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Abstract

The LCF system provides a logic of �xed point theory and is useful to reason

about nontermination� recursive de�nitions and in�nite�valued types such as lazy

lists� Because of continual presence of bottom elements� it is clumsy for reasoning

about �nite�valued types and strict functions� The HOL system provides set theory

and supports reasoning about �nite�valued types and total functions well� In this

paper a number of examples are used to demonstrate that an extension of HOL

with domain theory combines the bene�ts of both systems� The examples illustrate

reasoning about in�nite values and nonterminating functions and show how domain

and set theoretic reasoning can be mixed to advantage� An example presents a proof

of correctness of a recursive uni�cation algorithm using well�founded induction�

� Introduction

The LCF system �GMW��� Pa��� is a theorem prover based on a version of Scott�s Logic of
Computable Functions 	a 
rst order logic of domain theory�� It provides the concepts and
techniques of 
xed point theory to reason about nontermination and arbitrary recursive
	computable� functions� For instance� it has been successfully applied to reason about
in
nite data structures and lazy evaluation �Pa�
b�� On the other hand� the HOL system
�GM��� supports set theoretic reasoning� It has no inbuilt notion of nontermination� all
functions are total� and only primitive recursive de
nitions are supported� It has mainly
been used for reasoning about 
nite data structures and terminating primitive recursive
functions�

In a way� extending HOL with domain theory as described in �Ag��� Ag�
� corresponds
to embedding the logic of the LCF system within HOL�this extension is called HOL�CPO
in this paper� Thus� any proof conducted in LCF can be conducted in HOL�CPO as well�
and axioms of LCF theories can be introduced as de
nitions� or derived from de
nitions�
provided of course they are consistent extensions of LCF� This correspondence breaks for
di�cult recursive domains with in
nite values� It is not easy to de
ne such domains in
HOL and LCF could just axiomatize the domains� still this has its theoretical di�culties
in general� but has been automated in certain cases �Pa�
a��

However� HOL�CPO is not just another LCF system� Ignoring the problems with
recursive domains� we claim it is more powerful and usable than LCF since 	�� it inherits
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the underlying logic and proof infrastructure of the HOL system� and 	�� it provides direct
access to domain theory� These points are the consequences of embedding semantics rather
than implementing logic� One advantage of 	�� is that we can exploit the rich collection
of built�in types� theorems and tools provided with the HOL system� LCF has almost
nothing like that� Another advantage is that we become able to mix domain and set
theoretic reasoning in HOL such that reasoning about bottom can be deferred until the
late stages of a proof� To support this point� experience shows that the continual 
ddling
with bottom in LCF is very annoying� Its presence in all types makes LCF clumsy for
reasoning about 
nite�valued types and strict functions �Pa��� Pa�
b��

In contrast to 	��� domain theory is only present in the logic of LCF through axioms
and primitive rules of inference� Therefore 
xed point induction is the only way to reason
about recursive de
nitions� Testing that a predicate admits 
xed point induction can only
be performed in ML by an incomplete syntactic check� By exploiting the semantic de
�
nitions of these concepts in domain theory� HOL�CPO does not impose such limitations�
Fixed point induction can be derived as a theorem and syntactic checks for admissibility�
called inclusiveness� can be implemented� just as in LCF� But using other techniques for
recursion or reasoning directly about 
xed points allows more theorems to be proved than
with just 
xed point induction� Inclusive predicates not accepted by the syntactic checks
can be proved to be inclusive from the semantic de
nition�

In this paper we present a number of examples to demonstrate that HOL�CPO sup�
ports and extends both the HOL and the LCF worlds� We de
ne nonterminating and
arbitrary recursive functions in domain theory and reason about 
nite�valued types and
total functions in set theory 	higher order logic� before turning to domain theory� The
examples have already been done in LCF by Paulson which makes a comparison of the
two systems possible� The 
rst two examples� on natural numbers and lazy sequences� are
described in chapter �� of the LCF book �Pa��� and the third example is based on Paul�
son�s version of a correctness proof of a uni
cation algorithm by Manna and Waldinger
�MW��� Pa���� The uni
cation algorithm is de
ned as a 
xed point and proved total
afterwards� Termination is non�trivial and proved by well�founded induction �Ag����

Before we turn our attention to the examples we give an overview of the formalization
of domain theory in section � and describe the LCF system in section �� In section 

we introduce a cpo of natural numbers and present a few theorems about addition� In
section � a mapping function for lazy sequences and a generator for in
nite sequences are
introduced� The correctness proof of the uni
cation algorithm is discussed in section ��
Finally� the conclusions are summarized in section ��

� HOL�CPO

In this section we provide an overview of the formalization of domain theory and some of
the associated tools �Ag��� Ag�
�� This extension of HOL� called HOL�CPO� constitutes
an integrated system where domain theoretic concepts look almost primitive 	built�in� to
the user� Many facts are proved behind the scenes to support this view� In order to read
the paper it is not necessary to know the semantic de
nitions of the subset of domain
theory which is used� Therefore the presentation below shall be very brief� More details
can be sought in �Ag�
�� or in �Wi��� on which the formalization is based�
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��� Basic Concepts

Domain theory is the study of complete partial orders 	cpos� and continuous functions�
These notions are introduced as predicates in HOL by their semantic de
nitions� A
complete partial order is a set and relation pair which satis
es the predicate

cpo�����bool���������bool���bool	

If 
�A�R�
 is a cpo then the underlying relation R is a partial ordering 	re�exive� transi�
tive and antisymmetric� on all elements of the underlying set A and there exists a 	unique�
least upper bound 	lub� for all non�decreasing chains 
X�num���
 of elements in A

	 X is a chain if 
R�X n��X�n�
��
 holds for all n ��
The underlying relation of a cpo D is obtained by writing 
rel D
� If x and y are

elements of D � written as 
x ins D
 and 
y ins D
� then 
rel D x y
 can be read as
�x approximates y� or �x is less de
ned than 	or equals� y��

Note that we do not require cpos to have a least de�ned element� also called a bottom
element� w�r�t� the underlying ordering relation� Cpos which have a bottom are called
pointed cpos and satisfy the HOL predicate pcpo 	same type as cpo �� If E is a pointed
cpo then the term 
bottom E
 equals the bottom element of E � In the following� cpos
are usually cpos without bottom unless we say explicitly that a cpo is pointed�

A continuous function from a cpo D
 to a cpo D� is a HOL function 
f��
����


such that the term 
cont f�D
�D��
 is true� It must be monotonic w�r�t� the underlying
relations and preserve lubs of chains in D
 in the sense that f applied to the lub of
a chain X in D
 is equal to the lub of the chain 
f�X n�
 in D� � The results of
applying f constitute a chain due to monotonicity and therefore have a lub in D� �
In addition� f must be determined by its action on elements of the domain cpo D
 �
This means that on elements outside D
 it should always return a 
xed arbitrary value
called ARB 	a prede
ned HOL constant�� The determinedness restriction is necessary
to prove that continuous functions constitute a cpo and is induced by the fact that we
work with partial HOL functions between subsets of HOL types 	corresponding to the
underlying sets of cpos�� Determinedness occurs everywhere and is the main disadvantage
of the formalization� In particular� functions must be written using a dependent lambda
abstraction 
lambda D f
 to ensure they are determined� Therefore� many functions
become parameterized by cpo variables 	corresponding to the free cpo variables of the
right�hand side of their de
nition��

The conditions on cpos and continuous functions ensure the existence of a �xed point

operator� called FixI 	the �I� is explained later�� which is useful to de
ne arbitrary
recursive functions and other in
nite values� Applied to a continuous function f on
a pointed cpo E � it yields a 
xed point� �� f�FixI E f� � FixI E f � and in fact
the least 
xed point� �� �x	 x ins E ��� �f x � x� ��� rel E�FixI E f�x � The
term 
FixI E f
 equals the least upper bound of the non�decreasing chain � v f	�� v
f	f	��� � � � where � stands for 
bottom E
 and v stands for 
rel E
�

The proof principle of 
xed point induction has been derived as a theorem from the
de
nition of the 
xed point operator� It can be used to prove properties of 
xed points
stated as inclusive 	or admissible� predicates� A predicate is inclusive if it contains lubs
of chains of elements in the predicate� Fixed point induction says that 
P�FixI E f�


follows from 
P�bottom E�
 and 
�x	 P x ��� P�f x�
� assuming a pointed cpo E � a
continuous function f from E to E and an inclusive predicate P on E � There are a
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few syntactic�based proof functions to prove these semantic conditions� the cpo prover�
the type checker and the inclusive prover 	based on the LCF check in �Pa��� on page
��������� respectively� They only work in certain cases 	see below��

��� Constructions

There are various standard ways of constructing cpos and continuous functions which
allow proofs to be automated in HOL�

The discrete construction associates the discrete ordering 	identity� with a set and it is
therefore useful for making HOL sets into cpos� For instance� the type of natural numbers
can be used to de
ne the discrete cpo of natural numbers 
discrete�UNIV�num��bool�

using the universal set UNIV 	a predicate which is always true� here corresponding to the
set of all elements of 
�num
�� A construction called lifting can then be used to extend
the cpo with a bottom element as follows 
lift�discrete UNIV�
� The bottom element
of a lifted cpo 
lift D
 is written as Bt and all other elements are written as 
Lft

d
 for some d in D � It can be proved that 
bottom�lift D�
 is equal to Bt � The
constants Bt and Lft are the constructors of a new datatype in HOL which associates
a new element with a type� It is the underlying relation of the lifting construction which
makes Bt into a bottom element of 
lift D
�

There is also a construction for the cpo of continuous functions� relating functions
by the pointwise ordering relation� Assuming two cpos D
 and D� this construction
is written as 
cf�D
�D��
� Note that the two statements 
f ins �cf�D
�D���
 and

cont f�D
�D��
 are equivalent� Finally� we provide a product construction and sum
construction written as 
prod�D
�D��
 and 
sum�D
�D��
� respectively�

A proof function called the cpo prover automatically proves any term written using
the constructors is a cpo� There is a similar function for pointed cpos�

The constructions on continuous functions include the well�known projection and in�
jection functions associated with the product and sum cpos respectively� and functional
composition and currying as well� We also consider the 
xed point operator to be a
constructor�

In addition� there are two useful constructors associated with the lifting construction
on cpos� A determined version of the constant Lft � called LiftI � takes an element d

of a cpo D and lifts it to an element of the lifted cpo 
lift D
� A construction called
function extension can be used to extend the domain of a function to the lifted domain
in a strict way� It works as follows�

�� �ExtI�D�E� f Bt � bottom E� ��

��x	 x ins D ��� �ExtI�D�E� f �LiftI D x� � f x��

where E is pointed cpo and f is a continuous function from D to E �
It is also possible to write continuous functions using the dependent lambda abstrac�

tion 
lambda D��x	 e�x��
 where e�x� must be written using only continuous con�
structions and variables and constants in appropriate cpos� To prove a function� or more
generally any term� is in some cpo 	e�g� the continuous function space� a proof function
called the type checker can be used� provided the term 
ts within an informal notation�
The constructions above and lambda abstraction are part of the notation which can be
extended interactively with any terms in cpos 	see below�� Function application is also
part of the notation�






Further� any function between discrete universal cpos as the cpo of natural numbers
is trivially continuous� Hence� the cpo of continuous functions between such cpos is itself
a discrete universal cpo�

��� Adding New Constructions

The collection of constructors for cpos and continuous functions can at any time be
extended with user�de
ned constructors� An ML function is provided to de
ne a new cpo
constructor in terms of existing constructors� and similarly new function constructors can
be introduced� We make a distinction between new constants that are elements of some
cpo and new function constructors of some cpo� The latter are parameterized by cpo
variables� like the constructors above� A new constant to the system can be any proper
left�hand side of a HOL de
nition which can be proved to belong to some cpo� All of this
has been automated such that there are only a few proof functions to use which prove the
necessary cpo and membership facts behind the scenes�

However� the constructions do not provide all cpos and continuous functions that we
might want� In particular� recursive domains and their associated function constructions
must be introduced manually� A fairly tough development gave us lazy sequences and
lazy lists using HOL lists 
����list
 and functions of the form 
�num���
 to represent
in
nite values� These developments are described in �Ag�
� which also provides some ideas
on how to introduce such cpos more generally using in
nite labelled trees� It might be
possible to automate these ideas� The cpo of lazy sequences and its associated constructor
and eliminator functions are used in section ��

��� Interface

The cpo parameters on function constructions quite quickly become a pain� They make
terms di�cult to read and write� Fortunately an extension of the built�in HOL parser and
pretty�printer can hide the annoying extra information in most cases� This provides two
levels of syntax� the internal level of syntax where all parameters occur and the external
	interface� level of syntax where the parameters are ignored� Hence� FixI � LiftI and
ExtI above are part of the internal level syntax� The last letter �I� on 	internal� names
is used to distinguish the constants of the two levels� At the external interface level
the terms 
FixI E
� 
LiftI D
 and 
ExtI�D�E�
 are written simply as Fix � Lift

and Ext � respectively� New function constructors are also introduced in two versions�
Furthermore� the interface provides a nicer syntax for the dependent lambda abstraction�
The term 
�x��Dom D	 e�x�
 can be used for 
lambda D��x	 e�x��
�

� The LCF System

The LCF system is very similar to the HOL system 	or vice versa� since HOL is a direct
descendant of LCF�� It has a meta language ML 	or Standard ML� in which the logic
and theorem proving tools are implemented� Theorems are implemented by an abstract
datatype for security and axioms and primitive inference rules are constructors of this
datatype� Derived inference rules are ML functions� The subgoal package allows proofs in
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a backwards fashion using tactics� Constants� axioms� theorems and so on are organized
in hierarchies of theories� The main properties of LCF may be summarized as follows�

� LCF supports a 
rst order logic of domain theory�

� The use of LCF to reason about recursive de
nitions 	
xed points� is restricted since
only 
xed point induction can be used� Besides� 
xed point induction is based on
an incomplete syntactic check of inclusiveness�

� Extending theories in LCF is done by an axiomatic approach and is therefore unsafe�
Checking whether an axiom is safe is di�cult since it must be done in domain theory
	outside LCF��

Each of these points are discussed below�
The central di�erence between LCF and HOL lies in their logics� The logic of the HOL

system is an implementation of a version of Church�s higher order logic� The logic of the
LCF system is an implementation of a version of Scott�s Logic of Computable Functions�
usually abbreviated LCF� In order to be able to distinguish the logic and the system the
logic was renamed to PP�� an acronym of Polymorphic Predicate ��calculus� PP� is a

rst order logic of domain theory� it has a domain theoretic semantics� It di�ers from
higher order logic since it is a 
rst order logic and types denote pointed cpos rather than
just sets 	cpos can be seen as sets with structure�� The function type denotes the cpo of
continuous functions whereas HOL functions are total functions of set theory�

Fixed point theory is provided in LCF through axioms and primitive rules of inference�
A certain constant of the logic denotes the 
xed point operator due to an axiom which
states it yields a 
xed point and due to the primitive rule of 
xed point induction which
states it yields the least 
xed point� In LCF there is no domain theoretic de
nition of
the 
xed point operator� Therefore� 
xed point induction is the only way to reason about
recursive de
nitions� However� structural induction for many datatypes can be derived
from 
xed point induction �Pa�
a�� but well�founded induction cannot� Admissibility of
predicates for induction is not de
ned either� a syntactic check is performed by the rule
of 
xed point induction� This check is not complete and examples of inclusive predicates
exist that are not accepted for 
xed point induction in LCF� Paulson gives an example in
�Pa�
a��

There are quite di�erent traditions of extending theories in LCF and HOL� In HOL
there is a sharp distinction between purely de
nitional extensions and axiomatical exten�
sions� De
nitional extensions are conservative 	or safe�� i�e� they always preserve consis�
tency of the logic� Stating a new axiom is not a conservative extension� it might introduce
inconsistency� In LCF there is no such distinction between axioms and de
nitions� The
only way to extend theories with new concepts is by introducing new axioms�

It is not always easy to know whether an LCF axiom is safe or not since this must be
justi
ed in domain theory� In particular� an axiom should not violate the continuity of
a function� All functions are assumed to be continuous in PP� since the function type
denotes the cpo of continuous functions� Paulson shows how easy it is to go wrong in
example 
��� of his book �Pa����
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� Natural Numbers

In this section we start the comparison of LCF and HOL�CPO� As a 
rst simple example�
we de
ne a cpo of natural numbers and consider a few properties about addition� addition
is total� associative and commutative�

In LCF natural numbers are introduced as a recursive datatype where a constant � and
a strict successor function SUCC are the constructors� Names of constants for the type
and for the constructor functions are declared and then axioms about the new constants
are postulated� The axioms specify the partial ordering on natural numbers and state
strictness and de
nedness of the constructors� The exhaustion 	or cases� axiom is also
postulated� It states there are three possible kinds of values of a natural number� namely
bottom� zero and the successor of some natural number� Distinctness of the constructors
and the structural induction rule are then derived from these axioms and 
xed point
induction� This is performed automatically by a few ML functions�

It is also easy to de
ne a cpo of natural numbers in HOL� though the method is
very di�erent� Instead of introducing a new recursive cpo� we exploit the built�in natural
numbers and de
ne �� Nat � discrete�UNIV�num��bool� � Using lifting 
lift Nat
�
we obtain the pointed cpo corresponding to the recursive type of natural numbers in LCF�

The zero element of 
lift Nat
 is 
Lift �
 and a strict successor is obtained from
the built�in successor SUC by function extension�

�� Suc � Ext��nn �� Dom Nat	 Lift�SUC nn��

�� Suc ins �cf�lift Nat�lift Nat��	

Note that SUC is trivially a continuous function from Nat to Nat since the term

cf�D
�D��
 is a discrete universal cpo when D
 and D� are�

In LCF� addition is introduced by a recursion equation using an eliminator functional�
called NAT WHEN�

NAT WHEN x f � � �
NAT WHEN x f � � x

�m�m �� � � NAT WHEN x f 	SUCC m� � f m

which is useful to de
ne continuous functions on natural numbers by cases� From the
axiom for addition the usual recursion equations matching the cases above are derived
by proof� Note that NAT WHEN must assume the argument of the strict LCF successor
is de
ned� otherwise there would be a con�ict with the bottom case� A consequence of
this is that most theorems stated about addition inherit this assumption� De
nedness
assumptions make reasoning about strict functions di�cult �Pa����

In HOL�CPO� a strict addition on 
lift Nat
 is introduced in the same way as the
strict successor� by extending a built�in HOL function �� �

�� Add � Ext��nn �� Dom Nat	 Ext��mm �� Dom Nat	 Lift�nn�mm���

�� Add ins �cf�lift Nat�cf�lift Nat�lift Nat���	

Note� by the way� that neither Suc nor Add are parameterized by any cpo variables
since we work with the �concrete� cpo of 	lifted� natural numbers�

In LCF the recursion equations for addition are important in proofs because properties
of addition are proved using natural number induction� In HOL we can reuse built�in
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theorems about addition which probably have been proved by similar inductions once� but
without considering the bottom element as in LCF induction� For 
nite�valued types we
can do the set theoretic developments in HOL before adding bottom� It is advantageous
to defer reasoning about bottom until as late as possible in a proof� e�g� de
nedness
assumptions tend to accumulate�

The usual recursion equations for addition have been proved in HOL but a reduction
theorem is more useful�

�� ��n	 Add Bt n � Bt� ��

��n	 Add n Bt � Bt� ��

��nn mm	 Add�Lift nn��Lift mm� � Lift�nn�mm��	

It states that addition is strict in both arguments and behaves as the built�in addition on
lifted arguments�

The next fact we consider states that strict addition is total� That is� provided the
arguments of Add are not bottom the result of applying Add will not be bottom� In
LCF this fact would be stated by a theorem of the following form�

�� �n m	 ��n�Bt� ��� ��m�Bt� ��� ��Add n m � Bt�	

Since we use lifting an equivalent statement in HOL is

�� �nn mm	 ��Add�Lift nn��Lift mm� � Bt�	

This can be derived immediately from the third clause of the above reduction theorem for
addition using the facts that Bt and Lift are distinct and exhaustive on a lifted cpo�

Finally� let us consider two theorems stating that strict addition is associative and
commutative�

�� �k m n	 Add �Add k m� n � Add k�Add m n�

�� �m n	 Add m n � Add n m

Their proofs are almost exactly the same in HOL� do a case split on the universally
quanti
ed variables 	lifted numbers� one by one and reduce using the reduction theorem
for addition after each case split� We end up with goals stating that the properties we
wish to prove must hold for the built�in addition� So we 
nish o� the proofs by using the
desired built�in HOL facts�

�� �m n p	 m � �n � p� � �m � n� � p

�� �m n	 m � n � n � m

Such proofs by cases could be automated easily� The LCF proofs require much more
thought� They use induction� in fact two nested inductions for commutativity� and rewrit�
ing�

� A Mapping Functional for Lazy Sequences

In this section we de
ne a mapping functional for lazy sequences and an in
nite sequence
constructor� One theorem is proved by 
xed point induction and another is proved by
�structural induction� on lazy sequences �Pa�
a�� i�e� structural induction is used to show
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the inclusive property holds of all 
nite sequences� the inclusiveness ensures it holds also
of the in
nite sequences� The purpose of this section is to show in which way HOL�CPO
extends HOL with techniques for reasoning about in
nite values� and recursive de
nitions
in general�

The cpo of lazy sequences and its associated constructor and eliminator functions
correspond exactly to the LCF type of sequences and its associated functions� The LCF
type and constructor functions are introduced automatically by axioms similar to the
axioms for natural numbers� using the same ML functions too� Developing the lazy
sequences in HOL�CPO was di�cult and time�consuming but we reason about sequences
using the same techniques as in LCF�

A purely de
nitional development of a theory of lazy sequences is presented in �Ag�
��
It provides a constructor called seq for pointed cpos of partial and in
nite sequences
of data� Hence� if D is a cpo then 
seq D
 is a pointed cpo� The bottom sequence is
called Bt seq and the lazy constructor function is called Cons seq � These satisfy the
following cases theorem

�� �D s	

s ins �seq D� �

�s � Bt�seq� ��

��x s�	 x ins D �� s� ins �seq D� �� �s � Cons�seq x s���

Further� they are distinct and Cons seq is one�one� There is also an eliminator functional
called Seq when which can be used to write continuous functions on sequences by cases�
Assuming 
x ins D
� 
s ins �seq D�
 and 
h ins �cf�D�cf�seq D�E���
 for a cpo
D and a pointed cpo E � the following reduction theorem speci
es the behavior of the
eliminator�

�� �Seq�when h Bt�seq � bottom E� ��

�Seq�when h�Cons�seq x s� � h x s�

The constants Seq when and Cons seq belong to the interface level syntax� internally
they are parameterized by cpo variables 	and called Seq whenI and Cons seqI re�
spectively�� In addition� we have derived a theorem for �structural induction� on lazy
sequences from 
xed point induction� following Paulson�s approach �Pa�
a��

All de
nitions� theorems and proofs about lazy sequences are very similar to the ones
in LCF� The mapping functional is de
ned as the 
xed point of a suitable functional as
follows�

�� �D E	

Maps �

Fix

��g �� Dom�cf�cf�D�E��cf�seq D�seq E���	

�f �� Dom�cf�D�E��	

�s �� Dom�seq D�	

Seq�when

��x �� Dom D	�t �� Dom�seq D�	 Cons�seq�f x��g f t��s�

�� �D E	

cpo D ��� cpo E ��� Maps ins �cf�cf�D�E��cf�seq D�seq E���

�



Internally� the constant Maps is parameterized by the cpo variables D and E of the
de
nition� Using the reduction theorem for Seq when and the fact that Fix yields a

xed point of a continuous function we can prove the following reduction equations easily�

�� �Maps f Bt�seq � Bt�seq� ��

�Maps f�Cons�seq x s� � Cons�seq�f x��Maps f s��

where 
x ins D
� 
s ins �seq D�
 and 
f ins �cf�D�E��
 for cpos D and E � A
tactic which takes such theorems as arguments can be used to reduce occurrences of
Maps and other function constructors using a theorem like this one and the type checker
to prove the assumptions automatically�

We can prove that the mapping functional preserves functional composition� i�e� as�
suming 
f ins �cf�D��D���
 and 
g ins �cf�D
�D���
 for cpos D
 � D� and D� �
the following equation holds

�� Maps�Comp�f�g�� � Comp�Maps f�Maps g�

The constant Comp is de
ned as a determined version of the built�in functional compo�
sition 	internally it is called CompI �� The proof is conducted by observing that the two
continuous functions are equal i� they are equal for all sequences of values in D
 � i�e� i�
the following term holds�


�s	

s ins �seq D
� ���

�Maps�Comp�f�g��s � Comp�Maps f�Maps g�s�
	

Then we use an induction tactic based on the structural induction theorem for lazy se�
quences� This uses the inclusive prover behind the scenes to prove the equation admits
induction� The proof is 
nished o� using reduction tactics for Maps and Comp �

Finally� we present a functional Seq of which given a continuous function f and
any starting point value x generates an in
nite sequence of the form


Cons�seq x�Cons�seq�f x��Cons�seq�f�f x��			��


or written in a more readable way �x� f�x�� f�f�x��� � � � � � The function Seq of is
de
ned as a 
xed point as follows�

�� �D	

Seq�of �

Fix

��sf �� Dom�cf�cf�D�D��cf�D�seq D���	

�f �� Dom�cf�D�D��	 �x �� Dom D	 Cons�seq x�sf f�f x���

�� �D	 cpo D ��� Seq�of ins �cf�cf�D�D��cf�D�seq D���

The internal version of Seq of is parameterized by a cpo corresponding to the variable
D in the de
nition� We have proved the following statement about Maps and Seq of

�� �x	 x ins D ��� �Seq�of f�f x� � Maps f�Seq�of f x��

��



where D is a cpo and f is a continuous function from D to D � Informally� the two
sequences are equal since they are both equal to a term corresponding to �f x� f�f x��

� � � � � The proof of the theorem is conducted by 
xed point induction on both occurrences
of Seq of � inclusiveness is proved behind the scenes�

The proofs in LCF and HOL�CPO are based on the same overall idea but tend to be
longer in HOL� We must do many simpli
cations explicitly which are taken care of by
LCF rewriting� We must use the reduction tactic to type check arguments of functions
before their de
nitions can be expanded 	by applying reduction theorems�� LCF rewriting
with de
nitions corresponds to such reductions since it also performs ��conversion�

� The Uni�cation Algorithm

The problem of 
nding a common instance of two expressions is called uni�cation� The
uni
cation algorithm generates a substitution to yield this instance� and returns a failure
if a common instance does not exist� Expressions� also called terms� can be constants�
variables and applications of one expression to another�

term � Const name � Var name � Comb term term

Variables are regarded as empty slots for which expressions can be substituted� A substi�
tution is a set of pairs of variables and expressions that speci
es which expressions should
be substituted for which variables in an expression�

Manna and Waldinger synthesized a uni
cation algorithm by hand using their de�
ductive tableau system �MW��� and Paulson made an attempt to translate their proof
of correctness to LCF �Pa���� Paulson did not deduce the algorithm from the proof as
Manna and Waldinger did� he stated the algorithm 
rst and then proved it was correct�

A version of Paulson�s proof has been conducted in HOL�CPO� In this section we shall
not go into the details of this proof but mainly discuss a few points made by Paulson on the
LCF proof� The details of the HOL proof are presented in �Ag�
�� Although this example
is considerably larger than the examples above it does not require deeper insights in
domain theory� In fact� domain theory is used very little and only in the last stages of the
proof� But the formalization is exploited in an essential way� The uni
cation algorithm
cannot be de
ned in pure HOL 	at least not directly� since it is not primitive recursive�
However� it can be de
ned as a 
xed point easily�

Once we have proved that the uni
cation algorithm de
ned in domain theory always
terminates�this proof is conducted by well�founded induction�we can de
ne a pure set
theoretic HOL function� One may therefore argue that this approach provides a method�
though probably not the simplest and most direct one� for de
ning recursive function by
well�founded induction in HOL�

Paulson says that LCF does not provide an ideal logic for verifying the uni
cation
algorithm since it clutters up everything with the bottom element� For instance� the type
of constant and variable names and the syntax type of terms must contain a bottom
element� just like all other LCF types� Hence� de
nedness assertions of the form t ��

� occur everywhere because constructor functions for terms are only de
ned if their
arguments are 	strictness�� To indicate the in�uence of this problem on the complexity of
statements and proofs we show the LCF de
nitional properties for substitution 	derived

��



from a recursion axiom��

�SUBST s � �
�c� c �� � � 	CONST c�SUBST s � CONST c

�v� v �� � � 	VAR v�SUBST s � ASSOC 	VAR v� v s
�t�t�� t� �� � � t� �� � �

	COMB t� t��SUBST s � COMB	t� SUBST s�	t� SUBST s��

In HOL substitution is introduced by a primitive recursive de
nition�

�� ��c s	 �Const c� subst s � Const c� ��

��v s	 �Var v� subst s � assoc�Var v�v s� ��

��t
 t� s	

�Comb t
 t�� subst s � Comb�t
 subst s��t� subst s��

Note this is pure HOL� we do not need to use domain theory to de
ne a type of terms
and subst � Terms and names of constants and variables are represented by HOL types
which do not contain bottom� in contrast to the LCF types� All functions on terms used
in the proof� except uni
cation itself� can be de
ned by primitive recursion like subst

above� Hence� we can do the set theoretic developments 
rst and then turn to domain
theory later� We can de
ne discrete cpos of terms and names and lift these to contain a
bottom when necessary� just as we did in the natural number example� Besides� we avoid
PP��s explicit statements of totality for functions such as SUBST which are obviously
total�

�t s� t �� � � s �� � � tSUBST s �� ��

since HOL functions are always total�
The uni
cation algorithm is stated as a collection of recursion equations in LCF� In

HOL� the uni
cation algorithm is de
ned as a 
xed point of a certain functional� which
unfortunately is too large 	one page� to be presented here� and the recursion equations are
then derived from the 
xed point property� It is a continuous partial function as stated
by�

�� unify ins �cf�term�cf�term�lift attempt���

The cpo of terms is just the discrete universal cpo of all HOL terms of type 
�term


which can be introduced by the above speci
cation� The cpo of attempts is the sum cpo
of a discrete universal cpo with underlying type 
�one
 and a discrete universal cpo with
underlying type 
��name�term�list
� corresponding to the type of substitutions� The

rst component of the sum can be interpreted as failure and the second as success� The
correctness of unify is stated as the theorem�

�� �t u	 �a	 �unify t u � Lift a� �� best�unify�try�a�t�u�

The 
rst conjunct states unify is total and the second states it yields the best uni�

er in a certain sense if a uni
er exists� otherwise it yields a failure� The predicate
best unify try is de
ned in pure HOL 	no domain theory��

The uni
cation algorithm is recursive on terms but it is not primitive recursive� In
order to unify two combinations 
Comb t
 t�
 and 
Comb u
 u�
 the algorithm 
rst
attempts to unify t
 and u
 and if it succeeds with the substitution s as a result

��



it attempts to unify 
t� subst s
 and 
u� subst s
� The latter two terms may be
bigger than the original combinations and therefore a primitive recursive de
nition does
not work� However� when this is the case then the total number of variables in the terms
are reduced� This argument induces a well�founded relation which can be used to prove
termination� It is a kind of lexicographic combination of a proper subset ordering on sets
of variables and an �occurs�in� ordering� A theory of well�founded induction has been
developed in HOL �Ag��� but never in LCF� because it is not possible to derive this
general kind of induction from 
xed point induction� Therefore� well�founded induction
is translated to two structural inductions in LCF� one on natural numbers and one on
terms� This makes certain statements more complicated than necessary and makes the
proof less elegant as well�

Though the uni
cation algorithm is a total function it is not straightforward to de
ne
it in �pure� HOL since it is not primitive recursive� However� going via domain theory
and well�founded induction to prove termination it is possible to introduce a pure HOL
uni
cation function� We can simply de
ne this function using the choice operator as
follows

�� �t u	 Unify t u � ��a	 unify t u � Lift a�

Furthermore� we can prove this function yields a best uni
er for terms of type 
�term
�

�� �t u	 best�unify�try�Unify t u�t�u�

From its de
nition� the recursion equations stating how it behaves on various kinds of
arguments can be derived� This approach to derive a pure HOL uni
cation function
via domain theory and well�founded induction may be seen as a recursive de
nition by
well�founded induction�

	 Conclusion

A contribution of this work is a comparison of two systems supporting domain theoretic
reasoning� namely� LCF and the extension of HOL with domain theory� Using examples
we show how HOL�CPO supports a mix of the two di�erent kinds of reasoning provided
in HOL and LCF� respectively� In a way� HOL�CPO can be seen as an embedding of the
LCF system in HOL which is performed in such a way that the bene
ts of the HOL world
are preserved�

We presented the mechanization of a number of examples in HOL�CPO which have
already been done in LCF by Paulson� The natural number example illustrates how
we can mix set and domain theoretic reasoning and thereby ease reasoning about 
nite�
valued LCF types and strict functions� The example on lazy sequences gives a de
nition
of an in
nite sequence constructor functional as a 
xed point and illustrates that we can
conduct LCF proofs by 
xed point induction and structural induction on in
nite�valued
recursive domains in HOL�CPO� This kind of reasoning is not possible in �pure� HOL�

The uni
cation example shows that we can avoid almost all reasoning about bottom
that infests the LCF proof since it is an element of the type of expressions� In HOL�
bottom is only introduced to allow a 
xed point de
nition of the uni
cation algorithm
which is not primitive recursive and therefore cannot be de
ned in HOL directly� Other

��



recursive functions of the example can be de
ned by primitive recursion in pure HOL�
without using the formalization of domain theory at all�

Further� the example shows that we are not restricted to use 
xed point induction
for reasoning about recursive functions� The proof of termination of the uni
cation algo�
rithm is conducted by well�founded induction� The LCF proof uses two nested structural
inductions to simulate well�founded induction which makes the proof more complicated�
and less elegant too� Once it has been shown that the algorithm is total we can be de
ne
a total HOL function with the same behavior� Hence� the development can be seen as a
way of de
ning a total HOL uni
cation function by well�founded induction 	see the end
of section ���

Some disadvantages of the embedding of domain theory in HOL have also been men�
tioned� One main problem is that it is time�consuming and not at all straightforward
to introduce new recursive domains� Axiomatizing certain recursive types has been au�
tomated in LCF� Another problem is that constructors must be parameterized by the
domains on which they work� This inconvenience is handled by an interface in most cases
but the problem also a�ects the e�ciency of proofs greatly since checking arguments of
functions are in the right domains 	called type checking� is ine�cient�

One may compare the problems in LCF due to bottom to the problems in HOL�
CPO due to the parameters on the dependent lambda abstraction and some function
constructions� An interface could also be implemented in LCF to hide bottom in many
cases but it would always be there in proofs� Often we avoid type checking in HOL�
CPO� For instance� in the uni
cation example where the bottom element was a major
nuisance in LCF we worked most of the time in set theory where the problem of dependent
functions 	or bottom� does not exists� Domain theory was only used to de
ne the recursive
uni
cation algorithm at a late stage of the proof�

HOL�CPO is a semantic embedding of domain theory in a powerful theorem prover�
It was an important goal of this embedding that to preserve a direct correspondence
between elements of domains and elements of HOL types� This allows us to exploit
the types and tools of HOL directly and hence� to bene
t from mixing domain and set
theoretic reasoning as discussed above� A semantic embedding does not always have this
property� The formalization of P� in �Pe��� builds a separate P� world inside HOL so
there is no direct relationship between� for instance� natural numbers in the P� model and
in the HOL system� The same thing would be true about a formalization of information
systems �Wi���� if it was done� On the other hand� formalizations of P� and information
systems allow recursive domain equations to be solved fairly easily using the 
xed point
operator�

Franz Regensburger� is working on a very similar project in Isabelle HOL but the
formalizations seem to be quite di�erent� Pointed cpos are introduced using type classes
and continuous functions constitute a type� Type checking arguments of functions seems
not to be necessary but before ��reduction can be performed functions must be shown to
be continuous 	unlike in our formalization�� Recursive domains can be axiomatized in a
similar way as in LCF� though this has not been automated as in LCF� He is currently
writing a Ph�D� thesis about the work 	in German unfortunately�� Bernhard Reus� works
on synthetic domain theory in the LEGO system which implements a strong type theory
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�Ludwig�Maximilian University� Munich� Email� reus�informatik�uni�muenchen�de

�




	ECC� with dependent sums and products� Dependent families can be exploited for the
inverse limit construction of solutions to recursive domain equations� This is work in
progress for a Ph�D� and the formalization has not been published yet�
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