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Abstract

The complexity of a nondeterministic function is the minimum possi-
ble complexity of its determinisation. The entropy of a nondeterministic
function, F', is minus the logarithm of the ratio between the number of
determinisations of F' and the number of all deterministic functions.

We obtain an upper bound on the complexity of a nondeterministic
function with restricted entropy for the worst case.

These bounds have strong applications in the problem of algorithm de-
randomization. A lot of randomized algorithms can be converted to deter-
ministic ones if we have an effective hitting set with certain parameters (a
set 1s hitting for a set system if it has a nonempty intersection with any set
from the system).

Linial, Luby, Saks and Zuckerman (1993) constructed the best effective
hitting set for the system of k-value, n-dimensional rectangles. The set size
is polynomial in k(logn)/e.

Our bounds of nondeterministic functions complexity offer a possibility
to construct an effective hitting set for this system with almost linear size

in k(logn)/e.

*Research finished while visiting the Computer Science Department of Aarhus University.
The visit was funded by BRICS, Centre of the Danish National Research Foundation.
The research was supported by the ESPRIT II BRA Programme of the EC under contract #7141
(ALCOM 1I), by Grant N 93-011-16005 of the Russian Fund for Fundamental Researches, and
by Grant N 93-1-60-15 of the Russian Ministry of Science and Education.

1



Contents

1 Introduction 3
1.1 Computation and complexity of nondeterministic functions 3
1.2 Previous and new results . . . . . . . . . ... .. ... .. 5
1.3 Derandomization problem and nondeterministic functions

complexity . . . . ... 6

2 Complexity bounds for the worst case 9
2.1 Lower and preliminary upper bounds . . . . . . . .. . .. 9
2.2 Nonconstructive upper bound for hitting set size . . . . . 11
2.3 Main decomposition methods . . . . . .. ... ... ... 14
2.4 Complexity of the functions with uniform entropy . ... 17
2.5 Uniform mapping classes . . . . . . . . ... ... .. ... 19
2.6 Complexity of the functions with big entropy . . . . . .. 23
2.7 General case . . . . . . . .. 30

3 Hitting set construction 34
3.1 The case of not too small entropy . . . . . ... ... ... 34
3.2 Hash classes of functions . . . . . . . . . . . ... . ... 36
3.3 The case of small entropy . . . . .. ... ... ... ... 39
Acknowledgments 42
References 42
Figures 45



1 Introduction

1.1 Computation and complexity of nondeterminis-
tic functions

Let A and B be finite sets. By Hom(A, B) we denote the system of all

functions (mappings) from the set A into the set B. By B* we denote the

system of all nonempty subsets of the set B. We suppose, that there is

no difference between element b of the set B and element {b} of the set

B*. In that way B C B*. We define
HOM(A, B) = Hom(A, B") .

We say that functions from the set HOM(.A, B) are nondeterministic func-
tions from A into B. It is easy to see, that

Hom(A, B) C HOM(A, B) .

Now we define some relations between the functions from HOM(A, B).

For

f € Hom(A,B) , F € HOM(A,B) ,
we let
fcF = Vae A : f(a) € F(a) .
For
F.G € HOM(A, B) ,
we let

FCG = Vae A : F(a) C G(a) .
For any function F from HOM(A, B) we introduce the following notations:

e P(F) — the relative volume:

| F(a) |
P(F) = :
w =W
e H(F) - the entropy of F:
H(F) = —logP(F)



e M(F) - the domain of F:

M(F) = {a| a€ A, Fla) # B} .

It is easy to see, that

o 1Bl 1B
HIF) = 2 18150 = 20 8 TG0 |

If ¢ is some bijection from Hom(A;, As), then we can define the map-
ping ® such that

¢ : HOM(Ay, B) — HOM(A4, B) ,

®(F) = ¢oF where Vae Ay : (¢oF)(a) =F(o(a)) .
It is easy to check, that for any F, G from HOM(As, B) we have

P(®(F)) = P(F),  H(®(F)) = H(F),

HM(B(F)) = M(F) |
Vf € Hom(Ay, B) : fe F «— &(f) € &(F),
FCG < OF) CG).
We will investigate the complexity of nondeterministic functions from

HOM(A, B). We suppose, that in this case some coding algorithm for the
sets A and B is fixed. We can suppose that

Ag{ovl}rv ro= |—10g|“4|-|7

BC{0.1} .k = [log|B].

Let S(x1,x9,...,2,) be a circuit with k outputs. By S(a) we denote
the output sequence from {0, 1}]C on the input sequence a from {0, 1}".

The circuit S compute nondeterministic function F from HOM(A, B),
if

Vac A : S(a) € F(a) .

The complexity of the nondeterministic function F is minimal possible
complexity of the circuits computing it. We denote the complexity of the
function F by L(F).

In this paper we consider circuits built from elements with two inputs.
We use circuit size as the complexity of circuits.
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If R is a subsystem of HOM(A, B), then we define the Shannon func-
tion of R by:

L(R) = %S%L(F)

We will try to obtain bounds for the values
L(HOM.(A.B)) and  L(HOM™(A,B)),
where
HOM.(A,B) = {F| F € HOM(A,B), P(F) > ¢}  and
HOM™(A,B) = {F| F € HOM(A,B) . H(F) < m} .

It is easy to see, that for e = 27" we have

HOM™(A, B) = HOM.(A,B) .

1.2 Previous and new results

This work is a natural development of the line of almost optimal circuit
design. Shannon (1949) has put the problem and has obtained the first
results in this direction. He defined the function L(n), the worst case
complexity of n-variable boolean function, and has proved that

2" 2"
cg;— < L(n) < ¢p—

— - ?

n n

for some positive constants ¢; and co.
Lupanov(1956) has obtained that the asymptotic behavior of Shannon
function is .
Lin) ~ > .

n
The research that followed has concentrated on the analysis of differ-

ent classes of boolean functions, for example monotone function. Jablon-
sky(1957), Ugolnikov(1976), Pippenger(1978), Andreev(1988) has obtained
interesting results in this area. Lupanov(1965) has developed local cod-
ing principle for this problem. Andreev(1985) has created stronger and
more general method.

Nechiporuk(1965) has considered partial boolean functions. This is
degenerate case of nondeterministic functions, i.e. the system HOM({0,1}",{0,1}).
He has obtained the asymptotic for the Shannon function

m

L(HOM™({0,1}",{0,1})) ~

logm



in the case where the entropy m and the number 2" are not very much
different. Sholomov(1969) had proved this asymptotic behavior for more
general case.

Pippenger(1977) has considered the classes of partial functions with
fixed part of units in case of Nechiporuk(1965) restrictions for the domain
size.

Andreev(1989) has proved the best result, namely

L (HOM™({0,1}",{0,1})) ~

+ O(n) ,

logm

(no restrictions for domain size).
In this paper we consider the problem for the general case of nonde-
terministic functions. We prove that

L (HOM™(A,U)) ~

+ O(n) .
for the sufficiently general case, when
log |U | = o(logm) .

This result has very strong applications in the area of algorithms deran-
domization. We discuss this connection in the next subsection.

1.3 Derandomization problem and nondeterminis-
tic functions complexity

One of the main problems of complexity theory is the derandomization
problem, i.e. effective conversion of randomized algorithms to determin-
istic.

For this problem there are two main approaches. The first is effective
computation of the number of units of boolean circuits. Luby and Veli-
covic (1991), Karpinsky and Luby (1993) have developed this approach.

The second way is effective construction of pseudorandom generators.
Nisan(1990), Even, Goldreich and Luby (1992) have constructed some
restricted pseudorandom generators.

Sipser (1986), Chor and Goldreich (1989), Linial, Luby, Saks and
Zuckerman (1993) have investigated the problem of hitting sets, i.e. weak
variant of pseudorandom generator.



A lot of randomized algorithms can be converted to deterministic
ones, if we have an effective hitting set with certain parameters. This
fact makes actual the problem of its construction.

The set Q is hitting set for the set system R if QN Z # () for any set
Z from R.

Up to now there is no nontrivial results for general cases of all deran-
domization approaches. The hitting set problem has strong connection
with complexity bounds for nondeterministic functions and below we dis-
cuss only this derandomization approach.

The main goal of this problematic is to construct effective hitting
set for the system of sets with restricted complexity of its characteristic
functions. As we have said earlier, there are no nontrivial results about
such hitting set. This fact explains actuality of considerations of simpler
set systems.

By &, we denote the set {0,1,...,x — 1}. For the sequence
A= (A, Ay, ..., A,) from (EF)" we define the corresponding rectangle

Na = A x Ay x...x A, .

By P(N4) we denote the rectangle volume:

oA
PNa) = 1%

- filAd

K

Let
Iﬁ(n,e) = {NA | A € (5:)n , P(NA) > 6} .

Nechiporuk (1965) has obtained the first result about hitting sets for
the system Zy(n,€), in connection with his research of partial boolean
functions complexity. He had proposed deterministic algorithm with the
working time 29, This algorithm constructs for the system Ty(n,€)
hitting set with cardinality O(n/e).

Sipser(1986) has proposed for this problem an algorithm which uses
O(n) random bits. Chor and Goldreich(1989) have created an algorithm
which uses 2n random bits.

The best result for the considered problem is obtained by Linial, Luby,
Saks and Zuckerman (1993). They have proposed deterministic algorithm
of a hitting set construction for the system Z,(n,€). The set cardinality
and the algorithm working time are polynomial in x(logn)/e.



Let | A |= n and ¢ is bijection from Hom (A, {1,2,...,n}).We define
the following mappings

O (&) — Hom(A, &) ,
O* : T.(n) — HOM(A, &) ,
by the conditions
d = (dy,ds,....,d,) = ®(d) (v) = dy re A,

D = (Dy,Dy,...,D,) = ®* (Np)(2) = Dy reA.
It is not difficult to check the following facts:

e ® and ®* are bijections;

e deNp = ®(d) € *(Np) ;

e Vp C N¢ = d*(Np) C *(N¢) ;

e P(Np) = P(P*(Np)) .

In that way the mapping pair (®,®*) is a natural isomorphism be-
tween the systems

((Ex)", Zu(n), €,C, P) and (Hom(A, &), HOM(A, &), €,C,P) .
It is easy to check, that
HOM. (A, &) = @ (Zu(n,€)) .

In new terms the definition of the hitting set is the following:

a set @ C Hom(.A, B) is hitting for the system R C HOM(A, B), if
VFEeRIecQ : feF.

By A(R) we denote the minimal possible element number in the hitting

sets for the system R.
By HomCO?pl(A, U) we denote the set of all functions from Hom(A, i)
with the complexity at most [. If

[ > L(HOM/(A,¢&)) ,
then the set Homco?pl(A, Ex) 1s the hitting set for the system HOM, (A, &,).
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For boolean case this fact was remarked independently in Krichevsky(1994)

and Andreev(1994).

The size of the set Homco?pl(A,l/{) is at most the number of circuits
with complexity [. Consequently the upper bound for Shannon function
L(HOM.,(A,¢&,)) follows the bound of the hitting set size.

The construction of this hitting set includes consideration of all cir-
cuits with complexity [ with conversion on each step of a circuit to the
sequence of its values.

Our bounds of nondeterministic functions complexity offer a possibil-
ity to construct the small hitting set for the system Z(n,€). Its size is
almost linear of (logn)/e in the case

1
logrk = o(loglog —) :
€

We must remark, that trivial lower bound for the hitting set size is 1/e.
In that way we obtain in significant case more strong result then

Linial, Luby, Saks and Zuckerman (1993).

2 Complexity bounds for the worst case

2.1 Lower and preliminary upper bounds

Lemma 1 If
|Alz2, [U[=2,

then
L(HOM™(A,U)) < 8m|U|log|U |,

and for any function ¥ from HOM(A,U) it is true
L(F) < O(1) | M(F) | log [U ] .
Proof. We suppose, that
A C {0,1}", r=[log| Al].

Let F be some function from HOM™(A,U). We will prove by | M(F) |-

induction that
ME)£0 = L(F) < (4] M(F) | =3) (log | U] +1)

9



If | M(F) |= 1, then evidently there exist constant function ¢ from
Hom(A,U) such that c € F, consequently

LF) < Lie) < [log |U[] < (log | U] +1).
We suppose that xq, xs, ..., 2, is the sequence of input variables. Let
Aia = {0,1}7 " x{a} x {0,1}"".
Suppose that | M(F) |> 2, then there exist variable x; such that
ME)NAg#0, MF)NA#0.
We define functions Fy and F; from HOM(A, i) by the following way

Fb) ifbe A,

Fo(b) = { U otherwise ’ o €{0.1} .

It is easy to see, that
M(F) = M(Fy) UM(F), H(F) = H(F,) + H(F)) .
Let w be the selector function from Hom({0,1} x U x U, U), i.e.

u; ifa=1
uy 1if a =0

w(a,up,uy) = {
It is easy to see, that
L(w) < 3log |U[] < 3(log | U |+1).
If f{ € F; and f; € Fy, then

W(xiaflaf()) € F.

Consequently
L(F) < L(F,)+ L(Fy) + L(w) .

For F; and Fj the induction hypothesis is true, and we have
L(F) < ((4[M(Fy) | =3)(log | U |+1)) +
+ (4[| M(Fo) [ =3)(log | U | +1)) + 3(log |U | +1) =

10



= (4| M(F) | =3)(log [U [ +1) .
Ifh#AY CU and V # U then

log|u|>log 4] >L.
|V U -1 = |U]|
Consequently
| U | 1 1
H(F) > > log > =7 = | M(F) [ =
a€M(F) | F(a) | aEM(F) | U | | U |

and we have

| M(F) | < |t | H(F) .
L(F) < (4|U|H(F) - 3)(log |U | +1) < 8| | H(F)(log | U | .
O

2.2 Nonconstructive upper bound for hitting set size

By O(x) we denote any nonnegative function such that
r — 00 — O(x) =o(1) .
By HOM, 4(A,U) we denote the following set
{F| Fe HOM.(A,U) ,Vae A :F(a) |=|U | —¢(a)} ,
and by Homy, (A, &) the following

{o| ¢ €Hom(A, &), > ofa) <1} .

acA

Lemma 2 If
|Alz2, [U[=2,

then
1
log | HOM (A U) | < (log | A| +1log |U | +3) | U | logg :

Proof. We let
|~A|:n7 |M|:k7

¢ € Hom(A, &), F e HOM 4(AU) .

11



We have

Consequently

In that way we have

¢ € Homy (A, &) , where [ = {k In lJ ,

€

and then

HOM, (A, 1) C U HOM., 4(A.U) .

O € Homg,l(A, 8k)

It is easy to check, that

o | HOM. (4.2 | = 1o (TL( 0 )) <

acA

< tog (IL#47) = (logh) 5 ote) <

acA acA
< (logk)l = log (k') .
By (1) for I > 1 we have

| HOM (A, U) | < k' | Homy (A, &) | <

< kl(n—l—l) _ kl(n}l—l) <
n

< k1(4(n+1))l < K(8n) .

[

In the case [ = 0 this bound is true also.

12



Lemma 3 If
|Alz2, [U[=2,

then

1 1+0(1/¢) o))
A (HOM. (A, 1)) < (—) U | log | A| .

€

Proof. For any function F from HOM, (A, ) we have

| {f| feHom(A,U), feF}|

[ FHom(A,U) | P(E) 2 <.

Consequently, by the Nechiporuk (1965) way, we can construct by r steps
the set Q, such that

Q, C Hom(A,U) , | O, |=1r,

| {F | Fe HOM.(A,U), NgnQ, =0} | <
(1—¢) | HOM,(A,U) | < =" | HOM,(A,U) | .

where

Ng = {f| f e Hom(A,U), f € F} .
We let |
r = |= In| HOM.(A,U) || ,
€

and obtain
|{F | Fe HOM. (A, U) , N\pgNQ, =0} | < 1.
Consequently for any function F from HOM, (A, /) we have
NenQ, # 0.

By Lemma 2 we obtain

1
r < — In|HOM (A, U) | +1 <
€

<

[

1
(In|A|+In|U|+3) |U| 11’1; + 1 <

1+0(1/¢)
< (o) e Al

€

13



2.3 Main decomposition methods

Let
C:{O,l}r, A:{Oal}pa 62{071}57
r=p+s, p=1, s> 1. (2)

Let ¢ be some bijection from Hom(A x B,C) and ¢~! is inverse mapping
from Hom(C, A x B). Let

Y1 € Hom(C, A) , Yy € Hom(C, B) ,
and for all ¢ from C
¢~ '(e) = (d(e),va(c)) . (3)

If
F e HOM(C,U), D e HOM(C {0,1}),

G € HOM(A x B,U) , Q € HOM(A,{0,1}) ,
then by F [_, we denote function from HOM(A x B,U) such that

| G(a,b) if Q(a) =«
G |Q:a(a’b) - { U otherwise

and by F |p_, we denote function from HOM(C, ) such that

| F(¢) if D(¢c) =«
F |D:a(c) o { U otherwise

Let w be the selector function from Hom({0,1} x U x U, U) i.c.

u; ifa=1
uy 1if a =0

w(a,up,uy) = {
Lemma 4 If for functions
F € HOM(C,U) , Q € HOM(A,{0,1}) ,
it 1s true, that
Q(a) = {0,1} = Vbe B : (¢poF)(a,b)=U,

then we have, that L(F) is at most
L((¢0F) lgm) + L(F |yaqemo) + L(Q) + L(67) + L(w).

14



Proof. Let g be some function from Hom(A x B,U) and f; some func-
tion from Hom(C,U), such that

g1 € (¢oF) |Q:1 3 foe F |(¢1OQ):0 3 (4)

and q function from Hom(A, {0,1}) such that q € Q. We will check,

that for any ¢ from C the following condition is true

w (a(e1(c)). g1(¢7 (c), folc)) € F(c). (5)

Let
a=1(c), b=1s(c),
If Q(a) =0 then we have

(Y10Q)(c) = Qvn(c)) = Qla) = 0,

consequently
F | s0q)=0lc) = F(c) and fo(c) € F(c) .

In this case we have

w (a(t1(0)), gi(0™'(e), fole) =

= W (0, g7 e)). B(e) = fole) € F(e) .
Consequently (5) is true.
Our condition is equivalent to the following

W (q(a)v gl(av b)a fO(C)) € (gb o F)(av b) ) (6)
because
F(c) = (gb_l o¢o F) (¢) = (¢poF) (gb_l(c)) = (¢poF)(a,b) .

If Q(a) = {0,1}, then (¢ o F)(a,b) = U and (6) is true in any case. If
Q(a) =1, then

(gb © F) |Q:1(a7 b) - (qb o F)(CL, b)
and consequently, by (4), we have

gi(a,b) € (poF)(a,b).
15



In this case we have also, that

W(q(a)v gl(avb)v fO(C)) - W(la gl(aab)v fO(C)) - gl(avb)a

consequently (6) is true.

In that way we can compute the function F by the circuits from the
figure 1. This fact implies necessary bounds for the complexity of the
function F.

O

For G from HOM(A x B,U) we let
G, € HOM(A,U) , Vbe B : Gu(b) = G(a,b).
We define also two other functions:
Qrsa € HOM(A,{0,1}), Croa € HOM(A,U) ,

by the following way

0
Qrg.a(a) = 1 if [ M((¢oF),) =1 ,
0 if [M((¢oF),)[>2
CFa¢a-’4(a) = ﬂ (¢O F) |Q:1(a7b) s where Q - QF,QS,.A .

beB
We must check, that definition of the function Cyg 4 4 is correct, i.e.
for any a from A we have

N (¢oF) |Q:1(a7b) # 0.

beB

If Q(a) # 1, then we have
VbeB : (¢poF)|[q_y(a,b) = U,
and consequently
N (¢poF) |Q:1(a7b) = U.
beB

If Q(a) =1, then

| M((¢poF),) |=1 and Vbe B : (¢poF) |Q:1(a, b) = (¢poF)(a,b) .

16



Consequently in this case there exist element b, from B such that
(¢poF)(a,b,) #U , VbeB,b#b, : (poF)(a,b)=U,

and we have

bg;¢0F)b:K%5)= G(a,ba) -

Lemma 5 It is true, that L(F) at most

L(Croa) + L(F |yuqp, c0) + L(Qroa) + L(vn) + Lw).

Proof. Let ¢ be a function from Hom(A, ), such that ¢ € Cg 4 4, then
for any a from A and for any b from B we have

c(a) € (¢oF)[qoi(ab), (7)

(we suppose, that Q = Qg4 .4) because

cla) € Crpula) = () (¢oF)|qoi(a,q) C (00F)[qy(a;D).

qEB

Let
foeF |1/;1on0 g1 € (¢oF) |Q:1 5 qeqQ,

then function F may be to compute by the circuit on Figure 1. In the
correspondence with (7) we can suppose that

Vae AVbe B : gi(a,b)=c(a).

In this case our circuit transforms into the circuit on the Figure 2 and

we have necessary bound for the complexity of F.
O

2.4 Complexity of the functions with uniform en-

tropy

By HOM 4 (A x B,U) we denote the set of all functions F from HOM(A x B,U)
such that
Vae A : F, € HOM(B,U) .

In this subsection we suppose, that
A={01},t>1, B={0.1}",s>1, (U |>2, k=T[log|U]] .

17



Lemma 6 If1/2 <e, then L(HOM 4 (A x B,U)) at most

| A
log | A |

(1—|—@ (%) +O(| A |)) ((log%) +2log | U | +2loglog | B |) +

1 1+0(1/¢)
B e (2)

€

Proof. Let Q be some hitting set for the system HOM/(B,U), and F
some function from HOM 4 (A x B,U). In this case

YVaoe Adqe Q : q€F,,
because for any a from A we have
F, € HOM,(B,U) .
Consequently there exists the function ¥ from Hom(A, Q) such that
Vae A : V(a)eF,.

Let
p=[log|Qll, P = {0,1}".

In this case there exist functions ¥y and ¥, such that
U, € Hom(A,P) , U, € Hom(P, Q) , U=U,00,.
We define a function ® from Hom(P x B,U) by the following
Vaoe PYbe BB : O(a,b) = (Vq(a)) (D) .
(Py(ar) is function from Hom(B,U).) In this case we have
O(Wy(a),b) = (Va(Wi(a))) (b) = (V10 Wy)(a)) (D) =

= (¥(a))(b) € F,(b) = F(a,b).

Consequently

Yae A, Vbe B : ®(¥i(a),b) € F(a,b),

and we can compute the function F by the circuit on Figure 3. It is easy,
that
L(F) < L(Ty)+ L(®) .

18



Because

¥, € Hom(A,P) = Hom ({0,1},{0.1}") ,
& € Hom(P x B.U) C Hom ({0,1}“5,{0,1}’“) ,
then by Lupanov (1965) bounds we have

[ [

L(¥;) < 27(1—|—®(t))p < 27(1—|—®(t))

((log%) (1 + 0 (%)) + (log |U )1 +6(|U|) + loglog | B |) <

| A
log | A |

(1+@ (%) 1o A |)) (log%-l—?logﬂ/l | +21oglog | B |) |
(8)

because, by Lemma 3,
1 1
p=log|P|< (1—|—@(;))10g;—|—(1—|—@(|1/1|))|1/l| + loglog | B .

By analogical way we have

L@®) < 2 (14+0p+sk < )| B — s lUl oo
S
= ps b = log | B +log [ Q] ~'=
log | U | (1)”@(1/6) 1+0(|u|)
< O | B — U 1 Bl <
< OW | Bl g b T U | og | B| <
1+0(1/¢)
<I18[(Z)  qupenn, )
€

The sum of (8) and (9) is the necessary bound.

2.5 Uniform mapping classes

Let
| Al =|B], H C Hom(A, B) .
The set 'H of mappings is uniform class, if any mapping from H is a

bijection and for any different ai, ay from A and for any different by, by
from B we have

| H |
[AT(A]=1)

|{J| JEH, J(al):bl,J(ag):b2}|:
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Such classes of mappings has been considered in Markovsky, Carter
and Wegman (1978) and in Carter and Wegman (1979). In this subsection
we obtain some new results about such function classes.

By R4 we denote the set of all nonnegative real numbers. If J is some
function from Hom(A, R;) and S C A then we let

ESJ = ZJ(&),

a€eS

@3 = S Ja) IO .
a,besS
az#b

Lemma 7 If H is an uniform class, and
HCHom(AxB,C), |A|>2, |B[>2, (10)

then for any function J from Hom(C, R ) there exists mapping i from
H such that

1
> S ol < TA] o T
acA

Proof. If
a€ A, bi,by € B, by # by,

then, because ‘H is uniform class, we have

2. (9o d)(a;br) - (dod)(abe) = 3. J(o(a,br))- I(o(a,ba)) =

dEH dEH

S {o] oeH, dla,bi)=ci, dla,by) =co} | I(er) T(ez) =
c1,c3 €C

C1 # Co
| H | | H | (2)
= > ———— J(c1) J(cy) = Yo' J .
LS Teren eT(er=1)
C1 # Co
Consequently

Y Y S ge0d =

¢oeH acA

=2 X X (eod)(a,bi)-(poT)(a,by) =

acA b17b2 cB oeH
by # bo
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_ | H | @3 _
S, e TCTIC T T

aEAbthEB
by # by
— | A|(B](B]-1 sy =
BT ”|A||B|<|A||B|—1> :
| HI(B]-1) "] s
G J< 'y
[AllB]-1 7€ |«4|
In that way we have
1 1 2)
— ZEanboJ)g—E( J.
|H|¢>EH(aeA lajxB | | ¢

Our Lemma follow from this bound.
O

Lemma 8 If H is uniform class and (10), then for any function J from
Hom(A, R ) there exists mapping ¢ from H such, that

2
1
Z(E{a}x5¢03—— J) < % J*,

acA | |

1 1 1
Y. S voJ < (2 Yo J + —) Se J° .
aCA(1) 2 A t

where

A() {CL| a€c A, E{a}xB¢OJ> —>c J —I—t}

1
| A
Proof. We will consider the mapping v, wich exists by previous Lemma.
In this case we have

2
Z:(E{a}><l5’¢o']_L J) =

acA | |

> (E{a}xb’ (Vo d)

acA

1
—Q(E{a}xlg@boJ)—EcJ) =
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—_ E.AXB (@bOJ) —|— %E{a}xB@boJ ﬁ(zcj)Q_
ac
1
Q(EAX5¢OJ)|A|E J =
1
= ¢ J? +Z S g ol - ﬁ(ch)Q <

2 ) 1 2 _

< %07 +WE J—ﬁ(EcJ) —

In the following we have also the sequence of transformations.

Y. Yigxp ¥old =
acA(t)

1 1
= > e+ ) (E{a}x6¢03—— J) <
aea | Al acA(l) | A

. (Staes 0T - ﬁch)Q
T e t2 | A
(Staes 0T - ﬁch)Q -
aEA(t) t

1 1 1 ?
= (2 ——>cJ + ) > (E{a}xB¢OJ—— J) <
2 | Al aCA(1) | A

2
1 1 1 1
= (—2 ﬁz J ‘|‘;) > (E{a}xb’ Yol — J) <

acA | |

e J +

d

Lemma 9 If H is uniform class and (10), then for any function J from
Hom(A, {0,1}) there exists mapping v from H such, that

1
Y S voJ < (X J)7,
aceD |A|

where

= {a| a€A, g vod > 1}.
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Proof. We have

2) [ Ziaxp ol
E{a}x[)’@bo‘] - ( 9 ’

2 2
because the function J from Hom(A, {0,1}). If @ € D we have

1
@73 = (EC']) < = (Se I

Spapes od < 250 g0l
Below we suppose, that ¢ is a function from Lemma 7. Then we have

> S ol < X230 40T <

aeD aeD

2 I e 1 2
S ZQEga)}XB@bOJ S QWEE)J S ﬁ(ECJ),
acA
a

Let A and B are copies of the Galua Field GF(q). By HL(A, B) we
denote the set of all ¢ from Hom(.A, B) such that for some x # 0 and y
from GF(q) this mapping is possible to represent in the following way

ola) = x-a + y.
It is easy to see, that
| Hom(A,B) [ = | A[([ A]-1),

and, how it was proved in Carter and Wegman (1979), this class is uni-
form. It is true, because for any different a;, as from A and for any
different by, by from B the system

xoa+y=>0b
xeag+y=Dby

has only one solution.

2.6 Complexity of the functions with big entropy
We suppose, that conditions (2) and (3) are satisfied. Let

F e HOM(C,{), G=¢oF,

23



and t is a real number at least 1. By A(F, ¢,t) we denote the set of all a
from A such that

H(G,) > T&Ff Tt

Let dp 4+ be the characteristic function of the set A(F, ¢,t), i.e

dr 0 € Hom(A{0.1}) . dpgila) = {(1) sinorrise
Lemma 10 If the following conditions are true
HF) < m, [C]’ < m<|Cllog|U].
2lo7gnm <|‘A|<410gm7 112§||Zg|| = 1.
t = (logm)*" (log |u )" 11)

then we have

L((60F) lap, =) < 1670 € /010 4

1/4
—I—m(1+®(|C|)—|—O(1)(W) )

logm logm

Proof. Let

m
€ = eXDPy (—m — t) , Gy = (¢poF) |dF,¢,t:0 )
In this case
Gy € HOMy (A x B.U) .

Consequently we can obtain a bound for its complexity by applying
Lemma 6. We have that L(Gy) is at most

| A
log | A |

1 1
(1—|—@ (E) +O(| A |)) (10g;—|—210g|1/1 | +21oglog | B |) +

1 1+0(1/¢)
+ | B | u oD (E) . (12)

By the applying (11), we obtain

< o4t = i(HtM') <

| A [ A m
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1
S (1 + logm™* log | U |'/* (4 ﬂ) —) _
| A logm/) m

1/4
_oomo oy log | U | |
| A| log m

In that way we have

1 1 1/4
log - < 1+4(0g|u|) .
€ | A | logm

1 log | U [\
< expy (logm (2 + 2 (Olig|m|) )) (13)

because | A | > 2m/logm. Also by (11) we have

and then

[

|1 C | 1/3+0(|C))
| B|= —= < [C}| :
| A

loglog | B| < loglog |C | < (14 ©(m)) loglogm .

Also it is true
logm < (1+0(m))log | A .

Combining this bounds with (12) we have that L(Gy) is at most
| A

logm

m log | U | L/4
|— |1 + 4 + 2log | U | +3loglogm| +
| A | logm

(1+6(m)):

B |u [,

o 1/4
- eXPy ((logm) (; + 2 (lligz |) ) (1+ @(m))) (14)

By using of the bound

m S 11g
— —logm ,
| A — 2
we obtain
1 1/4
SR I og | U | + 2log | U | +3loglogm | <
| A logm
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1/4
< o (1 + o (ME 1) +@<m>) (15)

log | U | (1)4
< 9
logm = \32

If

then, by (13), we have

1/4
! < exp, ((logm) (; + 2 (lolig|717/2|) )(1—|—@(m))) <

1 1\*
og|U| ( ) |
logm 32
log | ¢ [\'/* log | U
(o) ¢ o) (e2141).
logm logm
and we obtain, that

1/4
! < expy ((logm) (; + 2 (lolig|717/2|) )(1—|—@(m))) <

S ml/?—l—@(m) |1/[ |O(1) ‘

-~

But if

then

-~

Consequently in any case we have

1/4
B U O exp, (aogm) (;+2 el )<1+@<m>>) <

logm

< m9/16—|—®(m) |Z/[ |O(1) <
< =1 | A |9/16—|—@(|A|) |1/[ |O(1) <
| A
|C |1+®(IC|)
|./4 |7/16
< |c |3/4+@(|C|) | U |O(1) -
By using bounds (14) and (15), we obtain the necessary bound.

|C |1+®(IC|)
(¢ |2/3)7/16 | U

|u 1°M < oW <
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Lemma 11 If the conditions (11) are true, then there exists a mapping
o from HL(A x B,C) such that

3 |log | U |
(007 ly, ) < o (555000

Proof. Let J be the function from Hom(C, R, ) such that

| U]

J(a) = 10g|F(a)| :

Then we have

SeJ = H(F) < m,
Se J? < B¢ (Jlog | U ) <

By Lemma 8 there exists a mapping ¢ from HL(A x B,C) such that

mlog | U | .

1 m 1
S S (o) < (pil+g)mloslul, (o)

aeS(1) | |
where

S(t) = {a| QEA E{a}xB(¢OJ)Zﬁ t} .
In the following we suppose, that

= ¢oF, G =G |dFy¢yt:1 g
We have, that
U U
H(G,) = ¥ log ool = ¥ log o]

1G] T & CIG(ab)|

= 0 U] = a = o
= S o8 gy ] = S0) = S (0o T)

Consequently the sets A(F,¢,t) and S(t) are equal and from (16) we
have

1 m 1
> Zgxp (90J) < (—274‘ )mlog|1/1| :
a€A(F,0,1) 2| Al

It is easy that

H(G)) = a%H((Gl)a) =
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= > H({(G)) + > H{(Gl) =

a€A(F 6 ,t) a€ A\A(F,6t)

> H(G.) .
acA(F,6,t)

because

B G, 1if QEA(F7¢7t)
(Gl)a - {EZ/[ if aEA\A(F,Qb,t) 7

and the entropy of the function =/ is equal to 0. Consequently

1 m 1

By (11), we have

H(G1) < (((logm)*(log | U [)™*) ((1/2)logm) +

+ (logm) " (log [t |)™*) mlog | U | =
1 (log |U N\ (log |t |\ 3 (log | U |\'"*
— + | — m < = m .
2 \ logm logm 2 \ logm

Lemma 12 If

log | U |
log | C |

1

3(10g|1/1|)1/2
l = 5 m

logm

then

m o 1/4
L(HOM™(C.U)) < logm(1+®(|C|)+O(1)(110§||Zé||) ) N

+ O(1)] ¢ e 1y 1?0 4 nEOM C,U)) .

Proof. If m < |C|**, then our Lemma is true evidently. And in the
following we suppose, that m < | C |3/4.
Let F be some function from HOM™(C,i). We apply Lemma 4 to

this function. We suppose, that d = dg 4, and conditions (11) are true.
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By Lemma 4 and Lupanov (1965) bounds we have

LF) < L((¢oF)[qey) + L(9oF)|4y) +

| A

log | A |
< L((¢OF) |d:1) + L((¢OF) |d:0) +

+ O(m) +o(cplet +equplul . )

+ (1+O0(A)) + OM)log® | C| + O(N)log |U | <

log m

By Lemma 11 we have

H((¢oF) |, < gm (log|u|)

logm
consequently
< L((¢oF) |4oy) < LHOM'(C.U) .

By combining this bound with (17) and with Lemma 10 bound for L ((¢ o F) |4_)
we obtain necessary result.
O

Lemma 13 If

log | U |

A={0,1}", Al>2 L |Ul>2,
Ut JAlz2 o quizz. T

1
<_7
- 2

then

N o 1/4
L(HOM"(A,U)) < W(H@('A'”O(”(Li:ﬁt) ) '

+ 0(1)| A |3/4—|-@(|.A|) |1/[ |O(1) ‘

o0 = (3 ()

By Lemma 12 we have

Proof. Let

. . 1/4
LEOM (A1) < mgéf()k)(H@('A'HO(l)Goi ||1;l’||) ) +
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+ O] A PO 170 1 LEOM™ Y (A4 u)) . (18)
By the iteration of this bound we obtain

LHOM™(A,U)) <

(i M) (1 ro( A+ 0<”G2§ l| ; |')/) ’

i=1 log m(k)
F O] AP 100 4 LHOM (A1)
We suppose that m <| A |log | U |, because

perigdX  HE) = [ A log [U] .

We change minimal k such that m(k +1) < | A [** . In our conditions

we have "
§1%Wl/<§@”_§<1
2 \log | A| - 2 \4 4 ’
consequently
| Allog | U |
E < O(1) lo |A|3/4 < O(1) log | A,

koom m 0 1z
Z-:Z:llogﬁf()k) . log m (1+®(|A|)+O(1)Go§||ﬁ||) ) '

By combining this bound with (18) we obtain the necessary result.

2.7 General case

We suppose, that conditions (2) and (3) are true.

Lemma 14 If the following conditions are true
HF) < m. 2 < m<|C|log|tf].

1
< |«j|4 <9, 0g|1/1|§17
m | U | log"m log | C |
then there exists a mapping ¢ from HL(A x B,C) such that

L(F |y.qp, =) + L(Qroa) < O(m)

m

logm
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Proof. We define the function J from Hom(C, {0,1}) by the following

1 ifF(c)#U
Te) = { 0 otherwise

We suppose, that
FO = F |1/)1OQF,¢,A:O 9

D ={a| a€A. Syypood > 1} .
Earlier we have defined the function Qg 4 4 such that

Qroulc) =0 <<= ceD,
consequently

| M(F)) | = Y S 607

aceD
We suppose, that for the function ¢ assumption of Lemma 9 is true. In
this case we have

[ M(Fo) | < 7S 1) = (| M(F) )’

We has noticed in Lemma 1 that

| M(F) | < H(F) [U ] .

Consequently
1 9 m?| U |” m
M(Fy) | < —m* U < = .
| M(Fo) | < | A | ¢ = m | U | Tog" m | U |*log? m
In that way we have, that
mlog | U |

H(Fo) < |M(Fg)|log|U|<

| U [Plogtm

We apply Lemma 1 for the function F(y and obtain the following bound
for its complexity

L(Fy) < 8 H(Fy) [U |log | U | <

mlog? | U | 2m O(m) m

(19)

= U |log'm = log'm logm
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It is easy to see, that for the complexity of any boolean function f

from Hom(A, {0,1}) the following bound is true
L(f) < O(1) | {a] acA. f(a) =0} |log | A] .

By the construction we have

m
[{a| ae A,Qpsala) =0} | < | M(Fy) | < 77
| U |"1log™ m
Consequently
mlog | A | m m
L < O(l) —— = © :
(QFa¢aA) — |Z/[ |2 10g4m — ( ) 10g3m (m) logm

We combine this bound with the bound (19) and obtain the necessary
result.
O

Theorem 1 If |C|>2, |U|>2, then

LHOM™(C,U)) >

(1=6(m))+01)log|C |,

ogm

(1 +0(m) +0(1) (bg U |) 1/4) T

LHOM™(C,U)) <

logm logm

+ o) log(|Cl) + [UPY

Proof. The lower bound can be obtained analogical by to Sholomov
(1969).

At the first step we suppose, that C = {0,1}" and r > 2. We can
suppose without loss of generality that
log [U/] _ 1

m > 2 < .
logm 2

- ?

because in other case our theorem follow from Lemma 1. Let F be some

function from HOM(C, ). We have, that
H(F) < |C|log U] .
Consequently we can suppose also, that
m < ¢ log | U] .
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We choosee the sets A and B such that
A={0,1}, B={0,1}", p>1,s>1, pt+s=r,
| A

= m | U | log'm

<2, (20)

It is impossible only in the case when
1
m¢um%%zzz|cy

In this case our theorem follow immediately from Lemma 13 and we
suppose, that (20) is true.

We compute our function F according to Lemma 5. We have that
L(F) is at most

L(Croa) + L(Flyuqp, o) + L(Qrou) + L) + L(w).
It is easy to see, that
Liw) < O()log| U] . 21)

The function ) is some boolean linear (r,p)-operator. Consequently
according to Lupanov (1956) bounds for matrix complexity we have

rp log [ C |log | A |
< — —
L) < o+ 0() = 55 o1 log | |
m
@(m)logm +O(1)log |C | . (22)

From Lemma 14 we have that there exists a mapping ¢ from HL(A x B,C)
such that

m

L(F ly.qp, =) + L(Qroa) < O(m) (23)

logm

It is easy to see, that
Croa € HOM™(AU) ,

consequently by applying Lemma 13 to this function we have

L(Croi) < 1+®ﬂAD+OO)me|U4+—
FoA = Togm log | A
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+ 0(1)| ./4 |3/4—|-@(|.A|) |Z/[ |O(1) S

1/4
(1+®(m)+0(1)(10g|1/1 |) ) Flu W (24)

<
logm

logm

The sum of (21), (22), (23), (24) is the necessary bound.
In the following we do not suppose that C = {0,1}". Let

ccp=1{01}Y, 27l<c|c2 .

Let F be some function from HOM™(A,U). We define a function G from
HOM(D, i) such that

_ | F(e) if ceC
Glo) = { U otherwise .

It is easy to see, that
H(G) = H(F) , G € HOM™(D.,U) .

Also it is easy, that some circuit S compute the function G if and only if
this circuit compute the function F. Consequently L(G) = L(F) , and
we have, that

L(HOM™(C,U)) < LHOM™(D.U)) .
It is not difficult to check, that necessary bounds are true, because

[Cl<|D[< 2][C].

3 Hitting set construction

3.1 The case of not too small entropy
By N we denote the set of all natural numbers.

Lemma 15 There ezists a function 1(n,k, p,q) from Hom(N*, N') com-
putable in the time polynomial of

logn + log k 4+ logp + logq
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such that
L(HOM,,,(A,U)) < K[ A|.|U]|,p.q),

and l(n, k,p,q) at most

log(q/p) q log k v 00 N 0(1)
loglog(q/p) (1 0 (p) +O(1)(loglog(q/p)) ) O logn+ I

Proof. This fact follow from the proof of Theorem 1.
O

By Homg’i;(A,l/l) we denote the set of all functions f from Hom(A, )
such that
L(f) < W[ AU p,q).

Lemma 16 The set Homg’i;(A, U) is a hitting set for the system HOM,,,,(A,U).
If
(Al log% > log [ A] loglog | A] .

log [U | < O(] Al) loglog(q/p) . (25)
then
. g\ LTOUAD
| Hom,t (A, U) | < (—) :
’ p
Proof. It is easy to see, that Homg’i;(A,l/l) is a hitting set. Let
| Al=n. [U]=k, 1=Llnk.p.q).

It easy to see, that our bound is at most NS([logn], [logk],1), i.e. the
number of circuits with [logn] inputs, [logk] outputs and with com-
plexity at most [. Lupanov (1965) has proved that this number is at
most

(0(1)(10gn + l))l—l—logk—i—()(l) ‘
From this bound and conditions (25) we obtain, that

log NS([logn], [logk],1) < (14 0O(n)) log]%.

Consequently the necessary bound is true.
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3.2 Hash classes of functions

In this section we are constructing the classes of the special hash map-
pings. Let A and B finite sets. Let § be a subset of A.
We say that mapping ¢ from Hom(A, B) is hash function for S, if

a, ay € S , aq # a9 — gb(al) # gb(ag) .

Let F be a mapping set, F C Hom(A, B). The set F is hash class for
the set S, if in F there exists some hush function for §.
The set F is p-hash class, if it is hash class for any p-elements subset

of A.

Such function classes has been considered in Poljak, Pultr and Rodl
(1983) and in Krichevsky (1985). In this subsection we construct special
p-hash class for our goals.

Let
FioFy, = {¢p1002| o1 € Fi, ¢ € Fo}

for

F1 C Hom(A, B) , F, C Hom(B,C) .

By GF(gq) we denote the g-elements Galua field. For a natural n > 2
and g € GF(q) we let

¢ny € Hom(GF(q)", GF(q)) ,

Opglat.as, ....ay) = ai+asg+asg’ + ...+ ayg" ",
LFNG) = {éng] g€G}. GCGF(g).

The following Lemma 17 and Lemma 18 has been proved by Krichevsky
(1985).

Lemma 17 If

612 (4 )w-n+1. uz2,

then LF,(G) is p-hash class.

Lemma 18 If

F1 C Hom(A, B) , Fy C Hom(B.C) ,
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are ji-hash classes, then
Fio0Fy C Hom(A,C)
s pi-hash class also.
Lemma 19 For any finite sets A, B and natural numbers ji, n, such that
[A>BI>pn., 022, p>1,
there exists y-hash class Homﬁ?;h(A, B) such that
Homﬁ?;h(A, B) C Hom(A,B) ,

log | A | 1+2logu/logn
[log | B |J)

There exist an algorithm for this class construction with working time at

| Hom!™"(A, B) | < u%y(

most

| Homy™M(A, B) | | A [+

{(5)o-01):

= n—pt—pn—-1)+1 <y <|BJ .
Consequently, if we let d = [log | B || then

Proof. We have

(5)o-v+1 <2 <is) (26)
Let s minimal nonnegative integer number such that
| A| < expy(d n®), where expy(z) = 2%. (27)
Let .
C; = GF(expy(d 1)) , 1=0,1,...,s.

In this case we may suppose that
Ci_|_1 = (CZ)U ) iZO,l,...,S—l .

By (26) there exist sets G;, such that
Gcc. 1G1=(h)u-v+1. (28)
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1=0,1,...,s—1.
According to Lemma 17 the function sets
E}"U(QZ) g Hom(CiH,Ci) s i:O,l,...,S—l s
are p-hash classes. Let

Hom"™(C,,Co) = LF,(Gs1) 0 LF(Gsa) 0 ...0 LF,(Go) .

H,n

By Lemma 18 we have, that this function set is p-hash class. By (28) we
have the following upper bound for the class size

s—1
| Homy,"(C,, Co) | < 1:[0 [Gi| < (un) . (29)

By (27) we have that

log| A log| A
o = |8 v 08 [log/ ] 41
log 7 log 7 ’

2 \s 2 (21og pu + logn) 1oglAl)
pn)” < opn eXp( log =
() log 1 llog | B |

log | A | 1+2logu/logn
o)
llog | B ]

Consequently, by (29),

, ( log | A | 1+2logu/logn

Hom"*!(¢,,C p1on
(G Co) log | B |]

H,n

IN

We let
Hom*" (A, B) = {¢} o Hom*"(C,.Co) o {} |

where ¢ some injection from Hom(A,C,;) and ¢ some injection from
Hom(Cy, B).

The upper bound for algorithm working time is trivial.
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3.3 The case of small entropy

Lemma 20 IfQ C Hom(B,U) is a hitting set for the system HOM (B,U)
and F C Hom(A, B) is “ U | log %J -hash function class, then the set FoQ
is hitting for the set system HOM (A, U).

Proof. Let F be some function from HOM, (A, ). We know, that
1
[ MF)|< ple), where  pe) = |[t4]log=]

Let a mapping ¢ from F be hash function for M(F). There exists
such hash function, because the set F is pi(€)-hash class. By ¢ and F we
define new function G such that

G € HOM(B,U) , Gb) = () F(a).
acs=1(b)

This definition is correct because ¢ is hash function for the set M(F) and
consequently in this case for any x from B it is true

| MEF)No~ (D) | < 1. (30)
We have, that
| M(G) | = [M(F)[, H(G) = H(F).

consequently

G € HOM/(B,U) .

Because Q is hitting set for the system HOM,(B, ) , there exist some
function g from Q such that g € G. We consider

f = ¢og e FoQ,
and will be checking that f € F. It means, that
Vae A : f(a) € F(a) . (31)

Let a € A, b = ¢(a). If F(a) = U, then (31) is true for any value
of f(a). Suppose, that F(a) # U. Then, in the correspondence with
function G definition, and (30) we have

Vee o '(b)\{a} : Flx)=U .
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Consequently

and we have

fla) = (pog)la) = g(o(a)) = g(b) € G(b) =F(a),

In the following we suppose

n=[Al, k=[Ul, M:\‘klog%Ja

n = Mloglogloglogn : H — ﬂog(MQUﬂ '

Homg’i;(A,l/l) if 0 > \/logn
Homg’i;*(fl, U) = HomhaSh(.A, {0, 1}9) o Homhit({O, 1}9, U)

1 P4
if 0 < \/logn

Theorem 2 The set Homg’i;*(A,l/l) is a hitting set for the system
HOM,,, (A, U). If

log |U | < O( AJ) loglog(q/p) , (32)
then

D,

. ’ L6 (14)
| Hom"*(A,U) | < (}—?log | A |) :

There exists a algorithm for this set construction with the working time

at most L+o(1)
| ./4 |1+O(1) (log | A |) ’
p/a

Proof. Suppose that 6§ > /logn. In this case we have

6 < 2logpu+logn < (14 0(1))logploglogloglogn ,
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consequently

Viogn
log logloglogn

logp > (1-o(1)) > (logn)"* .

By (32) we have

(logn)'* < logp < (1—6(n))loglog .
p

(9(n)logg > logn loglogn ,
p

and necessary result follows from Lemma 16.

Consider the second case: 6 < y/logn. The set Homg’ig*(A,l/l) is
hitting by Lemma 19 and Lemma 20.

We will be considering two subcases:

i > logloglogn and i < logloglogn .
In the first subcase
logfloglogh < (1+0O(n)) ((logn) + 2log n)? <

< (140(n)) log>n < (1406(n)) (loglogloglogn logu)® <
< (1+6(n)) (loglog plog j1)* < O(n)u = O(n)log .
p

Consequently by the Lemma 16 we have

)H—@(n)) (33)

[ Homly({0.1)".0) | < (2

By the bounds of the Lemma 19 we have

| Hom!h(A4,{0.117)) | < g (logm) 4080/ 181 <

< M?—l—loglogloglogn(logn)l—l—@(n) < M?—I—logﬂ(logn)l—l—@(n) <

AR 1+0
< (—) (log n) o) . (34)
p
By multiplication (33) and (34) we have necessary bound.
In the second subcase also by Lemma 19 we have the following bounds

|Hom2f‘;h(¢4, {O, 1}9)) | < M277 (logn)l—l—?logk/logm <
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< (logloglog n)*tloslosloslosn o0 p 140 < (190 n)1+0M)  (35)

It is easy to see, that in this subcase

| Homys'(A, {0, 1})) | < | Hom(A, {0,1}")) | <

< K < (i1 = (logn)©® (36
By multiplication (35) and (35) we have necessary bound.
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