
B
R

IC
S

R
S-94-4

K
larlund

&
Schw

artzbach:
G

raphs
and

D
ecidable

T
ransductions

based
on

E
dge

C
onstra

BRICS
Basic Research in Computer Science

Graphs and Decidable Transductions
based on Edge Constraints

Nils Klarlund
Michael I. Schwartzbach

BRICS Report Series RS-94-4

ISSN 0909-0878 February 1994



Copyright c� 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk



Graphs and Decidable Transductions

based on Edge Constraints
�Extended Abstract�

Nils Klarlund� Michael I� Schwartzbach

BRICSy

Department of Computer Science� University of Aarhus�
Ny Munkegade� DK����� Aarhus� Denmark

fklarlund�misg�daimi�aau�dk

Abstract

We give examples to show that not even c�edNCE� the most general

known notion of context�free graph grammar� is suited for the speci�cation

of some common data structures�

To overcome this problem� we use monadic second�order logic and in�

troduce edge constraints as a new means of specifying a large class of graph

families� Our notion stems from a natural dichotomy found in programming

practice between ordinary pointers forming spanning trees and auxiliary

pointers cutting across�

Our main result is that for certain transformations of graphs de�nable in

monadic second�order logic� the question of whether a graph family given

by a speci�cation A is mapped to a family given by a speci�cation B is

decidable� Thus a decidable Hoare logic arises�

� Introduction

Graphs are complicated objects to describe� Thus various grammars and
logics have emerged for their representation� see the chapter by Cour�
celle ��	� The monadic second�order logic of graphs 
M�L�G� allows a
very large class of graph families to be described� The 
rst�order terms

�The author is supported by a fellowship from the Danish Research Council�
yBasic Research in Computer Science� Centre of the Danish National Research Foundation�

�



of the logic denote nodes� The second�order terms denote sets of nodes�
Nodes and edges are related by built�in predicates� The M�L�G formal�
ism is very well�suited for describing properties of some common data
structures� see our earlier paper ��	�

Some authors consider logics that comprise quanti
cation over edges�
For these logics� a fundamental result is that a family of graphs allows
a decidable M�L if and only if the family is speci
ed by a hyperedge�
replacement grammar ��	� Such grammars constitute a natural general�
ization of context�free grammars for string languages�

An even larger class of context�free grammars is known as c�edNCE�
The monadic logic of graph families thus given is undecidable� but certain
other questions� such a non�emptiness of a speci
cation� are decidable�
see ��	�

For programming purposes� we would like to describe common data
structures found in the store such as trees and doubly�linked lists� In�
deed� this is possible within the framework of decidable formalisms as e�g�
hyperedge�replacement grammars� Many other graph shapes are not rep�
resentable� But whatever speci
cation formalism we choose� we should be
able to represent trees with additional� unconstrained pointers�re�ecting
a situation where almost nothing is said about the store� as is the case
with type systems of most imperative programming languages�

We show in this paper that not even c�edNCE grammars are able to
de
ne such families of graphs�

To reason about data structures� it is vital to model the execution
of programs� Therefore� we must formulate ways of transforming graphs
corresponding to statements in a programming language� For program
correctness� we would use Hoare logic to show that the store transforma�
tions leave the graph speci
cations satis
ed�

In this paper we consider restricted graph transformations� called
transductions� which are based on the method of semantic interpreta�
tion ��	 and studied in ��	� Given logical graph speci
cations A and B
and a transduction� we address the problem of verifying what we call
transductional correctness� for any graph satisfying A� any graph result�
ing from the transduction satis
es B� This informal de
nition omits the
di�culty of having shared logical variables in A and B�a problem that is
explicitly solved in this paper� Decidability of transductional correctness
amounts to decidability of the corresponding Hoare logic�

�



Contributions of this paper

We devise a class of graph speci
cations

� that may model loosely restrained edges� and

� for which transductional correctness is decidable�

Our graphs consist of ordinary edges constituting an underlying span�
ning forest� called the backbone� and auxiliary edges cutting across the
backbone�

These notions stem from a natural dichotomy found in programming
practice between ordinary pointers forming spanning trees and auxiliary
pointers cutting across as used for short�cuts 
such as extra links pointing
backward to previous elements� or for indexing into other data structures
using unrestrained pointers�

Our graph speci
cations are based on combining the full M�L in form
of a backbone formula for specifying ordinary edges together with a special
M�L syntax� called edge constraints� for specifying auxiliary edges� The
formulas in an edge constraint involve only the backbone to specify the
sources and destinations of auxiliary edges� The resulting class of graph
families thus de
nable is called EC� We show that the classes c�edNCE
and EC are incomparable�

We next introduce a class of transductions� They are formulated in
M�L and are similar to the ones considered in ��	� We use extra logical
variables to model edges that are followed� deleted� or added during the
transformation of the graph�

Our main result is that the transduction problem is decidable for EC�
This result is based on a rather complicated encoding of the e�ects of the
transduction within M�L on the backbone alone� The obstacle that we
overcome is that it is impossible to directly represent all auxiliary edges
in the logic of the backbone� The key idea is to distinguish between the
bounded number of auxiliary edges that are explicitly manipulated by
the transduction and the others� which are represented by a universal
quanti
cation in the logic�

Our other work

In an accompanying paper ��	� we outline a typing system for data struc�
tures and de
ne a programming language� The typing information is

�



expressed in a logic on the underlying recursive data types� The program�
ming language provides assignment� dereference� allocation� deallocation�
and limited forms of iterations based on regular walks� We show in ��	
that the operational semantics is captured by transductions and that by
the results in this paper the resulting Hoare logic on data structures is
decidable�

In ��	� we also used monadic second�order logic to reason about data
structures as graphs� but we restricted ourselves to trees with auxiliary
edges that are functionally determined by the backbone in terms of reg�
ular walks�

� Rooted Graphs

A graph alphabet � consists of a 
nite set �V of node labels 
which include
a special label spare� and a 
nite set �E of edge labels� Usually� we
denote a node label by v� There are two kinds of edge labels� ordinary and
auxiliary� Usually� an ordinary edge label is denoted f and an auxiliary
edge label is denoted a� An edge label that is either ordinary or auxiliary
is denoted n�

A rooted graph G over � consists of a 
nite set GV of labeled nodes� a

nite set GE of labeled edges� and a 
nite set of node variables x� called
roots� denoting nodes in G �The label of node v �GV is denoted GL
v��
Nodes are either ordinary or spare according to their label� An edge
from v to w labeled n is denoted 
v� n� w�� For each v and n� there is at
most one such edge� Loops are allowed� The edges of G are divided into
ordinary and auxiliary ones according to their label� The node denoted
by root x is written xG�

The set of all graphs over � is denoted GR
��� An edge set E is a
set of edges such that 
v� n� w� � E and 
v� n� u� � E implies w � u�

We sometimes view G as consisting of G� called the backbone� which
is all of G except for the auxiliary edges� and

�
G� which is the edge set of

auxiliary edges in G� Thus� G may be written as 
G�
�
G��

The spare nodes model free memory cells in programming language
applications� They are essential to allow addition and deletion of nodes
by transductions�

Figure � shows a sketch of a rooted graph� The ordinary edges are
drawn as solid arrows� whereas the auxiliary edges are dashed� spare

�



j j

j

j

j

jj

j

j
��
��

z
z

z

z z

z
z

�
���
J
JJ�

J
JJ�

�
���

�

�

�

�

�

j �

a

� � �

j��

v

f

f

f

f� f�

f�f�

f

a

a

x�

x�

x�

Figure �� A rooted graph�

nodes are black� the roots are called x�� x�� and x��

� The Logic M�L�BB

The key to specifying data structures is the Monadic Second�Order of
Backbones� abbreviated M�L�BB� First�order terms range over nodes in
the graph� Second�order terms range over sets of nodes�

Syntax

Assume a graph alphabet �� The logic of rooted graphs over � is denoted
M�L�BB
��� Its syntax is as follows�

Address terms A denote nodes in the graph�

A ��� x root
src source
dst destination
�� �� � � � 
rst�order variable

The terms src and dst are special variables used in certain assertions�
Address set terms � denote sets of nodes�

� ��� � empty set
�� ��� set union
�� n�� set di�erence
S� T� � � � second�order variable

�



Formulas � denote true or false�

� ��� A� � A� equality
A � � set membership
�� � �� set inclusion

A�

f
� A� successor relation� where f��E is ordinary

v�A test for node label� where v��V

�� negation
�� 	�� conjunction

�� � � 
rst�order quanti
cation over all nodes

�S � � second�order quanti
cation over all nodes

Note that the syntax does not allow references to auxiliary edges� We
also use unmarked quanti
ers that range only over ordinary nodes� They
can be viewed as abbreviations according to the following�


� � �� 
�� � �spare�� 	�

S � �� 
�S � 
�
�� � � � S 	 spare��� 	�

We also assume abbreviations �� 
� �� etc�

Semantics

M�L�BB is interpreted relative to a backbone G� The interpretation of
x is given by G as x

G� The constants dst and src are used as variables�
The semantics of variables is formulated below by substitution for values
in G

V
� A value v is interpreted as itself� i�e� vG � v� A non�variable

address set term � is interpreted as follows�

�G � �


�� ����
G � �

G

� ��
G

�


��n���
G � �

G

�
n�G

�

�



The semantics of formulas is as follows�

G � A� � A� if AG

� � A
G

�

G � A � � if AG��G

G � �� � �� if �G

� � �
G

�

G � A�

f� A� if 
AG

� � f�A
G

� ��G
E

G � v�A if G
L

AG� � v

G � �� if not G � �

G � �� 	�� if G � �� and G � ��

G � 
�� � � if there is v�G
V

such that G � �
� �� v�

G � 
�S � � if there is V � G
V

such that G � �
S �� V ��

If � has free variables F and F is an interpretation of these variables in
G
V
� then

G�F � � if G � �
F �� F��

If G � � holds for all G� then we say that � is valid and we write � ��
A graph G is tree�formed if

� all edges are between ordinary nodes� and

� the graph induced by ordinary nodes and ordinary edges is a di�
rected forest such that each root is the value of some root variable�

Note that the graph depicted in Figure � is tree�formed�

Lemma � There is a formula � such that G is tree�formed if and only
if G � ��

Proof Among other conditions� acyclicity and reachability can be en�
coded in M�L�BB� �

We say that � is tree�valid and we write � � if G � � holds for all
tree�formed G�

Theorem � Validity is undecidable� but tree�validity is decidable�

Proof The 
rst result follows from the undecidability of the 
rst�order
logic of 
nite graphs� The second result follows from the decidability of
the monadic second�order logic of 
nite trees� �

�



Edge Constraints and Assertions

Constraints on auxiliary edges cannot just be formulas� since the logic
refers only to ordinary edges� Instead� an edge constraint is of the form
��

a
� �	� where � is a formula involving src as a free variable� and � is

a formula with free variables src and dst� The edge constraint is valid
for a given graph if whenever � is valid with a node v in place of src�
then there is an a�edge 
which is unique by de
nition of a rooted graph�
from v to some node w and � is valid with v and w in place of src and
dst� Note that the edge constraint does not describe any a�edges outside
where � holds�

Formally� let �� a� �	 be an edge constraint with free variables F� We

say that G and �F satisfy �� a� �	� and we write G��F � �� a� �	 if�

for all v � GV� G� �F � �
src �� v� implies

for some 
v� a� w� �
�
G� G� �F � �
src �� v�dst �� w��

An assertion A � ����

a�� ��	 � � � ��n

an� �n	 consists of a formula �� called

the backbone formula� and a number of edge constraints ��i

ai� �i	� These
components are connected through free variables� which are implictly
existentially quanti
ed�

Let F be a list containing the free variables and let �F be a value
assignment to these variables� An assertion A is satis�ed in G with �F�

and we write G��F � A� if G��F � � and for all i� G��F � ��i

ai� �i	�
An assertion A speci
es the language of graphs

fG j G is tree�formed and for some �F� G� �F � Ag

The class of such graph languages is called EC�

Example

Consider the common data structure� shown in Figure �� of linked lists
with a head node that points both to the 
rst element of the list and to
some designated element� The f� and n�edges are ordinary� the s�edge is
auxiliary�
The corresponding backbone formula contains these clauses�

H�x The head node has label H


� � x f� � and an outgoing f�edge�

�



��
�	

��
�	

��
�	

��
�	

� � � �

�

�

��
�	
H

x

L L L L

s

f n n n

Figure �� A list structure

��� �� � � f� �� 
 � � x no other node has an outgoing f�edge�
�� � ���x
 L�� all other nodes have label L�

��� �� � � n� �� 
 � �� x the head node has no outgoing n�edge�
L�� and there is a designated L�node���

Note that we quantify only over ordinary nodes� There is only a single
edge constraint�

�H�src s�� ��dst	 that is the destination of the s�edge�

Here the free variable � connects the backbone formula and the edge con�
straint� In conjunction with the general requirement of tree�formedness�
this assertion describes backbones that are lists with a head node� Note
that the assertion does not eliminate extraneous s�edges from nodes other
than the one marked H� In a programming language application these are
avoided through elementary type�checking of the transductions that build
graphs ��	�

� Relations to Other Formalisms

It is interesting to compare the expressive power of this graph speci
ca�
tion formalism with those of other proposals� In particular we show in
this section that the set of trees with unrestrained auxiliary edges is not
representable as a context�free graph grammar�

We look at the most general class known of context�free graphs lan�
guages� c�edNCE� which stands for �con�uent edge and node labeled�
directed graphs given by Neighborhood Controlled Embedding�� The
grammars that de
ne such languages are complicated� Instead we shall
use a result by Engelfriet that these languages are exactly the images of
trees under functions de
nable in monadic second�order logic ��	� The
following de
nition is from ��	 
but changed as to allow loops in graphs��

�



Let �� and �� be alphabets� An M�L�de�nable function f � GR
���
� GR
��� is given by the following formulas in M�L�BB
����

� a closed formula �dom� called the domain formula�

� for every v��V

� � a formula �v� called a node formula� with one free
variable src� and

� for every n � �E

� � a formula �n� called an edge formula� with two
free variables src and dst�

The domain of f is fG � GR
��� j G � �domg� For every G � dom
f��
the graph G� � f
G� �GR
��� is given by

G�V � fv � GV j there is exactly one v � �V

� such that G � �v
src �� v�g

G�E � f
v� n� w� j v� w � GVand G � �n
src �� v�dst �� w�g�


For simplicity� we ignore roots in this section��

Theorem � �	
 A language of graphs is c�edNCE if and only if it is
the image of an M�L�de�nable function f � GR
��� � GR
��� applied
to the set of directed trees over ���

Such a language is then said to be f�de�nable�

Theorem � �	
 It is decidable whether a function f de�nes a �nite
language of graphs�

Lemma � �	
 The class of M�L�de�nable functions is closed under com�
position�

Now 
x �V

T
� fvg� �E

T
� ff�� f�� ag� A tree with equi�level edges is a

graph G over �T such that G restricted to f�edges is a directed tree and
such that 
v� a� w� � GE if and only if w is the left�most node to the right
of v at the same level as v� as shown in Figure ��

Lemma � The set of trees over �T with equi�level edges is not c�edNCE�

Proof Suppose for a contradiction that the set is c�edNCE by means
of an M�L�de
nable function f � Then there would be a uniform way of
obtaining an M�L�de
nable function fi whose graph language represents
all 
nite sequences of con
gurations that TM 
Turing Machine� i may
produce with an empty input tape� In fact we may choose �V � f�� ���g

��



��
�	

��
�	

��
�	

��
�	

��
�	

��
�	

�
�

�
��	









R

�
�
�
���

A
A
A
AAU

�
�
�
���

A
A
A
AAU









�

B
B
B
BBN

�

��
�	

� a� �

f� f�

f� f� f� f�

f� f�

a

a a

Figure �� A tree with equi�level edges�

and construct f �
i

such that it maps trees with equi�level edges into trees
whose �V labels at level k encode the con
guration of TM i after the k th
step 
details are omitted�� By Lemma �� the set of graphs representing

nite con
guration sequences is then de
nable by a function fi � f �i � f �
But then the Halting Problem would be decidable by Theorem �� which
is a contradiction� �

Lemma � The set of trees over �T with unrestrained a�edges is not
c�edNCE�

Proof If it was we could use Lemmas � and � to show that also the set
of trees with equi�level edges is c�edNCE� 
We would construct a do�
main formula checking� among other things� that whenever 
v� a� w� and

v�� a� w�� are edges and v� is a child of v� then w� is a child of w�� �

Theorem � c�edNCE and EC are incomparable�

Proof EC � c�edNCE� The set of trees with unrestrained a�edges is
certainly EC� but not c�edNCE by Lemma ��

c�edNCE � EC� The set of cyclic graphs over singleton node and
edge alphabets is c�edNCE� but not EC 
in fact� since the edge label
determines whether an edge is ordinary or auxiliary� only list�like struc�
tures and certain degenerate structures can be described with singleton
edge alphabets�� �

��



� Transductions

We are interested in graph transformations that model pointer manipula�
tions in programs� These can be speci
ed through a transduction� which
is de
ned to be of the form T �	 L� E� 
 �� The component L is a list of
labeled entries� An entry t de
nes one or two 
rst�order variables� called
transduction variables� according to its label as follows�

� add�n� this indicates the creation of an n�edge between two nodes
denoted by 
rst�order terms src
t� and dst
t�� an existing n�edge
from the source is deleted�

� del�n� this indicates the deletion of the n�edge whose origin is de�
noted by the 
rst�order term src
t��

� foll�a� this indicates the existence of an a�edge which has been
followed between two cells denoted by 
rst�order terms src
t� and
dst
t�� this makes for an explicit representation of auxiliary edges
that are followed and� therefore� known to exist in the original
graph�

� v� this indicates that a node denoted by the 
rst�order logical vari�
able src
t� is marked with label v 
which may be spare�� if an
ordinary node is marked spare� then its outgoing and incoming
edges are deleted�

The component E is an environment� which maps root variables to ad�
dress terms denoting their values� The component 
 is a formula which
must hold in order for the free variables in L and E to denote a trans�
formation� The formula 
 may contain other transduction variables than
those de
ned by L� Together they are designated ���

The formula 
 must ensure that the entries are consistent with each
other� Thus if a graph G and a value assignment �� are such that G� �� � 
�
then some examples of technical relationsships that most hold are�

� given any v and a� there are at most one foll�a entry t such that
G� �� � src
t� � v� and

� given any 
v� a� w� that is marked by a del�a entry before any add�a
entry� there is a foll�a entry� which makes explicit the assumption
that 
v� a� w� is an edge in G�

��



� Predicate Transformers

Each transduction T determines a predicate transformer TrT � A formula
� is translated into TrT� according to the following rules�

TrT 
x� � T �E
x�
TrT 
�� � �

TrT 
A� � A�� � TrT 
A�� � TrT 
A��

TrT 
� f� �� �

������������������������������������������������
�����������������������������������������������

� � dst
t� if t is an add�f entry
in T �L� � � src
t��
t is the last such en�
try� and no later spare
entry t� is such that
src
t���f�� �g and no
later del�f entry t� is
such that src
t�� � �

false if there is a spare en�
try t

with src
t��f�� �g or
there is a del�f entry t

with src
t� � �� and
no later add�f entry t�

is such that src
t�� �
�g

�
f
� � otherwise

TrT 
v��� �

��������������
�������������

true if there is an v�entry
t in T �L such that
src
t� � � and no
later v

��entry t� is such
that src
t�� � �

v�� otherwise

TrT 
A � �� � TrT 
A� � �
TrT 
�� � ��� � �� � ��

TrT 
��� � �TrT�
TrT 
�� 	 ��� � TrT 
��� 	 TrL
���
TrT 

�� � �� � 
�� � TrT�
TrT 

�S � �� � 
�S � TrT�

��



The transformed backbone� denoted BBT 
G� ���� according to T on G with
transduction values �� is the graph G

�
de
ned as follows�

� G
�V

� G
V
�

� 
v� f� w� � G
�E

i� G� �� � TrT 
v f� w��

� G
�L


v� � v i� G� �� � TrT 
v�v�� and

� x
G

�

is the node v such that G��� � v � TrT 
T �E
x���

Lemma � �Faithfulness� Let G
�

� BBT 
G� ��� and let F be a value as�
signment to the free variables of �� Then�

G
�
� �F � �

if and only if

G��F� �� � TrT�

Proof 
Sketch� By a straightforward structural induction� �

We say that G� ��� and T determine a transformation� In addition to the
transformed backbone� the transformation also determines�

� FollT �a
G� ���� the set of a�edges in the old graph G that were fol�
lowed�

� DelT �a
G� ���� the set of a�edges in the old graph G that were both
followed and deleted� and

� AddT �a
G� ���� the set of a�edges in the new graph G� that were
added�

To specify FollT �a
G� ���� we de
ne a predicate FollT �a with free variables
src and dst expressing that an a�edge from src to dst was followed�
Informally�

FollT �a � �for some foll�a entry in T �L� src �
src
t� and dst � dst
t���

which can be encoded as a formula� Now�

FollT �a
G� ��� � f
v� a� w� jG� ��� src �� v�dst �� w � FollT �ag�

Similarly� we de
ne the two other sets by de
ning predicates DelT �a and
AddT �a�

��



DelT �a � �FollT �a and there is some spare entry
with src � src
t� or dst � src
t�� or
some del�a or add�a entry t with src �
src
t���

AddT �a � �if there is an add�a entry t such that
src
t� � src and dst
t� � dst� and no
later entries delete this edge��

Lemma � DelT �a
G� ��� � FollT �a
G� ��� if G��� � 
�

Proof By the de
nitions and imposed technical relationships� �

The transformation relation induced by T is�

G ��T G�

if and only if
for some �� �

G��� j� T �
�
Foll�aT 
G� ��� �

�
G�

G
�
� BBT 
G� ���� and

�
G� � 


�
GnDel�aT 
G� ���� �Add�aT 
G� ���

Example �continued�

Consider the linked list with a designated element from Section �� A com�
mon transduction on such structures is the insertion of an new element
just before the head� This is realized by the following transduction�

L� L
����del�f
x� ���add�f
x� ����add�n
��� ��

E� x �� x


� x
f� � 	 spare���

Notice how this closely mimics the code that one would write in a con�
ventional programming language� The expressive power of transductions
goes beyond mere straight�line code� since regular control structures can
be encoded in formulas ��	�

��



� Transductional Correctness

Let A be the free variables in the assertion A and let B be the free
variables in the assertion B that are not already free in A� The problem
of transductional correctness is�

Given assertions A� B� and a transduction T � Does it hold
for all G� G�� and A that if G is tree�formed and satis
es A
with A� and if G ��T G�� then G� is tree�formed and satis
es
B for some B!

Since tree�formedness by Lemma � can be encoded as a backbone formula�
we can without loss of generality rephrase the question as follows� We
say that the triple AfT gB is tree�valid � and write � AfT gB� if�

for all tree�formed G� all G� � and all A� G�A � A and G ��T G�

implies there is B such that G��B � B

Note that triple tree�validity concerns only transformations of tree�formed
graphs�

Our main result is to demonstrate that tree triple validity can be
encoded in M�L�BB� For simplicity we assume in what follows that an
assertion now contains only one edge constraint� and that A � ���

a
� �	

and B � �
���� a

� �
�	� Then we say that triple AfT gB is provable and

write � AfT gB if

� ��A � ���� �

� 	 
 	 ��src
�dst � 
� 
 
� 	 
�FollT 
 
��dst � �FollT ����

 
�B � 
TrT�

�

	 ��src � TrT�
� 





�dst � AddT 	 TrT �
��

�

�dst � FollT 	 �DelT 	 TrT �
��

�
� 	 ��dst � �AddT 	 �FollT 	 
� 
 TrT �
�����

	 Soundness
 Completeness
 and

Decidability

Theorem � �Soundness� � AfT gB implies � AfT gB�

��



Proof Assume

� AfT gB�
��

Fix a tree�formed G� a G�� and a value assignment A to the free variables
A of A such that

G�A � A� and
��

G ��T G��
��

To establish � AfT gB� we only need to 
nd a value assignment B to the
remaining free variables B such that

G��A�B � B�
��

Now by 
�� and the de
nition of transductions� there is a value assignment
�� to the transduction variables �� of T such that

G� �� j� T �

��

FollT 
S� ��� �
�
G�
��

G
�
� BBT 
G� ���� and
��

�
G� � 


�
GnDelT 
G� ���� �AddT 
G� ���
��

In order to apply 
��� we would like to show that

G�A� �� � � 	 


	 ��src
�dst � � 
 
� 	 
�FollT 
 
��dst � �FollT ���

��

holds� Now by 
��� we have G�A � � and G�A � �� a� �	� Thus it is
su�cient to 
nd for each v such that G�A� src �� v � � some w satisfying

G�A� src �� v�dst �� w � � 	 
�FollT 
 
��dst � �FollT ��
���

The w we choose is the one such that 
v� a� w� �
�
G� This w exists by

virtue of 
�� and the de
nition of edge constraint satisfaction� Moreover�
G�A� src �� v�dst �� w � �� Thus in order to establish 
���� it su�ces
to suppose that

G�A� src �� v�dst �� w � �FollT
���

and to prove that no u exists such that

G�A� src �� v�dst �� u � FollT �
���

��



For a contradiction� assume that some u does satisfy 
���� Then 
v� a� u� �
FollT 
G� ���� But by 
��� FollT 
G� ��� �

�
G� and thus u � w� which

contradicts our supposition 
���� It follows that 
�� holds� and by 
�� we
then obtain a B such that

G�A�B� �� � TrT�
� 	 ��src � TrT�

��

 


�dst � AddT 	 TrT �

��
�

�dst � FollT 	 �DelT 	 TrT �

��
�
� 	 ��dst � �AddT 	 �FollT 	 
� 
 TrT �

����


���

holds� From 
��� and Lemma � 
Faithfulness�� it follows that

G�A�B � �
�
���

We thus only need to show that also the edge constraint ��� a� �
�	 holds�

To do this� we consider v�
�
G� such that

G�A�B� src �� v � ���
���

We must then prove that there is w such that 
v� a� w��
�
G� and

G�A�B� src �� v�dst �� w � �
��
���

Now by 
��� and Lemma � 
Faithfulness�� we have

G�A�B� ��� src �� v � TrT�
��
���

Discharging the hypothesis in 
��� by means of 
��� gives us three cases�

G�A�B� ��� src �� v � 
�dst � AddT 	 TrT �
�
���

G�A�B� ��� src �� v � 
�dst � FollT 	 �DelT 	 TrT �
�
���

G�A�B� ��� src �� v � � 	 ��dst � �AddT 	�FollT 	 
� 
 TrT �
���
���

In case 
��� there is a w such that

G�A�B� ��� src �� v�dst �� w � AddT 	 TrT �
�
���

By 
��� 
v� a� w��
�
G�� and by Lemma � 
Faithfulness� 
��� holds� Case


��� is handled by a similar argument� Finally� in Case 
��� we have by
Lemma � 
Faithfulness� that G�A�B� src �� v � � and G�A�B� src ��
v�dst �� w � �AddT 	 �FollT 	 
� 
 TrT �

��� where w is the node
such that 
v� a� w��

�
G 
this node exists by virtue of 
���� By 
��� 
����

and Lemma �� we infer that 
v� a� w� �
�
G� and by 
�� that G�A�B� src ��

v�dst �� w � TrT �� Thus G�A�B� src �� v�dst �� w � TrT �
� holds�

whence 
��� holds by Lemma � 
Faithfulness�� �

��



Theorem � �Completeness� � AfT gB implies � AfT gB�

Proof Proof can be found in full paper�
�

Theorem 	 Transductional correctness is decidable for EC�

Proof By Theorems �� �� and �� �

References

��	 B� Courcelle� Graph rewriting� an algebraic and logic approach� In
J� van Leeuwen� editor� Handbook of Theoretical Computer Science�
volume B� pages ���"���� Elsevier Science Publishers� �����

��	 B� Courcelle� The monadic second�order logic of graphs I� Recogniz�
able sets of 
nite graphs� Information and computation� �����"���
�����

��	 B� Courcelle� Monadic second�order de
nable graph transductions� In
J�C� Raoult� editor� CAAP 
��� Colloquium on Trees in Algebra and
Programming� LNCS ���� pages ���"���� Springer Verlag� �����

��	 J� Engelfriet� A characterizarion of context�free NCE graph languages
by monadic second�order logic on trees� In H� Ehrig� H�J� Kreowski�
and G� Rozenberg� editors� Graph grammars and their applications
to computer science� 	th International Workshop� LNCS ���� pages
���"���� Springer Verlag� �����

��	 N� Klarlund and M� Schwartzbach� Graph types� In Proc� ��th Symp�
on Princ� of Prog� Lang�� pages ���"���� ACM� �����

��	 N� Klarlund and M� Schwartzbach� Invariants as data types� Unpub�
lished� �����

��	 M� Rabin� A simple method for undecidability proofs and some ap�
plications� In Logic� Methodology and Philosophy of Science II� pages
��"��� North�Holland� �����

��



Recent Publications in the BRICS Report Series

RS-94-1 Glynn Winskel. Semantics, Algorithmics and Logic: Ba-
sic Research in Computer Science. BRICS Inaugural Talk.
February 1994, 8 pp.

RS-94-2 Alexander E. Andreev. Complexity of Nondeterministic
Functions. February 1994, 47 pp.

RS-94-3 Uffe H. Engberg and Glynn Winskel. Linear Logic on Petri
Nets. February 1994, 54 pp.

RS-94-4 Nils Klarlund and Michael I. Schwartzbach. Graphs and
Decidable Transductions based on Edge Constraints. Febru-
ary 1994, 19 pp. Appears in: Trees in Algebra and Program-
ming CAAP ’94 (ed. S. Tison), LNCS 787, 1994.

RS-94-5 Peter D. Mosses. Unified Algebras and Abstract Syntax.
March 1994, 21 pp. To appear in: Recent Trends in Data
Type Specification (ed. F. Orejas), LNCS 785, 1994.

RS-94-6 Mogens Nielsen and Christian Clausen. Bisimulations,
Games and Logic. April 1994, 37 pp. Full version of paper
to appear in: New Results and Trends in Computer Science,
LNCS, 1994.


