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Graphs and Decidable Transductions

based on Edge Constraints
�Extended Abstract�

Nils Klarlund� Michael I� Schwartzbach
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Department of Computer Science� University of Aarhus�
Ny Munkegade� DK����� Aarhus� Denmark

fklarlund�misg�daimi�aau�dk

Abstract

We give examples to show that not even c�edNCE� the most general

known notion of context�free graph grammar� is suited for the speci�cation

of some common data structures�

To overcome this problem� we use monadic second�order logic and in�

troduce edge constraints as a new means of specifying a large class of graph

families� Our notion stems from a natural dichotomy found in programming

practice between ordinary pointers forming spanning trees and auxiliary

pointers cutting across�

Our main result is that for certain transformations of graphs de�nable in

monadic second�order logic� the question of whether a graph family given

by a speci�cation A is mapped to a family given by a speci�cation B is

decidable� Thus a decidable Hoare logic arises�

� Introduction

Graphs are complicated objects to describe� Thus various grammars and
logics have emerged for their representation� see the chapter by Cour�
celle ��	� The monadic second�order logic of graphs 
M�L�G� allows a
very large class of graph families to be described� The 
rst�order terms

�The author is supported by a fellowship from the Danish Research Council�
yBasic Research in Computer Science� Centre of the Danish National Research Foundation�
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of the logic denote nodes� The second�order terms denote sets of nodes�
Nodes and edges are related by built�in predicates� The M�L�G formal�
ism is very well�suited for describing properties of some common data
structures� see our earlier paper ��	�

Some authors consider logics that comprise quanti
cation over edges�
For these logics� a fundamental result is that a family of graphs allows
a decidable M�L if and only if the family is speci
ed by a hyperedge�
replacement grammar ��	� Such grammars constitute a natural general�
ization of context�free grammars for string languages�

An even larger class of context�free grammars is known as c�edNCE�
The monadic logic of graph families thus given is undecidable� but certain
other questions� such a non�emptiness of a speci
cation� are decidable�
see ��	�

For programming purposes� we would like to describe common data
structures found in the store such as trees and doubly�linked lists� In�
deed� this is possible within the framework of decidable formalisms as e�g�
hyperedge�replacement grammars� Many other graph shapes are not rep�
resentable� But whatever speci
cation formalism we choose� we should be
able to represent trees with additional� unconstrained pointers�re�ecting
a situation where almost nothing is said about the store� as is the case
with type systems of most imperative programming languages�

We show in this paper that not even c�edNCE grammars are able to
de
ne such families of graphs�

To reason about data structures� it is vital to model the execution
of programs� Therefore� we must formulate ways of transforming graphs
corresponding to statements in a programming language� For program
correctness� we would use Hoare logic to show that the store transforma�
tions leave the graph speci
cations satis
ed�

In this paper we consider restricted graph transformations� called
transductions� which are based on the method of semantic interpreta�
tion ��	 and studied in ��	� Given logical graph speci
cations A and B
and a transduction� we address the problem of verifying what we call
transductional correctness� for any graph satisfying A� any graph result�
ing from the transduction satis
es B� This informal de
nition omits the
di�culty of having shared logical variables in A and B�a problem that is
explicitly solved in this paper� Decidability of transductional correctness
amounts to decidability of the corresponding Hoare logic�
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Contributions of this paper

We devise a class of graph speci
cations

� that may model loosely restrained edges� and

� for which transductional correctness is decidable�

Our graphs consist of ordinary edges constituting an underlying span�
ning forest� called the backbone� and auxiliary edges cutting across the
backbone�

These notions stem from a natural dichotomy found in programming
practice between ordinary pointers forming spanning trees and auxiliary
pointers cutting across as used for short�cuts 
such as extra links pointing
backward to previous elements� or for indexing into other data structures
using unrestrained pointers�

Our graph speci
cations are based on combining the full M�L in form
of a backbone formula for specifying ordinary edges together with a special
M�L syntax� called edge constraints� for specifying auxiliary edges� The
formulas in an edge constraint involve only the backbone to specify the
sources and destinations of auxiliary edges� The resulting class of graph
families thus de
nable is called EC� We show that the classes c�edNCE
and EC are incomparable�

We next introduce a class of transductions� They are formulated in
M�L and are similar to the ones considered in ��	� We use extra logical
variables to model edges that are followed� deleted� or added during the
transformation of the graph�

Our main result is that the transduction problem is decidable for EC�
This result is based on a rather complicated encoding of the e�ects of the
transduction within M�L on the backbone alone� The obstacle that we
overcome is that it is impossible to directly represent all auxiliary edges
in the logic of the backbone� The key idea is to distinguish between the
bounded number of auxiliary edges that are explicitly manipulated by
the transduction and the others� which are represented by a universal
quanti
cation in the logic�

Our other work

In an accompanying paper ��	� we outline a typing system for data struc�
tures and de
ne a programming language� The typing information is
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expressed in a logic on the underlying recursive data types� The program�
ming language provides assignment� dereference� allocation� deallocation�
and limited forms of iterations based on regular walks� We show in ��	
that the operational semantics is captured by transductions and that by
the results in this paper the resulting Hoare logic on data structures is
decidable�

In ��	� we also used monadic second�order logic to reason about data
structures as graphs� but we restricted ourselves to trees with auxiliary
edges that are functionally determined by the backbone in terms of reg�
ular walks�

� Rooted Graphs

A graph alphabet � consists of a 
nite set �V of node labels 
which include
a special label spare� and a 
nite set �E of edge labels� Usually� we
denote a node label by v� There are two kinds of edge labels� ordinary and
auxiliary� Usually� an ordinary edge label is denoted f and an auxiliary
edge label is denoted a� An edge label that is either ordinary or auxiliary
is denoted n�

A rooted graph G over � consists of a 
nite set GV of labeled nodes� a

nite set GE of labeled edges� and a 
nite set of node variables x� called
roots� denoting nodes in G �The label of node v �GV is denoted GL
v��
Nodes are either ordinary or spare according to their label� An edge
from v to w labeled n is denoted 
v� n� w�� For each v and n� there is at
most one such edge� Loops are allowed� The edges of G are divided into
ordinary and auxiliary ones according to their label� The node denoted
by root x is written xG�

The set of all graphs over � is denoted GR
��� An edge set E is a
set of edges such that 
v� n� w� � E and 
v� n� u� � E implies w � u�

We sometimes view G as consisting of G� called the backbone� which
is all of G except for the auxiliary edges� and

�
G� which is the edge set of

auxiliary edges in G� Thus� G may be written as 
G�
�
G��

The spare nodes model free memory cells in programming language
applications� They are essential to allow addition and deletion of nodes
by transductions�

Figure � shows a sketch of a rooted graph� The ordinary edges are
drawn as solid arrows� whereas the auxiliary edges are dashed� spare
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Figure �� A rooted graph�

nodes are black� the roots are called x�� x�� and x��

� The Logic M�L�BB

The key to specifying data structures is the Monadic Second�Order of
Backbones� abbreviated M�L�BB� First�order terms range over nodes in
the graph� Second�order terms range over sets of nodes�

Syntax

Assume a graph alphabet �� The logic of rooted graphs over � is denoted
M�L�BB
��� Its syntax is as follows�

Address terms A denote nodes in the graph�

A ��� x root
src source
dst destination
�� �� � � � 
rst�order variable

The terms src and dst are special variables used in certain assertions�
Address set terms � denote sets of nodes�

� ��� � empty set
�� ��� set union
�� n�� set di�erence
S� T� � � � second�order variable
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Formulas � denote true or false�

� ��� A� � A� equality
A � � set membership
�� � �� set inclusion

A�

f
� A� successor relation� where f��E is ordinary

v�A test for node label� where v��V

�� negation
�� 	�� conjunction

�� � � 
rst�order quanti
cation over all nodes

�S � � second�order quanti
cation over all nodes

Note that the syntax does not allow references to auxiliary edges� We
also use unmarked quanti
ers that range only over ordinary nodes� They
can be viewed as abbreviations according to the following�


� � �� 
�� � �spare�� 	�

S � �� 
�S � 
�
�� � � � S 	 spare��� 	�

We also assume abbreviations �� 
� �� etc�

Semantics

M�L�BB is interpreted relative to a backbone G� The interpretation of
x is given by G as x

G� The constants dst and src are used as variables�
The semantics of variables is formulated below by substitution for values
in G

V
� A value v is interpreted as itself� i�e� vG � v� A non�variable

address set term � is interpreted as follows�

�G � �


�� ����
G � �

G

� ��
G

�


��n���
G � �

G

�
n�G

�

�



The semantics of formulas is as follows�

G � A� � A� if AG

� � A
G

�

G � A � � if AG��G

G � �� � �� if �G

� � �
G

�

G � A�

f� A� if 
AG

� � f�A
G

� ��G
E

G � v�A if G
L

AG� � v

G � �� if not G � �

G � �� 	�� if G � �� and G � ��

G � 
�� � � if there is v�G
V

such that G � �
� �� v�

G � 
�S � � if there is V � G
V

such that G � �
S �� V ��

If � has free variables F and F is an interpretation of these variables in
G
V
� then

G�F � � if G � �
F �� F��

If G � � holds for all G� then we say that � is valid and we write � ��
A graph G is tree�formed if

� all edges are between ordinary nodes� and

� the graph induced by ordinary nodes and ordinary edges is a di�
rected forest such that each root is the value of some root variable�

Note that the graph depicted in Figure � is tree�formed�

Lemma � There is a formula � such that G is tree�formed if and only
if G � ��

Proof Among other conditions� acyclicity and reachability can be en�
coded in M�L�BB� �

We say that � is tree�valid and we write � � if G � � holds for all
tree�formed G�

Theorem � Validity is undecidable� but tree�validity is decidable�

Proof The 
rst result follows from the undecidability of the 
rst�order
logic of 
nite graphs� The second result follows from the decidability of
the monadic second�order logic of 
nite trees� �
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Edge Constraints and Assertions

Constraints on auxiliary edges cannot just be formulas� since the logic
refers only to ordinary edges� Instead� an edge constraint is of the form
��

a
� �	� where � is a formula involving src as a free variable� and � is

a formula with free variables src and dst� The edge constraint is valid
for a given graph if whenever � is valid with a node v in place of src�
then there is an a�edge 
which is unique by de
nition of a rooted graph�
from v to some node w and � is valid with v and w in place of src and
dst� Note that the edge constraint does not describe any a�edges outside
where � holds�

Formally� let �� a� �	 be an edge constraint with free variables F� We

say that G and �F satisfy �� a� �	� and we write G��F � �� a� �	 if�

for all v � GV� G� �F � �
src �� v� implies

for some 
v� a� w� �
�
G� G� �F � �
src �� v�dst �� w��

An assertion A � ����

a�� ��	 � � � ��n

an� �n	 consists of a formula �� called

the backbone formula� and a number of edge constraints ��i

ai� �i	� These
components are connected through free variables� which are implictly
existentially quanti
ed�

Let F be a list containing the free variables and let �F be a value
assignment to these variables� An assertion A is satis�ed in G with �F�

and we write G��F � A� if G��F � � and for all i� G��F � ��i

ai� �i	�
An assertion A speci
es the language of graphs

fG j G is tree�formed and for some �F� G� �F � Ag

The class of such graph languages is called EC�

Example

Consider the common data structure� shown in Figure �� of linked lists
with a head node that points both to the 
rst element of the list and to
some designated element� The f� and n�edges are ordinary� the s�edge is
auxiliary�
The corresponding backbone formula contains these clauses�

H�x The head node has label H


� � x f� � and an outgoing f�edge�
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Figure �� A list structure

��� �� � � f� �� 
 � � x no other node has an outgoing f�edge�
�� � ���x
 L�� all other nodes have label L�

��� �� � � n� �� 
 � �� x the head node has no outgoing n�edge�
L�� and there is a designated L�node���

Note that we quantify only over ordinary nodes� There is only a single
edge constraint�

�H�src s�� ��dst	 that is the destination of the s�edge�

Here the free variable � connects the backbone formula and the edge con�
straint� In conjunction with the general requirement of tree�formedness�
this assertion describes backbones that are lists with a head node� Note
that the assertion does not eliminate extraneous s�edges from nodes other
than the one marked H� In a programming language application these are
avoided through elementary type�checking of the transductions that build
graphs ��	�

� Relations to Other Formalisms

It is interesting to compare the expressive power of this graph speci
ca�
tion formalism with those of other proposals� In particular we show in
this section that the set of trees with unrestrained auxiliary edges is not
representable as a context�free graph grammar�

We look at the most general class known of context�free graphs lan�
guages� c�edNCE� which stands for �con�uent edge and node labeled�
directed graphs given by Neighborhood Controlled Embedding�� The
grammars that de
ne such languages are complicated� Instead we shall
use a result by Engelfriet that these languages are exactly the images of
trees under functions de
nable in monadic second�order logic ��	� The
following de
nition is from ��	 
but changed as to allow loops in graphs��

�



Let �� and �� be alphabets� An M�L�de�nable function f � GR
���
� GR
��� is given by the following formulas in M�L�BB
����

� a closed formula �dom� called the domain formula�

� for every v��V

� � a formula �v� called a node formula� with one free
variable src� and

� for every n � �E

� � a formula �n� called an edge formula� with two
free variables src and dst�

The domain of f is fG � GR
��� j G � �domg� For every G � dom
f��
the graph G� � f
G� �GR
��� is given by

G�V � fv � GV j there is exactly one v � �V

� such that G � �v
src �� v�g

G�E � f
v� n� w� j v� w � GVand G � �n
src �� v�dst �� w�g�


For simplicity� we ignore roots in this section��

Theorem � �	
 A language of graphs is c�edNCE if and only if it is
the image of an M�L�de�nable function f � GR
��� � GR
��� applied
to the set of directed trees over ���

Such a language is then said to be f�de�nable�

Theorem � �	
 It is decidable whether a function f de�nes a �nite
language of graphs�

Lemma � �	
 The class of M�L�de�nable functions is closed under com�
position�

Now 
x �V

T
� fvg� �E

T
� ff�� f�� ag� A tree with equi�level edges is a

graph G over �T such that G restricted to f�edges is a directed tree and
such that 
v� a� w� � GE if and only if w is the left�most node to the right
of v at the same level as v� as shown in Figure ��

Lemma � The set of trees over �T with equi�level edges is not c�edNCE�

Proof Suppose for a contradiction that the set is c�edNCE by means
of an M�L�de
nable function f � Then there would be a uniform way of
obtaining an M�L�de
nable function fi whose graph language represents
all 
nite sequences of con
gurations that TM 
Turing Machine� i may
produce with an empty input tape� In fact we may choose �V � f�� ���g
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Figure �� A tree with equi�level edges�

and construct f �
i

such that it maps trees with equi�level edges into trees
whose �V labels at level k encode the con
guration of TM i after the k th
step 
details are omitted�� By Lemma �� the set of graphs representing

nite con
guration sequences is then de
nable by a function fi � f �i � f �
But then the Halting Problem would be decidable by Theorem �� which
is a contradiction� �

Lemma � The set of trees over �T with unrestrained a�edges is not
c�edNCE�

Proof If it was we could use Lemmas � and � to show that also the set
of trees with equi�level edges is c�edNCE� 
We would construct a do�
main formula checking� among other things� that whenever 
v� a� w� and

v�� a� w�� are edges and v� is a child of v� then w� is a child of w�� �

Theorem � c�edNCE and EC are incomparable�

Proof EC � c�edNCE� The set of trees with unrestrained a�edges is
certainly EC� but not c�edNCE by Lemma ��

c�edNCE � EC� The set of cyclic graphs over singleton node and
edge alphabets is c�edNCE� but not EC 
in fact� since the edge label
determines whether an edge is ordinary or auxiliary� only list�like struc�
tures and certain degenerate structures can be described with singleton
edge alphabets�� �

��



� Transductions

We are interested in graph transformations that model pointer manipula�
tions in programs� These can be speci
ed through a transduction� which
is de
ned to be of the form T �	 L� E� 
 �� The component L is a list of
labeled entries� An entry t de
nes one or two 
rst�order variables� called
transduction variables� according to its label as follows�

� add�n� this indicates the creation of an n�edge between two nodes
denoted by 
rst�order terms src
t� and dst
t�� an existing n�edge
from the source is deleted�

� del�n� this indicates the deletion of the n�edge whose origin is de�
noted by the 
rst�order term src
t��

� foll�a� this indicates the existence of an a�edge which has been
followed between two cells denoted by 
rst�order terms src
t� and
dst
t�� this makes for an explicit representation of auxiliary edges
that are followed and� therefore� known to exist in the original
graph�

� v� this indicates that a node denoted by the 
rst�order logical vari�
able src
t� is marked with label v 
which may be spare�� if an
ordinary node is marked spare� then its outgoing and incoming
edges are deleted�

The component E is an environment� which maps root variables to ad�
dress terms denoting their values� The component 
 is a formula which
must hold in order for the free variables in L and E to denote a trans�
formation� The formula 
 may contain other transduction variables than
those de
ned by L� Together they are designated ���

The formula 
 must ensure that the entries are consistent with each
other� Thus if a graph G and a value assignment �� are such that G� �� � 
�
then some examples of technical relationsships that most hold are�

� given any v and a� there are at most one foll�a entry t such that
G� �� � src
t� � v� and

� given any 
v� a� w� that is marked by a del�a entry before any add�a
entry� there is a foll�a entry� which makes explicit the assumption
that 
v� a� w� is an edge in G�

��



� Predicate Transformers

Each transduction T determines a predicate transformer TrT � A formula
� is translated into TrT� according to the following rules�

TrT 
x� � T �E
x�
TrT 
�� � �

TrT 
A� � A�� � TrT 
A�� � TrT 
A��

TrT 
� f� �� �

������������������������������������������������
�����������������������������������������������

� � dst
t� if t is an add�f entry
in T �L� � � src
t��
t is the last such en�
try� and no later spare
entry t� is such that
src
t���f�� �g and no
later del�f entry t� is
such that src
t�� � �

false if there is a spare en�
try t

with src
t��f�� �g or
there is a del�f entry t

with src
t� � �� and
no later add�f entry t�

is such that src
t�� �
�g

�
f
� � otherwise

TrT 
v��� �

��������������
�������������

true if there is an v�entry
t in T �L such that
src
t� � � and no
later v

��entry t� is such
that src
t�� � �

v�� otherwise

TrT 
A � �� � TrT 
A� � �
TrT 
�� � ��� � �� � ��

TrT 
��� � �TrT�
TrT 
�� 	 ��� � TrT 
��� 	 TrL
���
TrT 

�� � �� � 
�� � TrT�
TrT 

�S � �� � 
�S � TrT�

��



The transformed backbone� denoted BBT 
G� ���� according to T on G with
transduction values �� is the graph G

�
de
ned as follows�

� G
�V

� G
V
�

� 
v� f� w� � G
�E

i� G� �� � TrT 
v f� w��

� G
�L


v� � v i� G� �� � TrT 
v�v�� and

� x
G

�

is the node v such that G��� � v � TrT 
T �E
x���

Lemma � �Faithfulness� Let G
�

� BBT 
G� ��� and let F be a value as�
signment to the free variables of �� Then�

G
�
� �F � �

if and only if

G��F� �� � TrT�

Proof 
Sketch� By a straightforward structural induction� �

We say that G� ��� and T determine a transformation� In addition to the
transformed backbone� the transformation also determines�

� FollT �a
G� ���� the set of a�edges in the old graph G that were fol�
lowed�

� DelT �a
G� ���� the set of a�edges in the old graph G that were both
followed and deleted� and

� AddT �a
G� ���� the set of a�edges in the new graph G� that were
added�

To specify FollT �a
G� ���� we de
ne a predicate FollT �a with free variables
src and dst expressing that an a�edge from src to dst was followed�
Informally�

FollT �a � �for some foll�a entry in T �L� src �
src
t� and dst � dst
t���

which can be encoded as a formula� Now�

FollT �a
G� ��� � f
v� a� w� jG� ��� src �� v�dst �� w � FollT �ag�

Similarly� we de
ne the two other sets by de
ning predicates DelT �a and
AddT �a�

��



DelT �a � �FollT �a and there is some spare entry
with src � src
t� or dst � src
t�� or
some del�a or add�a entry t with src �
src
t���

AddT �a � �if there is an add�a entry t such that
src
t� � src and dst
t� � dst� and no
later entries delete this edge��

Lemma � DelT �a
G� ��� � FollT �a
G� ��� if G��� � 
�

Proof By the de
nitions and imposed technical relationships� �

The transformation relation induced by T is�

G ��T G�

if and only if
for some �� �

G��� j� T �
�
Foll�aT 
G� ��� �

�
G�

G
�
� BBT 
G� ���� and

�
G� � 


�
GnDel�aT 
G� ���� �Add�aT 
G� ���

Example �continued�

Consider the linked list with a designated element from Section �� A com�
mon transduction on such structures is the insertion of an new element
just before the head� This is realized by the following transduction�

L� L
����del�f
x� ���add�f
x� ����add�n
��� ��

E� x �� x


� x
f� � 	 spare���

Notice how this closely mimics the code that one would write in a con�
ventional programming language� The expressive power of transductions
goes beyond mere straight�line code� since regular control structures can
be encoded in formulas ��	�

��



� Transductional Correctness

Let A be the free variables in the assertion A and let B be the free
variables in the assertion B that are not already free in A� The problem
of transductional correctness is�

Given assertions A� B� and a transduction T � Does it hold
for all G� G�� and A that if G is tree�formed and satis
es A
with A� and if G ��T G�� then G� is tree�formed and satis
es
B for some B!

Since tree�formedness by Lemma � can be encoded as a backbone formula�
we can without loss of generality rephrase the question as follows� We
say that the triple AfT gB is tree�valid � and write � AfT gB� if�

for all tree�formed G� all G� � and all A� G�A � A and G ��T G�

implies there is B such that G��B � B

Note that triple tree�validity concerns only transformations of tree�formed
graphs�

Our main result is to demonstrate that tree triple validity can be
encoded in M�L�BB� For simplicity we assume in what follows that an
assertion now contains only one edge constraint� and that A � ���

a
� �	

and B � �
���� a

� �
�	� Then we say that triple AfT gB is provable and

write � AfT gB if

� ��A � ���� �

� 	 
 	 ��src
�dst � 
� 
 
� 	 
�FollT 
 
��dst � �FollT ����

 
�B � 
TrT�

�

	 ��src � TrT�
� 





�dst � AddT 	 TrT �
��

�

�dst � FollT 	 �DelT 	 TrT �
��

�
� 	 ��dst � �AddT 	 �FollT 	 
� 
 TrT �
�����

	 Soundness
 Completeness
 and

Decidability

Theorem � �Soundness� � AfT gB implies � AfT gB�

��



Proof Assume

� AfT gB�
��

Fix a tree�formed G� a G�� and a value assignment A to the free variables
A of A such that

G�A � A� and
��

G ��T G��
��

To establish � AfT gB� we only need to 
nd a value assignment B to the
remaining free variables B such that

G��A�B � B�
��

Now by 
�� and the de
nition of transductions� there is a value assignment
�� to the transduction variables �� of T such that

G� �� j� T �

��

FollT 
S� ��� �
�
G�
��

G
�
� BBT 
G� ���� and
��

�
G� � 


�
GnDelT 
G� ���� �AddT 
G� ���
��

In order to apply 
��� we would like to show that

G�A� �� � � 	 


	 ��src
�dst � � 
 
� 	 
�FollT 
 
��dst � �FollT ���

��

holds� Now by 
��� we have G�A � � and G�A � �� a� �	� Thus it is
su�cient to 
nd for each v such that G�A� src �� v � � some w satisfying

G�A� src �� v�dst �� w � � 	 
�FollT 
 
��dst � �FollT ��
���

The w we choose is the one such that 
v� a� w� �
�
G� This w exists by

virtue of 
�� and the de
nition of edge constraint satisfaction� Moreover�
G�A� src �� v�dst �� w � �� Thus in order to establish 
���� it su�ces
to suppose that

G�A� src �� v�dst �� w � �FollT
���

and to prove that no u exists such that

G�A� src �� v�dst �� u � FollT �
���

��



For a contradiction� assume that some u does satisfy 
���� Then 
v� a� u� �
FollT 
G� ���� But by 
��� FollT 
G� ��� �

�
G� and thus u � w� which

contradicts our supposition 
���� It follows that 
�� holds� and by 
�� we
then obtain a B such that

G�A�B� �� � TrT�
� 	 ��src � TrT�

��

 


�dst � AddT 	 TrT �

��
�

�dst � FollT 	 �DelT 	 TrT �

��
�
� 	 ��dst � �AddT 	 �FollT 	 
� 
 TrT �

����


���

holds� From 
��� and Lemma � 
Faithfulness�� it follows that

G�A�B � �
�
���

We thus only need to show that also the edge constraint ��� a� �
�	 holds�

To do this� we consider v�
�
G� such that

G�A�B� src �� v � ���
���

We must then prove that there is w such that 
v� a� w��
�
G� and

G�A�B� src �� v�dst �� w � �
��
���

Now by 
��� and Lemma � 
Faithfulness�� we have

G�A�B� ��� src �� v � TrT�
��
���

Discharging the hypothesis in 
��� by means of 
��� gives us three cases�

G�A�B� ��� src �� v � 
�dst � AddT 	 TrT �
�
���

G�A�B� ��� src �� v � 
�dst � FollT 	 �DelT 	 TrT �
�
���

G�A�B� ��� src �� v � � 	 ��dst � �AddT 	�FollT 	 
� 
 TrT �
���
���

In case 
��� there is a w such that

G�A�B� ��� src �� v�dst �� w � AddT 	 TrT �
�
���

By 
��� 
v� a� w��
�
G�� and by Lemma � 
Faithfulness� 
��� holds� Case


��� is handled by a similar argument� Finally� in Case 
��� we have by
Lemma � 
Faithfulness� that G�A�B� src �� v � � and G�A�B� src ��
v�dst �� w � �AddT 	 �FollT 	 
� 
 TrT �

��� where w is the node
such that 
v� a� w��

�
G 
this node exists by virtue of 
���� By 
��� 
����

and Lemma �� we infer that 
v� a� w� �
�
G� and by 
�� that G�A�B� src ��

v�dst �� w � TrT �� Thus G�A�B� src �� v�dst �� w � TrT �
� holds�

whence 
��� holds by Lemma � 
Faithfulness�� �

��



Theorem � �Completeness� � AfT gB implies � AfT gB�

Proof Proof can be found in full paper�
�

Theorem 	 Transductional correctness is decidable for EC�

Proof By Theorems �� �� and �� �
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