icon. Inlining the continuation monad, in particular,
yields Gudeman’s continuation semantics [13].

Using partial evaluation, we have then specialized these interpreters with
respect to Icon programs, thereby compiling these programs using the first Fu-
tamura projection. We used a combination of type-directed partial evaluation
and code generation, either to ML, to C, or to OCaml byte code. Generating
code for C, in particular, yields results similar to Proebsting’s compiler [22].

Gudeman [13] shows that a continuation semantics can also deal with addi-
tional control structures and state; we do not expect any difficulties with scaling
up the code-generation accordingly. The monad of lists, on the other hand, does
not offer enough structure to deal, e.g., with state. It should be possible, how-
ever, to create a rich enough monad by combining the list monad with other
monads such as the state monad [10, 18].

It is our observation that the traditional (in partial evaluation) generaliza-
tion of the success continuation avoids the code duplication that Proebsting
presents as problematic in his own compiler. We are also studying the results
of defunctionalizing the continuations, à la Reynolds [24], to obtain stack-based
specifications and the corresponding run-time architectures.

Acknowledgments: Thanks are due to the anonymous referees for comments
and to Andrzej Filinski for discussions. This work is supported by the ES-
PRIT Working Group APPSEM (http://www.md.chalmers.se/Cs/Research/
Semantics/APPSEM/).

20

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Lawrence Byrd. Understanding the control of Prolog programs. Technical
Report 151, University of Edinburgh, 1980.

[3] Mats Carlsson. On implementing Prolog in functional programming. New
Generation Computing, 2(4):347–359, 1984.

[4] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[5] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[6] Charles Consel and François Noël. A general approach for run-time spe-
cialization and its application to C. In Guy L. Steele, editor, Proceedings of
the Twenty-Third Annual ACM Symposium on Principles of Programming
Languages, pages 145–156, St. Petersburg Beach, Florida, January 1996.
ACM Press.

[7] Ron K. Cytron, editor. Proceedings of the ACM SIGPLAN’97 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 32, No 5, Las Vegas, Nevada, June 1997. ACM Press.

[8] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Tor-
ben Æ. Mogensen, and Peter Thiemann, editors, Partial Evaluation – Prac-
tice and Theory; Proceedings of the 1998 DIKU Summer School, number
1706 in Lecture Notes in Computer Science, pages 367–411, Copenhagen,
Denmark, July 1998. Springer-Verlag.

[9] Olivier Danvy and René Vestergaard. Semantics-based compiling: A case
study in type-directed partial evaluation. In Herbert Kuchen and Doaitse
Swierstra, editors, Eighth International Symposium on Programming Lan-
guage Implementation and Logic Programming, number 1140 in Lecture
Notes in Computer Science, pages 182–197, Aachen, Germany, September
1996. Springer-Verlag. Extended version available as the technical report
BRICS-RS-96-13.

[10] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 175–188, San Antonio, Texas, January
1999. ACM Press.

[11] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Lan-
guage. Prentice Hall, Inc., 1983.

21

[12] Ralph E. Griswold and Madge T. Griswold. The Implementation of the
Icon Programming Language. Princeton University Press, 1986.

[13] David A. Gudeman. Denotational semantics of a goal-directed language.
ACM Transactions on Programming Languages and Systems, 1992.

[14] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control
in the presence of first-class continuations. In Bernard Lang, editor, Pro-
ceedings of the ACM SIGPLAN’90 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 25, No 6, pages 66–77,
White Plains, New York, June 1990. ACM Press.

[15] Ralf Hinze. Prological features in a functional setting—axioms and
implementations. In Masahiko Sato and Yoshihito Toyama, editors,
Third Fuji International Symposium on Functional and Logic Programming
(FLOPS’98), pages 98–122, Kyoto, Japan, April 1998. World Scientific.

[16] John Hughes. A novel representation of lists and its application to the
function “reverse”. Information Processing Letters, 22(3):141–144, 1986.

[17] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice-Hall International, 1993.
Available online at http://www.dina.kvl.dk/~sestoft/pebook/pebook.
html.

[18] David J. King and Philip Wadler. Combining Monads. In John Launch-
bury and Patrick M. Sansom, editors, Glasgow Workshop on Functional
Programming, Workshops in Computing, Ayr, Scotland, 1992. Springer,
Berlin.

[19] Mark Leone and Peter Lee. Optimizing ML with run-time code generation.
In Proceedings of the ACM SIGPLAN’96 Conference on Programming Lan-
guages Design and Implementation, SIGPLAN Notices, Vol. 31, No 5, pages
137–148. ACM Press, May 1996.

[20] Karoline Malmkjær. Abstract Interpretation of Partial-Evaluation Algo-
rithms. PhD thesis, Department of Computing and Information Sciences,
Kansas State University, Manhattan, Kansas, March 1993.

[21] Eugenio Moggi. Computational lambda-calculus and monads. In Proceed-
ings of the Fourth Annual IEEE Symposium on Logic in Computer Science,
pages 14–23, Pacific Grove, California, June 1989. IEEE Computer Society
Press.

[22] Todd A. Proebsting. Simple translation of goal-directed evaluation. In
Cytron [7], pages 1–6.

[23] Todd A. Proebsting and Gregg M. Townsend. A new implementation of the
Icon language. Technical Report 99-13, University of Arizona, Department
of Computer Science, 1999.

22

[24] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

[25] Morten Rhiger. PhD thesis, BRICS PhD School, University of Aarhus,
Aarhus, Denmark, 2001. Forthcoming.

[26] Michael Sperber and Peter Thiemann. Two for the price of one: composing
partial evaluation and compilation. In Cytron [7], pages 215–225.

[27] Guy L. Steele Jr. Compiler optimization based on viewing LAMBDA as
RENAME + GOTO. In Patrick Henry Winston and Richard Henry Brown,
editors, Artificial Intelligence: An MIT Perspective, volume 2. The MIT
Press, 1979.

[28] Philip Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2(4):461–493, December 1992.

[29] Philip Wadler. Monads for functional programming. In Johan Jeuring and
Erik Meijer, editors, Advanced Functional Programming, number 925 in
Lecture Notes in Computer Science, pages 24–52. Springer-Verlag, 1995.

[30] Richard S. Wallace. An easy implementation of pil (PROLOG in LISP).
Association for Computing Machinery Special Interest Group on Artificial
Intelligence. SIGART NEWSL., (85):29–32, July 1983.

23

Recent BRICS Report Series Publications

RS-01-29 Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A Unify-
ing Approach to Goal-Directed Evaluation. July 2001. 23 pp.
To appear in New Generation Computing, 20(1), November
2001. A preliminary version appeared in Taha, editor, 2nd
International Workshop on Semantics, Applications, and Im-
plementation of Program Generation, SAIG ’01 Proceedings,
LNCS 2196, 2001, pages 108–125.

RS-01-28 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. A Fully
Equational Proof of Parikh’s Theorem. June 2001.

RS-01-27 Mario Jose Ćaccamo and Glynn Winskel.A Higher-Order Cal-
culus for Categories. June 2001. Appears in Boulton and Jack-
son, editors,Theorem Proving in Higher Order Logics: 14th In-
ternational Conference, TPHOLs ’01 Proceedings, LNCS 2152,
2001, pages 136–153.

RS-01-26 Ulrik Frendrup and Jesper Nyholm Jensen.A Complete Ax-
iomatization of Simulation for Regular CCS Expressions. June
2001. 18 pp.

RS-01-25 Bernd Grobauer. Cost Recurrences for DML Programs. June
2001. 51 pp. Extended version of a paper to appear in Leroy,
editor, Proceedings of the 6th ACM SIGPLAN International
Conference on Functional Programming, 2001.

RS-01-24 Zolt́an Ésik and Zoltán L. Németh.Automata on Series-Parallel
Biposets. June 2001. 15 pp. To appear in Kuich, editor,5th
International Conference, Developments in Language Theory
DLT ’01 Proceedings, LNCS, 2001.

RS-01-23 Olivier Danvy and Lasse R. Nielsen.Defunctionalization at
Work. June 2001. 45 pp. Extended version of an article to ap-
pear in Søndergaard, editor,3rd International Conference on
Principles and Practice of Declarative Programming, PPDP ’01
Proceedings, 2001.

RS-01-22 Zolt́an Ésik. The Equational Theory of Fixed Points with Ap-
plications to Generalized Language Theory. June 2001. 21 pp.
To appear in Kuich, editor, 5th International Conference, De-
velopments in Language Theory DLT ’01 Proceedings, LNCS,
2001.

