
B
R

IC
S

R
S-94-5

P.D
.M

osses:
U

nified
A

lgebras
and

A
bstract

Syntax

BRICS
Basic Research in Computer Science

Unified Algebras and Abstract Syntax

Peter D. Mosses

BRICS Report Series RS-94-5

ISSN 0909-0878 March 1994

Copyright c� 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk

Uni�ed Algebras and Abstract Syntax�

Peter D� Mosses

BRICSy

Department of Computer Science
University of Aarhus

Ny Munkegade� Bldg� ���
DK����� Aarhus C� Denmark

Abstract

We consider the algebraic speci�cation of abstract syntax in the frame�

work of uni�ed algebras� We illustrate the expressiveness of uni�ed algebraic

speci�cations� and provide a grammar�like notation for specifying abstract

syntax� particularly attractive for use in semantic descriptions of full�scale

programming languages�

� Introduction

The algebraic speci	cation framework of uni�ed algebras is somewhat un

orthodox� both individuals and sorts are treated as values� so operations
can be applied to sorts as well as to individuals� Moreover� no distinction
is made between a singleton sort and its only element� The empty sort
serves as a convenient representation of unde	nedness�

Signatures of uni	ed algebras are merely ranked alphabets� Axioms
of speci	cations are �de	nite Horn clauses involving equality� sort inclu

sion� and individual inclusion� The usual functionalities of operations�
which are signature components in most frameworks� can easily be spec

i	ed as axioms� Models of uni	ed speci	cations are distributive lattices
with bottoms� equipped with a distinguished �usually discrete subset of

�To appear in� Recent Trends in Data Type Speci�cation �ed� F� Orejas�� Lecture Notes in
Computer Science ��	� Springer
Verlag� ���� Citations of this work should refer only to the
LNCS publication� which is identical to the present report �up to formatting details��

yBasic Research in Computer Science� a Centre of the Danish National Research Foundation�

�

individuals� together with inclusion
preserving functions� Speci	cations
have initial models� Initial constraints can be speci	ed� providing a sim

ple form of parameterization� For formal details� see ����� for examples�
see ���� Appendix E��

Uni	ed algebras are claimed to have signi	cant advantages over con

ventional frameworks� in particular concerning the treatment of poly

morphism and genericity� Here� we show how uni	ed algebras allow the
speci	cation of abstract data types that provide an elegant and �exible
treatment of abstract syntax �

Abstract syntax is used primarily in formal semantic descriptions of
programming languages� other applications include syntax
directed edit

ing and program transformation systems� Essentially� abstract syntax
ignores details concerned with unambiguous parsing and lexical sym

bols� and focuses on the compositional tree structure of parsed phrases�
Thereby it provides a simple interface between �context
free concrete
syntax and semantics�

There are various ways of specifying abstract syntax� With some of
them� for instance McCarthy�s original formulation ���� speci	cations re

semble ordinary algebraic speci	cations of constructor� selector� and dis

criminator operations� With others� they resemble ordinary context
free
grammars� It has also been shown how to transform grammars into many

sorted algebraic speci	cations� obtaining the corresponding abstract syn

tax as initial many
sorted algebras ����

What is �wrong� with these previous approaches to specifying abstract
syntax� Well� the ones that look like ordinary algebraic speci	cations
are not su�ciently perspicuous when used on large
scale programming
languages� The ones that look like ordinary grammars are usually quite
perspicuous� but their algebraic interpretation is somewhat clumsy� they
are also rather rigid � in that nonterminal symbols cannot be replaced
by the corresponding alternatives without disturbing the meaning of the
speci	cation�

We shall see that with uni	ed algebras� a grammar is itself a set of
axioms for an algebraic speci	cation� there is no need for any transfor

mation� The advantages of this approach include� it is straightforward
to allow algebraic sort constructors corresponding to regular expressions�
abstract syntax is naturally order�sorted � nonterminal symbols can be
substituted by their alternatives without disturbing the speci	ed algebra�
and the micro�syntax of lexical symbols can be accommodated without

bother�
The contribution of this paper is threefold� It illustrates the use of

the expressiveness of uni	ed algebraic speci	cations� thereby motivat

ing this framework in relation to conventional frameworks� It provides
an algebraic notation for specifying abstract syntax that is particularly
attractive for use in semantic descriptions of realistic� large
scale pro

gramming languages� Finally� the algebraic sort constructors given here
are generally useful in speci	cations of abstract data types� they allow a
simple treatment of operations with variable numbers of arguments� e�g��
an operation that constructs a list from n components for any n�

The paper is organized as follows� Section � summarizes the notation
used in uni	ed algebraic speci	cations� de	nes the notion of a uni	ed al

gebra� and discusses constraints� Section � considers previous approaches
to abstract syntax� Section � gives a uni	ed algebraic speci	cation of an
abstract data type of trees� Section � proves that the given speci	cation is
consistent� by de	ning a nontrivial model� it also considers initial models
of the speci	cation� Section � provides a simple illustration of the uni	ed
algebraic speci	cation of abstract syntax� and argues that the approach
has some bene	cial pragmatic qualities that previous approaches lack�

� Uni�ed Algebras

The following de	nitions are from ���� �except that �elements� are now
called �individuals��

De�nition � A signature � for a uni�ed algebra is a set of operation
symbols� each symbol having the rank determined by the number of place�
holder signs � � that it contains� Signatures of uni�ed algebras always
include the symbols and � of rank �� and the symbol nothing of
rank 	�

De�nition � A uni	ed algebra A has a universe� which is a distributive
lattice
�� with a bottom value� together with a distinguished subset IA � A

of individuals� The partial order of the lattice is denoted by �A� For
each operation symbol f in the signature � of A� there is a monotone
total� function fA on the universe of the lattice� with A being the join
operation of the lattice� � A the meet� and nothingA the bottom of the
lattice�

Notice that the operations are not required to be strict or additive� nor
to preserve the property of individuality� Moreover� we do not insist that
the lattices serving as universes of uni	ed algebras have tops�

Technically� the framework of uni	ed algebras is �unsorted�� However�
all the values in the universe of a uni	ed algebra may be thought of as
sorts� with the individuals corresponding to singleton sorts� The partial
order of the lattice represents sort inclusion� join is sort union and meet
is sort intersection� The individuals do not have to be the atoms of the
lattice� just above the bottom� for instance� the meet of two individuals
is below both of them� but need not be identi	ed with the bottom value�
Those values that do not include any individuals at all� such as the bottom
value� are vacuous sorts� often representing the lack of a proper result that
arises from applying an operation to unintended arguments� A special
case of a uni	ed algebra is a power algebra� whose universe is a power
set� ordered by set inclusion� with the singletons as individuals �����

De�nition � The axioms of a uni�ed algebraic speci�cation are de�nite
Horn clauses� written e�� � � � � en � e� where the antecedents e�� � � � � en and
the consequent e are equations t� � t�� inclusions t� � t�� or individual
inclusions t� � t� between terms� The terms are built from the operation
symbols in the signature of the speci�cation and from variables� Each
axiom is treated as if all the variables occurring in it are universally
quanti�ed�

For perspicuity� we use mix�x notation when writing terms� replacing the
place
holder signs � � in symbols by the arguments and inserting group

ing parentheses when necessary for disambiguation� It is convenient to
assume that in	xes associate to the left� so that further parentheses can
be omitted�

De�nition � An axiom e�� � � � � en � e of a uni�ed speci�cation is sat

is	ed by a uni�ed algebra A of the same signature� if whenever all the
antecedents e�� � � � � en hold in A� so does the consequent e� An equation
t� � t� holds in A when the terms t�� t� have identical values whether or
not these values are individuals� proper sorts� or vacuous�� An inclusion
t� � t� holds when the value of t� is below that of t� in the partial order
of the sort lattice� An individual inclusion t� � t� holds when the value
of t� is not only included in that of t�� but also in the distinguished sub�
set of individuals IA� A uni�ed algebra that satis�es all the axioms of a
speci�cation is called a model for the speci�cation�

Uni	ed algebraic speci	cations always have initial models� because they
are essentially just unsorted Horn clause logic �with equality speci	ca

tions� the structure of uni	ed algebras is entirely captured by a set of
Horn clauses� given in the Appendix� One reason for not restricting atten

tion to the power algebras mentioned above is that then speci	cations�
even very simple ones�would fail to have initial models� For example�
let a and b be speci	ed to be individuals� and let c � a b� so that c is an
individual included in the union a b� since individuals are singleton sets
in power algebras� this forces either c�a or c�b� and there is clearly no
initial model for the speci	cation�

Although it can be shown that uni	ed algebras provide a liberal in

stitution� with the usual notion of reduct functor� it is problematic to
de	ne useful constraints in unsorted frameworks� because the ordinary
reduct functor only forgets operations�never values� However� by using
a more forgetful reduct functor �treating all ground terms as if they were
sorts one can simulate the way that many
sorted and order
sorted forget

ful functors deal with values� thereby providing bounded data constraints
whose e�ect is similar to that of ordinary data constraints in conventional
frameworks� See ���� for the details�

� Abstract Syntax

Let us brie�y consider some previous approaches to abstract syntax� At
the end of this section� we shall discuss the relationship between concrete
and abstract syntax�

McCarthy ��� was the 	rst to formulate a notion of abstract syntax�
There he proposed the use of syntax that di�ers from context
free gram

mars �BNF by being analytic rather than synthetic� it tells how to
take a program apart� rather than how to put it together!� The syntax
should also be independent of the notation used to represent sums� etc��
in program texts�

This idea is realized by introducing predicates to distinguish between
di�erent constructs� For simple arithmetic expressions� one might have
the predicates isvar�t�� isconst�t�� issum�t�� and isprod�t�� For each pred

icate� one introduces selector functions� such as addend�t� and augend�t�
for terms t satisfying issum�t�� Finiteness of terms can be expressed by
the convergence of a recursively de	ned predicate expressed using the

introduced predicates and selector functions�
McCarthy also considers languages which have both an analytic and

a synthetic syntax satisfying certain relations!� The synthetic syntax uses
constructor functions� such as mksum�t �u� and the relations are speci	ed
by equations� such as addend�mksum�t �u�� � t �

The speci	cation of abstract syntax in Meta
IV� the meta
notation
of VDM ���� exploits a systematic naming convention for predicates and
constructor functions� is�A�o� tests whether an object o is of type A�
mk�A�o��� � � �on� constructs objects of typeA from appropriate arguments�
Types are speci	ed in a notation close to BNF� E�g�� for arithmetic ex

pressions one may specify�

Expr � Var j Const j Sum j Prod

Sum �� Expr Expr

� � �

Equations are interpreted as domain equations� The j stands for sim

ple� nondiscriminated union� the �� ensures that objects created by the
corresponding constructor function are distinct from those created by
other constructors� Here the constructor function mk�Sum�l �r� is implic

itly declared� and one can select the two subexpressions of a sum s by
pattern
matching� as in let mk�Sum�l �r� � s in � � � � Meta
IV also allows
explicit selector functions to be introduced� as in�

Sum �� s�left�Expr s�right�Expr �

Meta
IV goes on to allow the use of domain operators for tuples �A	� A
�
optional domains ��A�� power sets �A�set� 	nite maps� partial functions�
and total functions�

The form of abstract syntax used in connection with syntax
directed
editing in ��� ��� is based on phyla and constructor operators� A phylum is
simply a set of terms� and the operators map terms to terms� Phyla may
not overlap� Speci	cations may be factored� so arithmetic expressions
could be speci	ed as�

expr � Var�ID� j Const�INT� j Sum� Prod�expr�expr�

where ID and INT are prede	ned lexical phyla� speci	ed using regular
expressions� In the ASF"SDF formalism ���� abstract syntax is derived
from the context
free grammar that is used to specify concrete syntax�
for example�

ID � EXP

NAT � EXP

EXP "� EXP � EXP fleftg

EXP �� EXP � EXP fleftg

�� EXP �� � EXP fbracketg

Abstract syntax trees are then generated automatically from parsed
strings�

Denotational semantics �see ���� for a comprehensive text� or ���� for
an introduction has exploited various meta
notations for specifying ab

stract syntax� Scott and Strachey ��#� originally paid scant respect to
syntax� they used ambiguous� indexed grammars� written in a variant of
BNF� they assumed that languages come equipped with grouping paren

theses so that the compositional structure of a phrase could always be
made precise when necessary� For example�

I � Iden

K � Const

E � Expr

O � Oper

E ��� I j K j E� O E� j �E�

O ���
 j 	

Later Stoy ���� interpreted such grammars as de	ning sets of parse trees�
and pointed out that they may be just as abstract as McCarthy�s abstract
syntax� if the grammar is chosen appropriately�

The initial algebra approach to abstract syntax �and semantics ���
shows the existence of initial algebras for each many
sorted signature �
using a concrete representation of trees� By identifying abstract syntax
with an isomorphism class of initial algebras� independence from represen

tational details is obtained� and algebraic homomorphisms from abstract
syntax to target algebras having the same signature are uniquely de	ned�
To specify an abstract syntax� one merely gives the signature �� It was
shown that one can obtain signatures systematically from context
free�

grammars� by mapping each nonterminal A of a grammar G to a sort
symbol� and regarding each production A� � u�A�u� � � �Anun �where
the ui are sequences of terminal symbols as an operation symbol from

�The grammars are allowed to be in�nite� so they may generate non
context
free languages�

argument sorts A�� � � � � An to sort A�� The initial algebras with this sig

nature are essentially parse trees for derivations in G �whether or not the
grammar is ambiguous�

We see that most of the approaches considered above have the em

phasis on synthetic abstract syntax� where notation is provided for con

structing abstract phrases� Moreover� several approaches directly exploit
context
free grammars� where terminal symbols are used to distinguish
between di�erent constructs�

This departure from McCarthy�s original concept of abstract syntax�
which was primarily analytic� has been found to be bene	cial in various
applications� No abstractness is hereby lost�providing one doesn�t insist
on a precise correspondence between the symbols used in grammars for
concrete syntax and for abstract syntax�because in all approaches� even
in McCarthy�s� one has to choose some symbols for naming operations�
and it is neither more nor less abstract to choose� say� mk�Sum with pre	x
notation in some algebraic signature� than to choose " with in	x notation
in the corresponding context
free grammar�

Since the grammars used for abstract syntax are not intended for
parsing� they may be ambiguous �hence simpler and yet still specify
sorts of abstract syntax trees precisely� And when one does want to
relate concrete syntax to abstract syntax� the relation is much easier to
see when the terminal symbols used in the grammar for abstract syntax
are suggestive of the corresponding concrete symbols�

However� there is still one mismatch� in practice� the concrete syntax
of real programming languages is usually speci	ed with grammars that
exploit some form of regular expressions� as in so
called Extended BNF�
It appears that only the Meta
IV approach to abstract syntax caters for
the trees with unbounded branching that naturally arise from parsing
according to such grammars� And although one could generalize the
translation from grammars to signatures in the initial algebra approach
to cope with regular expressions� the resulting signatures would be quite
messy� with a new sort for each regular expression used in the grammar�

Thus there is a need for a simple algebraic treatment of context

free grammars allowing regular expressions� for use in specifying abstract
syntax� We now proceed to provide such a treatment�

� Trees

This section gives a uni	ed algebraic speci	cation of an abstract data
type of �	nite trees� including operations for expressing regular sets of
trees�

The 	rst line of the speci	cation below declares the signature of the
speci	cation� �The symbols � � � and nothing are always implicitly
in the signature� The constant character stands for some unspeci	ed
alphabet� whose individuals are to be used as the leaves of our �otherwise
unlabelled trees� The intended interpretation of the binary operation
symbol �juxtaposition is concatenation of sequences� and the empty
parentheses are to be interpreted as the empty sequence� The unary
operation symbol 	 is to be the Kleene
$� mapping any sort of tree T to
a sort including precisely those individual sequences whose components
are all of sort T � more generally� it may be applied to a sort of sequences
of trees� Finally� �� �� constructs an individual tree from its branches�
N�B� it is not a semantic function itself% �If F is a semantic function�
it will still be correct to use the familiar F ��� � � �� in semantic equations�
Both and �� �� are to extend naturally from individuals to arbitrary
sorts� e�g�� �a b� is to be a sort that includes all individuals �x y� where
x and var y are individuals included in sorts a and b� respectively�

introduces� character � tree � � � � � 	 � �� �� �

��� �a b� c � a �b c� �

��� � � a � a �

��� a � � � a �

��� a �b c� � �a b� �a c� �

��� �a b� c � �a c� �b c� �

�	� nothing a � nothing �

�
� a nothing � nothing �

��� a	 � � � �a a	� �

��� a	 � � � �a	 a� �

���� �a x � � x � a	 x � x �

���� �x a� � x � x a	 � x �

���� tree � character �� tree	 �� �

���� �� a b �� � �� a �� �� b �� �

���� �� nothing �� � nothing �

���� a � tree	 � �� a �� � tree �

��	� � � � tree	 �

��
� a � tree	 � b � tree	 � �a b� � tree	 �

Axioms ������ are taken almost straight from �#�� where they �together
with some of the axioms and the rules of inference stated in our Appendix
are shown to provide a complete deductive system for equations between
regular sets over an alphabet�� Concerning the use of Horn clauses� note
that no 	nite set of pure equations can be a base for the equational theory
of regular sets� in the absence of auxiliary operation symbols� In any
case� a straightforward Horn clause speci	cation seems preferable to an
intricate equational speci	cation� at least in regard to practical reasoning
on the basis of speci	cations�

The framework of uni	ed algebras provides some formal abbreviations
for commonly occurring patterns of axioms� Exploiting these� the above
speci	cation can be written somewhat more succinctly�

introduces� character � tree � � � � � 	 � �� �� �

�� tree	� tree	 � tree	 �total � associative� unit is � ��

a	 � � � �a a	� � � � �a	 a� �

�a x � � x � a	 x � x �

�x a� � x � x a	 � x �

tree � character �� tree	 �� �

�� �� �� tree	 � tree �total� �

� � � tree	 �

A �functionality� of the form f �� t� � t� is equivalent to the inclusion
axiom f �t�� � t�� notice that the ti need not be constants� Monotonicity
then implies f �x�� � t� for all arguments x� � t�� The �attribute� total on
a functionality expresses that an operation is the natural �strict� additive
extension to sorts of some ordinary total operation on individuals� We
don�t bother to specify the functionality of 	� as it would be tree� tree	�
making a tautology� Note that we must not specify 	 to be total� as it is
to be neither strict nor additive� nor to map individuals to individuals%

�This does not imply that the axioms are complete for proving equalities between regular
expressions that are allowed to use the intersection operation � �

The above speci	cations are� in the absence of any explicit constraints�
interpreted loosely� any uni	ed algebra �with the declared signature sat

isfying the stated axioms would be a model� Here� however� we intend
the individuals of our models to be only the 	nite sequences of 	nite in

dividual trees� Moreover� models should not equate individual trees that
have di�erent shapes or leaves� As usual with initial algebra approaches
to speci	cation� there should be no �junk� and no �confusion��

All this can be speci	ed by a bounded data constraint that leaves the
individuals included in character open� while insisting that the values�
both sorts and individuals�included in tree	 be freely generated by these
characters� relative to the speci	ed axioms� Formally� the constraint con

sists of a theory inclusion� Uni	ed algebraic speci	cations allow such
constraints to be speci	ed succinctly using references to modules� Here�
we do not bother to introduce notation for modules� The desired con

straint is simply the inclusion of the theory whose only explicit operation
symbol is character� with no explicit axioms� in the theory presented by
the above speci	cation�

� Correctness

It is easy to specify axioms that express intended properties of operations�
Unfortunately� it is also easy make a mistake% For instance� one might
specify an axiom that should hold only for a variable taking individual val

ues� but not for vacuous or proper sorts� The possibility of instantiating
the axiom with these sorts may then lead to unwelcome consequences�
perhaps even to the identi	cation of all values% �Such dangers are not
special to uni	ed algebras� the treatment of partial operations and errors
in many
sorted algebraic speci	cations is notoriously tricky�

In the case of trees� we have a good idea of what the intended models
are�up to isomorphism�so we can check the correctness of our speci	ca

tion by de	ning a particular uni	ed algebra and verifying that it satis	es
all the axioms� We should also check that our model satis	es the speci	ed
bounded data constraint� which here ensures that models with the same
individual characters form an isomorphism class�

For any set C �of characters not containing the value � let the uni	ed
algebra U be de	ned as follows� We use ordinary notation for mathemat

ical de	nitions of sets� partial functions� and sequences of numbers and

functions� In particular� sequence concatenation is written p � p�� and �

is the empty sequence� Sequences of natural numbers p in N � represent
positions in trees� the functions f in T represent 	nite trees by mapping
positions to labels in C 	 �� the labels of interior nodes being always ��

T � ff � N � �� �C 	 � j
jdom�fj �
�
�p�N ��n�N �p � n � dom�f � p � dom�f� f�p � ��
�p�N ��n�N �p � �n " � � dom�f � p � n � dom�fg

S � T �

U � P�S

�U � �

IU � ffsg j s � Sg�

For each operation symbol f in the speci	ed signature the interpretation
as a total function �of �� �� or � arguments on U is de	ned as follows�

U�a� b � a 	 b

� U�a� b � a � b

nothingU �

characterU � f�� �� c� j c � Cg

treeU � T

U�a� b � fx � y j x � a� y � bg

�
U

� f�g

	U �a � f�g 	 fx� � � � � � xn j x�� � � � � xn � a�n � �g

�� ��
U
�a �

����
���

� if a � �
S
fnode�f�� � � � � fn j
x � a�x � f� � � � � � fn� f�� � � � � fn � Tg� otherwise

where we de	ne the auxiliary functional node for each n by�

node�f�� � � � � fn�p �

����
���

�� if p � ��
fi�p�� if p � �i � p�� � � i � n�
unde	ned� otherwise�

The partial functions in the set T mapping sequences n� � � � � � nm of
natural numbers ni � N represent trees whose leaves are labelled with
characters c � C� and whose internal nodes are unlabelled� The function

mapping only � to a character c represents that character� that mapping
only � to � represents the tree with no branches at all� The set S consists
of sequences of functions� representing sequences of trees� �T � is the well

known set of sequences of elements from the set T � it could be de	ned in
terms of higher
order functions to avoid any trace of circularity� at some
extra notational expense� U is the power set consisting of all subsets of
S� ordered by set inclusion� and the set IU of individuals is the set of all
singletons in U � Note that we do not take account of the natural partial
order on the partial functions themselves�

The interpretation of the various operation symbols as �total func

tions on U is rather straightforward� except perhaps for that of node
construction� the partial function node�f��� � � �fn� inspects the 	rst branch
number� say i� in its argument p� and applies the corresponding subtree
fi to the rest of of p� if the argument p is the empty number sequence� it
returns ��

Proposition � The structure U de�ned above is a uni�ed algebra� and
it satis�es axioms ������ from Section ��

Proof� It is easy to see that U is a distributive lattice with a bottom�
and that the operation symbols � � � and nothing are interpreted
correctly� The operations corresponding to and �� �� are de	ned as
pointwise extensions to U of functions on S� which ensures that they are
monotone� strict� additive� and map individual arguments to individuals�
Thus axioms ����# and ������� are satis	ed� Since the only functions
in T that cannot be returned by node�f��� � � �fn� are precisely those that
map � to a character c� axiom ��� is satis	ed� The speci	ed sequencing
operation satis	es axioms ����� because the mathematical sequencing
notation does� Similarly for axioms �� and ���

For axiom ���� let a and x have values &a and &x such that U �&a� &x � &x
holds� We have to show U � 	U �&a� &x � &x holds� Each element in

U � 	U �&a� &x consists of a 	nite� possibly
empty sequence s of partial
functions formed by concatenating sequences s�� � � � � sn contained in &a
with a sequence s� contained in &x� If n � �� the result follows immediately�
Otherwise� consider the concatenation of sn with s�� from U �&a� &x � &x
this must be an element of &x� By a simple induction we get s � &x and
the result follows� By symmetry� axiom ��� is satis	ed as well� �

So U satis	es the axioms of our speci	cation� which demonstrates
that the speci	cation is consistent� But does it satisfy the bounded data

constraint given in Section �� No� it doesn�t% For consider� say� the term
��� ��� � �� ��� ��� ��� Clearly� the value of this term in U is the empty set�
Almost as clearly� the equation ��� ��� � �� ��� ��� �� � nothing is not a con

sequence of the axioms of our speci	cation �including those given in the
Appendix� Hence U has �confusion�� so it cannot be freely generated by
C relative to the speci	ed axioms� Thinking of U as the model we are
trying to characterize� we might say that our speci�cation gives rise to
�junk�� rather than U having �confusion�� This speci	cation junk consists
of distinct expressible sorts that denote equal sets in U � however� there
are no junk individuals at all� Less seriously� U has unreachable junk
that cannot be expressed by ground terms� arising from the use of the
�uncountable% unrestricted powerset P�S� which includes various non

regular sets of character sequences� for example� This problem could be
eliminated by reducing U to its smallest subalgebra�

We could try to mend this discrepancy between our speci	cation and
its intended model in several ways�

�� Add further axioms to our speci	cation� such that all ground equa

tions involving � that are satis	ed in U become consequences�
We have recently proved a corresponding result ��� in the absence
of node construction �� ��� and it is conjectured that the speci	ca

tion concerned�and its correctness proof�can be extended to the
algebra considered here� Note that the axioms given by Kozen for
his action lattices ��� relate meet only to join� not to sequencing
or $� Moreover� action lattices involve residuation ����� which is
nonmonotonic and so cannot be used as an operation in uni	ed
algebras�

�� Relax the notion of models of bounded data constraints in uni	ed
algebras� so that extensionally�equal sorts may always be equated
in a model� This complicates the notion of a model of a constrained
speci	cation� but it might be a viable extension of the framework�

�� De	ne the problem away by removing � from uni	ed algebras�
so that models are merely semilattices� Then the problematic iden

tities cannot be expressed� and the reduced U would presumably
be a model of the speci	ed bounded data constraint� The draw

back here is that it is actually quite useful in practice to have �
available% For instance� we might want to specify that truth
values

and numbers are to be disjoint� Of course� meet could always be
explicitly introduced and axiomatized when needed� but if we intro

duced it together with our speci	cation of trees� our problem would
promptly reappear�

Further investigation of these possibilities is out of the scope of this paper�

� Uni�ed Abstract Syntax

Let us now turn to the use of our notation for trees in the speci	cation
of abstract syntax� The idea is rather simple� we use sort equations to
de	ne abstract syntax as a collection of sorts of trees�

First� it is convenient to extend our speci	cation of trees with the
following notation�

introduces� string � � � � �

string � �� character	 �� �

a� � a a	 �

a� � � � a �

Let us also assume a de	nite notation for individual characters and
strings� For each printing �or blank character c� there is supposed to
be a symbol �c� that denotes the corresponding individual in character�
The symbols digit and letter can then easily be speci	ed to denote the
expected subsorts of character� Moreover� the symbol c�� � �cn� abbrevi

ates �� �c�� � � � �cn� ��� thus denoting an individual in string since strings are
simply trees whose branches are all characters��

Now consider the following uni	ed algebraic speci	cation� If one ig

nores the double brackets ��� � � ��� it looks just like a context
free gram

mar exploiting regular expressions� with terminal symbols being writ

ten in quotes� �Although the need for the double brackets below might
be considered a drawback by some� their use avoids relying on obscure
precedence rules for disambiguating grouping in grammar speci	cations�
Moreover� they make it possible to specify the elimination of �chain
nodes�
in abstract syntax trees�

�To specify this notation for strings formally would require a schematic presentation of an
in�nite signature and a corresponding set of axioms�

grammar�

Stmt � �� Iden ��� Expr ��
�� begin� Stmt ��� Stmt�	 end� ��
�� if� Expr then� Stmt �else� Stmt�� �� �

Expr � Numl Iden �� Expr Oper Expr �� �

Oper � "� �� �� �� �

Numl � �� digit� ���� digit��� �� �

Iden � �� letter �letter digit�	 �� �

The speci	cation of grammar� at the beginning formally abbreviates
the speci	cation of our general notation for trees� characters� and strings�
together with the introduction of the left hand side symbols of the equa

tions as constants in the signature� This makes the above equations
well
formed axioms� Each equation de	nes the interpretation of a con

stant to be a particular subsort of tree� In general it can also be useful
to have constants standing for subsorts of tree	� for instance Stmts �
Stmt ��� Stmt�	�

Observe the following properties of the speci	cation�

� The sort �� Iden ��� Expr �� includes only individual trees with
three branches� the second branch being always the string ���� In
contrast� the sort�� begin� Stmt ��� Stmt�	 end� �� includes trees
with unbounded branching�

� The sort �� if� Expr then� Stmt �else� Stmt�� �� is entirely equiv

alent to the union �� if� Expr then� Stmt �� �� if� Expr then�
Stmt else� Stmt ���

� Individuals �e�g�� begin� are mixed with proper sorts �e�g�� Stmt
as arguments to the binary sequencing operation � It would be
tedious if one had to use di�erent symbols for an individual and the
singleton sort which includes just that individual�

� The sorts Numl and Iden are subsorts of Expr� rather than compo

nent sorts� Of course if one really wants them as components� all
one has to do is to enclose them in ��� � � ���

� The sorts Numl and Iden are also subsorts of string� �This would
not be the case for Numl is we had used the string �� instead of
the character ����

� The sort Iden includes the words begin�� end�� etc� It is in fact
quite easy to de	ne a subsort of Iden that is disjoint from such
reserved words� since one can specify disjointness of sorts x and y
using x � y � nothing� Of course the reserved words are a 	nite
set� so the unreserved words are regular and could still be speci	ed
without the meet operation available�but the speci	cation would
then be extremely tedious%

� The �organization� of the grammar does not a�ect the structure of
the speci	ed trees� For instance� we may replace the alternative
�� Expr Oper Expr �� by �� Expr "� Expr �� � � � �� Expr �� Expr ��
without changing the semantics of the speci	cation at all�

Assume that we restrict models of the above speci	cation to initial
models� using an empty bounded data constraint� This ensures that
models only contain 	nite trees� and that distinct tree terms denote dis

tinct trees�up to associativity and unit laws for the binary sequencing
of branches� The class of speci	ed models then gives us the intended
abstract syntax� Note that the models contain all trees� with the sorts
actually speci	ed in the grammar denoting the expected subsorts�

Notice that the use of strings as �terminal� components does not de

crease the abstractness of our abstract syntax� using arbitrarily
chosen
labels to distinguish between nodes with the same nonterminal compo

nent sorts instead would give isomorphic models� The strings used above
suggest the corresponding terminal symbols that might be used in a cor

responding concrete syntax� in practical applications� such as semantic
descriptions of realistic programming languages� the mnemonic value of
the strings can be extremely valuable�

The use of such abstract syntax in semantic descriptions is illustrated
in ����� �A slightly di�erent signature is used there for sequences� requir

ing that sequence arguments to operations like 	 be enclosed in angle
brackets h � � � i rather than ordinary parentheses� This avoids the �invis

ible� operation symbol � which tends to give rise to ambiguity when
used together with action notation in action semantic descriptions�

The sequencing and $
operations are also extremely convenient for re

ducing operations with varying numbers of arguments to unary ones� For
example� list of �� item	 � list allows list of �x� � � � xn� for constructing
a list with the components x� � � � � � xn� for any n � ��

� Conclusion

We have speci	ed an algebraic notation for trees and regular expres

sions� and shown that the axioms have a nontrivial model� This notation
allows perspicuous and �exible speci	cations of abstract syntax for pro

gramming languages by extended context
free grammars� as has been
illustrated� Terms in our tree notation can be used as sorts when spec

ifying other operations� for instance when using semantic equations to
de	ne semantic functions� as in denotational or action semantics� This is
made possible by the use of uni	ed algebras� the expressiveness of which
is fully exploited when specifying abstract syntax grammars� productions
of the grammar are sort equations� and sort constructing operations are
applied to mixtures of individuals and proper sorts� The notation for reg

ular expressions can also be useful when specifying abstract data types
with operations �such as list construction that are naturally regarded as
applied to ungrouped but ordered collections of arguments�

It may be desirable to generalize the notion of models of bounded data
constraints� so that extensionally
equal sorts can be identi	ed in a model
even when their equality does not follow directly from the speci	ed axioms
in the logic of uni	ed algebras� This would support the view� espoused
by the author in ����� that it is really only the individuals themselves
that matter� the sorts are there merely to classify the individuals� Sort
inclusions are often signi	cant� but sort equalities are usually irrelevant�

Acknowledgments Valentin Antimirov provided many useful com

ments during the preparation of this paper� The work reported here has
been partially funded by the Danish Science Research Council project
DART ������������

Appendix

The logic of uni	ed algebras is given by the following de	nite Horn
clauses� �The axioms characterizing distributive lattices could be given
purely equationally� with x � y being regarded as an abbreviation for
x y � y� Recall from Section � that x �y holds when x is not only
included in the sort y but also x is an individual �

��� a � b � b � c � a � c � a � b � b � a � a � a �

��� a � b � b � c � a � c � a � a �
a � b � b � a � a � b � nothing � a �

��� a � a � a � b � a � b � a � b � a � a �
a � b � a � b � a � nothing � b � c �

The last axiom above ensures that nothing is vacuous� except in the trivial
one
point model� An alternative would be to permit falsity as a conse

quent in our Horn clauses� and expect initial models to exist only when
some model exists�

��� a �b c� � �a b� c � a b � b a � a a � a �
a nothing � a �
a � c � b � c � a b � c � a � a b �

��� a � �b � c� � �a � b� � c � a � b � b � a � a � a � a �
a � nothing � nothing �
c � a � c � b � c � a � b � a � b � a �

�	� a � �b c� � �a � b� �a � c� � a �b � c� � �a b� � �a c� �

Furthermore� for each operation symbol f of rank n the following axioms
are provided� for i � � to n�

xi � x �
i � f �jx�� � � � � xi� � � � � xnj � f �jx�� � � � � x

�
i � � � � � xnj �

Finally� the inference rules of Horn clause logic with equality are simply�
Modus Ponens �from the formulae e�� � � � � em and the clause e�� � � � � em �
e infer e� the substitutivity of terms proved equal� and the instantiation
of clauses by substituting terms for variables�

References

��� V� M� Antimirov and P� D� Mosses� Rewriting extended regular ex

pressions� Technical Monograph DAIMI PB
���� Computer Science
Dept�� Aarhus University� ����� A short version is to appear in Proc�
Conf� on Developments in Language Theory� ed� A� Salomaa� World
Scienti	c Publ�

��� D� Bj'rner and C� B� Jones� editors� Formal Speci�cation � Software
Development� Prentice
Hall� �����

��� J� A� Goguen� J� W� Thatcher� E� G� Wagner� and J� B� Wright�
Initial algebra semantics and continuous algebras� J� ACM� ������
��� ��##�

��� G� Gr(atzer� Lattice Theory� First Concepts and Distributive Lattices�
W� H� Freeman � Co�� ��#��

��� G� Kahn et al� Metal� A formalism to specify formalisms� Sci�
Comput� Programming� ���������� �����

��� P� Klint� A meta
environment for generating programming environ

ments� In Algebraic Methods II� Theory� Tools� and Applications�
volume ��� of Lecture Notes in Computer Science� pages ��������
Springer
Verlag� �����

�#� D� Kozen� A completeness theorem for Kleene algebras and the
algebra of regular events� In LICS���� Proc� �th Ann� Symp� on
Logic in Computer Science� pages �������� IEEE� �����

��� D� Kozen� On action algebras� Technical Monograph DAIMI PB�
���� Computer Science Dept�� Aarhus University� �����

��� J� McCarthy� Towards a mathematical science of computation� In
Information Processing ��� Proc� IFIP Congress ��� pages ������
North
Holland� �����

���� P� D� Mosses� Uni	ed algebras and institutions� In LICS���� Proc�
�th Ann� Symp� on Logic in Computer Science� pages �������� IEEE�
�����

���� P� D� Mosses� Denotational semantics� In J� van Leeuwen� A� Meyer�
M� Nivat� M� Paterson� and D� Perrin� editors� Handbook of Theo�
retical Computer Science� volume B� chapter ��� Elsevier Science
Publishers� Amsterdam� and MIT Press� �����

���� P� D� Mosses� Action Semantics� volume �� of Cambridge Tracts in
Theoretical Computer Science� Cambridge University Press� �����

���� P� D� Mosses� The use of sorts in algebraic speci	cations� In Proc�
�th Workshop on Abstract Data Types and �rd COMPASS Work�
shop� volume ��� of Lecture Notes in Computer Science� pages ���
��� Springer
Verlag� �����

���� V� Pratt� Action logic and pure induction� In Logics in AI� Proc�
European Workshop JELIA��	� volume �#� of Lecture Notes in Com�
puter Science� pages �#����� Springer
Verlag� �����

���� T� W� Reps and T� Teitelbaum� The Synthesizer Generator Reference
Manual� Springer
Verlag� third edition� �����

���� D� A� Schmidt� Denotational Semantics� A Methodology for Lan�
guage Development� Allyn � Bacon� �����

��#� D� S� Scott and C� Strachey� Toward a mathematical semantics for
computer languages� In Proc� Symp� on Computers and Automata�
volume �� of Microwave Research Institute Symposia Series� Poly

technic Institute of Brooklyn� ��#��

���� J� E� Stoy� Denotational Semantics� The Scott�Strachey Approach
to Programming Language Theory� MIT Press� ��##�

Recent Publications in the BRICS Report Series

RS-94-1 Glynn Winskel. Semantics, Algorithmics and Logic: Ba-
sic Research in Computer Science. BRICS Inaugural Talk.
February 1994.

RS-94-2 Alexander E. Andreev. Complexity of Nondeterministic
Functions. February 1994.

RS-94-3 Uffe H. Engberg and Glynn Winskel. Linear Logic on Petri
Nets. February 1994.

RS-94-4 Nils Klarlund and Michael I. Schwartzbach. Graphs and
Decidable Transductions based on Edge Constraints. Febru-
ary 1994.

RS-94-5 Peter D. Mosses. Unified Algebras and Abstract Syntax.
March 1994.

