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The Limit View of In�nite Computations�

Nils Klarlund��

BRICSy � Department of Computer Science�
University of Aarhus

Ny Munkegade� DK����� �Arhus� Denmark
klarlund�daimi�aau�dk

Abstract� We show how to view computations involving very general
liveness properties as limits of �nite approximations� This computational
model does not require introduction of in�nite nondeterminism as with
most traditional approaches� Our results allow us directly to relate �nite
computations in order to infer properties about in�nite computations�
Thus we are able to provide a mathematical understanding of what sim�
ulations and bisimulations are when liveness is involved�
In addition� we establish links between veri�cation theory and classical
results in descriptive set theory� Our result on simulations is the essential
contents of the Kleene�Suslin Theorem� and our result on bisimulation
expresses Martin	s Theorem about the determinacy of Borel games�

� Introduction

It is generally believed that to model general liveness properties of concurrent
systems� such as those expressed by in�nitary temporal logics� we must use ma�
chines with in�nite �countable� nondeterminism� Such models arise for example
in program veri�cation involving fairness� where transformations of programs
induce nondeterminism�

But it is disturbing that countable nondeterminism� for which no physical im�
plementation seems to exist� is introduced in our model of computation� In con�
trast� any conventional Turing machine can be implemented and we can observe
its �nite runs� although not all of them� of course� due to physical constraints�
But how would a physical device carry out a nondeterministic choice among un�
countably many possibilities at each computation step� Instead� it seems more
reasonable to let the machine compute �nite information about progress that
somehow gives rise to an acceptance condition on in�nite computations�

� This article is a revised and extended version of an earlier technical report
��Convergence Measures�� TR��	

��� Cornell University�� which was
extracted from the author
s Ph�D� thesis� Due to space limitations� all
proofs have been omitted in this article�
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Another foundational problem we would like to address is the lack of general
notions of simulation and bisimulation for programs that incorporate liveness
conditions� Since simulations are local equivalences� we also here need a better
understanding of progress of �nite computations towards de�ning in�nite ones�

In this paper� we introduce a limit concept that allows deterministic ma�
chines to calculate progress approximations so that analytic or coanalytic sets�of
computations are de�ned� Thus nondeterminism is not inherent to models of
computations involving even very general liveness conditions� even those that
are expressed by in�nitary temporal logics�

Our concept is a natural generalization of B	uchi or Rabin conditions� which
de�ne only sets very low in the Borel� hierarchy of properties� Our progress
approximations generalize B	uchi automata� where states are designated as ac�
cepting or non�accepting and the limit condition is that in�nitely many accepting
states are encountered�

Our main goal is to show that reasoning about the in�nite behavior of our
machines can be carried out directly in terms of progress approximations without
transformations� Speci�cally� we turn our attention to two fundamental problems
for programs with liveness conditions


� �nding a progress concept for showing that one program implements another
program so that each step contributing to a live computation of the �rst
program is mapped to a corresponding step of the second program� and

� �nding a progress concept for showing that two programs can simulate each
other so that each step of one corresponds to a step of the other equivalent
with respect to making or not making progress towards a live computation�

Our results for these two problems are essentially the contents of the two per�
haps most celebrated results of descriptive set theory
 the Kleene�Suslin Theorem
and Martin�s Theorem about the determinacy of Borel games� respectively�

Previous Work

For certain kinds of speci�cations� such as those involving bounded nonde�
terminism or fairness� dozens of veri�cation methods have been suggested�

� The notion of analytic set can be de�ned in many ways� For example� M is analytic
if there is a nondeterministic automaton �with a countable state space� such that M
is the set of in�nite sequences allowing an in�nite run� see ����� The class of analytic
sets is denoted ��

�� The dual of an analytic set is said to be coanalytic or ��

��
� The Borel hierarchy is the least class of sets containing the class ��

� of open sets
and closed under countable intersection and union� For example� the Borel hierarchy
contains the class ��

� of sets that are countable intersections of open sets� Every
property de�ned by a B�uchi automaton� including usual fairness conditions� is a �nite
Boolean combination of ��

� sets �and so is at the third level of the Borel hierarchy��
see ��
�� Every Borel set is analytic and coanalytic� Vice versa� the Kleene�Suslin
Theorem states that any set that is both analytic and coanalytic is also Borel�






see ��� 
� �� �� �� �� ��� ��� ��� 
��� Yet the general problem has� to the au�
thor�s knowledge� been addressed only in relatively few articles ��� �� 
��� The
earlier proposals solve the veri�cation problem by transformations that introduce
in�nite nondeterminism�

The most general such approach is that of Vardi �
��� Vardi uses a computa�
tional model corresponding to nondeterministic automata with in�nite conjunc�
tive branching for de�ning speci�cations� The apparent physical unrealizability
of this concept motivated the limit view given in the present paper� Vardi�s
method can easily be reformulated as progress measures �
��� i�e� as mappings
from the states of the implementation� These progress measures� however� do not
imply the ones presented here� since we use a di�erent computational model� To�
gether with the Boundedness Theorem for ��

� sets� Vardi�s results amount to the
Kleene�Suslin Theorem� although this was not noted in �
���

A few methods have appeared that more directly quantify progress ��� ���
��� 

�� but these methods only apply to sets at low levels of the Borel hierarchy�
namely �nite Boolean combinations of ��

� sets�
In ����� a simple progress measure based on a condition� called the Liminf

condition� was proposed� This condition� however� can be used only to reason
about speci�cations that are ���� i�e� at the third level of the Borel hierarchy�
Other approaches to viewing computations as limits are based on metrics of
mathematical analysis �
��� These approaches also deal with sets at the third
level�

Recursion�theoretic aspects of relating automata with di�erent kinds of ac�
ceptance conditions have been studied in �
���

In this paper we report on the most general measure proposed in ����� In
addition� we introduce here the new concept of progress bisimulation�

� Overview

Our results are based on an abstract� graph�theoretic formulation of the veri�ca�
tion problem� We represent the transitions of a program as a directed� countable
graph G � �V�E�� where vertices V and edges E correspond to program states
and transitions� Then the in�nite paths in G correspond to all possible in�nite
computations�

To de�ne live computations� we introduce progress approximations on V that
assign a �nite amount of information to each vertex� In turns out that if we let
this information be a labeled tree� then very general properties can be expressed�
Thus a progress approximation � associates a �nite tree � �v� to each vertex v�
A computation v�v� � � � de�nes an in�nite sequence � �v��� � �v��� � � � of progress
approximations and a limit tree lim� �vi� that consists of the nodes that from a
point on occur in every progress approximation� The computation is live if the
limit tree has only �nite paths� i�e� if it is well�founded �it may still be in�nite��
We call this condition the well�foundedness condition of � and abbreviate it
WF � �

The WF condition is extraordinarily powerful� We prove that the sets spec�

�



i�ed by WF conditions constitute the class ��
� of coanalytic sets� This class

includes all Borel sets as we show using progress approximations� In fact� we
show that automata combined with temporal logics with in�nite conjunctions
and disjunctions express the class of Borel sets and can be coded as WF condi�
tions�

The dual of the WF condition is the condition that requires the limit tree
to contain some in�nite path� This condition is called the non�well�foundedness
condition and denoted �WF� The sets speci�ed by �WF conditions constitute
the class ��� of analytic sets�

In order to relate two programs with liveness conditions� we �rst study a
simpler problem� We may view WF � as a speci�cation that every computation
of G is live� Thus we say that G satis�es WF � if every in�nite path v�v� � � � of G
satis�es WF � � Note that this property seems to call for considering uncountably
many in�nite computations� Our �rst result is to show that G satis�es WF � can
be established by local reasoning about vertices and edges�

��� Progress Measures

For proving the property of program termination� we usually resort to mapping
program states to some values� and we then verify that the value decreases with
every transition� These values quantify progress toward the property of termina�
tion� Similarly for a property speci�ed by a WF condition� we seek a relation on
some set of progress values that the states with their progress approximations
can be mapped to� The relation must ensure that the limit tree is well�founded�

To do this� we use tree embeddings as the set of progress values� We �x a
well�founded tree T and a mapping � such that ��v� speci�es an embedding of
� �v� in T � We then de�ne the WF progress relation �WF on tree embeddings�
Intuitively� it states that embedded nodes move forward in T according to a
prede�ned ordering� If in addition � satis�es the veri�cation condition

�V C� for any transition from v to v�� it is the case that ��v� �WF ��v���

then � is a WF progress measure� Our �rst result is


Graph Result

All in�nite paths in G satisfy WF �

if and only if
there is a progress measure � for G and � �

Thus the question of verifying that all in�nite computations satisfy the speci��
cation is equivalent to �nding some mapping that is a WF progress measure� In
other words� the existence of a progress measure means that each step of a pro�
gram contributes in a precise mathematical sense to bringing the computation
closer to the speci�cation�

��� Progress Simulations

To formulate our results on progress simulations� we turn to a generally accepted
model of in�nite computations� There is an alphabet � of letters representing
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actions� and a program P is a nondeterministic transition system or automaton
over �� The computations or runs over an in�nite word a�a� � � � are the sequences
of states� beginning with an initial state� that may occur when the word is
processed according to the transition relation� A word is recognized by P if it
allows a run� The set of words recognized by P is called the language of P and
denoted L�P�� �Note that in this model we have abstracted away the details of
the machine structure and technical complications such as stuttering��

Thanks to the countable nondeterminism present in such programs� they
de�ne the class of ��� of analytic sets

�� Now given two programs P and Q�
called the implementation and speci�cation� we say that P implements Q if
every word recognized by P is also recognized by Q� i�e� if L�P� � L�Q�� The
veri�cation problem is to establish L�P� � L�Q� by relating the states of the
programs without reasoning directly about in�nite computations�

It is well�known that if we can �nd a simulation� also known as a homomor�
phism or re�nement map� from the reachable states of P to the states of Q�
then L�P� � L�Q�� �This method is not complete� however� since L�P� � L�Q�
might hold while no simulation exists ��� ��� 
����

The preceding discussion has ignored liveness� including common concepts
such as starvation and fairness� So assume that P also de�nes a set LiveP of
state sequences said to be live� For example� the set LiveP may be speci�ed by
a formula in temporal logic or by a WF condition� The live language L��P� of
P is the set of words that allow a live computation� We say that P satis�es Q if
the words allowing a live computation of P also allow a live computation of Q�
i�e� if L��P� � L��Q�� The veri�cation problem is now to show that P satis�es
Q without considering in�nite computations�

To simplify matters� we assume that a simulation already exists from P to
Q and that the set LiveQ is expressed as a WF condition of a progress approx�
imation �Q on Q�s state space� The set LiveP cannot be expressed as a WF

condition if the veri�cation problem is to be reduced to only a well�foundedness
problem �
��� Thus we instead specify LiveP by a �WF condition of a progress
approximation �P on P�s state space�

We show that there is an operation merge� that merge progress approxi�
mations so as to express the condition LiveP � LiveQ� i�e� �WF �P � WF �Q
or� equivalently�WF �P �WF �Q� Thus we formulate a progress simulation from
P to Q as a simulation h together with a progress measure for the progress
approximationmerge���P �p�� �S�h�p��� which is de�ned on P�s reachable states�

We use the Graph Result to derive

� If in addition the program P can be e�ectively or recursively represented �that is� the
transition relation can calculated by a Turing machine� which on input �s�a� s�� halts
with the answer to whether �s� a� s�� is in the transition relation�� then the language
recognized is said to be analytical� The class of such languages is denoted ��

�� In
general� the e�ective class corresponding to a class denoted by a boldface letter is
denoted by the lightface letter�

�



General Progress Simulation Theorem

If there is a simulation from P to Q� then
P satis�es Q

if and only if
there is a progress simulation from P to Q�

The General Progress Simulation Theorem in particular solves the veri�cation
problem for programs and speci�cations that are expressed using formulas in
in�nitary temporal logic �under the assumption that a simulation exists��

The theorem has an e�ective version� which we call the Finite Argument
Theorem� It shows that there is a uniformway of obtaining a progress simulation�
Thus there is an algorithm that calculates a Turing machine for calculating
a progress simulation given as input Turing machines de�ning P� Q� and a
simulation h with L��P � � L��S�� This is not a decidability result� but an
explicit reduction of the ��

��complete problem of establishing L��P � � L��S� to
the classic ��

��complete problem of whether a recursive tree is well�founded�
There is a strong connection to descriptive set theory� In fact� we show that

the Finite Argument Theorem expresses the Kleene�Suslin Theorem as a state�
ment about the feasibility of program veri�cation�

��� Progress Bisimulations

Consider a program P with state space P and transition relation �P and a
program Q with state space Q and transition relation �Q�

The notion of bisimulation stipulates that the programs are equivalent if
there is a relation R � P � Q containing the pair of initial states such that


� if R�p� q� and p
a
�P p�� then there is q� such that q

a
�Q q� and R�p�� q��� and

� vice versa� if R�p� q� and q
a
�Q q�� then there is p� such that p

a
�Q p� and

R�p�� q���

This de�nition is central to the algebraic treatment of concurrency� The es�
sential result is that the existence of the bisimulation relation is equivalent to
the impossibility of observing a di�erence in behavior of the two systems with
respect to ability of carrying out actions�

Assuming now that P and Q are bisimilar in this traditional sense� can we
then compare them also regarding liveness� That is� we would like to relate
program states also with respect to how close they are to satisfying the liveness
conditions so as to formalize the intuition
 for any transition of one program
there is a transition for the other program which is equivalent with respect to
progress or non�progress towards the liveness condition�

To get an understanding of what observing liveness means� we formulate the
process as an in�nite game between an observer and a responder � The game is the
same as the one that characterizes bisimilarity� although the winning conditions
are di�erent
 bisimilar programs P and Q are live equivalent if no observer can
devise bisimilar computations of P and Q so that one is live and the other is
not�
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More precisely� the observer is allowed to pick actions and transitions accord�
ing to the following rules in order to produce corresponding computations�

First� the observer chooses an action and a transition on this action for one
of the programs from its initial state� Then the responder lets the other program
make a corresponding transition on the same action from its initial state� The
new pair of states must belong to the bisimulation relation �the responder can
always �nd a new state by de�nition of bisimulation relation��

Next� the observer chooses a second action and a transition for one of the
programs� This transition is again matched by the responder who lets the other
program make a corresponding step�

This process continues ad in�nitum and produces an in�nite word and com�
putations of P and Q over this word� If it is not the case that some observer
can choose actions and transitions so that however the responder matches the
observer�s moves� a live and a non�live computation are produced� then P and
Q are said to be live equivalent �

The way an observer chooses actions and transitions is called a testing strat�
egy � Generally� a strategy is a function of all previous choices made by the other
player� In case a choice is solely dependent on a current pair of states� the strat�
egy is said to be memoryless� Similarly� the responder�s answers are described by
a response strategy � which is also a function of the previous choices� The response
strategy is memoryless if it is dependent only of the current pair of states and
the name and action of the process picked by the observer�

For usual bisimulation� it can be shown for both players that having a win�
ning strategy is equivalent to having a winning memoryless strategy� Also� a
bisimulation relation encodes a class of memoryless response strategies�

Unfortunately� the two programs below show informally that even for simple
liveness conditions� it may happen that neither player has a winning memoryless
strategy�

P
p

r

q
a

a

a

a

i�o�

p

r

q
a

a

a

aQ

a�a�

a�a�

Here P and Q are the same program over a one letter alphabet except for
the liveness condition
 the program P accepts if the B	uchi condition fqg is
satis�ed� i�e� if the state q occurs in�nitely often� and the program Q accepts if
the states p and q occur almost always� i�e� if from some point on the state r
is not encountered� It can be seen that neither the observer nor the responder
has a winning memoryless strategy� In fact� the observer does have a winning
strategy� namely �at p� pick the choice �q or r� that is the opposite of what the
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responder last did�� but this is not a memoryless strategy�� Thus P and Q are
not live equivalent�

For general systems that are live equivalent� we shall show that a natural
notion of progress bisimilarity can be formalized for their �nite computations
if the liveness conditions are Borel� If �nite computations u and v of P and Q
are progress bisimilar� we must express by a progress value � how close they
are to being either both live or both non�live� Since we assumed that LiveP is
Borel� it is both analytic and coanalytic� Thus there is a pair �P � �� �P � �

��
P � of

progress approximations such that LiveP is the set of in�nite state sequences
that satisfy WF � �P and also the set of sequences that satisfy �WF � ��P � For no�
tational simplicity� we assume that these approximations are de�ned on �nite
computations� We then de�ne an operation merge� on progress approximations
such that merge���P � �Q� speci�es the joint state sequences that are both live
or both non�live�

A progress bisimulationR��u� v� �� is now a relation that for some �xed well�
founded T relates a �nite computation u of P� a �nite computation v of Q� and
an embedding � of merge���P �u�� �Q�v�� in T such that


� if R��u� v� �� and u �P u�� then there is v� and �� such that v �Q v��
R��u�� v�� ���� and � �WF ��� and

� vice versa� if R��u� v� �� and v �Q v�� then there is u� and �� such that
u�Q u�� R��u�� v�� ���� and � �WF ���

Our second main result is 


General Progress Bisimulation Theorem

If Borel programs P and Q are bisimilar� then
P and Q are live equivalent

if and only if
P and Q allow a progress bisimulation�

This result follows from a very deep result in descriptive set theory by Martin ����
that all in�nite games with Borel winning conditions are determined� i�e� it is
always the case that one player has a winning strategy� Since determinacy of
games with arbitrary winning conditions contradicts the Axiom of Choice �
���
the General Progress Bisimulation Theory is hard to generalize� In fact� the
study of the Determinacy Axiom is an important part of mathematical logic�

� Note however that only bounded memory about the past is necessary to specify
the observer	s moves� This is a general phenomenon� as shown in ���� games based
on Boolean combinations of B�uchi conditions have bounded�memory strategies� also
known as forgetful strategies� For Rabin conditions� which are special disjunctive
normal forms� memoryless strategies do exist �����
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� De�nitions

Programs and Simulations Assume a �nite or countable alphabet � of ac�
tions� A program P � �P��� p��Live� over � consists of a state space P � a
transition relation �� P � � � P � an initial state p�� and a liveness speci��
cation Live� which speci�es a set of in�nite state sequences� The program P is
deterministic if for all p and a there is at most one p� such that p

a
� p�� A

computation over an in�nite word a�a� � � � is an in�nite state sequence p�p� � � �
such that p� � p� and pi

a
� pi	�� for all i� A computation is live if it satis�es

Live� A �nite computation u � P � is a pre�x of some in�nite computation� The
transition relation is extended to �nite computations in the natural way
 u

a
� v

if for some �u� p� and p�� u � �u � p� v � u � p�� and p
a
� p�� The set of all words

allowing some computation is denoted L�P� and is called the language of P�
The subset of words in L�P� that allow a live computation is denoted L��P�
and called the live language of P�

A simulation h 
 P �� Q is a partial function that maps the initial state of
P to that of Q and respects the transition relation


� h�p�� � s�� and

� p � dom�h� and p
a
�P p� implies p� � dom�h� and s

a
�Q s��

Note that if P and Q are deterministic with L�P� � L�Q�� then a progress
simulation exists �provided that P has no reachable state that has no successor��
Also� h can be uniformly computed from e�ective representations of P and Q�

Pointer Trees A pointer tree �or simply tree� T is a pre�x�closed countable
subset of ��� where � is the set of natural numbers �� �� � � � Each sequence t �
t� � � � t� in T represents a node� which has children t � d�T � Here d�� is the
pointer to t � d from t� If t� is a pre�x of t�T � then t� is called an ancestor of t�
We visualize pointer trees as growing upwards as in

h�� 
i

h�i





 �

�

h�� �� 
i

h�� �i

hi

level �

level �

level 


level �

where children are depicted from left to right in descending order� Any sequence
of pointers t�� t�� � � � ��nite or in�nite� denotes a path� 	� t�� t� � t�� � � � ��nite or
in�nite� in T � provided each t� � � � t� �T � The level jtj of a node t � t� � � � t� is

�



the number 
� the level of 	 is �� T is �nite�path or or well�founded if there are
no in�nite paths in T � This is also denoted WF T �

A well�founded tree T is ��rankable if there is an assignment of ordinals to
the nodes of T such that the root has rank � and if a node t has rank � then
every child of t has rank less than ��

� WF Limit Representations

In this section we show how to represent analytic and coanalytic sets by limits�
For a sequence ��� ��� � � � of pointer trees� we de�ne limi �i as


t� lim
i
�i if and only if for almost all i� t� �i�

It is not hard to see that limi �i is a tree� which we call the limit tree� To
characterize �nite computations� we use a progress approximation � that assigns
a �nite pointer tree � �u� to each �nite word u���� Thus we assume here that the
underlying program is the transition system that has �� as its state space and
where the transition relation is de�ned so that the current state is the sequence
of actions encountered� With this representation� the live languages lim�WF�
and limWF � are de�ned by
 for a word 
 � a�a� � � ��


� lim�WF � if and only if �WF lim
u��

� �u�� and


� limWF � if and only if WF lim
u��

� �u��

where u� 
 denotes that u takes the values 	� a�� a�a�� � � �
The class ��� of analytic sets and the class �

�
� of coanalytic sets can be

described by limits


Theorem�� �Representation Theorem� The limit operators lim�WF and
limWF de�ne the classes ��� and ��

�� i�e� S ���� 	 
� 
 S � lim�WF � and
S ���

� 	 
� 
 S � limWF � �

Proof The proof uses the classic representation involving projections of trees �
��
p����� �

As with the usual representations �see �
���� we have


Theorem�� �Boundedness Theorem for ��
� sets� Let C � limWF � be a co�

analytic set� If there is a countable ordinal � such that for all 
�C� limu�� � �u�
is ��rankable� then C is Borel�

We postpone the proof of Theorem 
 to Section ��
In the following� we say that an analytic program P is of the form �P��

� p���WF � � and that a coanalytic program is of the form �P��� p��WF � �� where
� is a progress approximation that assigns a pointer tree to each state in P �

��



� WFRelation and Measure

We use tree embeddings to measure progress of computations towards de�ning
a �nite�path tree in the limit� Let T be a �xed tree� An embedding of a tree � in
T is an injective mapping � 
 � � T such that ��	� � 	 and for all t � d� � there
is d� with ��t � d� � ��t� � d�� Note that j��t�j � jtj� in fact� � is just a structure�
preserving relabeling of � � Also note that dom��� is the tree � and that rng���
is the image in T of � �

We can now de�ne the WF relation� which we denote by �WF 


De�nition�� �WF Relation� � �WF �� if for all s� dom��� � dom����� ��s� �
���s�� where ��� is de�ned by
 d� � � �dn � e� � � �en if either d� � � �dn � e� � � � en

or there is a level � 
 n such that d� � e� and for all 
 � �� d� � e��

Intuitively� � �WF �� holds if for any node s in both dom��� and dom����� the
image in T of s under �� is the same as or to the right of the image under �
�assuming that pointer trees are depicted as explained earlier�� Although �WF
is not a well�founded relation� it ensures well�foundedness in the limit provided
T is well�founded�

Lemma�� �WF Relation Lemma� If WF T and �� �WF �� �WF � � �� then
WF limi dom��i��

This lemma is an immediate consequence of


Proposition�� Let T be a �xed tree and let �� �WF �� �WF � � � be an in��
nite �WF �related sequence of embeddings in T� Then there is an embedding � of
limi dom��i� in limi rng��i��

Hence if T is well�founded� �WF measures progress of pointer trees towards
de�ning a well�founded tree� To state this more forcefully� we need some de�ni�
tions�

De�nition	� Let G � �V�E� be a countable� directed graph and let � be a
progress approximation on V � We say that an in�nite path v�v� � � � satis�es
the WF condition of � � and write v�v� � � � j
 WF� � if WF limi � �vi�� A graph G

satis�es the WF condition of � � and we write G j
WF � � if every in�nite path in
G satis�es the WF condition�

De�nition
� A WF progress measure ��� T � for �G� � � is a �nite�path tree T

and a mapping � 
 v �V � �� �v� � T � such that

� ��v� is an embedding of � �v� in T � and
� � respects the edge relation of G� i�e� �u� v��E implies ��u� �WF ��v��

Theorem	� �Graph Result� G j
WF � if and only if �G� � � has a WF progress
measure�

Proof ��� This follows from the WF Relation Lemma�
��� The proof consists of a trans�nite construction of � and T � �

��



� Progress Simulations

In this section� we present the General Progress Simulation Theorem� Let
P � �P��P� p

���WF �P� be an analytic implementation and Q � �Q��Q

� q��WF �Q� a coanalytic speci�cation� To prove that L��P� � L��Q�� we need
to combine the progress approximations�

De�nition�� Given �nite trees � and � �� the set merge���� � �� consisting
of nodes d�e� � � �dnen and d�e� � � �en��dn� where n � ��� d� � � �dn� � � and
e� � � � en� � �� is called the or�merge of � and � ��

It is not hard to see that merge���� � �� is a tree� The or�merge has the following
properties


Proposition�
� Let �i and � �i be in�nite sequences of trees�

�a� WF limimerge���i� �
�
i� if and only if WF limi �i or WF limi �

�
i �

�b� If limmerge���i� �
�
i� is ��rankable and �WF limi �i� then limi �

�
i is ��rankable�

Given a simulation h 
 P � Q� we measure progress towards LiveP � LiveQ
as follows�

De�nition��� A progress simulation �h� �� T � from P to Q relative to h is a
WF progress measure for ��V�E�� p �� merge���P �p�� �S�h�p���� where V � P

are the states of P reachable by some �nite computation and �p� p�� � E if and

only if p
a
� p� for some a�

Theorem��� �Progress Simulation Theorem� Assume we have analytic
P � �P��P� p

���WF �P�� coanalytic Q � �Q��Q� q
��WF �Q�� and simulation

h 
 P � Q� Then L��P� � L��Q� if and only if there is a progress simulation
from P to Q relative to h�

Proof The proof follows from the WF Relation Lemma� Proposition ��� and
Theorem �� �

	�� Suslin�s Theorem

Corollary ��� �Suslin�s Theorem� Let L be a set of in�nite sequences over
� that is both analytic and coanalytic� Then L is Borel�

	�� Finite Argument Theorem

A progress simulation can be viewed as an argument for why a program sat�
is�es a speci�cation� We show that for e�ective descriptions of program� spec�
i�cation� and simulation� there is an e�ective description of the progress mea�
sure� More precisely� let a WF semi�measure ��� T � be a WF progress measure
except that there is no requirement that T be well�founded� Then there is a

�




total recursive function calculating an index of a WF semi�measure ��� T � for
merge���P �p�� �S�h�p��� given indices for P� Q� and h� moreover� �h� �� T � is a
progress simulation� i�e� T is well�founded� if and only if P satis�es Q�

Theorem ��� �Finite Argument Theorem� A progress simulation can be
obtained uniformly from indices of P� Q� and h�

Proof By analyzing the proof of Theorem �
 for computational contents� one
can obtain an explicit algorithm for calculating � and T � �

Intuitively� the Finite Argument Theorem shows that there is a systematic �in
fact computable� way of getting a �nite argument of correctness about �nite
computations from the program and the speci�cation �if a simulation exists� for
example by assuming that program and speci�cation are deterministic��

The veri�cation method based on WF progress measures is optimal in the
following sense� For speci�cations that are ���� it is �

�
��complete to determine

whether a ��� program satis�es the speci�cation� For example� determining
whether L�P� � L�Q�� where P and Q are recursively represented nondeter�
ministic transition systems is ��

��complete �
��� It is hardly imaginable that a
reasonable veri�cation method would not be in ���� which allows one to guess
relations and verify that they are well�founded� But even a ��� method cannot
possible solve the ��

��complete veri�cation problem for ��� sets� In this sense the
preceding results are optimal�

Finally� we observe that� just as Suslin�s Theorem is a consequence of Theo�
rem �
� the Finite Argument Theorem implies Kleene�s Theorem� which states
that there is a uniform way of obtaining an index in the hyperarithmetical hier�
archy of a set L from a ��

� and a �
�
� index of L �
���

� Borel Programs

To describe Borel sets in terms that are useful for veri�cation of programs� we
introduce a class of programs whose acceptance conditions are in�nitary tem�
poral logic formulas� This will also allow us to prove the Boundedness Theorem
for ��

� sets�

De�nition�
� By trans�nite induction� we de�ne a ranked formula �� � where
� is a countable ordinal� to be either a temporal predicate �� ��in�nitely often
 �� or �� ��almost always  ��� where  is a predicate on V � or a disjunctionW
���� ��� or a conjunction

V
���� ��� � where ��� are ranked formulas�

A sequence v�v� � � � satis�es �� � written v�v� � � � j
 �� � according to


v�v� � � � j
�� if and only if 
H 
 �h � H 
 vh j
 
v�v� � � � j
�� if and only if �H 
 
h � H 
 vh j
 

v�v� � � � j

�

����

��� if and only if ��� � � 
 v�v� � � � j
���

v�v� � � � j

�

����

��� if and only if 
�� � � 
 v�v� � � � j
���

��



De�nition��� A Borel program P � �P��� p�� ��� consists of a countable set
of states P � a deterministic transition relation �� P � �� P � an initial state
p�� and a ranked formula ���

Proposition�
� The class of live languages accepted by Borel programs is the
class of Borel sets�


�� Proof of the Boundedness Theorem of Section 



�� Borel Sets Are Analytic and Coanalytic

We show how to translate the temporal logic acceptance condition of a Borel
program into a WF or �WF condition of a progress approximation de�ned on
��� By this translation� program veri�cation with temporal logic can take place
by measuring progress using Theorem � or Theorem �
� The translation also
proves that all Borel sets are analytic and coanalytic�

Theorem��� Let P be a Borel program� Then there exist progress approxima�
tions � and � � on �� such that

limWF � � L��P�

lim�WF � � � L��P�

It is usually not possible to de�ne � as a function of the current state� Instead
the whole history of states or actions must be used� In particular� a �nite�state
Borel program becomes in�nite�state� �In contrast� note that B	uchi conditions
allow certain restricted third level properties to be expressed without going to
in�nite�state systems��

In order to prove this theorem we need two lemmas� They show how to merge
countably many sequences of �nite trees into one such sequence that satis�es the
WF condition if and only if all �respectively� one� of the original sequences satisfy
the WF condition�

Lemma�	� There is an operation merge	 that merges any list of �nite trees
into a �nite tree such that for any collection �� ji �i� j ��� of sequences of �nite
trees	

WF limi��merge	�� i�� � � � � �
i
i �

if and only if

�j 
WF limi�� �
j
i

Lemma��� There is an operation merge
 that merges any list of �nite trees
into a �nite tree such that for any collection �� ji �i� j ��� of sequences of �nite
trees	

WF limi��merge
�� i�� � � � � �
i
i �

if and only if


j 
WF limi�� �
j
i

By Proposition ��� we have


Corollary �
� Borel sets are analytic and coanalytic�

��



	 Progress Bisimulations

The full paper contains a formalization of the game outlined in Section 
��� By
Martin�s result ����� one of the players has a winning strategy� If the respon�
der has a winning strategy� then it can be described by a relation over �nite
computations and a progress measure for LiveP 	 LiveQ� This progress mea�
sure is formulated for the progress approximation merge���P�u�� �Q�v��� which
is de�ned as merge��merge��� �P�u�� �

��
Q�u���merge��� ��P�u�� �

�
Q�u����


 Conclusion

We have used a limit view of �nite computations to show that concepts of sim�
ulation and bisimulation can be be generalized to account also for very general
liveness properties� The two generalized concepts establish a strong connection
to two major theorems in descriptive set theory� The limit conditions presented
here probably have only theoretical interest� however�

In practice� the mathematical challenge needed to establish even simple
bisimulations for transitions systems with B	uchi acceptance conditions seems
quite di!cult� Further investigation may reveal whether the concepts presented
in this article may be su!ciently simpli�ed for �nite�state systems to be of use
in practice�
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