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A Fully Equational Proof of Parikh’s Theorem

Luca Aceto Zoltán Ésik∗ Anna Ingólfsdóttir
BRICS†

Department of Computer Science
University of Aalborg
Fredrik Bajers Vej 7E

DK-9220 Aalborg

Abstract

We show that the validity of Parikh’s theorem for context-free lan-
guages depends only on a few equational properties of least pre-fixed
points. Moreover, we exhibit an infinite basis of µ-term equations of
continuous commutative idempotent semirings.

AMS Subject Classification (2000): 03C05, 16Y60, 68Q42, 68Q45,
68Q70.
Keywords and Phrases: Parikh’s theorem, commutative context-
free languages, commutative rational languages, equational logic, va-
rieties, complete axiomatizations, commutative idempotent semirings,
algebraically complete commutative idempotent semirings.

1 Introduction

A classic result of the theory of context-free languages is Parikh’s theorem
[25] that asserts that the letter occurrence vectors (Parikh vectors) corre-
sponding to the words of a context-free language on a k-letter alphabet form
a semilinear subset of N

k, the free commutative monoid of k-dimensional
∗Permanent address: Dept. of Computer Science, University of Szeged, P.O.B. 652,

6701 Szeged, Hungary. Supported in part by the National Foundation of Hungary for
Scientific Research.

†Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation.
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vectors over the naturals. The theorem is usually proved by combinatorial
arguments on the derivation trees of the context-free grammar, and is re-
garded as one of the most fundamental, yet subtly difficult to prove, in the
theory of context-free languages. However, as Pilling [27] observed, Parikh’s
theorem may be formulated as an assertion about “rational functions” on
the (free) continuous commutative idempotent semiring of all subsets of
N

k. Subsequently, Kuich [20] generalized Parikh’s result to all continuous
commutative idempotent semirings (l-semirings). (See also [30] for a re-
lated treatment.) In fact, by introducing rational terms that denote rational
functions, or more generally, recursion terms or µ-terms denoting functions
that arise as least solutions of systems of polynomial fixed point equations,
Parikh’s theorem can be translated into a statement about the equational
theory of continuous commutative idempotent semirings:

For every µ-term t there exists a rational term r such that the
equation t = r holds in all continuous commutative idempotent
semirings.

Alternatively, one may just consider rational terms and prove that for each
rational term t(x, y1, . . . , yn) in the variables x, y1, . . . , yn, there is a rational
term r(y1, . . . , yn) containing no occurrence of x that provides least solution
to the fixed point equation x = t(x, y1, . . . , yn) over all continuous commu-
tative idempotent semirings. This approach has been pursued by Hopkins
and Kozen in [14], in their argument lifting Parikh’s theorem to all com-
mutative idempotent semirings with enough least fixed points to provide
solutions to recursion equations. By proving this more general result, Hop-
kins and Kozen have shown how to replace the analytic arguments of Pilling
and Kuich by arguments based only on the least (pre-)fixed point rule (also
known as the Park induction rule [26]), the fixed point equation, and the
algebraic laws of the sum and product operations. But since Parikh’s theo-
rem is a claim about equational theories, one would eventually like to have a
fully equational proof of it. In this paper, we derive Parikh’s theorem from
a small set of purely equational axioms involving fixed points.

Parikh’s theorem is not the only result of automata and language the-
ory that can be derived by simple equational reasoning from the algebraic
properties of fixed points. Other applications of the equational logic of fixed
points include proofs of Kleene’s theorem and its generalizations [4] (see
also [20, 21, 5], where the presentation is not fully based on equational rea-
soning), and of Greibach’s normal form theorem for context-free grammars
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[9]. The methods employed in the papers [19, 8] even indicate that one can
embed the proof of the Krohn-Rhodes decomposition theorem [11] for finite
automata and semigroups within equational logic. Further applications of
fixed point theory include an equational proof of the soundness and relative
completeness of Hoare’s logic [2, 3]. (See also [18], and [23] for a not fully
equational treatment.)

We will consider terms, or µ-terms, defined by the following (abstract)
syntax, where x ranges over a fixed countable set X of variables:

T ::= x | T + T | T · T | 0 | 1 | µx.T .

Thus, if t is a term and x is a variable, then µx.t is a term. Such terms t may
be interpreted as continuous functions tS : SX → S over continuous semir-
ings S, and continuous idempotent semirings in particular. Such a semiring
S = (S,+, ·, 0, 1) has an idempotent additive structure, and equipped with
the order ≤ induced by the additive structure it has all suprema. Moreover,
the · operation preserves all suprema. (It is clear that the + operation also
preserves all suprema.) A prime example of such a semiring is the semiring
LΣ∗ of all languages in Σ∗, where Σ is a finite or infinite alphabet, equipped
with the union and concatenation operations as sum and product, and the
empty set and the set whose unique element is the empty word as 0 and
1, respectively. More generally, if M is any monoid, then P (M), the set of
all subsets of M , equipped with the operations of set union and complex
product as sum and product is a continuous idempotent semiring. In fact,
one can easily show that the semiring LΣ∗ is freely generated by Σ in the
category of continuous idempotent semirings and continuous semiring homo-
morphisms. In continuous semirings, terms of the form µx.t are interpreted
by least (pre-)fixed points.

As the semirings LΣ∗ are the free continuous idempotent semirings, an
equation t = t′ between µ-terms with free variables in Y = {y1, . . . , yn} holds
in all continuous idempotent semirings if and only if tLY ∗ ({y1}, . . . , {yn}) =
t′LY ∗ ({y1}, . . . , {yn}), i.e., when t and t′, viewed as context-free grammars,
generate the same language in Y ∗. Since the equivalence of context-free
grammars is undecidable (see, e.g., [13]), it follows that, for µ-terms, the
equational theory of continuous idempotent semirings is undecidable. More-
over, since the inequivalence of context free grammars is semidecidable, the
equational theory of continuous idempotent semirings is not recursively enu-
merable. Thus, the equational theory of continuous idempotent semirings
has no recursively enumerable basis. The same holds for continuous semir-
ings, since the free continuous semirings are the semirings of power series
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with coefficients in the semiring of naturals equipped with a top element,
and since the equality of such algebraic series is also not semidecidable.

For continuous commutative idempotent semirings, however, the situa-
tion is completely different. The free continuous commutative idempotent
semirings are the semirings of commutative languages, i.e., the semirings
LΣ⊕ = P (Σ⊕), where Σ⊕ is the free commutative monoid of commutative
words generated by Σ. (When Σ is finite and has k elements, LΣ⊕ is iso-
morphic to P (Nk).) By Parikh’s theorem [25], the context-free sets included
in Σ⊕ are the same as the rational sets, or the semilinear sets, and equality
of semilinear sets is decidable and is logspace complete for Πp

2, the second
level of the polynomial time hierarchy [15]. It follows that the equivalence
problem of commutative context-free grammars is decidable, see also [10].
In fact, as shown in [16], the equivalence problem for both commutative
context-free grammars and commutative rational expressions are solvable in
nondeterministic exponential time. Thus, the equational theory of continu-
ous idempotent commutative semirings is also decidable in nondeterministic
exponential time. An infinite basis of the rational identities for commutative
languages was given by Redko [28] (see also the treatments by Salomaa [29]
and Conway [6]). The language of rational terms is a sublanguage of the lan-
guage of µ-terms. As a corollary of our equational proof of Parikh’s theorem,
and of Redko’s axiomatization, we give a basis of identities of commutative
languages and thus of continuous commutative idempotent semirings for the
full language of µ-terms.

The paper is organized as follows. Section 2 is devoted to preliminary re-
sults on ∗-semirings that will be used throughout the paper, and culminates
in a well-known normal form theorem for commutative rational expressions.
We then introduce µ-semirings as a suitable class of models for the language
of µ-terms, and present the collection of equations from which Parikh’s the-
orem will be proven (Section 3). Our equational proof of Parikh’s theorem
is given in Section 4, together with other intermediate results of indepen-
dent interest. Section 5 offers results on derivatives of rational terms. Al-
gebraically complete commutative idempotent semirings are introduced in
Section 6, where we show that these structures are models of the equations
upon which our equational proof of Parikh’s theorem is based. There we
also prove that a very weak form of the least pre-fixed point rule suffices
to prove Parikh’s theorem. The last section of the paper (Section 7) uses
our equational proof of Parikh’s theorem, and Redko’s axiomatization for
commutative rational languages, to give a basis of identities of commutative
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languages and thus of continuous commutative idempotent semirings for the
language of µ-terms.

2 ∗-semirings

Recall that a (unitary) semiring [22, 12] is an algebra S = (S,+, ·, 0, 1) such
that (S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid, and such that
product distributes over all finite sums. In particular, 0 is an absorbing zero.
A semiring is commutative if the product operation · is commutative, and
idempotent if the sum operation + is idempotent. Note that any idempotent
semiring S is partially ordered by the semilattice order ≤ defined by a ≤ b iff
a+b = b, and the constant 0 is least with respect to this partial order. A ci-
semiring is a commutative idempotent semiring. A morphism of semirings
is a function that preserves the operations and constants.

A ∗-semiring is a semiring S equipped with a star operation ∗ : S → S.
This operation is not required to satisfy any particular conditions. A ci-∗-
semiring is a ci-semiring which is a ∗-semiring. A morphism of ∗-semirings
also preserves the star operation.

A rational term is any term built up in the usual way from variables and
the symbols 0 and 1 using the operations +, · and ∗. The following classic
equations between rational terms will be important in our treatment:

(x + y)∗ = (x∗y)∗x∗ (1)
1 + xx∗ = x∗ (2)

0∗ = 1 (3)
1∗ = 1 (4)

x + x = x (5)
x∗∗ = x∗ (6)

x∗x∗ = x∗ (7)
(x + y)∗ = x∗y∗ (8)

(xy∗)∗ = 1 + xx∗y∗ . (9)

The following lemmas give a summary of those interrelations among the
above equations that will be used in the sequel. Most of these facts are
known, and can be found in the references, in particular in [6, 29]. We have
included them in order to make the paper self-contained.

5



Lemma 2.1 In ∗-semirings (9) implies (2), which in turn implies (3).

Proof. When x is 0, both (2) and (9) reduce to (3). Given that this holds,
by substituting 0 for y, (9) reduces to (2). �

Lemma 2.2 In ∗-semirings, (2) and (4) imply (5).

Indeed, if (2) and (4) hold, then 1 + 1 = 1 · 1∗ + 1 = 1∗ = 1, and the result
follows by multiplying both sides of the equation 1 + 1 = 1 by x.

Below, when (5) is implied by the assumptions, for any rational terms
t, t′ we will write t ≤ t′ as an abbreviation for the equation t + t′ = t′. Note
that modulo (5) and the defining equations of semirings, t = t′ holds iff both
t ≤ t′ and t′ ≤ t do. Moreover, if t ≤ t′ holds, then so do the equations
t + s ≤ t′ + s, ts ≤ t′s and st ≤ st′. And if (1) and (2) also hold, then by
1 ≤ (x∗y)∗ = 1 + x∗y(x∗y)∗, whenever x ≤ y we have that

x∗ ≤ (x∗y)∗x∗ = (x + y)∗ = y∗ .

Thus, if t ≤ s holds, then so does t∗ ≤ s∗. It follows that in ∗-semirings
satisfying (1), (2) and (4) all the operations are monotonic with respect to
≤.

Lemma 2.3 In ∗-semirings, equations (1), (2) and (4) jointly imply the
equations (6) and (7).

Proof. First note that 1 ≤ x∗ holds, so that x ≤ xx∗ ≤ xx∗ + 1 = x∗ and
thus x∗ ≤ x∗∗, since ∗ is monotonic. Moreover, using (1) and (4), we have

(x + 1)∗ = x∗∗x∗

(1 + x)∗ = (1∗x)∗1∗

= x∗ .

Thus,

x∗ ≤ x∗∗ ≤ x∗∗x∗ = x∗ ,

proving (6) and (7). �
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Lemma 2.4 In commutative ∗-semirings, equations (1), (7) and (9) imply
equation (8).

Proof. Since by Lemma 2.1 also (2) holds, we have

(x + y)∗ = y∗(xy∗)∗

= y∗(1 + xx∗y∗)
= y∗ + xx∗y∗

= (1 + xx∗)y∗

= x∗y∗ . �

Lemma 2.5 In commutative ∗-semirings, equations (7), (8) and (9) imply
equation (1).

Proof. As in the previous argument, we can derive

y∗(xy∗)∗ = x∗y∗ .

But x∗y∗ = (x + y)∗, by assumption, so that y∗(xy∗)∗ = (x + y)∗. �

The following result summarizes the consequences of Lemmas 2.1–2.5.

Corollary 2.6 In commutative ∗-semirings, the system of equations (1),
(4), (9) and the system consisting of (4), (8), (9) are equivalent. Moreover,
in commutative ∗-semirings either of them implies all of the equations (1)–
(9).

Proof. Indeed, in commutative semirings, we have by Lemma 2.1 that (9)
implies (2) and (3), which together with (1) and (4) imply (5), (6) and
(7) (Lemmas 2.2 and 2.3), and finally, (1), (7) and (9) jointly imply (8)
(Lemma 2.4).

For the converse, note that in ∗-semirings, (8) and (5) imply (7), so that
we may apply Lemma 2.5 to derive (1). �

We let Ax denote the system of equations consisting of (1), (4) and (9).
Note that every semiring satisfying all of the equations in Ax is idempotent.

The following corollary offers generalizations of equations (8) and (9).
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Corollary 2.7 In commutative ∗-semirings satisfying Ax we have

(y1 + . . . + yk)∗ = y∗1 . . . y∗k
(xy∗1 . . . y∗k)

∗ = 1 + xx∗y∗1 . . . y∗k ,

for all k ≥ 0.

Of course, the empty sum is 0 and the empty product is 1.

Call a rational term a monomial if it is a commutative word, i.e., a
product of variables, where we take advantage of the associativity and com-
mutativity of the product. A nonempty monomial is a monomial which is a
nonempty product. A star monomial is a term of the form uv∗1 . . . v∗k, where
k ≥ 0, and u, v1, . . . , vk are monomials such that no vi is empty.

Proposition 2.8 (Salomaa [29], Conway [6]) In commutative ∗-semi-
rings satisfying Ax, each rational term is equivalent to a finite sum of star
monomials.

Proof. This can be proven by induction on the structure of the rational term
making use of Corollary 2.7. �

Rational terms that are sums of star monomials are called terms in normal
form. Again, we take advantage of the associativity and commutativity of
+. By (5) and (7), we may also require that the summands of each normal
form term be pairwise different, and that in each star monomial uv∗1 . . . v∗k
which is a summand, the words vi be pairwise different. Note that the term
0, i.e., the empty sum of star monomials, is in normal form.

Corollary 2.9 For each rational term t and variable x there exist rational
terms r and s such that s does not contain x and t = rx + s holds in all
commutative ∗-semirings satisfying Ax.

Proof. Either by structural induction or by Proposition 2.8. �

3 µ-semirings

Recall the definition of µ-terms from the introduction. The variable x is
bound in the term µx.t. The set of free variables in a term is defined as
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usual. We call a term finite if it contains no subterm of the form µx.t.
Below we will sometimes write t(x1, . . . , xn) or t(~x), where ~x = (x1, . . . , xn)
is a vector of different variables, to indicate that the free variables of term
t belong to the set {x1, . . . , xn}. We identify any two terms that only differ
in the bound variables. Substitution t[t′/x] and simultaneous substitution
t[(t1, . . . , tn)/(x1, . . . , xn)] are defined as usual. When t = t(x1, . . . , xn), we
also write t(t1, . . . , tn) for t[(t1, . . . , tn)/(x1, . . . , xn)].

A µ-semiring is a semiring A together with an interpretation of the µ-
terms t as functions tA : AX → A, where X denotes the set of all variables,
such that the following hold:

1. When t is a variable x, then tA is the corresponding projection AX →
A, i.e., tA(ρ) = ρ(x), for all ρ : X → A. Moreover, 0A and 1A

are the corresponding constants in the semiring, and (t + s)A(ρ) =
tA(ρ) + sA(ρ) and (t · s)A(ρ) = tA(ρ) · sA(ρ), the sum and product of
tA(ρ) and sA(ρ) in the underlying semiring of A, for all µ-terms t and
s, and for all ρ : X → A.

2. For any µ-terms t, t′ and variable x, the function (t[t′/x])A is the “com-
posite” of the functions tA and t′A, so that

(t[t′/x])A(ρ) = tA(ρ[x 7→ t′A(ρ)]) ,

where for any ρ : X → A and b ∈ A, the function ρ[x 7→ b] is the same
as ρ except that it maps x to b.

3. If t, t′ are µ-terms with tA = t′A, then for all variables x, it also holds
that (µx.t)A = (µx.t′)A.

It follows that tA depends at most on those arguments that correspond to
the variables with at least one free occurrence in t. Indeed, if x has no free
occurrence in t and y does not occur in t, then we have

tA(ρ) = (t[y/x])A(ρ)
= tA(ρ[x 7→ ρ(y)]) ,

for all ρ : X → A. Thus, for all a, b ∈ A and ρ : X → A,

tA(ρ[x 7→ a]) = tA(ρ[x 7→ ρ(y)])
= tA(ρ[x 7→ b]) .
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When the underlying semiring of A is commutative, or idempotent, we call
A a commutative, or idempotent, µ-semiring. A ci-µ-semiring is both com-
mutative and idempotent. Morphism of µ-semirings commute with the func-
tions induced by the µ-terms. It is clear that any such morphism is a semi-
ring morphism.

Suppose that t = t(x1, . . . , xn) is a µ-term and A is a µ-semiring. When
ρ : X → A with xi 7→ ai, i = 1, . . . , n, below we will write tA(a1, . . . , an), or
just t(a1, . . . , an) for tA(ρ). Note that for finite terms t, the function tA is
just the function induced by t over the underlying semiring of A.

Suppose that t and t′ are µ-terms. We say that an equation or identity t =
t′ holds in a µ-semiring A, or is satisfied by A, if t and t′ induce equal func-
tions in A, i.e., when tA = t′A holds. Note that if t = t′ holds in A, then so
does any equation t[(t1, . . . , tn)/(x1, . . . , xn)] = t′[(t1, . . . , tn)/(x1, . . . , xn)]
as does µx.t = µx.t′, for all variables x.

We will be interested in interpretations where µx.t provides solution to
the fixed point equation x = t. In such interpretations, fixed points usually
satisfy several equational properties, cf. [4]. Below, in addition to the fixed
point identity

µx.t = t[µx.t/x] , (10)

we will need the diagonal identity

µx.µy.t = µx.t[x/y] (11)

and the parameter identity

(µz.xz + 1)y = µz.xz + y . (12)

Each rational term r may be identified with a µ-term. When r is 0, 1, or a
variable, then r is also a µ-term. Moreover, when r is the sum or product
of rational terms r1 and r2, then the µ-term corresponding to r is just the
sum or product of the µ-terms corresponding to the ri, i = 1, 2. Finally, if
r is s∗, then the µ-term corresponding to r is µx.tx + 1, where x is a fresh
variable and t is the µ-term corresponding to s. Below we will identify any
rational term with the corresponding µ-term. Note that this identification
does not conflict with term substitution. Thus, the parameter identity (12)
may be reformulated as

x∗y = µz.xz + y .
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Note also that any µ-semiring A is automatically a ∗-semiring with star
operation a 7→ tA(a), where t is the term x∗ = µz.xz + 1. Moreover, µ-
semiring morphisms preserve star.

One can also prove that any µ-semiring satisfying (10) and (12) satisfies
(2).

3.1 Lemmas for µ-terms

Our aim in the remainder of this paper will be to offer a purely equational
proof of Parikh’s classic theorem [25]. In our formulation, Parikh’s theorem
takes the form of a “normal form” theorem for µ-terms. We now present
some lemmas that will be useful in the proof of our main result.

Lemma 3.1 Any µ-semiring satisfying (11) and (12) also satisfies (1).

Proof.

(x + y)∗ = µz.(x + y)z + 1
= µz.xz + yz + 1
= µz1.µz2.xz2 + yz1 + 1
= µz1.x

∗(yz1 + 1)
= µz1.(x∗y)z1 + x∗

= (x∗y)∗x∗ . �

The next technical lemma introduces an equation (see equation (13) below)
that, together with the diagonal and parameter identities, will allow us to
eliminate every occurrence of µ in terms. This will be crucial in our promised
equational proof of Parikh’s theorem.

Lemma 3.2 Suppose that

µx.(yx)∗z + u = (y(z + u))∗z + u (13)

holds in a commutative µ-semiring satisfying the diagonal identity (11) and
the parameter identity (12). Then so does the equation

µx.(yxk)∗z + u = (y(z + u)k)∗z + u , (14)

for every k ≥ 1.

11



Proof. We prove the claim by induction on k. The basis case k = 1 holds
by assumption. For the induction step we argue thus:

µx.(yxk+1)∗z + u = µv.µx.(yvxk)∗z + u

= µv.(yv(z + u)k)∗z + u

= µv.(y(z + u)kv)∗z + u

= (y(z + u)k(z + u))∗z + u

= (y(z + u)k+1)∗z + u . �

Lemma 3.3 If (13) holds in a commutative µ-semiring satisfying the diag-
onal identity (11) and the parameter identity (12), then so does

µx.yxk + z = (yzk−1)∗z ,

for each k ≥ 1.

Proof. This is clear for k = 1. Assume that k > 1. Then, by (11), (12) and
(14),

µx.yxk + z = µx.µu.yxk−1u + z

= µx.(yxk−1)∗z
= (yzk−1)∗z . �

4 Normal form

We let µAx denote the system of equations consisting of the diagonal iden-
tity (11), the parameter identity (12), equation (13), and the equations
(4), (9). Note that in commutative µ-semirings, these equations imply (1)
(Lemma 3.1), so that in such semirings, all of the equations (1)–(9) hold.
In particular, all of the equations in Ax hold. Moreover, any commutative
µ-semiring satisfying µAx is idempotent and is thus a ci-µ-semiring.

Below we will write µAx |= t = t′ to denote that the equation t = t′

between the µ-terms t and t′ holds in all commutative µ-semirings satisfying
µAx (or, equivalently, that t = t′ is provable from µAx using the rules of
equational logic for µ-terms [4]). In the same way, we write Ax |= r = r′, for
rational terms r and r′, to denote that any commutative ∗-semiring satisfying
Ax also satisfies the equation r = r′.
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Theorem 4.1 (Parikh’s theorem) In commutative µ-semirings satisfy-
ing µAx, any µ-term is equivalent to a rational term in normal form.

The remainder of this section will be devoted to the proof of this theorem.
In fact, as will be clear in what follows, Theorem 4.1 will be a corollary of
a result to the effect that any fixed point equation

x = t(x, y1, . . . , yn) ,

where t(x, y1, . . . , yn) is a rational term, has a canonical rational solution
r(y1, . . . , yn) (cf. Theorem 4.5 and Proposition 4.6 to follow). The following
Proposition 4.2 and Lemmas 4.3 and 4.4 are stepping stones in the proof of
this result.

Proposition 4.2 For every rational term r(x, ~y) and variables u, v, it holds
that

Ax |= r(u∗v, ~y) · u∗ = r(v, ~y) · u∗ .

Proof. Below we will write just r(x) for r(x, ~y).

First we establish the claim for star monomials which are of the form
r(x) = a0x

k0(a1x
k1)∗ . . . (anxkn)∗, where the ai do not contain any occur-

rence of x. We have:

r(u∗v) · u∗ = a0(u∗v)k0(a1(u∗v)k1)∗ . . . (an(u∗v)kn)∗u∗

= a0v
k0(a1v

k1u∗)∗ . . . (anvknu∗)∗u∗

= a0v
k0u∗(a1v

k1u∗)∗ . . . u∗(anvknu∗)∗u∗

= a0v
k0u∗(a1v

k1)∗ . . . u∗(anvkn)∗u∗

= a0v
k0(a1v

k1)∗ . . . (anvkn)∗u∗

= r(v) · u∗ .

Since any rational term is equivalent to a finite sum of star monomials and
the claim clearly holds if r(x) is 0, the proof of the proposition can be
completed by showing that if our claim holds for r1(x) and r2(x), then it
holds for r(x) = r1(x) + r2(x). But this is immediate, since in this case,

r(u∗v) · u∗ = (r1(u∗v) + r2(u∗v)) · u∗

= r1(u∗v)u∗ + r2(u∗v)u∗

= r1(v)u∗ + r2(v)u∗

= (r1(v) + r2(v)) · u∗

= r(v) · u∗ . �
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Suppose that r(x, ~y) and s(~y) are rational terms. With respect to our axiom
system µAx, the equations

µx.r(x, ~y) · x + s(~y) = r(s(~y), ~y)∗ · s(~y) (15)

and

µx.r(x, ~y)∗ · s(~y) = r(s(~y), ~y)∗ · s(~y) (16)

are equivalent. Indeed, by the diagonal identity (11), we have

µx.r(x, ~y) · x + s(~y) = µx.µz.r(x, ~y) · z + s(~y)
= µx.r(x, ~y)∗ · s(~y) .

Below we will prove that (15) and (16) always hold under µAx.

Lemma 4.3 Suppose that p(x, ~y) and q(x, ~y) are rational terms such that
for all rational terms a(~y) and c(~y) it holds that

µAx |= µx.a(~y) · p(x, ~y) · x + c(~y) = (a(~y) · p(c(~y), ~y))∗ · c(~y)
µAx |= µx.a(~y) · q(x, ~y) · x + c(~y) = (a(~y) · q(c(~y), ~y))∗ · c(~y) .

Then, for the product r(x, ~y) = p(x, ~y) · q(x, ~y) and for all rational terms
a(~y) and c(~y), we have

µAx |= µx.a(~y) · r(x, ~y) · x + c(~y) = (a(~y) · r(c(~y), ~y))∗ · c(~y) .

Proof. Below we write r(x) in lieu of r(x, ~y), and abbreviate a(~y) and c(~y)
to a and c, respectively. We argue thus:

µx.a · r(x) · x + c = µx.a · p(x) · q(x) · x + c

= µx.µz.a · p(x) · q(z) · z + c

= µx.(a · p(x) · q(c))∗ · c
= µx.µz.a · q(c) · p(x) · z + c

= µx.a · q(c) · p(x) · x + c

= (a · q(c) · p(c))∗ · c
= (a · r(c))∗ · c . �
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Lemma 4.4 For all star monomials r(x, ~y) and rational terms a(~y) and c(~y),
it holds that

µAx |= µx.a(~y) · r(x, ~y) · x + c(~y) = (a(~y) · r(c(~y), ~y))∗ · c(~y) .

Proof. Below we will write just r(x) for r(x, ~y), a for a(~y), etc. We argue
by induction on the “length” of r.

When r(x) is 1, then µx.ax + c = a∗c holds by the parameter identity.
In the induction step, we have that r(x) = p(x)q(x) where q(x) is a star
monomial and p(x) = bxk or p(x) = (bxk)∗. The result follows by the
induction assumption applied to q(x) and Lemmas 4.3, 3.2 and 3.3. �

We are now ready to prove the promised result to the effect that, over
µ-semirings satisfying µAx, rational fixed point equations have canonical
rational solutions (cf. Proposition 4.6 to follow). Apart from its intrinsic
interest, this theorem will also have application in our proof of Parikh’s
theorem.

Theorem 4.5 For every rational terms r(x, ~y) and s(~y), we have that

µAx |= µx.r(x, ~y) · x + s(~y) = r(s(~y), ~y)∗ · s(~y) .

Proof. We prove this equation in the equivalent form

µx.r(x, ~y)∗ · s(~y) = r(s(~y), ~y)∗ · s(~y) ,

i.e., writing just r(x) for r(x, ~y) and c for s(~y),

µx.r(x)∗ · c = r(c)∗ · c .

We have already shown in Lemma 4.4 that this holds when r(x) is a star
monomial. Since every rational term is equivalent to a sum of star mono-
mials, and since the claim is obvious for the term 0, to complete the proof
it is sufficient to show that if

µAx |= µx.ri(x)∗ · c = ri(c)∗ · c, i = 1, 2,

then

µAx |= µx.r(x)∗ · c = r(c)∗ · c ,
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for r(x) = r1(x) + r2(x). Using Proposition 4.2, this is shown as follows:

µx.r(x)∗ · c = µx.(r1(x) + r2(x))∗ · c
= µx.r1(x)∗ · r2(x)∗ · c
= µx.µy.r1(x)∗ · r2(y)∗ · c
= µx.r2(r1(x)∗c)∗ · r1(x)∗ · c
= µx.r2(c)∗ · r1(x)∗ · c
= r1(r2(c)∗c)∗ · r2(c)∗ · c
= r1(c)∗ · r2(c)∗ · c
= (r1(c) + r2(c))∗ · c
= r(c)∗ · c . �

Proof of Theorem 4.1, completed. Recall that we need to show that, in
commutative µ-semirings satisfying µAx, each µ-term t = t(~y) is equivalent
to a rational term in normal form. Actually, since by Proposition 2.8, with
respect to the equations in Ax every rational term is equivalent to a rational
term in normal form, it suffices to prove that in commutative µ-semirings
satisfying µAx, each µ-term is equivalent to a rational term. We prove this
claim by induction on the structure of t. When t is a variable or a constant,
our claim is obvious. In the induction step, there are three cases to deal
with. The cases that t is the sum or product of two terms are obvious, since
rational terms are closed with respect to these operations. The nontrivial
case is when t is µx.t′(x, ~y), for some µ-term t′(x, ~y) and variable x. But, by
the induction assumption, there is a rational term equivalent to t′, and, by
Corollary 2.9, we can assume that this term is of the form r(x, ~y) · x + s(~y).
But then, by Theorem 4.5, t is equivalent modulo µAx to r(s(~y), ~y)∗ · s(~y),
which is a rational term. �

Proposition 4.6 With respect to the axiom system µAx, the fixed point
identity (10) holds for all µ-terms.

Proof. Suppose that t(x, ~y) is a µ-term. By Theorem 4.1 and Corollary 2.9,
we know that there exist rational terms r(x, ~y) and s(~y) such that, modulo
our axioms, t(x, ~y) = r(x, ~y) · x + s(~y). By Theorem 4.5, we have that, with
respect to µAx,

µx.t(x, ~y) = r(s(~y), ~y)∗ · s(~y) .
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Thus, using Proposition 4.2,

t(µx.t, ~y) = r(r(s(~y), ~y)∗ · s(~y), ~y) · r(s(~y), ~y)∗ · s(~y) + s(~y)
= r(s(~y), ~y) · r(s(~y), ~y)∗ · s(~y) + s(~y)
= (r(s(~y), ~y) · r(s(~y), ~y)∗ + 1) · s(~y)
= r(s(~y), ~y)∗ · s(~y)
= µx.t(x, ~y) . �

5 Derivatives

The derivative tx of a rational term t with respect to a variable is defined
as follows (cf. [14, Sect. 3.2]).

• If t is 0, 1, or a variable other than x, then tx = 0. If t is the variable
x, then tx = 1.

• If t is r + s, for rational terms r, s, then tx = rx + sx.

• If t is rs, for rational terms r, s, then tx = rxs + rsx.

• If t = s∗, for a rational term s, then tx = s∗sx.

Intuitively, if we interpret t as a commutative rational language, then tx
denotes the rational language consisting of all the commutative words that
can be obtained from those in t by deleting one occurrence of the letter x. We
refer the interested reader to [6, Chapter 5] and [14] for more information on
derivatives of rational expressions and further applications. Below, we shall
use derivatives to offer another characterization of the rational solutions of
rational fixed point equations (cf. Theorem 5.5 to follow).

We omit the simple proof of the following fact.

Lemma 5.1 If r does not contain any occurrence of x, then Ax |= rx = 0.

Proposition 5.2 If Ax |= r = s, for rational terms r, s, then Ax |= rx =
sx, for all variables x, i.e., derivation is stable with respect to Ax.

Proof. By the above definition, we have that for all rational terms r, s, t
with Ax |= rx = sx, also Ax |= (r + t)x = (s + t)x, Ax |= (rt)x = (st)x, and
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Ax |= (r∗)x = (s∗)x. Thus, to complete the proof, we only need to show
that if r = s is a substitution instance of one of the axioms in Ax, then
Ax |= rx = sx, for all variables x. This is clear for (4), since the derivatives
with respect to any variable of both sides of this equation are 0. As for (9),
we have, for any rational terms s, t and any variable x,

((st∗)∗)x = (st∗)∗(sxt∗ + st∗tx)
= (1 + ss∗t∗)(sxt∗ + st∗tx)
= sxt∗ + stxt

∗ + sxss
∗t∗ + sstxs

∗t∗

= sxs∗t∗ + stxs
∗t∗

= sxs∗t∗ + ssxs
∗t∗ + ss∗txt∗

= (1 + ss∗t∗)x .

Since with respect to the other axioms, (1) is equivalent to (8), the proof can
be completed by showing that Ax |= ((s + t)∗)x = (s∗t∗)x, for all rational
terms s, t. But

((s + t)∗)x = (s + t)∗(sx + tx)
= s∗t∗(sx + tx)
= s∗sxt

∗ + s∗t∗tx
= (s∗t∗)x . �

Lemma 5.3 For all rational terms r and variables x,

Ax |= rxx ≤ r .

Proof. We prove this by induction on the structure of r. When r is 0, 1, or
a variable other than x, we have by Ax that rxx = 0. When r is s + t, then
rxx = sxx + txx ≤ s + t = r, by the induction assumption. Suppose now
that r is of the form st. Then, it holds that

rxx = sxtx + stxx ≤ st + st = st ,

by (5) and the induction assumption. Finally, if r is s∗, for some rational
term s, then rx = s∗sx, so that by using the fixed point equation (2), we
have that

rxx = s∗sxx ≤ s∗s ≤ ss∗ + 1 = s∗ = r . �

Thinking of a rational term t(x, ~y) as denoting a commutative regular lan-
guage over letters x, ~y, we expect that this language contains all the words
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that can be obtained by adding one occurrence of x to those in the language
denoted by tx, and of those in t in which x does not occur. The following
proposition shows that the axiom system Ax is strong enough to prove this
result.

Proposition 5.4 For all rational terms t(x, ~y), it holds that

Ax |= t(x, ~y) = tx(x, ~y) · x + t(0, ~y) .

Proof. We know that for some rational terms r(x, ~y) and s(~y), it holds that

Ax |= t(x, ~y) = r(x, ~y) · x + s(~y) .

Thus, by substituting 0 for x,

Ax |= t(0, ~y) = s(~y) .

By Proposition 5.2, also

Ax |= tx(x, ~y) = (r(x, ~y)x + s(~y))x = rx(x, ~y)x + r(x, ~y) ,

since sx(~y) = 0 (Lemma 5.1). Since by Lemma 5.3 it holds that

Ax |= rx(x, ~y)x ≤ r(x, ~y) ,

we have that

Ax |= tx(x, ~y) = r(x, ~y) ,

completing the proof. �

Theorem 5.5 For each rational term r(x, ~y) it holds that

µAx |= µx.r(x, ~y) = rx(r(0, ~y), ~y)∗ · r(0, ~y) . (17)

Proof. From Proposition 5.4 and Theorem 4.5. �

Hopkins and Kozen in [14] derive Proposition 5.4 and (17) from the axioms
of Kozen’s semirings [17].
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6 Least pre-fixed points

Suppose that A is a ci-µ-semiring. Thus, A is equipped with the semilattice
order a ≤ b iff a + b = b. We call A algebraically complete [9] if A satisfies
the fixed point and parameter equations (10), (12), and if for all µ-terms t
and ρ : X → A, x ∈ X and a ∈ A,

tA(ρ[x 7→ a]) ≤ a ⇒ (µx.t)A(ρ) ≤ a ,

i.e., when A satisfies the least pre-fixed point rule (also known as Park in-
duction rule [26])

t[y/x] ≤ y ⇒ µx.t ≤ y .

Morphisms of algebraically complete ci-semirings are µ-semiring morphisms.
Note that any morphism preserves the partial order.

The most important examples of algebraically complete ci-semirings are
the continuous ci-semirings. Such a semiring is a ci-semiring such that the
supremum of every set B ⊆ A exists, with respect to the semilattice order
≤. Moreover, the · operation is continuous, i.e., it preserves the supremum
of any directed set in each of its arguments. It then follows that the prod-
uct operation is in fact completely additive, i.e., it preserves all suprema.
Morphisms of continuous ci-semirings are continuous semiring morphisms.
We may turn any continuous ci-semiring into an algebraically complete ci-
semiring by defining (µx.t)A(ρ), for each µ-term t and function ρ : X → A,
as the least pre-fixed point of the map a 7→ tA(ρ[x 7→ a]), a ∈ A. It follows
that any morphism of continuous ci-semirings commutes with the functions
induced by the µ-terms and is thus a morphism of algebraically complete
semirings. We will return to continuous ci-semirings in Section 7.

The following facts are well-known and in fact do not require that prod-
uct is commutative. (See, e.g., [4, 24].)

Proposition 6.1 When A is an algebraically complete ci-semiring, each
function tA, induced by a µ-term t, is monotonic with respect to the pointwise
order on AX .

Lemma 6.2 Every algebraically complete ci-semiring satisfies the diagonal
identity (11).
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Our order of business will now be to show that:

Proposition 6.3 Every algebraically complete ci-semiring satisfies all of
the equations in µAx.

For ease of presentation, and for further reference, we break the proof of the
above proposition in several intermediate results. These we now proceed to
present.

Corollary 6.4 Every algebraically complete ci-semiring satisfies (1) and
(2).

Proof. It is clear that in µ-semirings, equation (2) is a particular instance
of the fixed point identity (10). The fact that (1) holds in all algebraically
complete ci-semirings follows from Lemmas 6.2 and 3.1. �

For a µ-term t(x, ~y), define the sequence of µ-terms tk(x, ~y), k ≥ 0, by
induction on k:

t0(x, ~y) = x

tk+1(x, ~y) = t(tk(x, ~y), ~y) .

Below we will make use of the following simple property of algebraically
complete ci-semirings A, which is easily proved by using the monotonicity
of the term functions (Proposition 6.1): For all µ-terms t(x, y1, . . . , yn) and
all b1, . . . , bn ∈ A and k ≥ 0, if

tkA(0, b1, . . . , bn) = tk+1
A (0, b1, . . . , bn) ,

then

(µx.t)A(b1, . . . , bn) = tkA(0, b1, . . . , bn) .

Thus, any algebraically complete ci-semiring satisfies

tk(0, ~y) = tk+1(0, ~y) ⇒ µx.t = tk(0, ~y) , (18)

for all µ-terms t, variables x and for all k ≥ 0.

Lemma 6.5 Every algebraically complete ci-semiring satisfies (4).
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Proof. Suppose that A is an algebraically complete ci-semiring. Let t(x)
denote the term x + 1. Then tA(0) = 1 = 1 + 1 = t2A(0), so that 1∗ =
(µx.t)A = tA(0) = 1, proving that (4) holds in A. �

Corollary 6.6 Each of the equations (1)–(7) holds in all algebraically
complete ci-semirings.

Proof. First note that (5) holds by assumption in all ci-semirings. Moreover,
we already know that (1), (2) and (4) hold in all algebraically complete ci-
semirings. But it was shown in Section 2 that in ∗-semirings, these equations
imply (3), (6) and (7), cf. Lemmas 2.1, 2.2 and 2.3. �

Lemma 6.7 Every algebraically complete ci-semiring satisfies (9).

Proof. By Corollary 6.6 we have that

(xy∗)∗ = xy∗(xy∗)∗ + 1
≥ xy∗x∗ + 1
= 1 + xx∗y∗

holds in all algebraically complete semirings. As for the converse, suppose
that A is an algebraically complete ci-semiring and a, b ∈ A. We have

ab∗(1 + aa∗b∗) = ab∗ + a2a∗b∗

= aa∗b∗

≤ 1 + aa∗b∗ .

Thus, (ab∗)∗ ≤ 1 + aa∗b∗ holds, by the least pre-fixed point rule. �

In light of Corollary 2.6 and of the previous results, we have that:

Corollary 6.8 Every algebraically complete ci-semiring satisfies all of the
equations (1)–(9).

The following result gives the missing ingredient in the proof of Proposi-
tion 6.3.

Lemma 6.9 Every algebraically complete ci-semiring satisfies (13).
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Proof. Let a, b, c be elements of an algebraically complete ci-semiring A,
and let f denote the function A → A, x 7→ (ax)∗b + c. By Corollary 6.8, we
have that:

f(0) = b + c

f2(0) = (a(b + c))∗b + c

= (ab)∗(ac)∗b + c

f3(0) = f2(0) .

Indeed,

f3(0) = [a((ab)∗(ac)∗b + c)]∗b + c

= [ab(ab)∗(ac)∗ + ac]∗b + c

= [ab(ab)∗(ac)∗]∗(ac)∗b + c

= (1 + ab(ab)∗(ac)∗)(ac)∗b + c

= [(ac)∗ + ab(ab)∗(ac)∗]b + c

= [1 + ab(ab)∗](ac)∗b + c

= (ab)∗(ac)∗b + c .

It follows that f2(0) = (a(b + c))∗b + c is the least pre-fixed point of f , and
thus equals µx.(ax)∗b + c. �

By Proposition 6.3 and Theorem 4.1, we can derive the following corollary,
which was obtained, in the setting of Kozen’s semirings, in [14].

Corollary 6.10 (Hopkins and Kozen [14]) For each µ-term t there is
a rational term s in normal form such that t = s holds in all algebraically
complete ci-semirings, and hence in all continuous ci-semirings.

In fact, if r is any rational term such that µAx |= t = r, then we have that
t = r holds in all algebraically complete ci-semirings.

In the proof of Lemma 6.9, in addition to some equations, we only used
a weak property of least pre-fixed points, namely (18) for k = 2. We thus
have:

Proposition 6.11 For every µ-term t there is a rational term r in normal
form such that t = r holds in all commutative µ-semirings satisfying the
diagonal and parameter equations (11), (12), the equations (4), (9), and the
implication (18) for k = 2.

23



As a consequence of the above result, we have that a very weak form of the
least pre-fixed point rule suffices to establish Parikh’s theorem.

7 Completeness

Redko [28] supplied a (necessarily infinite) basis of the rational equations of
commutative languages, and hence of ci-∗-semirings derived from continuous
ci-semirings. However, as pointed out in Conway [6], the proof given in [28]
(and the one included in [29]) is incomplete, so that Pilling’s proof, reported
in [6], completes Redko’s argument.

We use Redko’s theorem to prove:

Theorem 7.1 The commutative semiring equations together with those in
µAx and the equations

x∗y∗ = (xy)∗(x∗ + y∗) (19)
x∗ = (xp)∗(1 + x + . . . + xp−1) , (20)

for all prime numbers p, form an equational basis of the class of (µ-semirings
derived from) continuous ci-semirings.

Proof. Let E denote the system of equations given in the statement of the
theorem. Suppose that t1, t2 are µ-terms such that the equation t1 = t2 holds
in all continuous ci-semirings. We know that there exist rational terms r1, r2

with µAx |= ti = ri, i = 1, 2. By Redko’s theorem, the rational equations
in E are complete for the rational equations that hold in continuous ci-
semirings. Hence, E proves r1 = r2 and thus t1 = t2. The proof is completed
by noting that all of the equations in E hold in all continuous ci-semirings.

�

In fact, the system given in the preceding theorem is redundant. As shown
in [6], one may omit equation (9).

Corollary 7.2 An equation between µ-terms holds in all continuous ci-
semirings iff it holds in all algebraically complete ci-semirings.

Proof. This follows if we can derive the equations (19) and (20) in all
algebraically complete ci-semirings. But this was done in [17]. �
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As mentioned in the introduction, for each set Σ, the semiring LΣ⊕ of all sub-
sets of Σ⊕, the free commutative monoid generated by Σ, is freely generated
by Σ (more precisely, by the singleton sets corresponding to the elements of
Σ) in the class of all continuous ci-semirings. This means that if S is any
continuous ci-semiring and h is a function Σ → S, then h extends to a unique
continuous semiring morphism LΣ⊕ → S. It is well-known that each commu-
tative context-free language over Σ, viz. the image of a context-free language
in Σ∗ under the canonical morphism Σ∗ → Σ⊕, is the first component of the
least solution of a system of “polynomial fixed point equations” over LΣ⊕ .
Moreover, one can solve systems of fixed point equations by the method of
successive elimination of the variables (also known as Gaussian elimination,
cf. [1, 7]). It follows that the commutative context-free languages over Σ
are exactly those of the form L = tLΣ⊕ ({σ1}, . . . , {σn}), where t(x1, . . . , xn)
is any µ-term and each σi is a letter in Σ. But by Corollary 6.10, any such L
can be constructed from the singletons and the constants 0, 1 by the rational
operations of +, · and ∗. We thus have that every commutative context-free
language is rational, a statement that is very close to Parikh’s [25] original
formulation of this result.

Remark 7.3 By Corollary 7.2, algebraically complete ci-semirings and con-
tinuous ci-semirings satisfy the same equations between µ-terms. Thus, the
fact that Parikh’s theorem holds in all algebraically complete ci-semirings
is no stronger than the result that Parikh’s theorem holds in all continuous
ci-semirings (cf. Corollary 6.10).

Let CRΣ⊕ denote the collection of all commutative context-free, i.e., ra-
tional languages in Σ⊕. Then CRΣ⊕ is closed under the functions induced
by the µ-terms. It follows that CRΣ⊕ is itself a ci-µ-semiring, in fact an alge-
braically complete ci-semiring, and thus a ci-∗-semiring. As a ci-∗-semiring,
CRΣ⊕ is freely generated by Σ in the class of all ci-∗-semirings satisfying
Redko’s axioms. A variety of µ-semirings is any class of µ-semirings con-
taining all µ-semirings that satisfy all of the equations that hold in every
member of the variety.

By our previous results we have:

Corollary 7.4 CRΣ⊕, as a ci-µ-semiring, is freely generated by Σ in each
of the following classes of µ-semirings:
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1. The class of all ci-µ-semirings satisfying the equations µAx and (19)
and (20).

2. The class of all ci-µ-semirings that satisfy every equation that holds
in all continuous ci-semirings.

3. The class of all algebraically complete ci-semirings.

Proof. By Theorem 7.1, the first two classes are actually the same, and
by Corollary 7.2, this class contains the third. Thus, since CRΣ⊕ is an
algebraically complete ci-semiring, we only need to prove that given any
µ-semiring S that satisfies all of the equations of continuous ci-semirings,
and given any function h : Σ → S, there is a unique µ-semiring morphism
h] : CRΣ⊕ → S extending h. But since a version of Birkhoff’s variety the-
orem holds for µ-semirings (and actually for all preiteration algebras), S
is a “morphic image of a sub-µ-semiring of a direct product” [4] of contin-
uous ci-semirings, viewed as ci-µ-semirings. In fact, since equipped with
the pointwise order, any direct product of continuous ci-semirings is itself
continuous, S is a morphic image of a sub-µ-semiring S′′ of a continuous ci-
semiring S′. Let f denote a surjective morphism S′′ → S, and let g be any
function Σ → S′ such that f(g(σ)) = h(σ), for all σ ∈ Σ. Now g extends to
a continuous semiring morphism g] : LΣ⊕ → S′, which is also a µ-semiring
morphism. Thus, the restriction of g] to CRΣ⊕ is a µ-semiring morphism
g : CRΣ⊕ → S′. Moreover, the image of CRΣ⊕ under g is a subset of S′′,
so that we may view g as a morphism CRΣ⊕ → S′′. It follows that the
composite of g with f is a morphism h] : CRΣ⊕ → S which extends h. It is
clear that h] is unique. �
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RS-01-27 Mario Jose Ćaccamo and Glynn Winskel.A Higher-Order Cal-
culus for Categories. June 2001. 24 pp. Appears in Boulton
and Jackson, editors,Theorem Proving in Higher Order Log-
ics: 14th International Conference, TPHOLs ’01 Proceedings,
LNCS 2152, 2001, pages 136–153.

RS-01-26 Ulrik Frendrup and Jesper Nyholm Jensen.A Complete Ax-
iomatization of Simulation for Regular CCS Expressions. June
2001. 18 pp.

RS-01-25 Bernd Grobauer. Cost Recurrences for DML Programs. June
2001. 51 pp. Extended version of a paper to appear in Leroy,
editor, Proceedings of the 6th ACM SIGPLAN International
Conference on Functional Programming, 2001.
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