
B
R

IC
S

R
S-94-20

M
osses

&
M

usicante:
A

n
A

ction
Sem

antics
for

M
L

C
oncurrency

P
rim

itives

BRICS
Basic Research in Computer Science

An Action Semantics for
ML Concurrency Primitives

Peter D. Mosses
Martı́n Musicante

BRICS Report Series RS-94-20

ISSN 0909-0878 July 1994



Copyright c� 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk



An Action Semantics for

ML Concurrency Primitives�

Peter D� Mosses
y

BRICS�z Dept� of Computer Science� University of Aarhus

Ny Munkegade Bldg� ���� DK����� Aarhus C� Denmark

Mart��n Musicantex

Universidade Federal de Pernambuco

Departamento de Inform	atica

Recife 
 PE 
 Brazil

Abstract

This paper is about the recently�developed framework of action se�
mantics� The pragmatic qualities of action semantic descriptions are par�
ticularly good� which encourages their use in industrial�scale applications
where semantic descriptions are needed� e�g�� compiler development�

The paper has two main aims� to demonstrate the remarkable extensi�
bility of action semantic descriptions� and to illustrate the action seman�
tics treatment of concurrency� These aims are achieved simultaneously� by
�rst giving the description of a sequential 
ML�like� programming language
fragment� and then extending the described language with some concur�
rency primitives 
taken from CML�� The action semantic description of the
sequential part of the language does not change at all when the concur�
rency primitives are added� it merely gets augmented by the description of
the new features�

�To appear in Proc� FME��� �Formal Methods Europe� Symposium on Industrial Bene�t
of Formal Methods� 	�
	� October� ����� Barcelona
� Lecture Notes in Computer Science�
Springer�Verlag� ����� References to this work should cite the Proceedings�

yE�mail address� pdmosses�daimi�aau�dk� This work was partly supported by the Danish
Science Research Council project DART ���	�������
�

zCentre for Basic Research in Computer Science� funded by the Danish National Research
Foundation

xE�mail address� mam�di�ufpe�br� This work was partly supported by CNPq� Brazil�

�



� Introduction

Action semantics �Mos��� is a formal framework for semantic description� devel�
oped to provide �tractable	 descriptions of real�life languages 
for example� see
�Tof��� NT��� HT���
� Action semantic descriptions� like those written in denota�
tional semantics �Mos��� Sch���� are compositional � semantic functions� mapping
abstract syntax to semantic entities� are de�ned inductively using semantic equa�
tions� However� in action semantics the semantic entities are actions rather than
higher�order functions� and the essence of actions is much more computational
than that of 
pure
 functions�

A special notation has been developed for use in action semantics� This
notation is called action notation� and it is used in action semantic descriptions
very much in the same way as the ��notation is used in denotational semantics�
The symbols used in action notation are intentionally verbose� so that English�
like phrases can be used�completely formally�to express most of the concepts
present in programming languages� The operational semantics of the notation is
given in �Mos����

Action semantic descriptions are inherently modular� They are easily ex�
tended or modi�ed� Reusing parts of speci�cations is straightforward� In this
paper� we demonstrate these features� by extending the semantic description of
a simple� ML�like� sequential language� adding �rst�order synchronous communi�
cation constructors taken from CML �Rep��a��

The next section gives a brief account of the action semantics formalism�
Section � presents the action semantics of a simple sequential language� Sec�
tion � considers processes and synchronous communication� Section � extends
the action semantic description of the sequential language to deal with the cho�
sen concurrency primitives�

Both the sequential and the concurrent languages are similar to those pre�
sented in �BMT���� In that work� various changes to the original description of
the sequential language were needed to introduce the concurrent constructs and
their operational semantics� This is not the case in our description using action
semantics� when the �rst�class synchronous operations are introduced� only ex�
tensions to the semantic entities of the sequential description are needed� and the
rest of the description remains unchanged� Moreover� the use of action semantics
has the advantage that the problem of giving a fully distributed implementation
of CML�s concurrency primitives becomes quite apparent� This is ensured by the
action semantics treatment of concurrency� which is based on a quite realistic
asynchronous model� a truly operational analysis of synchronization has to be
speci�ed� A description of CML�s concurrency primitives in terms of CCS� or
CSP�like synchronization would not be so revealing� These issues are discussed
further in the concluding section�

�



� Action Semantics

In Action Semantics� the meaning of each phrase of a language is represented
in terms of special entities called actions� Actions can be performed to process
information� with various possible outcomes� normal termination 
performance
of the action completes
� exceptional termination 
it escapes
� unsuccessful ter�
mination 
it fails
 or non�termination 
it diverges
� Action notation provides
some primitive actions� and various combinators for forming complex actions�
corresponding to the main fundamental concepts of programming languages�

A data notation is used to describe the information processed by actions�
The standard data notation 
included in action notation
 provides a collection of
algebraically de�ned abstract data types� including numbers� characters� strings�
sets� tuples� maps� etc�� further data may be speci�ed ad hoc�

There is also a third class of entities in action notation� called yielders� A
yielder represents data whose value depends on the current information available
to the primitive action in which it occurs� Yielders are evaluated to yield data�
An example of a standard yielder is the data bound to I � which depends on the
current bindings that are received by the enclosing primitive action�

Action notation possesses �ve so�called �facets��

Basic� This facet deals with pure control �ow� without reference to information
processing issues�

Functional� This facet deals with transient data� which is given to or by an
action� For example� when the primitive action give the successor of the
given natural is given a natural number n as transient data� it completes�
giving n�� as a transient� The compound action A� then A� performs the
action A� �rst� all transient data given by A� is passed on to A�� which is
performed after A� completes� The primitive action choose D� where D is
a sort of data� makes a non�deterministic choice of an individual of sort D�
giving the chosen datum as a transient�

Declarative� This facet deals with the manipulation of scoped information� rep�
resented by associations of tokens to bindable data� For example� perfor�
mance of the primitive action bind �max�length� to ��� completes� producing
a binding of the token �max�length� to the natural number ����

Imperative� This facet is concerned with storage handling� A storage in action
notation is simply a mapping from 
the currently allocated
 cells to storable
data� For example� consider the action allocate a cell then store �� in the
given cell� which combines features of the functional and imperative facets�

Communicative� This facet provides a system of agents� which can each be
�contracted� to perform particular actions� Initially only a special �user�

�



agent is active� Agents can communicate using asynchronous message pass�
ing� the sending of a message is non�blocking� Each agent has its own com�
munication bu�er � in which all the messages sent to the agent are placed�
Communication is reliable� in the sense that no message can be lost during
transmission� however� there is no bound to the amount of time taken for a
message to reach its destination agent� Moreover� each agent is created with
its own storage� which cannot be a�ected 
nor inspected
 by other agents�
Arbitrary data can be contained in messages� including the identities of
agents�

Most of the primitive actions have a use in connection with only one facet each�
but the action combinators generally involve a mixture of the basic� functional�
and declarative facets� determining the �ow of control� transient data� and bind�
ings between the subactions�

Encapsulation of actions as data is also provided within action notation� This
feature gives a simple way to support the description of procedure and function
abstractions in programming languages� An abstraction is an item of data which
encapsulates an action� Abstractions can be enacted� this operation results in
the performance of the encapsulated action� Both transients and bindings can be
supplied to abstractions before their enaction� for use by the encapsulated action�
Abstractions can be treated just like any other data� i�e�� given as transients�
bound to tokens� stored in cells� and sent in messages� They are also used to
determine the �contracts� o�ered to agents in the communicative facet�

For a more detailed description of action notation� the reader is referred to
�Mos���� for an introduction� see also �Wat���� An overview of the operational
semantics of action notation is given in the Appendix below�

� A Simple Sequential Example

This section describes the 
dynamic
 action semantics of a simple sequential func�
tional language� derived from Standard ML �MTH���� It is essentially the same
language as the one described in �BMT��� Sect� ���

As in denotational semantics� a description in action semantics is divided into
three main parts� specifying the abstract syntax of the language being described�
the semantic functions that map abstract syntactic phrases to their meaning� and
the semantic entities used by the semantic functions�

The modular structure of the speci�cation is itself formally speci�ed� by giving
each module a title� and indicating 
by writing needs� or includes�
 which other
modules it imports� if any� Modules may be nested� a submodule implicitly
imports all that is speci�ed 
or imported
 directly by each enclosing module�
The order in which modules are presented is irrelevant� and mutual importation
is allowed �Mos��b��

�



Each module is given below as a numbered� titled section� Interspersed with
the formal speci�cation� some informal explanations are given� for the bene�t of
those readers who are unfamiliar with action notation�

��� Abstract Syntax

grammar�

� Expression � Identi	er �
��
�� �
� Expression ��� Expression ��� ��
�� Expression Expression ��
�� �fn� Identi	er ��� Expression ��
�� �rec� Identi	er �
� Identi	er ��� ��� Expression �� 


� Identi	er � �� letter� �� 


� Program � Expression 


The abstract syntax of the language is de�ned by a grammar using the standard
data notation for trees and strings� The brackets ��� � � �� indicate node construction
in abstract syntax trees� 
In denotational semantics� these brackets are usually
regarded as part of the notation for semantic functions� nevertheless� the left�
hand sides of action semantic equations are quite similar in form to those of
denotational semantic equations�
 Strings in the right�hand�sides of the grammar
equations correspond to leaves of the trees�

A program in our simple example language is given by a single expression�
Notice that the �rec� construct is an expression� rather than a declaration� Also�
the sort Identi	er encompasses variables� constants� and constructors�we do not
rely on some preceding static analysis to distinguish the classes of the di�erent
occurrences of identi�ers� in contrast to �BMT��� 
and to �MTH���� where the
dependency between static and dynamic semantics caused some problems
�

��� Semantic Functions

needs� Abstract Syntax� Semantic Entities�

The action semantics of a programming language is given by means of semantic
functions� These functions map abstract syntactic phrases of the language to
actions� Each semantic function is introduced at the beginning of the module
that de�nes it� inductively� by semantic equations�

�



����� Evaluating Expressions

introduces� evaluate 


� evaluate �� Expression � action 


The sort action includes all actions� We could be more speci�c here� using an
algebraic notation for subsorts of actions to indicate that evaluate E is always an
action which� whenever it completes� gives a value�

��� evaluate I �Identi	er � give the value bound to I 


When not in the scope of any binding for I � the yielder the value bound to I
evaluates to the special entity nothing� whereupon the give action above fails�
Note that I may be a constructor� a constant� or a variable� but the distinction
is irrelevant for the dynamic semantics�

��� evaluate �
�� � give the unit�value 


The constant unit�value is speci�ed in Sect� ����

��� evaluate �� �
� E��Expression ��� E��Expression ��� �� �

 evaluate E� and then evaluate E� �
then give the pair of the given 
value� value� 


The action combination A� and then A� speci�es sequential 
left�to�right
 per�
formance of its subactions� as does A� then A�� The di�erence is that with the
former combination� any transient data given by A�� A� are concatenated and
given by the whole action� whereas with the latter combination� the transient
data given by A� are given only to A�� There is also a combination A� and A��
used later� that speci�es implementation�dependent order of performance� but
which is otherwise like A� and then A��

The operation pair of is speci�ed in Sect� ���� it serves merely to form a single
value from two values� By the way� the articles �the�� �a�� and �an� are generally
insigni�cant in action notation 
formally� they denote the identity function
�

��� evaluate �� E��Expression E��Expression �� �
evaluate E� and then evaluate E�

then
give construction of 
the given constructor��� the given value��� or
enact application of body of the given function��

to the given value�� 


The combination A� or A� generally provides a nondeterministic choice between
the alternative actions A�� A�� However� if the chosen action fails� the other one
is performed instead� so the choice may turn out to be deterministic�as above�
where A� fails unless the �rst 
��
 value is of sort constructor� and A� fails unless
it is of sort function�

�



The yielder application of Y� to Y� evaluates Y� and supplies it as a transient to
the abstraction yielded by Y�� So when the action encapsulated in the abstraction
representing the body of a function is performed 
via enact above
� it is given
just a single value� representing the argument of the function�

Note that vertical bars are used to enforce the intended grouping of actions�
as an alternative to parentheses�

��� evaluate �� �fn� I �Identi	er ��� E �Expression �� �
give function of closure of abstraction of

furthermore bind I to the given value
hence evaluate E 


The use of closure with abstraction of A ensures that the action A receives the
static bindings whenever the abstraction gets enacted� The operation function of

speci�ed in Sect� ���
 merely tags the abstraction so that it can be distinguished
from abstractions used for other purposes�

The combination A� hence A� is similar to A� then A�� but here it is bindings
rather than transients that get passed from A� to A�� The use of furthermore at
the start of A� speci�es that the bindings received by the whole action should be
received also by A�� except for those that get hidden by bindings produced by
A��

��� evaluate �� �rec� I��Identi	er �
� I��Identi	er ��� ��� E �Expression �� �
recursively bind I� to function of closure of abstraction of

furthermore bind I� to the given value
hence evaluate E

hence give the function bound to I� 


The action recursively bind I to Y allows the closure yielded by Y to refer to itself�

The operational semantics of this action involves so�called indirect bindings�
whereby circular bindings can be formed�


� Identi	er � token 


Note that � indicates sort inclusion�

����� Running Programs

needs� Evaluating Expressions�

introduces� run 


� run �� Program � action 


��� run E �Expression � initialize�bindings hence evaluate E 


The initialize�bindings action is de�ned in Sect� ����

�



��� Semantic Entities

includes� �Mos	�
�Action Notation�

The above reference to the o�cial de�nition of action notation provides all the
action primitives and combinators that are needed here� see the Appendix below
for a list of the relevant symbols� It remains only to specify what data are to be
processed by actions�

����� Data

needs� Values�

� datum � value 


� bindable � value 


� token � string of letter� 


The sorts datum� bindable� and token are left open by action and data notation�
as they depend on the semantics of the language being described�

����� Values

needs� Pairs� Constructions� Functions�

introduces� value � unit�value 


� value � unit�value pair construction function 
disjoint� 


� unit�value � value 


The sort value is independent of action notation� and introduced here only for
convenience� In practice� it is generally used to correspond to the notion of
�R�values� in denotational semantics�

����� Pairs

needs� Values�

introduces� pair � pair of 


� pair of �� value� � pair 
total � injective� 


� pair � pair of value� 


Note that the notation value� is another way of writing the tuple sort 
value�
value��

�



����� Constructions

needs� Values�

introduces� constructor � construction � construction of 


� constructor � token 


� construction of �� 
constructor� value� � construction 
total � injective� 


� construction � constructor construction of 
constructor� value� 


The semantics of a constructor identi�er is the identi�er token itself� In this
example language� constructors are untyped� so they can be applied to arbitrary
values�

����
 Functions

introduces� function � function of � body 


� function of �� abstraction � function 
total� 


��� function of a�abstraction � f �function � body f � a 


����� Initializations

needs� Functions�

introduces� initialize�bindings 


� initialize�bindings � bind �true� to �true� and bind �false� to �false� and
bind �not� to function of abstraction of

give 
 when there is given �true� then �false�
when there is given �false� then �true� � 


The initial bindings here provide only the standard constructors for the Booleans�
and the negation function� Other constructors and constants could be de�ned
without additional complications�

� First�Class Synchronous Operations

Reppy �Rep��a� presents CML� a concurrent extension of the Standard ML lan�
guage� CML has a fork�style primitive for spawning new processes� CML pro�
cesses communicate values synchronously over typed channels�

In �Rep��b�� the operational semantics of the new primitives is given� In
�BMT���� a subset of Reppy�s primitives is chosen� a new operational semantics
is given for the reduced set and several useful properties are proved� Figure � is
taken from �BMT���� it shows the signature of the chosen subset of CML oper�
ations� These �rst�class synchronous operations allow not only for sending and

�



signature Concurrency � sig

type �a channel

val channel� unit �� ��a channel

type �a com

val send� �a channel � �a �� �a com

val receive� �a channel �� �a com

val choose� �a com � �a com �� �a com

val wrap� �a com � 	�a �� �b
 �� �b com

val noevent� �a com

val fork� 	unit �� �a
 �� unit

val sync� �a com �� �a end

Figure �� The signature of the concurrency primitives�

receiving values through channels� nondeterministic choice between communi�
cations 
choose
 and post�processing of the result of communications 
wrap
 is
possible as well�

A value of type �a com is called a �suspended� communication� As it is a
�rst�class value� it can be used as an argument of a function or constructor� just
like any other value� The communication can only completed when the sync

function is applied to it� and then only when a matching communication is given
as an argument of sync by another process� Communication is synchronous�
when a process calls sync� it is blocked until it becomes possible to complete the
requested communication�

� Extension to a Simple Concurrent Example

In this section we add processes and synchronous communication primitives to our
simple sequential language� These primitives are the same as given in �BMT����
and a subset of those present in the CML language �Rep��a�� We do not fore�
see any problems in adding the rest of the CML synchronous operations to our
de�nition�

Both the abstract syntax and semantic functions parts of the sequential lan�
guage speci�cation are reused without any modi�cation�

��



��� Abstract Syntax

This module remains unchanged� The concurrency primitives are added as con�
stants and constructors� i�e�� identi�ers� for which abstract syntax has already
been speci�ed�

��� Semantic Functions

This module also remains unchanged� This is because of the �orthogonality� of
the facets of action notation� the presence or absence of actions involving the
communicative facet in no way a�ects the usage of the primitive actions and
combinators involving the other facets� For example� in the action combination
A� then A�� the passing of transient data from A� to A� is completely independent
of whether the subactions send any messages or o�er contracts to other agents�

Actually� there is one small part of action notation that is sensitive to the
presence or absence of the various facets of actions� the algebraic notation for
subsorts of actions� which is used just for specifying facets� Had the target sort of
evaluate been speci�ed not merely as action but more precisely� as action �giving
a value diverging redirecting�� the outcome possibility communicating would now
have to be added� But this is a tri�ing matter� and does not weaken the claim of
extensibility of action semantic descriptions�

It should be stressed that this remarkable extensibility is not a peculiarity
of the simple examples considered in this paper� it seems to be inherent in the
use of action notation� It would be interesting to see whether one could achieve
comparable extensibility for this example when using monads in denotational
semantics �CM����

��� Semantic Entities

includes� �Mos	�
�Action Notation�


���� Data

needs� Values� Requests�

� datum � value 


� bindable � value 


� sendable � request response 


� storable � nothing 


The identities of storage cells are used below to distinguish channels� but nothing
is ever stored in the cells� hence the above speci�cation of storable�

��




���� Values

needs� Pairs� Constructions� Functions� Channels� Requests�

introduces� value � unit�value 


� value � unit�value pair construction function
channel request 
disjoint� 


� unit�value � value 


The only change above is the addition of two new subsorts of value�
The modules Pairs� Constructions� and Functions are omitted here� as

they are identical to those given in Sect� ����


���� Initializations

needs� Functions� Forks� Requests�

introduces� initialize�bindings 


��� initialize�bindings �
bind �true� to �true� and
bind �false� to �false� and
bind �not� to function of abstraction of

give 
 when there is given �true� then �false�
when there is given �false� then �true� �

and
bind �send� to �send� and
bind �receive� to �receive� and
bind �choose� to �choose� and
bind �wrap� to �wrap� and
bind �noevent� to �noevent� and
bind �channel� to function of abstraction of channel�action and
bind �fork� to function of abstraction of fork�action and
bind �sync� to function of abstraction of sync�action and
initialize�synchronization 


The treatment of �send�� �receive�� �choose�� and �wrap� as constructors implies
that their real semantics lies in the way that the corresponding constructions
in�uence communication� as speci�ed below in channel�action� fork�action� and
sync�action�


���� Channels

needs� Values�

introduces� channel � channel�action 


� channel � cell 


� channel�action � allocate a channel 


��



Each invocation of the channel�� function of CML reserves a fresh� new com�
munication channel for use within a program� In our description� channels are
represented as storage cells� The primitive action allocate reserves a previously
unused cell� which is the desired semantics of the channel�� function�

Note that in the action semantics of other concurrent languages� a channel can
often be represented by an agent that 
busily
 inspects its bu�er until it receives
a matching pair of requests for reading and writing on the channel� But in CML�
a single suspended communication might involve several channels at once� with
mutual exclusion between them� and it seems that it would be very complicated
to let channels be separate agents in this case�


���
 Forks

needs� Values�

introduces� fork�action 


��� fork�action �
o�er a contract �to some agent� �containing the abstraction yielded by

the application of the body of the given function to the unit�value�
and give the unit�value 


Recall that the fork�action represents the body of the CML fork function� which
gets applied to an expression to be evaluated by the new process�but the evalu�
ation of the expression has to be delayed� so it is made the body of a function of
the unit value 
�� This is re�ected by the explicit application that occurs in the
contents of the contract above�

The primitive action o�er Y evaluates Y to a sort of contract� where the
action to be performed has been determined as the contents of the contracts
included in the sort 
as usual� the action has to be encapsulated in an abstraction
�
It is also possible to determine a subsort of the agents to which the contract
may be o�ered� but the use of �to some agent� above leaves the sort of agent
completely open� As soon as the �o�er� has been made� the performing agent can
proceed� without waiting for an agent to accept the contract and start performing
the speci�ed action� 
One can easily express such waiting� let the speci�ed
action start by sending a signal back to the contracting agent� which should then
patiently inspect its bu�er until the signal arrives�



���� Requests

needs� Values� Pairs� Constructions� Functions� Channels�

introduces� request � response � synchronizing�agent �
initialize�synchronization � sync�action 


��



� request � construction of 
�send�� pair of 
channel� value��
construction of 
�receive�� channel�

construction of 
�choose�� request��
construction of 
�wrap�� pair of 
request� function��
�noevent� 


The request sort corresponds to the �a com types in Fig� �� The polymorphic type
information is disregarded here� as it is not relevant for the dynamic semantics
of the language�

� response � value abstraction 


The response sort is speci�ed to be the union of the value and abstraction sorts�
When no wrap operation is involved in the synchronization of two matching
requests� the result of such a synchronization will be a value� The need for
abstractions arises when a post�synchronization operation is to be performed� as
explained below�

� synchronizing�agent � agent �not in set of user�agent� 


In the absence of any assumptions about relative processing speed or message
transmission time� it appears to be di�cult to distribute the decisions about syn�
chronization between the various processes� The problem arises with symmetrical
situations involving mutually�exclusive choices between three or more processes�
a tentative choice proposed by one process may be outdated by the time the other
processes get to know about it�

As the semantics of the language has to cope with all possible programs� it
seems that we are forced to introduce a centralistic arbiter agent to represent the
locus of synchronization decisions� Note� however� that the appearance of this
artefact in the semantics does not rule out the possibility of a clever implementa�
tion of truly distributed synchronization� conforming to the speci�ed semantics

from the point of view of the user�agent
�

��� initialize�synchronization �
o�er a contract �to the synchronizing�agent� �containing abstraction of

unfolding
patiently
choose a synchronized pairing of the items of the current bu�er

then
send a message �to the sender of the given message���

�containing the given response��� and
send a message �to the sender of the given message���

�containing the given response��� and
remove the given message�� and remove the given message��

then unfold � 


��



The action performed by the synchronizing�agent 
given in the contract sort spec�
i�ed above
 involves several standard action primitives and combinators that have
not yet been explained� The unfolding � � �unfold� � � construct may be regarded as
an iteration here� although it is more general� If preferred� it may also be regarded
as an abbreviation for the in�nite action obtained by actually doing the unfolding
syntactically� The action patiently A keeps on performing A while it fails� The
primitive action choose Y fails whenever Y evaluates to nothing� otherwise it
gives an individual chosen arbitrarily from the sort to which Y evaluates� The
primitive action send Y initiates the transmission of the message speci�ed by the
sort yielded by Y � where the agent to receive the message is already determined�
Finally� remove Y disposes of the message yielded by Y � so that it is no longer
in the bu�er�

Thus the e�ect speci�ed above is that of busy�waiting until one or more match�
ing pairs of requests have arrived in the local bu�er� The synchronized pairing
then yields a sort including not only the matching pairs of request messages�
but together with each pair their chosen responses� Having chosen one of these
quadruples� it is a straightforward matter to complete the synchronization of the
requests by sending back the responses to the agents that made the requests� and
removing the chosen messages from the bu�er�

��� sync�action �
send a message �to the synchronizing�agent�

�containing the given request� then
receive a message �from the synchronizing�agent�

�containing a response� then
give the value yielded by the contents of the given message or
enact the abstraction yielded by the contents of the given message 


The action receive Y is actually a standard abbreviation for a compound action
that waits busily until a message of the sort speci�ed by Y arrives in the local
bu�er� then removes it from the bu�er and gives it as a transient�

privately introduces� synchronized � synchronized�responses �
	rst�response�application to � pairing 


The privately introduces� directive has the e�ect of restricting the use of the
listed symbols to the current submodule�

� synchronized �� message� � 
message�� response�� 
linear � strict� 


The synchronized operation takes a pair of messages containing requests� and
forms a sort of quadruples� The two �rst components of each quadruple are the
original messages� while the third and fourth components are the responses to the
requests� These responses are obtained by selecting each possible combination
of matching requests� as speci�ed by the synchronized�responses operation� The

��



linear attribute speci�es that the operation distributes over sort union� while
strict indicates that the operation maps nothing to nothing� Note that operations
speci�ed as total and partial are also linear and strict �


Readers who are not used to applying operations to sorts as well as to indi�
vidual values� as in the de�nitions below� may �nd it helpful to regard individuals
as singleton sets� and the operation as set union� The constant nothing may be
regarded as the empty set� All the operations can then be considered as de�ned
element�wise on sets� See �Mos��a� for the foundations of applying operations to
sorts�


��� synchronized 
m��message� m��message� �

m�� m�� synchronized�responses of 
contents of m�� contents of m��� 


� synchronized�responses �� request� � response� 
linear � strict� 


The synchronized�responses operation takes a pair of requests for synchroniza�
tion and gives the sort of all possible responses from the given requests� If no
synchronization is possible� the result of this operation is nothing� The de�nition
below corresponds closely to �BMT��� Figure ���

��� synchronized�responses 
r��request� r��request� �
reverse synchronized�responses 
r�� r�� 


��� synchronized�responses

construction of 
�send�� pair of 
k��channel� v �value���
construction of 
�receive�� k��channel�� �

when k� is k� then 
v � v� 


��� synchronized�responses

construction of 
�choose�� pair of 
r��request� r��request��� r��request� �

synchronized�responses 
r�� r�� synchronized�responses 
r�� r�� 


�	� synchronized�responses

construction of 
�wrap�� pair of 
r��request� f �function��� r��request� �

	rst�response�application of f to synchronized�responses 
r�� r�� 


�
� synchronized�responses 
�noevent�� r �request� � nothing 


� 	rst�response�application to �� function� response� � response� 
total� 


When a response to a synchronization is to be post�processed 
due to the existence
of a wrap operation
� an abstraction is constructed� This abstraction will be
enacted as a result of the performance of the sync�action� as explained before�

��� 	rst�response�application f �function to 
v �value� r �response� �

application of the body of f to v � r� 


���� 	rst�response�application f �function to 
a�abstraction� r �response� �

a then the body of f � r� 


��



� pairing �� message� � message� 
linear � strict� 


The pairing operation simply forms all possible pairs of elements from a tuple
of messages�

���� pairing 
 � � nothing 


���� pairing m�message � nothing 


���� pairing 
m��message� m��message� m�message�� �

m�� m�� pairing 
m�� m� pairing 
m�� m� 


� Discussion

Q � Why are the action semantic descriptions �a�s�d�s� so long	
A� Well� if one removes all the tutorial comments� the a�s�d� of the sequential
language �lls about three pages� A transitional semantics for the same language
might �ll about one page� Some of the extra length of the a�s�d� is� of course�
due to the use of verbose� multi�character symbols and the attempt at �natural�
language� The module titles and imports also take up some lines� But try reading
through the description�at least that doesn�t take much longer than it would
with a transitional semantics� it seems� In any case� the size of the extension
to the concurrent language is hardly excessive� considering the nature of the
constructs being described�
Q � Isn�t action notation just another programming language
 and an a�s�d� a com�
piler into it	
A� Many formal notations� including the ��notation and action notation� can cer�
tainly be implemented and used for programming� The crucial feature that distin�
guishes them from ordinary programming languages is that they have tractable�
well�understood semantics themselves� Action notation has been �ne�tuned for
use in a�s�d�s� and would probably rather tedious to use for programming�

Concerning the second part of the question� an a�s�d� can indeed be re�
garded as �compiling� or reducing the described programming language to action
notation�just as a denotational semantics reduces it to the ��notation� It is
clearly bene�cial to explicate a range of complex phenomena in terms of a �xed
set of relatively simple constructs�
Q � Aren�t there really too many primitives in action notation	
A� No� To get an overview of those we have used� see the Appendix� These ac�
count for at least ��� of the full action notation� To eliminate some of the action
primitives and combinators would undermine the extensibility of a�s�d�s� For in�
stance� to avoid the declarative facet would require passing bindings as transient
data� which seems arti�cial� and which would also be notationally undesirable�
Q � Why is the communicative facet of action notation based on asynchronous
primitives
 rather than on the better�studied synchronous ones	

��



A� Action notation is intended for use in describing high�level programming lan�
guages� where it is often not possible to ignore the time it takes to synchronize
distributed processes� The lack of synchrony in action notation also allows a na !ve
operational semantics that re�ects true concurrency� In any case� it is consider�
ably more illuminating to explicate languages like CML in terms of asynchronous
message passing� than in terms of 
e�g�
 CCS� See �Agh��� for further arguments
in favour of asynchronous primitives�
Q � What are the main advantages of action semantics over the popular transi�
tional style of semantics advocated by Plotkin
 Milner
 et� al�	
A� In fact action semantics can be regarded as a particular discipline for writing
transitional semantics� the semantic equations� together with the operational se�
mantics of action notation 
which is de�ned in the transitional style�
 induce a
transitional semantics for the described language�although it isn�t �structural��
at least not in the usual sense� Thus instead of� say� left�to�right evaluation
being implicit in the transition rules for various constructs of the described pro�
gramming language� the concept is named by a combinator� which is used where
appropriate� and the rules for this combinator are given once and for all�

Another aspect of this discipline is that action notation does not allow the in�
stantaneous inspection of the �current state� of a distributed system of agents� one
is forced to analyse synchronization in terms of asynchronous message�passing�
When using transitional semantics directly may lead to nondeterministic choices
that cannot 
easily
 be made on the basis of locally�available information�

Finally� there is the extensibility of a�s�d�s� This makes it 
almost
 trivial
that the extension of an a�s�d� to describe concurrent constructs indeed preserves
the semantics of sequential programs� Such results are not so immediate with
transitional semantics� see �BMT����

Appendix

Action Performance

A formal presentation of the operational semantics of action notation �Mos���
is out of the scope of this paper� The following informal comments indicate its
main features� and may be helpful to some readers�

The operational semantics de�nes what transitions between con�gurations
are possible� Let us �rst consider the local transitions� Each agent has a local
con�guration consisting of� the 
remaining
 action to be performed� the current
data and bindings� the current storage� determining which cells are reserved and
their contents� and the current bu�er of messages� When a primitive action is to
be performed� any yielder arguments are evaluated with respect to the current

local
 information� whereafter a transition to a new con�guration is possible�
The transitions for compound actions are determined by those of their subac�

��



tions� as usual in structural operational semantics� Each combinator determines
the �ow of control 
sequential� interleaving� or nondeterministic choice
 and how
the transient data and bindings for the combined action depend on those for its
subactions� Transitions may a�ect the storage� and remove messages from the
bu�er� Finally� a local transition may have communicative e�ects� sending mes�
sages to other agents� and o�ering contracts containing actions to be performed
by other agents�

Now for global transitions� Initially� only one 
user�
 agent is active� other
agents become active when they accept contracts� A global con�guration con�
sists of a local con�guration for each active agent� together with all the messages
that are being transmitted between agents 
and any contracts that are still on
o�er
� The lack of any assumptions about the processing speed of agents� or
the transmission speed of messages� is modelled by attaching arbitrary but �nite
positive delays to local transitions and message transmissions� Each global tran�
sition counts down all the delays� When a local transition has no more delay� a
new transition for the agent is chosen� when a message has no more delay� it is
inserted in the bu�er of the target agent 
assuming that it is already active
�

Action equivalence is de�ned as a testing equivalence� based on the operational
semantics� In practice� algebraic laws about action equivalence are veri�ed using
a weak bisimulation de�ned in terms of local transitions� The theory of action
notation is still being developed� currently� reasoning about multi�agent action
performances has to be based directly on the global transitions�

Action Notation used in Sect� �

action yielder data

A� or A� the D yielded by Y 
D�� D��

A� and A� the Y D�

A� and then A� of Y a D � the D
give Y the given D datum
A� then A� the given D�n natural
bind D to Y the D bound to Y bindable
recursively bind D to Y token
furthermore A
A� hence A�

enact Y closure Y abstraction of A
application Y� to Y� abstraction

A� A�� A�� action Y � Y�� Y�� yielder D � D�� D� � data

��



Action and Message�Sort Notation used in Sect� �

action yielder data

unfolding A
unfold
choose Y
send Y current bu�er message
remove Y agent
receive Y user�agent
o�er Y contract
patiently A sendable
allocate D cell � storable

A� action Y � yielder D � data

message agent sendable contract

m �from a� sender m
m �to a� c �to a�
m �containing s� contents m c �containing abs�

m � message a � agent s � sendable c � contract

References

�Agh��� Gul Agha� Actors� A Model of Concurrent Computation in Distributed
Systems� MIT Press� �����

�BMT��� Dave Berry� Robin Milner� and David N� Turner� A semantics for ML
concurrency primitives� In Proc� �
th Annual ACM Symposium on
Principles of Programming Languages� pages ���"���� ACM� �����

�CM��� Pietro Cenciarelli and Eugenio Moggi� A syntactic approach to modu�
larity in denotational semantics� Draft� May �����

�HT��� Bo Stig Hansen and Jens Ulrik Toft� The formal speci�cation of ANDF�
an application of action semantics� In Peter D� Mosses� editor� Proc�
First Intl� Workshop on Action Semantics �Edinburgh
 April ������
number NS����� in BRICS Notes Series� pages ��"��� BRICS� Dept� of
Computer Science� Univ� of Aarhus� Denmark� �����

�Mos��a� Peter D� Mosses� Uni�ed algebras and institutions� In LICS���
 Proc�
�th Ann� Symp� on Logic in Computer Science� pages ���"���� IEEE�
�����

��



�Mos��b� Peter D� Mosses� Uni�ed algebras and modules� In POPL���
 Proc�
��th Ann� ACM Symp� on Principles of Programming Languages� pages
���"���� ACM� �����

�Mos��� Peter D� Mosses� Denotational semantics� In J� van Leeuwen� A� Meyer�
M� Nivat� M� Paterson� and D� Perrin� editors� Handbook of Theoretical
Computer Science� volume B� chapter ��� Elsevier Science Publishers�
Amsterdam� and MIT Press� �����

�Mos��� Peter D� Mosses� Action Semantics� volume �� of Cambridge Tracts in
Theoretical Computer Science� Cambridge University Press� �����

�MTH��� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Stan�
dard ML� MIT Press� �����

�NT��� Jens P� Nielsen and Jens Ulrik Toft� Formal speci�cation of ANDF�
existing subset� Technical Report ������#RPT#��� issue �� DDC In�
ternational A#S� Lundtoftevej �C� DK"���� Lyngby� Denmark� �����

�Rep��a� John H� Reppy� CML� A higher�order concurrent language� In Proc�
SIGPLAN���
 Conf� on Prog� Lang� Design and Impl�� pages ���"����
ACM� �����

�Rep��b� John H� Reppy� An operational semantics of �rst�class synchronous
operations� Technical Report TR �������� Computer Science Dept��
Cornell Univ�� �����

�Sch��� David A� Schmidt� Denotational Semantics� A Methodology for Lan�
guage Development� Allyn $ Bacon� �����

�Tof��� Jens Ulrik Toft� Feasibility of using RSL as the speci�cation language
for the ANDF formal speci�cation� Technical Report ������#RPT#���
issue �� DDC International A#S� Lundtoftevej �C� DK"���� Lyngby�
Denmark� �����

�Wat��� David A� Watt� Programming Language Syntax and Semantics�
Prentice�Hall� �����

��



Recent Publications in the BRICS Report Series

RS-94-20 Peter D. Mosses and Mart́ın Musicante. An Action Se-
mantics for ML Concurrency Primitives. July 1994, 21 pp.
To appear in Proc. FME ’94 (Formal Methods Europe,
Symposium on Industrial Benefit of Formal Methods),
LNCS, 1994.

RS-94-19 Jens Chr. Godskesen, Kim G. Larsen, and Arne Skou.
Automatic Verification of Real–Timed Systems Using Ep�

silon. June 1994, 8 pp. Appears in: Protocols, Specifi-
cation, Testing and Verification PSTV ’94.

RS-94-18 Sten Agerholm. LCF Examples in HOL. June 1994, 16
pp. To appear in: Proceedings of the 7th International
Workshop on Higher Order Logic Theorem Proving and its
Applications, LNCS, 1994.

RS-94-17 Allan Cheng. Local Model Checking and Traces. June
1994, 30 pp.

RS-94-16 Lars Arge. External-Storage Data Structures for Plane-
Sweep Algorithms. June 1994, 37 pp.

RS-94-15 Mogens Nielsen and Glynn Winskel. Petri Nets and Bisim-
ulations. May 1994, 36 pp.

RS-94-14 Nils Klarlund. The Limit View of Infinite Computations.
May 1994, 16 pp. To appear in the LNCS proceedings of
Concur ’94, LNCS, 1994.

RS-94-13 Glynn Winskel. Stable Bistructure Models of PCF.
May 1994, 26 pp. Preliminary draft. Invited lecture for
MFCS ’94. To appear in the proceedings of MFCS ’94,
LNCS, 1994.

RS-94-12 Glynn Winskel and Mogens Nielsen. Models for Con-
currency. May 1994, 144 pp. To appear as a chapter in
the Handbook of Logic and the Foundations of Computer
Science, Oxford University Press.

RS-94-11 Nils Klarlund. A Homomorphism Concept for �-Regu-
larity. May 1994, 16 pp.


