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Abstract

This paper is about the recently�developed framework of action se�
mantics� The pragmatic qualities of action semantic descriptions are par�
ticularly good� which encourages their use in industrial�scale applications
where semantic descriptions are needed� e�g�� compiler development�

The paper has two main aims� to demonstrate the remarkable extensi�
bility of action semantic descriptions� and to illustrate the action seman�
tics treatment of concurrency� These aims are achieved simultaneously� by
�rst giving the description of a sequential 
ML�like� programming language
fragment� and then extending the described language with some concur�
rency primitives 
taken from CML�� The action semantic description of the
sequential part of the language does not change at all when the concur�
rency primitives are added� it merely gets augmented by the description of
the new features�
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� Introduction

Action semantics �Mos��� is a formal framework for semantic description� devel�
oped to provide �tractable	 descriptions of real�life languages 
for example� see
�Tof��� NT��� HT���
� Action semantic descriptions� like those written in denota�
tional semantics �Mos��� Sch���� are compositional � semantic functions� mapping
abstract syntax to semantic entities� are de�ned inductively using semantic equa�
tions� However� in action semantics the semantic entities are actions rather than
higher�order functions� and the essence of actions is much more computational
than that of 
pure
 functions�

A special notation has been developed for use in action semantics� This
notation is called action notation� and it is used in action semantic descriptions
very much in the same way as the ��notation is used in denotational semantics�
The symbols used in action notation are intentionally verbose� so that English�
like phrases can be used�completely formally�to express most of the concepts
present in programming languages� The operational semantics of the notation is
given in �Mos����

Action semantic descriptions are inherently modular� They are easily ex�
tended or modi�ed� Reusing parts of speci�cations is straightforward� In this
paper� we demonstrate these features� by extending the semantic description of
a simple� ML�like� sequential language� adding �rst�order synchronous communi�
cation constructors taken from CML �Rep��a��

The next section gives a brief account of the action semantics formalism�
Section � presents the action semantics of a simple sequential language� Sec�
tion � considers processes and synchronous communication� Section � extends
the action semantic description of the sequential language to deal with the cho�
sen concurrency primitives�

Both the sequential and the concurrent languages are similar to those pre�
sented in �BMT���� In that work� various changes to the original description of
the sequential language were needed to introduce the concurrent constructs and
their operational semantics� This is not the case in our description using action
semantics� when the �rst�class synchronous operations are introduced� only ex�
tensions to the semantic entities of the sequential description are needed� and the
rest of the description remains unchanged� Moreover� the use of action semantics
has the advantage that the problem of giving a fully distributed implementation
of CML�s concurrency primitives becomes quite apparent� This is ensured by the
action semantics treatment of concurrency� which is based on a quite realistic
asynchronous model� a truly operational analysis of synchronization has to be
speci�ed� A description of CML�s concurrency primitives in terms of CCS� or
CSP�like synchronization would not be so revealing� These issues are discussed
further in the concluding section�
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� Action Semantics

In Action Semantics� the meaning of each phrase of a language is represented
in terms of special entities called actions� Actions can be performed to process
information� with various possible outcomes� normal termination 
performance
of the action completes
� exceptional termination 
it escapes
� unsuccessful ter�
mination 
it fails
 or non�termination 
it diverges
� Action notation provides
some primitive actions� and various combinators for forming complex actions�
corresponding to the main fundamental concepts of programming languages�

A data notation is used to describe the information processed by actions�
The standard data notation 
included in action notation
 provides a collection of
algebraically de�ned abstract data types� including numbers� characters� strings�
sets� tuples� maps� etc�� further data may be speci�ed ad hoc�

There is also a third class of entities in action notation� called yielders� A
yielder represents data whose value depends on the current information available
to the primitive action in which it occurs� Yielders are evaluated to yield data�
An example of a standard yielder is the data bound to I � which depends on the
current bindings that are received by the enclosing primitive action�

Action notation possesses �ve so�called �facets��

Basic� This facet deals with pure control �ow� without reference to information
processing issues�

Functional� This facet deals with transient data� which is given to or by an
action� For example� when the primitive action give the successor of the
given natural is given a natural number n as transient data� it completes�
giving n�� as a transient� The compound action A� then A� performs the
action A� �rst� all transient data given by A� is passed on to A�� which is
performed after A� completes� The primitive action choose D� where D is
a sort of data� makes a non�deterministic choice of an individual of sort D�
giving the chosen datum as a transient�

Declarative� This facet deals with the manipulation of scoped information� rep�
resented by associations of tokens to bindable data� For example� perfor�
mance of the primitive action bind �max�length� to ��� completes� producing
a binding of the token �max�length� to the natural number ����

Imperative� This facet is concerned with storage handling� A storage in action
notation is simply a mapping from 
the currently allocated
 cells to storable
data� For example� consider the action allocate a cell then store �� in the
given cell� which combines features of the functional and imperative facets�

Communicative� This facet provides a system of agents� which can each be
�contracted� to perform particular actions� Initially only a special �user�
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agent is active� Agents can communicate using asynchronous message pass�
ing� the sending of a message is non�blocking� Each agent has its own com�
munication bu�er � in which all the messages sent to the agent are placed�
Communication is reliable� in the sense that no message can be lost during
transmission� however� there is no bound to the amount of time taken for a
message to reach its destination agent� Moreover� each agent is created with
its own storage� which cannot be a�ected 
nor inspected
 by other agents�
Arbitrary data can be contained in messages� including the identities of
agents�

Most of the primitive actions have a use in connection with only one facet each�
but the action combinators generally involve a mixture of the basic� functional�
and declarative facets� determining the �ow of control� transient data� and bind�
ings between the subactions�

Encapsulation of actions as data is also provided within action notation� This
feature gives a simple way to support the description of procedure and function
abstractions in programming languages� An abstraction is an item of data which
encapsulates an action� Abstractions can be enacted� this operation results in
the performance of the encapsulated action� Both transients and bindings can be
supplied to abstractions before their enaction� for use by the encapsulated action�
Abstractions can be treated just like any other data� i�e�� given as transients�
bound to tokens� stored in cells� and sent in messages� They are also used to
determine the �contracts� o�ered to agents in the communicative facet�

For a more detailed description of action notation� the reader is referred to
�Mos���� for an introduction� see also �Wat���� An overview of the operational
semantics of action notation is given in the Appendix below�

� A Simple Sequential Example

This section describes the 
dynamic
 action semantics of a simple sequential func�
tional language� derived from Standard ML �MTH���� It is essentially the same
language as the one described in �BMT��� Sect� ���

As in denotational semantics� a description in action semantics is divided into
three main parts� specifying the abstract syntax of the language being described�
the semantic functions that map abstract syntactic phrases to their meaning� and
the semantic entities used by the semantic functions�

The modular structure of the speci�cation is itself formally speci�ed� by giving
each module a title� and indicating 
by writing needs� or includes�
 which other
modules it imports� if any� Modules may be nested� a submodule implicitly
imports all that is speci�ed 
or imported
 directly by each enclosing module�
The order in which modules are presented is irrelevant� and mutual importation
is allowed �Mos��b��
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Each module is given below as a numbered� titled section� Interspersed with
the formal speci�cation� some informal explanations are given� for the bene�t of
those readers who are unfamiliar with action notation�

��� Abstract Syntax

grammar�

� Expression � Identi	er �
��
�� �
� Expression ��� Expression ��� ��
�� Expression Expression ��
�� �fn� Identi	er ��� Expression ��
�� �rec� Identi	er �
� Identi	er ��� ��� Expression �� 


� Identi	er � �� letter� �� 


� Program � Expression 


The abstract syntax of the language is de�ned by a grammar using the standard
data notation for trees and strings� The brackets ��� � � �� indicate node construction
in abstract syntax trees� 
In denotational semantics� these brackets are usually
regarded as part of the notation for semantic functions� nevertheless� the left�
hand sides of action semantic equations are quite similar in form to those of
denotational semantic equations�
 Strings in the right�hand�sides of the grammar
equations correspond to leaves of the trees�

A program in our simple example language is given by a single expression�
Notice that the �rec� construct is an expression� rather than a declaration� Also�
the sort Identi	er encompasses variables� constants� and constructors�we do not
rely on some preceding static analysis to distinguish the classes of the di�erent
occurrences of identi�ers� in contrast to �BMT��� 
and to �MTH���� where the
dependency between static and dynamic semantics caused some problems
�

��� Semantic Functions

needs� Abstract Syntax� Semantic Entities�

The action semantics of a programming language is given by means of semantic
functions� These functions map abstract syntactic phrases of the language to
actions� Each semantic function is introduced at the beginning of the module
that de�nes it� inductively� by semantic equations�
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����� Evaluating Expressions

introduces� evaluate 


� evaluate �� Expression � action 


The sort action includes all actions� We could be more speci�c here� using an
algebraic notation for subsorts of actions to indicate that evaluate E is always an
action which� whenever it completes� gives a value�

��� evaluate I �Identi	er � give the value bound to I 


When not in the scope of any binding for I � the yielder the value bound to I
evaluates to the special entity nothing� whereupon the give action above fails�
Note that I may be a constructor� a constant� or a variable� but the distinction
is irrelevant for the dynamic semantics�

��� evaluate �
�� � give the unit�value 


The constant unit�value is speci�ed in Sect� ����

��� evaluate �� �
� E��Expression ��� E��Expression ��� �� �

 evaluate E� and then evaluate E� �
then give the pair of the given 
value� value� 


The action combination A� and then A� speci�es sequential 
left�to�right
 per�
formance of its subactions� as does A� then A�� The di�erence is that with the
former combination� any transient data given by A�� A� are concatenated and
given by the whole action� whereas with the latter combination� the transient
data given by A� are given only to A�� There is also a combination A� and A��
used later� that speci�es implementation�dependent order of performance� but
which is otherwise like A� and then A��

The operation pair of is speci�ed in Sect� ���� it serves merely to form a single
value from two values� By the way� the articles �the�� �a�� and �an� are generally
insigni�cant in action notation 
formally� they denote the identity function
�

��� evaluate �� E��Expression E��Expression �� �
evaluate E� and then evaluate E�

then
give construction of 
the given constructor��� the given value��� or
enact application of body of the given function��

to the given value�� 


The combination A� or A� generally provides a nondeterministic choice between
the alternative actions A�� A�� However� if the chosen action fails� the other one
is performed instead� so the choice may turn out to be deterministic�as above�
where A� fails unless the �rst 
��
 value is of sort constructor� and A� fails unless
it is of sort function�
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The yielder application of Y� to Y� evaluates Y� and supplies it as a transient to
the abstraction yielded by Y�� So when the action encapsulated in the abstraction
representing the body of a function is performed 
via enact above
� it is given
just a single value� representing the argument of the function�

Note that vertical bars are used to enforce the intended grouping of actions�
as an alternative to parentheses�

��� evaluate �� �fn� I �Identi	er ��� E �Expression �� �
give function of closure of abstraction of

furthermore bind I to the given value
hence evaluate E 


The use of closure with abstraction of A ensures that the action A receives the
static bindings whenever the abstraction gets enacted� The operation function of

speci�ed in Sect� ���
 merely tags the abstraction so that it can be distinguished
from abstractions used for other purposes�

The combination A� hence A� is similar to A� then A�� but here it is bindings
rather than transients that get passed from A� to A�� The use of furthermore at
the start of A� speci�es that the bindings received by the whole action should be
received also by A�� except for those that get hidden by bindings produced by
A��

��� evaluate �� �rec� I��Identi	er �
� I��Identi	er ��� ��� E �Expression �� �
recursively bind I� to function of closure of abstraction of

furthermore bind I� to the given value
hence evaluate E

hence give the function bound to I� 


The action recursively bind I to Y allows the closure yielded by Y to refer to itself�

The operational semantics of this action involves so�called indirect bindings�
whereby circular bindings can be formed�


� Identi	er � token 


Note that � indicates sort inclusion�

����� Running Programs

needs� Evaluating Expressions�

introduces� run 


� run �� Program � action 


��� run E �Expression � initialize�bindings hence evaluate E 


The initialize�bindings action is de�ned in Sect� ����
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��� Semantic Entities

includes� �Mos	�
�Action Notation�

The above reference to the o�cial de�nition of action notation provides all the
action primitives and combinators that are needed here� see the Appendix below
for a list of the relevant symbols� It remains only to specify what data are to be
processed by actions�

����� Data

needs� Values�

� datum � value 


� bindable � value 


� token � string of letter� 


The sorts datum� bindable� and token are left open by action and data notation�
as they depend on the semantics of the language being described�

����� Values

needs� Pairs� Constructions� Functions�

introduces� value � unit�value 


� value � unit�value pair construction function 
disjoint� 


� unit�value � value 


The sort value is independent of action notation� and introduced here only for
convenience� In practice� it is generally used to correspond to the notion of
�R�values� in denotational semantics�

����� Pairs

needs� Values�

introduces� pair � pair of 


� pair of �� value� � pair 
total � injective� 


� pair � pair of value� 


Note that the notation value� is another way of writing the tuple sort 
value�
value��
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����� Constructions

needs� Values�

introduces� constructor � construction � construction of 


� constructor � token 


� construction of �� 
constructor� value� � construction 
total � injective� 


� construction � constructor construction of 
constructor� value� 


The semantics of a constructor identi�er is the identi�er token itself� In this
example language� constructors are untyped� so they can be applied to arbitrary
values�

����
 Functions

introduces� function � function of � body 


� function of �� abstraction � function 
total� 


��� function of a�abstraction � f �function � body f � a 


����� Initializations

needs� Functions�

introduces� initialize�bindings 


� initialize�bindings � bind �true� to �true� and bind �false� to �false� and
bind �not� to function of abstraction of

give 
 when there is given �true� then �false�
when there is given �false� then �true� � 


The initial bindings here provide only the standard constructors for the Booleans�
and the negation function� Other constructors and constants could be de�ned
without additional complications�

� First�Class Synchronous Operations

Reppy �Rep��a� presents CML� a concurrent extension of the Standard ML lan�
guage� CML has a fork�style primitive for spawning new processes� CML pro�
cesses communicate values synchronously over typed channels�

In �Rep��b�� the operational semantics of the new primitives is given� In
�BMT���� a subset of Reppy�s primitives is chosen� a new operational semantics
is given for the reduced set and several useful properties are proved� Figure � is
taken from �BMT���� it shows the signature of the chosen subset of CML oper�
ations� These �rst�class synchronous operations allow not only for sending and
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signature Concurrency � sig

type �a channel

val channel� unit �� ��a channel

type �a com

val send� �a channel � �a �� �a com

val receive� �a channel �� �a com

val choose� �a com � �a com �� �a com

val wrap� �a com � 	�a �� �b
 �� �b com

val noevent� �a com

val fork� 	unit �� �a
 �� unit

val sync� �a com �� �a end

Figure �� The signature of the concurrency primitives�

receiving values through channels� nondeterministic choice between communi�
cations 
choose
 and post�processing of the result of communications 
wrap
 is
possible as well�

A value of type �a com is called a �suspended� communication� As it is a
�rst�class value� it can be used as an argument of a function or constructor� just
like any other value� The communication can only completed when the sync

function is applied to it� and then only when a matching communication is given
as an argument of sync by another process� Communication is synchronous�
when a process calls sync� it is blocked until it becomes possible to complete the
requested communication�

� Extension to a Simple Concurrent Example

In this section we add processes and synchronous communication primitives to our
simple sequential language� These primitives are the same as given in �BMT����
and a subset of those present in the CML language �Rep��a�� We do not fore�
see any problems in adding the rest of the CML synchronous operations to our
de�nition�

Both the abstract syntax and semantic functions parts of the sequential lan�
guage speci�cation are reused without any modi�cation�
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��� Abstract Syntax

This module remains unchanged� The concurrency primitives are added as con�
stants and constructors� i�e�� identi�ers� for which abstract syntax has already
been speci�ed�

��� Semantic Functions

This module also remains unchanged� This is because of the �orthogonality� of
the facets of action notation� the presence or absence of actions involving the
communicative facet in no way a�ects the usage of the primitive actions and
combinators involving the other facets� For example� in the action combination
A� then A�� the passing of transient data from A� to A� is completely independent
of whether the subactions send any messages or o�er contracts to other agents�

Actually� there is one small part of action notation that is sensitive to the
presence or absence of the various facets of actions� the algebraic notation for
subsorts of actions� which is used just for specifying facets� Had the target sort of
evaluate been speci�ed not merely as action but more precisely� as action �giving
a value diverging redirecting�� the outcome possibility communicating would now
have to be added� But this is a tri�ing matter� and does not weaken the claim of
extensibility of action semantic descriptions�

It should be stressed that this remarkable extensibility is not a peculiarity
of the simple examples considered in this paper� it seems to be inherent in the
use of action notation� It would be interesting to see whether one could achieve
comparable extensibility for this example when using monads in denotational
semantics �CM����

��� Semantic Entities

includes� �Mos	�
�Action Notation�


���� Data

needs� Values� Requests�

� datum � value 


� bindable � value 


� sendable � request response 


� storable � nothing 


The identities of storage cells are used below to distinguish channels� but nothing
is ever stored in the cells� hence the above speci�cation of storable�
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���� Values

needs� Pairs� Constructions� Functions� Channels� Requests�

introduces� value � unit�value 


� value � unit�value pair construction function
channel request 
disjoint� 


� unit�value � value 


The only change above is the addition of two new subsorts of value�
The modules Pairs� Constructions� and Functions are omitted here� as

they are identical to those given in Sect� ����


���� Initializations

needs� Functions� Forks� Requests�

introduces� initialize�bindings 


��� initialize�bindings �
bind �true� to �true� and
bind �false� to �false� and
bind �not� to function of abstraction of

give 
 when there is given �true� then �false�
when there is given �false� then �true� �

and
bind �send� to �send� and
bind �receive� to �receive� and
bind �choose� to �choose� and
bind �wrap� to �wrap� and
bind �noevent� to �noevent� and
bind �channel� to function of abstraction of channel�action and
bind �fork� to function of abstraction of fork�action and
bind �sync� to function of abstraction of sync�action and
initialize�synchronization 


The treatment of �send�� �receive�� �choose�� and �wrap� as constructors implies
that their real semantics lies in the way that the corresponding constructions
in�uence communication� as speci�ed below in channel�action� fork�action� and
sync�action�


���� Channels

needs� Values�

introduces� channel � channel�action 


� channel � cell 


� channel�action � allocate a channel 


��



Each invocation of the channel�� function of CML reserves a fresh� new com�
munication channel for use within a program� In our description� channels are
represented as storage cells� The primitive action allocate reserves a previously
unused cell� which is the desired semantics of the channel�� function�

Note that in the action semantics of other concurrent languages� a channel can
often be represented by an agent that 
busily
 inspects its bu�er until it receives
a matching pair of requests for reading and writing on the channel� But in CML�
a single suspended communication might involve several channels at once� with
mutual exclusion between them� and it seems that it would be very complicated
to let channels be separate agents in this case�


���
 Forks

needs� Values�

introduces� fork�action 


��� fork�action �
o�er a contract �to some agent� �containing the abstraction yielded by

the application of the body of the given function to the unit�value�
and give the unit�value 


Recall that the fork�action represents the body of the CML fork function� which
gets applied to an expression to be evaluated by the new process�but the evalu�
ation of the expression has to be delayed� so it is made the body of a function of
the unit value 
�� This is re�ected by the explicit application that occurs in the
contents of the contract above�

The primitive action o�er Y evaluates Y to a sort of contract� where the
action to be performed has been determined as the contents of the contracts
included in the sort 
as usual� the action has to be encapsulated in an abstraction
�
It is also possible to determine a subsort of the agents to which the contract
may be o�ered� but the use of �to some agent� above leaves the sort of agent
completely open� As soon as the �o�er� has been made� the performing agent can
proceed� without waiting for an agent to accept the contract and start performing
the speci�ed action� 
One can easily express such waiting� let the speci�ed
action start by sending a signal back to the contracting agent� which should then
patiently inspect its bu�er until the signal arrives�



���� Requests

needs� Values� Pairs� Constructions� Functions� Channels�

introduces� request � response � synchronizing�agent �
initialize�synchronization � sync�action 


��



� request � construction of 
�send�� pair of 
channel� value��
construction of 
�receive�� channel�

construction of 
�choose�� request��
construction of 
�wrap�� pair of 
request� function��
�noevent� 


The request sort corresponds to the �a com types in Fig� �� The polymorphic type
information is disregarded here� as it is not relevant for the dynamic semantics
of the language�

� response � value abstraction 


The response sort is speci�ed to be the union of the value and abstraction sorts�
When no wrap operation is involved in the synchronization of two matching
requests� the result of such a synchronization will be a value� The need for
abstractions arises when a post�synchronization operation is to be performed� as
explained below�

� synchronizing�agent � agent �not in set of user�agent� 


In the absence of any assumptions about relative processing speed or message
transmission time� it appears to be di�cult to distribute the decisions about syn�
chronization between the various processes� The problem arises with symmetrical
situations involving mutually�exclusive choices between three or more processes�
a tentative choice proposed by one process may be outdated by the time the other
processes get to know about it�

As the semantics of the language has to cope with all possible programs� it
seems that we are forced to introduce a centralistic arbiter agent to represent the
locus of synchronization decisions� Note� however� that the appearance of this
artefact in the semantics does not rule out the possibility of a clever implementa�
tion of truly distributed synchronization� conforming to the speci�ed semantics

from the point of view of the user�agent
�

��� initialize�synchronization �
o�er a contract �to the synchronizing�agent� �containing abstraction of

unfolding
patiently
choose a synchronized pairing of the items of the current bu�er

then
send a message �to the sender of the given message���

�containing the given response��� and
send a message �to the sender of the given message���

�containing the given response��� and
remove the given message�� and remove the given message��

then unfold � 


��



The action performed by the synchronizing�agent 
given in the contract sort spec�
i�ed above
 involves several standard action primitives and combinators that have
not yet been explained� The unfolding � � �unfold� � � construct may be regarded as
an iteration here� although it is more general� If preferred� it may also be regarded
as an abbreviation for the in�nite action obtained by actually doing the unfolding
syntactically� The action patiently A keeps on performing A while it fails� The
primitive action choose Y fails whenever Y evaluates to nothing� otherwise it
gives an individual chosen arbitrarily from the sort to which Y evaluates� The
primitive action send Y initiates the transmission of the message speci�ed by the
sort yielded by Y � where the agent to receive the message is already determined�
Finally� remove Y disposes of the message yielded by Y � so that it is no longer
in the bu�er�

Thus the e�ect speci�ed above is that of busy�waiting until one or more match�
ing pairs of requests have arrived in the local bu�er� The synchronized pairing
then yields a sort including not only the matching pairs of request messages�
but together with each pair their chosen responses� Having chosen one of these
quadruples� it is a straightforward matter to complete the synchronization of the
requests by sending back the responses to the agents that made the requests� and
removing the chosen messages from the bu�er�

��� sync�action �
send a message �to the synchronizing�agent�

�containing the given request� then
receive a message �from the synchronizing�agent�

�containing a response� then
give the value yielded by the contents of the given message or
enact the abstraction yielded by the contents of the given message 


The action receive Y is actually a standard abbreviation for a compound action
that waits busily until a message of the sort speci�ed by Y arrives in the local
bu�er� then removes it from the bu�er and gives it as a transient�

privately introduces� synchronized � synchronized�responses �
	rst�response�application to � pairing 


The privately introduces� directive has the e�ect of restricting the use of the
listed symbols to the current submodule�

� synchronized �� message� � 
message�� response�� 
linear � strict� 


The synchronized operation takes a pair of messages containing requests� and
forms a sort of quadruples� The two �rst components of each quadruple are the
original messages� while the third and fourth components are the responses to the
requests� These responses are obtained by selecting each possible combination
of matching requests� as speci�ed by the synchronized�responses operation� The

��



linear attribute speci�es that the operation distributes over sort union� while
strict indicates that the operation maps nothing to nothing� Note that operations
speci�ed as total and partial are also linear and strict �


Readers who are not used to applying operations to sorts as well as to indi�
vidual values� as in the de�nitions below� may �nd it helpful to regard individuals
as singleton sets� and the operation as set union� The constant nothing may be
regarded as the empty set� All the operations can then be considered as de�ned
element�wise on sets� See �Mos��a� for the foundations of applying operations to
sorts�


��� synchronized 
m��message� m��message� �

m�� m�� synchronized�responses of 
contents of m�� contents of m��� 


� synchronized�responses �� request� � response� 
linear � strict� 


The synchronized�responses operation takes a pair of requests for synchroniza�
tion and gives the sort of all possible responses from the given requests� If no
synchronization is possible� the result of this operation is nothing� The de�nition
below corresponds closely to �BMT��� Figure ���

��� synchronized�responses 
r��request� r��request� �
reverse synchronized�responses 
r�� r�� 


��� synchronized�responses

construction of 
�send�� pair of 
k��channel� v �value���
construction of 
�receive�� k��channel�� �

when k� is k� then 
v � v� 


��� synchronized�responses

construction of 
�choose�� pair of 
r��request� r��request��� r��request� �

synchronized�responses 
r�� r�� synchronized�responses 
r�� r�� 


�	� synchronized�responses

construction of 
�wrap�� pair of 
r��request� f �function��� r��request� �

	rst�response�application of f to synchronized�responses 
r�� r�� 


�
� synchronized�responses 
�noevent�� r �request� � nothing 


� 	rst�response�application to �� function� response� � response� 
total� 


When a response to a synchronization is to be post�processed 
due to the existence
of a wrap operation
� an abstraction is constructed� This abstraction will be
enacted as a result of the performance of the sync�action� as explained before�

��� 	rst�response�application f �function to 
v �value� r �response� �

application of the body of f to v � r� 


���� 	rst�response�application f �function to 
a�abstraction� r �response� �

a then the body of f � r� 


��



� pairing �� message� � message� 
linear � strict� 


The pairing operation simply forms all possible pairs of elements from a tuple
of messages�

���� pairing 
 � � nothing 


���� pairing m�message � nothing 


���� pairing 
m��message� m��message� m�message�� �

m�� m�� pairing 
m�� m� pairing 
m�� m� 


� Discussion

Q � Why are the action semantic descriptions �a�s�d�s� so long	
A� Well� if one removes all the tutorial comments� the a�s�d� of the sequential
language �lls about three pages� A transitional semantics for the same language
might �ll about one page� Some of the extra length of the a�s�d� is� of course�
due to the use of verbose� multi�character symbols and the attempt at �natural�
language� The module titles and imports also take up some lines� But try reading
through the description�at least that doesn�t take much longer than it would
with a transitional semantics� it seems� In any case� the size of the extension
to the concurrent language is hardly excessive� considering the nature of the
constructs being described�
Q � Isn�t action notation just another programming language
 and an a�s�d� a com�
piler into it	
A� Many formal notations� including the ��notation and action notation� can cer�
tainly be implemented and used for programming� The crucial feature that distin�
guishes them from ordinary programming languages is that they have tractable�
well�understood semantics themselves� Action notation has been �ne�tuned for
use in a�s�d�s� and would probably rather tedious to use for programming�

Concerning the second part of the question� an a�s�d� can indeed be re�
garded as �compiling� or reducing the described programming language to action
notation�just as a denotational semantics reduces it to the ��notation� It is
clearly bene�cial to explicate a range of complex phenomena in terms of a �xed
set of relatively simple constructs�
Q � Aren�t there really too many primitives in action notation	
A� No� To get an overview of those we have used� see the Appendix� These ac�
count for at least ��� of the full action notation� To eliminate some of the action
primitives and combinators would undermine the extensibility of a�s�d�s� For in�
stance� to avoid the declarative facet would require passing bindings as transient
data� which seems arti�cial� and which would also be notationally undesirable�
Q � Why is the communicative facet of action notation based on asynchronous
primitives
 rather than on the better�studied synchronous ones	

��



A� Action notation is intended for use in describing high�level programming lan�
guages� where it is often not possible to ignore the time it takes to synchronize
distributed processes� The lack of synchrony in action notation also allows a na !ve
operational semantics that re�ects true concurrency� In any case� it is consider�
ably more illuminating to explicate languages like CML in terms of asynchronous
message passing� than in terms of 
e�g�
 CCS� See �Agh��� for further arguments
in favour of asynchronous primitives�
Q � What are the main advantages of action semantics over the popular transi�
tional style of semantics advocated by Plotkin
 Milner
 et� al�	
A� In fact action semantics can be regarded as a particular discipline for writing
transitional semantics� the semantic equations� together with the operational se�
mantics of action notation 
which is de�ned in the transitional style�
 induce a
transitional semantics for the described language�although it isn�t �structural��
at least not in the usual sense� Thus instead of� say� left�to�right evaluation
being implicit in the transition rules for various constructs of the described pro�
gramming language� the concept is named by a combinator� which is used where
appropriate� and the rules for this combinator are given once and for all�

Another aspect of this discipline is that action notation does not allow the in�
stantaneous inspection of the �current state� of a distributed system of agents� one
is forced to analyse synchronization in terms of asynchronous message�passing�
When using transitional semantics directly may lead to nondeterministic choices
that cannot 
easily
 be made on the basis of locally�available information�

Finally� there is the extensibility of a�s�d�s� This makes it 
almost
 trivial
that the extension of an a�s�d� to describe concurrent constructs indeed preserves
the semantics of sequential programs� Such results are not so immediate with
transitional semantics� see �BMT����

Appendix

Action Performance

A formal presentation of the operational semantics of action notation �Mos���
is out of the scope of this paper� The following informal comments indicate its
main features� and may be helpful to some readers�

The operational semantics de�nes what transitions between con�gurations
are possible� Let us �rst consider the local transitions� Each agent has a local
con�guration consisting of� the 
remaining
 action to be performed� the current
data and bindings� the current storage� determining which cells are reserved and
their contents� and the current bu�er of messages� When a primitive action is to
be performed� any yielder arguments are evaluated with respect to the current

local
 information� whereafter a transition to a new con�guration is possible�
The transitions for compound actions are determined by those of their subac�
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tions� as usual in structural operational semantics� Each combinator determines
the �ow of control 
sequential� interleaving� or nondeterministic choice
 and how
the transient data and bindings for the combined action depend on those for its
subactions� Transitions may a�ect the storage� and remove messages from the
bu�er� Finally� a local transition may have communicative e�ects� sending mes�
sages to other agents� and o�ering contracts containing actions to be performed
by other agents�

Now for global transitions� Initially� only one 
user�
 agent is active� other
agents become active when they accept contracts� A global con�guration con�
sists of a local con�guration for each active agent� together with all the messages
that are being transmitted between agents 
and any contracts that are still on
o�er
� The lack of any assumptions about the processing speed of agents� or
the transmission speed of messages� is modelled by attaching arbitrary but �nite
positive delays to local transitions and message transmissions� Each global tran�
sition counts down all the delays� When a local transition has no more delay� a
new transition for the agent is chosen� when a message has no more delay� it is
inserted in the bu�er of the target agent 
assuming that it is already active
�

Action equivalence is de�ned as a testing equivalence� based on the operational
semantics� In practice� algebraic laws about action equivalence are veri�ed using
a weak bisimulation de�ned in terms of local transitions� The theory of action
notation is still being developed� currently� reasoning about multi�agent action
performances has to be based directly on the global transitions�

Action Notation used in Sect� �

action yielder data

A� or A� the D yielded by Y 
D�� D��

A� and A� the Y D�

A� and then A� of Y a D � the D
give Y the given D datum
A� then A� the given D�n natural
bind D to Y the D bound to Y bindable
recursively bind D to Y token
furthermore A
A� hence A�

enact Y closure Y abstraction of A
application Y� to Y� abstraction

A� A�� A�� action Y � Y�� Y�� yielder D � D�� D� � data

��



Action and Message�Sort Notation used in Sect� �

action yielder data

unfolding A
unfold
choose Y
send Y current bu�er message
remove Y agent
receive Y user�agent
o�er Y contract
patiently A sendable
allocate D cell � storable

A� action Y � yielder D � data

message agent sendable contract

m �from a� sender m
m �to a� c �to a�
m �containing s� contents m c �containing abs�

m � message a � agent s � sendable c � contract
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