
B
R

IC
S

R
S-94-18

S.A
gerholm

:
L

C
F

E
xam

ples
in

H
O

L

BRICS
Basic Research in Computer Science

LCF Examples in HOL

Sten Agerholm

BRICS Report Series RS-94-18

ISSN 0909-0878 June 1994



Copyright c� 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk



LCF Examples in HOL

Sten Agerholm

BRICS�� Computer Science Dept��

Aarhus University� DK����� Aarhus C�� Denmark

June ��� ���	

Abstract

The LCF system provides a logic of �xed point theory and is useful to reason

about nontermination� recursive de�nitions and in�nite�valued types such as lazy

lists� Because of continual presence of bottom elements� it is clumsy for reasoning

about �nite�valued types and strict functions� The HOL system provides set theory

and supports reasoning about �nite�valued types and total functions well� In this

paper a number of examples are used to demonstrate that an extension of HOL

with domain theory combines the bene�ts of both systems� The examples illustrate

reasoning about in�nite values and nonterminating functions and show how domain

and set theoretic reasoning can be mixed to advantage� An example presents a proof

of correctness of a recursive uni�cation algorithm using well�founded induction�

� Introduction

The LCF system �GMW��� Pa��� is a theorem prover based on a version of Scott�s Logic of
Computable Functions 	a 
rst order logic of domain theory�� It provides the concepts and
techniques of 
xed point theory to reason about nontermination and arbitrary recursive
	computable� functions� For instance� it has been successfully applied to reason about
in
nite data structures and lazy evaluation �Pa�
b�� On the other hand� the HOL system
�GM��� supports set theoretic reasoning� It has no inbuilt notion of nontermination� all
functions are total� and only primitive recursive de
nitions are supported� It has mainly
been used for reasoning about 
nite data structures and terminating primitive recursive
functions�

In a way� extending HOL with domain theory as described in �Ag��� Ag�
� corresponds
to embedding the logic of the LCF system within HOL�this extension is called HOL�CPO
in this paper� Thus� any proof conducted in LCF can be conducted in HOL�CPO as well�
and axioms of LCF theories can be introduced as de
nitions� or derived from de
nitions�
provided of course they are consistent extensions of LCF� This correspondence breaks for
di�cult recursive domains with in
nite values� It is not easy to de
ne such domains in
HOL and LCF could just axiomatize the domains� still this has its theoretical di�culties
in general� but has been automated in certain cases �Pa�
a��

However� HOL�CPO is not just another LCF system� Ignoring the problems with
recursive domains� we claim it is more powerful and usable than LCF since 	�� it inherits

�Basic Research in Computer Science� Centre of the Danish National Research Foundation�

�



the underlying logic and proof infrastructure of the HOL system� and 	�� it provides direct
access to domain theory� These points are the consequences of embedding semantics rather
than implementing logic� One advantage of 	�� is that we can exploit the rich collection
of built�in types� theorems and tools provided with the HOL system� LCF has almost
nothing like that� Another advantage is that we become able to mix domain and set
theoretic reasoning in HOL such that reasoning about bottom can be deferred until the
late stages of a proof� To support this point� experience shows that the continual 
ddling
with bottom in LCF is very annoying� Its presence in all types makes LCF clumsy for
reasoning about 
nite�valued types and strict functions �Pa��� Pa�
b��

In contrast to 	��� domain theory is only present in the logic of LCF through axioms
and primitive rules of inference� Therefore 
xed point induction is the only way to reason
about recursive de
nitions� Testing that a predicate admits 
xed point induction can only
be performed in ML by an incomplete syntactic check� By exploiting the semantic de
�
nitions of these concepts in domain theory� HOL�CPO does not impose such limitations�
Fixed point induction can be derived as a theorem and syntactic checks for admissibility�
called inclusiveness� can be implemented� just as in LCF� But using other techniques for
recursion or reasoning directly about 
xed points allows more theorems to be proved than
with just 
xed point induction� Inclusive predicates not accepted by the syntactic checks
can be proved to be inclusive from the semantic de
nition�

In this paper we present a number of examples to demonstrate that HOL�CPO sup�
ports and extends both the HOL and the LCF worlds� We de
ne nonterminating and
arbitrary recursive functions in domain theory and reason about 
nite�valued types and
total functions in set theory 	higher order logic� before turning to domain theory� The
examples have already been done in LCF by Paulson which makes a comparison of the
two systems possible� The 
rst two examples� on natural numbers and lazy sequences� are
described in chapter �� of the LCF book �Pa��� and the third example is based on Paul�
son�s version of a correctness proof of a uni
cation algorithm by Manna and Waldinger
�MW��� Pa���� The uni
cation algorithm is de
ned as a 
xed point and proved total
afterwards� Termination is non�trivial and proved by well�founded induction �Ag����

Before we turn our attention to the examples we give an overview of the formalization
of domain theory in section � and describe the LCF system in section �� In section 

we introduce a cpo of natural numbers and present a few theorems about addition� In
section � a mapping function for lazy sequences and a generator for in
nite sequences are
introduced� The correctness proof of the uni
cation algorithm is discussed in section ��
Finally� the conclusions are summarized in section ��

� HOL�CPO

In this section we provide an overview of the formalization of domain theory and some of
the associated tools �Ag��� Ag�
�� This extension of HOL� called HOL�CPO� constitutes
an integrated system where domain theoretic concepts look almost primitive 	built�in� to
the user� Many facts are proved behind the scenes to support this view� In order to read
the paper it is not necessary to know the semantic de
nitions of the subset of domain
theory which is used� Therefore the presentation below shall be very brief� More details
can be sought in �Ag�
�� or in �Wi��� on which the formalization is based�

�



��� Basic Concepts

Domain theory is the study of complete partial orders 	cpos� and continuous functions�
These notions are introduced as predicates in HOL by their semantic de
nitions� A
complete partial order is a set and relation pair which satis
es the predicate

cpo�����bool���������bool���bool	

If 
�A�R�
 is a cpo then the underlying relation R is a partial ordering 	re�exive� transi�
tive and antisymmetric� on all elements of the underlying set A and there exists a 	unique�
least upper bound 	lub� for all non�decreasing chains 
X�num���
 of elements in A

	 X is a chain if 
R�X n��X�n�
��
 holds for all n ��
The underlying relation of a cpo D is obtained by writing 
rel D
� If x and y are

elements of D � written as 
x ins D
 and 
y ins D
� then 
rel D x y
 can be read as
�x approximates y� or �x is less de
ned than 	or equals� y��

Note that we do not require cpos to have a least de�ned element� also called a bottom
element� w�r�t� the underlying ordering relation� Cpos which have a bottom are called
pointed cpos and satisfy the HOL predicate pcpo 	same type as cpo �� If E is a pointed
cpo then the term 
bottom E
 equals the bottom element of E � In the following� cpos
are usually cpos without bottom unless we say explicitly that a cpo is pointed�

A continuous function from a cpo D
 to a cpo D� is a HOL function 
f��
����


such that the term 
cont f�D
�D��
 is true� It must be monotonic w�r�t� the underlying
relations and preserve lubs of chains in D
 in the sense that f applied to the lub of
a chain X in D
 is equal to the lub of the chain 
f�X n�
 in D� � The results of
applying f constitute a chain due to monotonicity and therefore have a lub in D� �
In addition� f must be determined by its action on elements of the domain cpo D
 �
This means that on elements outside D
 it should always return a 
xed arbitrary value
called ARB 	a prede
ned HOL constant�� The determinedness restriction is necessary
to prove that continuous functions constitute a cpo and is induced by the fact that we
work with partial HOL functions between subsets of HOL types 	corresponding to the
underlying sets of cpos�� Determinedness occurs everywhere and is the main disadvantage
of the formalization� In particular� functions must be written using a dependent lambda
abstraction 
lambda D f
 to ensure they are determined� Therefore� many functions
become parameterized by cpo variables 	corresponding to the free cpo variables of the
right�hand side of their de
nition��

The conditions on cpos and continuous functions ensure the existence of a �xed point

operator� called FixI 	the �I� is explained later�� which is useful to de
ne arbitrary
recursive functions and other in
nite values� Applied to a continuous function f on
a pointed cpo E � it yields a 
xed point� �� f�FixI E f� � FixI E f � and in fact
the least 
xed point� �� �x	 x ins E ��� �f x � x� ��� rel E�FixI E f�x � The
term 
FixI E f
 equals the least upper bound of the non�decreasing chain � v f	�� v
f	f	��� � � � where � stands for 
bottom E
 and v stands for 
rel E
�

The proof principle of 
xed point induction has been derived as a theorem from the
de
nition of the 
xed point operator� It can be used to prove properties of 
xed points
stated as inclusive 	or admissible� predicates� A predicate is inclusive if it contains lubs
of chains of elements in the predicate� Fixed point induction says that 
P�FixI E f�


follows from 
P�bottom E�
 and 
�x	 P x ��� P�f x�
� assuming a pointed cpo E � a
continuous function f from E to E and an inclusive predicate P on E � There are a

�



few syntactic�based proof functions to prove these semantic conditions� the cpo prover�
the type checker and the inclusive prover 	based on the LCF check in �Pa��� on page
��������� respectively� They only work in certain cases 	see below��

��� Constructions

There are various standard ways of constructing cpos and continuous functions which
allow proofs to be automated in HOL�

The discrete construction associates the discrete ordering 	identity� with a set and it is
therefore useful for making HOL sets into cpos� For instance� the type of natural numbers
can be used to de
ne the discrete cpo of natural numbers 
discrete�UNIV�num��bool�

using the universal set UNIV 	a predicate which is always true� here corresponding to the
set of all elements of 
�num
�� A construction called lifting can then be used to extend
the cpo with a bottom element as follows 
lift�discrete UNIV�
� The bottom element
of a lifted cpo 
lift D
 is written as Bt and all other elements are written as 
Lft

d
 for some d in D � It can be proved that 
bottom�lift D�
 is equal to Bt � The
constants Bt and Lft are the constructors of a new datatype in HOL which associates
a new element with a type� It is the underlying relation of the lifting construction which
makes Bt into a bottom element of 
lift D
�

There is also a construction for the cpo of continuous functions� relating functions
by the pointwise ordering relation� Assuming two cpos D
 and D� this construction
is written as 
cf�D
�D��
� Note that the two statements 
f ins �cf�D
�D���
 and

cont f�D
�D��
 are equivalent� Finally� we provide a product construction and sum
construction written as 
prod�D
�D��
 and 
sum�D
�D��
� respectively�

A proof function called the cpo prover automatically proves any term written using
the constructors is a cpo� There is a similar function for pointed cpos�

The constructions on continuous functions include the well�known projection and in�
jection functions associated with the product and sum cpos respectively� and functional
composition and currying as well� We also consider the 
xed point operator to be a
constructor�

In addition� there are two useful constructors associated with the lifting construction
on cpos� A determined version of the constant Lft � called LiftI � takes an element d

of a cpo D and lifts it to an element of the lifted cpo 
lift D
� A construction called
function extension can be used to extend the domain of a function to the lifted domain
in a strict way� It works as follows�

�� �ExtI�D�E� f Bt � bottom E� ��

��x	 x ins D ��� �ExtI�D�E� f �LiftI D x� � f x��

where E is pointed cpo and f is a continuous function from D to E �
It is also possible to write continuous functions using the dependent lambda abstrac�

tion 
lambda D��x	 e�x��
 where e�x� must be written using only continuous con�
structions and variables and constants in appropriate cpos� To prove a function� or more
generally any term� is in some cpo 	e�g� the continuous function space� a proof function
called the type checker can be used� provided the term 
ts within an informal notation�
The constructions above and lambda abstraction are part of the notation which can be
extended interactively with any terms in cpos 	see below�� Function application is also
part of the notation�






Further� any function between discrete universal cpos as the cpo of natural numbers
is trivially continuous� Hence� the cpo of continuous functions between such cpos is itself
a discrete universal cpo�

��� Adding New Constructions

The collection of constructors for cpos and continuous functions can at any time be
extended with user�de
ned constructors� An ML function is provided to de
ne a new cpo
constructor in terms of existing constructors� and similarly new function constructors can
be introduced� We make a distinction between new constants that are elements of some
cpo and new function constructors of some cpo� The latter are parameterized by cpo
variables� like the constructors above� A new constant to the system can be any proper
left�hand side of a HOL de
nition which can be proved to belong to some cpo� All of this
has been automated such that there are only a few proof functions to use which prove the
necessary cpo and membership facts behind the scenes�

However� the constructions do not provide all cpos and continuous functions that we
might want� In particular� recursive domains and their associated function constructions
must be introduced manually� A fairly tough development gave us lazy sequences and
lazy lists using HOL lists 
����list
 and functions of the form 
�num���
 to represent
in
nite values� These developments are described in �Ag�
� which also provides some ideas
on how to introduce such cpos more generally using in
nite labelled trees� It might be
possible to automate these ideas� The cpo of lazy sequences and its associated constructor
and eliminator functions are used in section ��

��� Interface

The cpo parameters on function constructions quite quickly become a pain� They make
terms di�cult to read and write� Fortunately an extension of the built�in HOL parser and
pretty�printer can hide the annoying extra information in most cases� This provides two
levels of syntax� the internal level of syntax where all parameters occur and the external
	interface� level of syntax where the parameters are ignored� Hence� FixI � LiftI and
ExtI above are part of the internal level syntax� The last letter �I� on 	internal� names
is used to distinguish the constants of the two levels� At the external interface level
the terms 
FixI E
� 
LiftI D
 and 
ExtI�D�E�
 are written simply as Fix � Lift

and Ext � respectively� New function constructors are also introduced in two versions�
Furthermore� the interface provides a nicer syntax for the dependent lambda abstraction�
The term 
�x��Dom D	 e�x�
 can be used for 
lambda D��x	 e�x��
�

� The LCF System

The LCF system is very similar to the HOL system 	or vice versa� since HOL is a direct
descendant of LCF�� It has a meta language ML 	or Standard ML� in which the logic
and theorem proving tools are implemented� Theorems are implemented by an abstract
datatype for security and axioms and primitive inference rules are constructors of this
datatype� Derived inference rules are ML functions� The subgoal package allows proofs in

�



a backwards fashion using tactics� Constants� axioms� theorems and so on are organized
in hierarchies of theories� The main properties of LCF may be summarized as follows�

� LCF supports a 
rst order logic of domain theory�

� The use of LCF to reason about recursive de
nitions 	
xed points� is restricted since
only 
xed point induction can be used� Besides� 
xed point induction is based on
an incomplete syntactic check of inclusiveness�

� Extending theories in LCF is done by an axiomatic approach and is therefore unsafe�
Checking whether an axiom is safe is di�cult since it must be done in domain theory
	outside LCF��

Each of these points are discussed below�
The central di�erence between LCF and HOL lies in their logics� The logic of the HOL

system is an implementation of a version of Church�s higher order logic� The logic of the
LCF system is an implementation of a version of Scott�s Logic of Computable Functions�
usually abbreviated LCF� In order to be able to distinguish the logic and the system the
logic was renamed to PP�� an acronym of Polymorphic Predicate ��calculus� PP� is a

rst order logic of domain theory� it has a domain theoretic semantics� It di�ers from
higher order logic since it is a 
rst order logic and types denote pointed cpos rather than
just sets 	cpos can be seen as sets with structure�� The function type denotes the cpo of
continuous functions whereas HOL functions are total functions of set theory�

Fixed point theory is provided in LCF through axioms and primitive rules of inference�
A certain constant of the logic denotes the 
xed point operator due to an axiom which
states it yields a 
xed point and due to the primitive rule of 
xed point induction which
states it yields the least 
xed point� In LCF there is no domain theoretic de
nition of
the 
xed point operator� Therefore� 
xed point induction is the only way to reason about
recursive de
nitions� However� structural induction for many datatypes can be derived
from 
xed point induction �Pa�
a�� but well�founded induction cannot� Admissibility of
predicates for induction is not de
ned either� a syntactic check is performed by the rule
of 
xed point induction� This check is not complete and examples of inclusive predicates
exist that are not accepted for 
xed point induction in LCF� Paulson gives an example in
�Pa�
a��

There are quite di�erent traditions of extending theories in LCF and HOL� In HOL
there is a sharp distinction between purely de
nitional extensions and axiomatical exten�
sions� De
nitional extensions are conservative 	or safe�� i�e� they always preserve consis�
tency of the logic� Stating a new axiom is not a conservative extension� it might introduce
inconsistency� In LCF there is no such distinction between axioms and de
nitions� The
only way to extend theories with new concepts is by introducing new axioms�

It is not always easy to know whether an LCF axiom is safe or not since this must be
justi
ed in domain theory� In particular� an axiom should not violate the continuity of
a function� All functions are assumed to be continuous in PP� since the function type
denotes the cpo of continuous functions� Paulson shows how easy it is to go wrong in
example 
��� of his book �Pa����

�



� Natural Numbers

In this section we start the comparison of LCF and HOL�CPO� As a 
rst simple example�
we de
ne a cpo of natural numbers and consider a few properties about addition� addition
is total� associative and commutative�

In LCF natural numbers are introduced as a recursive datatype where a constant � and
a strict successor function SUCC are the constructors� Names of constants for the type
and for the constructor functions are declared and then axioms about the new constants
are postulated� The axioms specify the partial ordering on natural numbers and state
strictness and de
nedness of the constructors� The exhaustion 	or cases� axiom is also
postulated� It states there are three possible kinds of values of a natural number� namely
bottom� zero and the successor of some natural number� Distinctness of the constructors
and the structural induction rule are then derived from these axioms and 
xed point
induction� This is performed automatically by a few ML functions�

It is also easy to de
ne a cpo of natural numbers in HOL� though the method is
very di�erent� Instead of introducing a new recursive cpo� we exploit the built�in natural
numbers and de
ne �� Nat � discrete�UNIV�num��bool� � Using lifting 
lift Nat
�
we obtain the pointed cpo corresponding to the recursive type of natural numbers in LCF�

The zero element of 
lift Nat
 is 
Lift �
 and a strict successor is obtained from
the built�in successor SUC by function extension�

�� Suc � Ext��nn �� Dom Nat	 Lift�SUC nn��

�� Suc ins �cf�lift Nat�lift Nat��	

Note that SUC is trivially a continuous function from Nat to Nat since the term

cf�D
�D��
 is a discrete universal cpo when D
 and D� are�

In LCF� addition is introduced by a recursion equation using an eliminator functional�
called NAT WHEN�

NAT WHEN x f � � �
NAT WHEN x f � � x

�m�m �� � � NAT WHEN x f 	SUCC m� � f m

which is useful to de
ne continuous functions on natural numbers by cases� From the
axiom for addition the usual recursion equations matching the cases above are derived
by proof� Note that NAT WHEN must assume the argument of the strict LCF successor
is de
ned� otherwise there would be a con�ict with the bottom case� A consequence of
this is that most theorems stated about addition inherit this assumption� De
nedness
assumptions make reasoning about strict functions di�cult �Pa����

In HOL�CPO� a strict addition on 
lift Nat
 is introduced in the same way as the
strict successor� by extending a built�in HOL function �� �

�� Add � Ext��nn �� Dom Nat	 Ext��mm �� Dom Nat	 Lift�nn�mm���

�� Add ins �cf�lift Nat�cf�lift Nat�lift Nat���	

Note� by the way� that neither Suc nor Add are parameterized by any cpo variables
since we work with the �concrete� cpo of 	lifted� natural numbers�

In LCF the recursion equations for addition are important in proofs because properties
of addition are proved using natural number induction� In HOL we can reuse built�in

�



theorems about addition which probably have been proved by similar inductions once� but
without considering the bottom element as in LCF induction� For 
nite�valued types we
can do the set theoretic developments in HOL before adding bottom� It is advantageous
to defer reasoning about bottom until as late as possible in a proof� e�g� de
nedness
assumptions tend to accumulate�

The usual recursion equations for addition have been proved in HOL but a reduction
theorem is more useful�

�� ��n	 Add Bt n � Bt� ��

��n	 Add n Bt � Bt� ��

��nn mm	 Add�Lift nn��Lift mm� � Lift�nn�mm��	

It states that addition is strict in both arguments and behaves as the built�in addition on
lifted arguments�

The next fact we consider states that strict addition is total� That is� provided the
arguments of Add are not bottom the result of applying Add will not be bottom� In
LCF this fact would be stated by a theorem of the following form�

�� �n m	 ��n�Bt� ��� ��m�Bt� ��� ��Add n m � Bt�	

Since we use lifting an equivalent statement in HOL is

�� �nn mm	 ��Add�Lift nn��Lift mm� � Bt�	

This can be derived immediately from the third clause of the above reduction theorem for
addition using the facts that Bt and Lift are distinct and exhaustive on a lifted cpo�

Finally� let us consider two theorems stating that strict addition is associative and
commutative�

�� �k m n	 Add �Add k m� n � Add k�Add m n�

�� �m n	 Add m n � Add n m

Their proofs are almost exactly the same in HOL� do a case split on the universally
quanti
ed variables 	lifted numbers� one by one and reduce using the reduction theorem
for addition after each case split� We end up with goals stating that the properties we
wish to prove must hold for the built�in addition� So we 
nish o� the proofs by using the
desired built�in HOL facts�

�� �m n p	 m � �n � p� � �m � n� � p

�� �m n	 m � n � n � m

Such proofs by cases could be automated easily� The LCF proofs require much more
thought� They use induction� in fact two nested inductions for commutativity� and rewrit�
ing�

� A Mapping Functional for Lazy Sequences

In this section we de
ne a mapping functional for lazy sequences and an in
nite sequence
constructor� One theorem is proved by 
xed point induction and another is proved by
�structural induction� on lazy sequences �Pa�
a�� i�e� structural induction is used to show

�



the inclusive property holds of all 
nite sequences� the inclusiveness ensures it holds also
of the in
nite sequences� The purpose of this section is to show in which way HOL�CPO
extends HOL with techniques for reasoning about in
nite values� and recursive de
nitions
in general�

The cpo of lazy sequences and its associated constructor and eliminator functions
correspond exactly to the LCF type of sequences and its associated functions� The LCF
type and constructor functions are introduced automatically by axioms similar to the
axioms for natural numbers� using the same ML functions too� Developing the lazy
sequences in HOL�CPO was di�cult and time�consuming but we reason about sequences
using the same techniques as in LCF�

A purely de
nitional development of a theory of lazy sequences is presented in �Ag�
��
It provides a constructor called seq for pointed cpos of partial and in
nite sequences
of data� Hence� if D is a cpo then 
seq D
 is a pointed cpo� The bottom sequence is
called Bt seq and the lazy constructor function is called Cons seq � These satisfy the
following cases theorem

�� �D s	

s ins �seq D� �

�s � Bt�seq� ��

��x s�	 x ins D �� s� ins �seq D� �� �s � Cons�seq x s���

Further� they are distinct and Cons seq is one�one� There is also an eliminator functional
called Seq when which can be used to write continuous functions on sequences by cases�
Assuming 
x ins D
� 
s ins �seq D�
 and 
h ins �cf�D�cf�seq D�E���
 for a cpo
D and a pointed cpo E � the following reduction theorem speci
es the behavior of the
eliminator�

�� �Seq�when h Bt�seq � bottom E� ��

�Seq�when h�Cons�seq x s� � h x s�

The constants Seq when and Cons seq belong to the interface level syntax� internally
they are parameterized by cpo variables 	and called Seq whenI and Cons seqI re�
spectively�� In addition� we have derived a theorem for �structural induction� on lazy
sequences from 
xed point induction� following Paulson�s approach �Pa�
a��

All de
nitions� theorems and proofs about lazy sequences are very similar to the ones
in LCF� The mapping functional is de
ned as the 
xed point of a suitable functional as
follows�

�� �D E	

Maps �

Fix

��g �� Dom�cf�cf�D�E��cf�seq D�seq E���	

�f �� Dom�cf�D�E��	

�s �� Dom�seq D�	

Seq�when

��x �� Dom D	�t �� Dom�seq D�	 Cons�seq�f x��g f t��s�

�� �D E	

cpo D ��� cpo E ��� Maps ins �cf�cf�D�E��cf�seq D�seq E���

�



Internally� the constant Maps is parameterized by the cpo variables D and E of the
de
nition� Using the reduction theorem for Seq when and the fact that Fix yields a

xed point of a continuous function we can prove the following reduction equations easily�

�� �Maps f Bt�seq � Bt�seq� ��

�Maps f�Cons�seq x s� � Cons�seq�f x��Maps f s��

where 
x ins D
� 
s ins �seq D�
 and 
f ins �cf�D�E��
 for cpos D and E � A
tactic which takes such theorems as arguments can be used to reduce occurrences of
Maps and other function constructors using a theorem like this one and the type checker
to prove the assumptions automatically�

We can prove that the mapping functional preserves functional composition� i�e� as�
suming 
f ins �cf�D��D���
 and 
g ins �cf�D
�D���
 for cpos D
 � D� and D� �
the following equation holds

�� Maps�Comp�f�g�� � Comp�Maps f�Maps g�

The constant Comp is de
ned as a determined version of the built�in functional compo�
sition 	internally it is called CompI �� The proof is conducted by observing that the two
continuous functions are equal i� they are equal for all sequences of values in D
 � i�e� i�
the following term holds�


�s	

s ins �seq D
� ���

�Maps�Comp�f�g��s � Comp�Maps f�Maps g�s�
	

Then we use an induction tactic based on the structural induction theorem for lazy se�
quences� This uses the inclusive prover behind the scenes to prove the equation admits
induction� The proof is 
nished o� using reduction tactics for Maps and Comp �

Finally� we present a functional Seq of which given a continuous function f and
any starting point value x generates an in
nite sequence of the form


Cons�seq x�Cons�seq�f x��Cons�seq�f�f x��			��


or written in a more readable way �x� f�x�� f�f�x��� � � � � � The function Seq of is
de
ned as a 
xed point as follows�

�� �D	

Seq�of �

Fix

��sf �� Dom�cf�cf�D�D��cf�D�seq D���	

�f �� Dom�cf�D�D��	 �x �� Dom D	 Cons�seq x�sf f�f x���

�� �D	 cpo D ��� Seq�of ins �cf�cf�D�D��cf�D�seq D���

The internal version of Seq of is parameterized by a cpo corresponding to the variable
D in the de
nition� We have proved the following statement about Maps and Seq of

�� �x	 x ins D ��� �Seq�of f�f x� � Maps f�Seq�of f x��

��



where D is a cpo and f is a continuous function from D to D � Informally� the two
sequences are equal since they are both equal to a term corresponding to �f x� f�f x��

� � � � � The proof of the theorem is conducted by 
xed point induction on both occurrences
of Seq of � inclusiveness is proved behind the scenes�

The proofs in LCF and HOL�CPO are based on the same overall idea but tend to be
longer in HOL� We must do many simpli
cations explicitly which are taken care of by
LCF rewriting� We must use the reduction tactic to type check arguments of functions
before their de
nitions can be expanded 	by applying reduction theorems�� LCF rewriting
with de
nitions corresponds to such reductions since it also performs ��conversion�

� The Uni�cation Algorithm

The problem of 
nding a common instance of two expressions is called uni�cation� The
uni
cation algorithm generates a substitution to yield this instance� and returns a failure
if a common instance does not exist� Expressions� also called terms� can be constants�
variables and applications of one expression to another�

term � Const name � Var name � Comb term term

Variables are regarded as empty slots for which expressions can be substituted� A substi�
tution is a set of pairs of variables and expressions that speci
es which expressions should
be substituted for which variables in an expression�

Manna and Waldinger synthesized a uni
cation algorithm by hand using their de�
ductive tableau system �MW��� and Paulson made an attempt to translate their proof
of correctness to LCF �Pa���� Paulson did not deduce the algorithm from the proof as
Manna and Waldinger did� he stated the algorithm 
rst and then proved it was correct�

A version of Paulson�s proof has been conducted in HOL�CPO� In this section we shall
not go into the details of this proof but mainly discuss a few points made by Paulson on the
LCF proof� The details of the HOL proof are presented in �Ag�
�� Although this example
is considerably larger than the examples above it does not require deeper insights in
domain theory� In fact� domain theory is used very little and only in the last stages of the
proof� But the formalization is exploited in an essential way� The uni
cation algorithm
cannot be de
ned in pure HOL 	at least not directly� since it is not primitive recursive�
However� it can be de
ned as a 
xed point easily�

Once we have proved that the uni
cation algorithm de
ned in domain theory always
terminates�this proof is conducted by well�founded induction�we can de
ne a pure set
theoretic HOL function� One may therefore argue that this approach provides a method�
though probably not the simplest and most direct one� for de
ning recursive function by
well�founded induction in HOL�

Paulson says that LCF does not provide an ideal logic for verifying the uni
cation
algorithm since it clutters up everything with the bottom element� For instance� the type
of constant and variable names and the syntax type of terms must contain a bottom
element� just like all other LCF types� Hence� de
nedness assertions of the form t ��

� occur everywhere because constructor functions for terms are only de
ned if their
arguments are 	strictness�� To indicate the in�uence of this problem on the complexity of
statements and proofs we show the LCF de
nitional properties for substitution 	derived

��



from a recursion axiom��

�SUBST s � �
�c� c �� � � 	CONST c�SUBST s � CONST c

�v� v �� � � 	VAR v�SUBST s � ASSOC 	VAR v� v s
�t�t�� t� �� � � t� �� � �

	COMB t� t��SUBST s � COMB	t� SUBST s�	t� SUBST s��

In HOL substitution is introduced by a primitive recursive de
nition�

�� ��c s	 �Const c� subst s � Const c� ��

��v s	 �Var v� subst s � assoc�Var v�v s� ��

��t
 t� s	

�Comb t
 t�� subst s � Comb�t
 subst s��t� subst s��

Note this is pure HOL� we do not need to use domain theory to de
ne a type of terms
and subst � Terms and names of constants and variables are represented by HOL types
which do not contain bottom� in contrast to the LCF types� All functions on terms used
in the proof� except uni
cation itself� can be de
ned by primitive recursion like subst

above� Hence� we can do the set theoretic developments 
rst and then turn to domain
theory later� We can de
ne discrete cpos of terms and names and lift these to contain a
bottom when necessary� just as we did in the natural number example� Besides� we avoid
PP��s explicit statements of totality for functions such as SUBST which are obviously
total�

�t s� t �� � � s �� � � tSUBST s �� ��

since HOL functions are always total�
The uni
cation algorithm is stated as a collection of recursion equations in LCF� In

HOL� the uni
cation algorithm is de
ned as a 
xed point of a certain functional� which
unfortunately is too large 	one page� to be presented here� and the recursion equations are
then derived from the 
xed point property� It is a continuous partial function as stated
by�

�� unify ins �cf�term�cf�term�lift attempt���

The cpo of terms is just the discrete universal cpo of all HOL terms of type 
�term


which can be introduced by the above speci
cation� The cpo of attempts is the sum cpo
of a discrete universal cpo with underlying type 
�one
 and a discrete universal cpo with
underlying type 
��name�term�list
� corresponding to the type of substitutions� The

rst component of the sum can be interpreted as failure and the second as success� The
correctness of unify is stated as the theorem�

�� �t u	 �a	 �unify t u � Lift a� �� best�unify�try�a�t�u�

The 
rst conjunct states unify is total and the second states it yields the best uni�

er in a certain sense if a uni
er exists� otherwise it yields a failure� The predicate
best unify try is de
ned in pure HOL 	no domain theory��

The uni
cation algorithm is recursive on terms but it is not primitive recursive� In
order to unify two combinations 
Comb t
 t�
 and 
Comb u
 u�
 the algorithm 
rst
attempts to unify t
 and u
 and if it succeeds with the substitution s as a result

��



it attempts to unify 
t� subst s
 and 
u� subst s
� The latter two terms may be
bigger than the original combinations and therefore a primitive recursive de
nition does
not work� However� when this is the case then the total number of variables in the terms
are reduced� This argument induces a well�founded relation which can be used to prove
termination� It is a kind of lexicographic combination of a proper subset ordering on sets
of variables and an �occurs�in� ordering� A theory of well�founded induction has been
developed in HOL �Ag��� but never in LCF� because it is not possible to derive this
general kind of induction from 
xed point induction� Therefore� well�founded induction
is translated to two structural inductions in LCF� one on natural numbers and one on
terms� This makes certain statements more complicated than necessary and makes the
proof less elegant as well�

Though the uni
cation algorithm is a total function it is not straightforward to de
ne
it in �pure� HOL since it is not primitive recursive� However� going via domain theory
and well�founded induction to prove termination it is possible to introduce a pure HOL
uni
cation function� We can simply de
ne this function using the choice operator as
follows

�� �t u	 Unify t u � ��a	 unify t u � Lift a�

Furthermore� we can prove this function yields a best uni
er for terms of type 
�term
�

�� �t u	 best�unify�try�Unify t u�t�u�

From its de
nition� the recursion equations stating how it behaves on various kinds of
arguments can be derived� This approach to derive a pure HOL uni
cation function
via domain theory and well�founded induction may be seen as a recursive de
nition by
well�founded induction�

	 Conclusion

A contribution of this work is a comparison of two systems supporting domain theoretic
reasoning� namely� LCF and the extension of HOL with domain theory� Using examples
we show how HOL�CPO supports a mix of the two di�erent kinds of reasoning provided
in HOL and LCF� respectively� In a way� HOL�CPO can be seen as an embedding of the
LCF system in HOL which is performed in such a way that the bene
ts of the HOL world
are preserved�

We presented the mechanization of a number of examples in HOL�CPO which have
already been done in LCF by Paulson� The natural number example illustrates how
we can mix set and domain theoretic reasoning and thereby ease reasoning about 
nite�
valued LCF types and strict functions� The example on lazy sequences gives a de
nition
of an in
nite sequence constructor functional as a 
xed point and illustrates that we can
conduct LCF proofs by 
xed point induction and structural induction on in
nite�valued
recursive domains in HOL�CPO� This kind of reasoning is not possible in �pure� HOL�

The uni
cation example shows that we can avoid almost all reasoning about bottom
that infests the LCF proof since it is an element of the type of expressions� In HOL�
bottom is only introduced to allow a 
xed point de
nition of the uni
cation algorithm
which is not primitive recursive and therefore cannot be de
ned in HOL directly� Other

��



recursive functions of the example can be de
ned by primitive recursion in pure HOL�
without using the formalization of domain theory at all�

Further� the example shows that we are not restricted to use 
xed point induction
for reasoning about recursive functions� The proof of termination of the uni
cation algo�
rithm is conducted by well�founded induction� The LCF proof uses two nested structural
inductions to simulate well�founded induction which makes the proof more complicated�
and less elegant too� Once it has been shown that the algorithm is total we can be de
ne
a total HOL function with the same behavior� Hence� the development can be seen as a
way of de
ning a total HOL uni
cation function by well�founded induction 	see the end
of section ���

Some disadvantages of the embedding of domain theory in HOL have also been men�
tioned� One main problem is that it is time�consuming and not at all straightforward
to introduce new recursive domains� Axiomatizing certain recursive types has been au�
tomated in LCF� Another problem is that constructors must be parameterized by the
domains on which they work� This inconvenience is handled by an interface in most cases
but the problem also a�ects the e�ciency of proofs greatly since checking arguments of
functions are in the right domains 	called type checking� is ine�cient�

One may compare the problems in LCF due to bottom to the problems in HOL�
CPO due to the parameters on the dependent lambda abstraction and some function
constructions� An interface could also be implemented in LCF to hide bottom in many
cases but it would always be there in proofs� Often we avoid type checking in HOL�
CPO� For instance� in the uni
cation example where the bottom element was a major
nuisance in LCF we worked most of the time in set theory where the problem of dependent
functions 	or bottom� does not exists� Domain theory was only used to de
ne the recursive
uni
cation algorithm at a late stage of the proof�

HOL�CPO is a semantic embedding of domain theory in a powerful theorem prover�
It was an important goal of this embedding that to preserve a direct correspondence
between elements of domains and elements of HOL types� This allows us to exploit
the types and tools of HOL directly and hence� to bene
t from mixing domain and set
theoretic reasoning as discussed above� A semantic embedding does not always have this
property� The formalization of P� in �Pe��� builds a separate P� world inside HOL so
there is no direct relationship between� for instance� natural numbers in the P� model and
in the HOL system� The same thing would be true about a formalization of information
systems �Wi���� if it was done� On the other hand� formalizations of P� and information
systems allow recursive domain equations to be solved fairly easily using the 
xed point
operator�

Franz Regensburger� is working on a very similar project in Isabelle HOL but the
formalizations seem to be quite di�erent� Pointed cpos are introduced using type classes
and continuous functions constitute a type� Type checking arguments of functions seems
not to be necessary but before ��reduction can be performed functions must be shown to
be continuous 	unlike in our formalization�� Recursive domains can be axiomatized in a
similar way as in LCF� though this has not been automated as in LCF� He is currently
writing a Ph�D� thesis about the work 	in German unfortunately�� Bernhard Reus� works
on synthetic domain theory in the LEGO system which implements a strong type theory

�Technical University� Munich� Email� regensbu�informatik�tu�muenchen�de
�Ludwig�Maximilian University� Munich� Email� reus�informatik�uni�muenchen�de

�




	ECC� with dependent sums and products� Dependent families can be exploited for the
inverse limit construction of solutions to recursive domain equations� This is work in
progress for a Ph�D� and the formalization has not been published yet�

Acknowledgements

This work was supported in part by the DART project funded by the Danish Research
Council and in part by BRICS funded by the Danish National Research Foundation�
Thanks to Flemming Andersen� Kim Dam Petersen and Glynn Winskel for discussions
concerning this work� Glynn made comments on a 
nal draft� I am grateful to Larry
Paulson for digging up the LCF proof of correctness of the uni
cation algorithm�

References

�Ag��� S� Agerholm� �Mechanizing Program Veri
cation in HOL�� In the Proceedings of
the ���� International Workshop on the HOL Theorem Proving System and Its Appli�

cations� Davis California� August ������ ���� 	IEEE Computer Society Press�� Also
in Report IR����� M�Sc� Thesis� Aarhus University� Computer Science Department�
April �����

�Ag��� S� Agerholm� �Domain Theory in HOL�� In the Proceedings of the �th International
Workshop on Higher Order Logic Theorem Proving and its Applications� Je�rey J�
Joyce and Carl�Johan H� Seger 	Eds��� Vancouver� B�C�� Canada� August ����� �����
LNCS ���� ���
�

�Ag�
� S� Agerholm� A HOL Basis for Reasoning about Functional Programs� Ph�D� The�
sis� Aarhus University� Computer Science Department� June ���
�

�GM��� M�J�C� Gordon and T�F� Melham� Introduction to HOL� A Theorem Proving

Environment for Higher Order Logic� Cambridge University Press� �����

�GMW��� M�J�C� Gordon� R� Milner and C�P�Wadsworth� Edinburgh LCF� A Mechanised

Logic of Computation� Springer�Verlag� LNCS ��� �����

�MW��� Z� Manna and R� Waldinger� �Deductive Synthesis of the Uni
cation Algorithm��
Science of Computer Programming� Vol� �� ����� pp� ��
��

�Me��� T�F� Melham� �Automating Recursive Type De
nitions in Higher Order Logic��
In G� Birtwistle and P�A� Subrahmanyam 	eds��� Current Trends in Hardware Veri�

�cation and Theorem Proving� Springer�Verlag� �����

�Pa�
a� L�C� Paulson� �Structural Induction in LCF�� Springer�Verlag� LNCS ���� ���
�
Also in Technical Report No� 

� University of Cambridge� Computer Laboratory�
February ���
�

�Pa�
b� L�C� Paulson� �Lessons Learned from LCF�� Technical Report No� �
� University
of Cambridge� Computer Laboratory� August ���
�

��



�Pa��� L�C� Paulson� �Verifying the Uni
cation Algorithm in LCF�� Science of Computer
Programming� Vol� �� ����� pp� �
������ Also in Technical Report No� ��� University
of Cambridge� Computer Laboratory� March ���
�

�Pa��� L�C� Paulson� Logic and Computation� Interactive Proof with Cambridge LCF�
Cambridge Tracts in Theoretical Computing �� Cambridge University Press� �����

�Pe��� K�D� Petersen� �Graph Model of LAMBDA in Higher Order Logic�� In the Proceed�
ings of the �th International Workshop on Higher Order Logic Theorem Proving and

its Applications� Je�rey J� Joyce and Carl�Johan H� Seger 	Eds��� Vancouver� B�C��
Canada� August ����� ����� LNCS ���� ���
�

�Wi��� G� Winskel� The Formal Semantics of Programming Languages� The MIT Press�
�����

��



Recent Publications in the BRICS Report Series

RS-94-18 Sten Agerholm. LCF Examples in HOL. June 1994, 16
pp. To appear in: Proceedings of the 7th International
Workshop on Higher Order Logic Theorem Proving and
its Applications, LNCS, 1994.

RS-94-17 Allan Cheng. Local Model Checking and Traces. June
1994, 30 pp.

RS-94-16 Lars Arge. External-Storage Data Structures for Plane-
Sweep Algorithms. June 1994, 37 pp.

RS-94-15 Mogens Nielsen and Glynn Winskel. Petri Nets and Bisim-
ulations. May 1994, 36 pp.

RS-94-14 Nils Klarlund. The Limit View of Infinite Computations.
May 1994, 16 pp. To appear in the LNCS proceedings of
Concur ’94, LNCS, 1994.

RS-94-13 Glynn Winskel. Stable Bistructure Models of PCF.
May 1994, 26 pp. Preliminary draft. Invited lecture for
MFCS ’94. To appear in the proceedings of MFCS ’94,
LNCS, 1994.

RS-94-12 Glynn Winskel and Mogens Nielsen. Models for Con-
currency. May 1994, 144 pp. To appear as a chapter in
the Handbook of Logic and the Foundations of Computer
Science, Oxford University Press.

RS-94-11 Nils Klarlund. A Homomorphism Concept for �-Regu-
larity. May 1994, 16 pp.

RS-94-10 Jakob Jensen, Michael Jørgensen, and Nils Klarlund.
Monadic Second-order Logic for Parameterized Verifica-
tion. May 1994, 14 pp.

RS-94-9 Gordon Plotkin and Glynn Winskel. Bistructures, Bido-
mains and Linear Logic. May 1994, 16 pp. To appear in
the proceedings of ICALP ’94, LNCS, 1994.


