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Abstract

A main concern of the paper will be a Curry�Howard interpretation of Intuition�
istic Linear Logic� It will be extended with recursion� and the resulting functional
programming language will be given operational as well as categorical semantics�
The two semantics will be related by soundness and adequacy results� The main
features of the categorical semantics are that convergence�divergence behaviour is
modelled by a strong monad� and that recursion is modelled by �linear �xpoints�
induced by CPO structure on the hom�sets� The �linear �xpoints� correspond to
ordinary �xpoints in the category of free coalgebras w�r�t� the comonad used to in�
terpret the �of course� modality� Concrete categories from 	stable
 domain theory
satisfying the axioms of the categorical model are given� and thus adequacy follows
in these instances from the general result�
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� Introduction

Linear logic was discovered by J��Y� Girard in �
�� and published in a now famous paper
�Gir���� In the abstract of this paper� it is stated that �a completely new approach to the
whole area between constructive logics and computer science is initiated�� Since then� a
lot of work has been done to corroborate this claim� The present paper will deal with a
computational interpretation of Intuitionistic Linear Logic �ILL��

In �Abr
�� the �rst Curry�Howard interpretation of ILL is given� The resulting system is
essentially a re�nement of the usual ��calculus where the copying and discarding of values
is written explicitly in the terms� One of the rules of this system has a de�ciency that
force 
 to be isomorphic to 

 in any reasonable categorical interpretation� It was in �

�
repaired by the authors of �BBdPH
�� �and by the author of this paper� by changing the
system in an appropriate way� and by discovering a Natural Deduction style presentation
equivalent to the hitherto known Gentzen style presentation of ILL� This work settled the
question about how to interpret ILL via the Curry�Howard isomorphism� The Natural
Deduction style proof�rules will in the present paper be considered as type assignment
rules for a programming language cf� Curry�Howard� Moreover� the system will extended
with recursion �every decent programming language has recursion
�� and given operational
as well as categorical semantics such that the two semantics are related by soundness
and adequacy results� Our categorical model is able to model convergence�divergence
behaviour� and moreover� it deals with �xpoints in a linear context� We have devoted
a section to show some results on �xpoints in a linear contexts and their relations to
ordinary �xpoints�

Now� Girard worked with coherence spaces and stable maps and observed that the stable
function space A� B can be decomposed into more basic operations� namely 
A� B�
where 
 is an operation on coherence spaces� and � is the operation corresponding to
formation of linear stable function space� To be more precise� The functor that forgets the
linearity of linear stable maps has a left adjoint 
� This fundamental observation gave rise
to the discovery of Linear Logic� and the corresponding coherence space interpretation has
since been considered canonical� Now� it turns out that the same phenomenon is present if
we consider the category of pre dI domains and stable functions� predIs� and the category
of predI domains and a�ne stable functions� predIa� The functor from predIa to predIs
that forgets the a�ne nature has a left adjoint 
� This induces a comonad on the symmetric
monoidal closed category predIa in the same way as we have a comonad on the symmetric
monoidal closed category of coherence spaces and linear stable maps� Moreover� the
forgetful functor from the category of dI domains and linear stable functions� dIl� to predIa
has a left adjoint which induces a monad on predIa� namely what in similar contexts is
called a lift monad� Thus� we have a model of ILL with additional structure which enables
us to model convergence�divergence behaviour� This model satisfy all the axioms of our
categorical model� and we therefore have a sound and adequate denotational semantics
where types are interpreted as pre dI domains� and terms as a�ne stable functions�
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� A linear functional language� LTS�Rec

��� The Curry�Howard isomorphism

The classical Curry�Howard isomorphism relates the ��calculus to Intuitionistic Logic� It
says that types can be viewed as formulas and typable terms as proofs and vice versa� The
point is that proof�rules for Intuitionistic Logic can be �decorated� with terms such that
the term induced by a proof encodes the proof� An appropriate term language for this
purpose is the ��calculus� It turns out that we then get the rules for assigning types to
terms� �GLT�
�� The present paper deals with an analogous correspondence between ILL
and the Linear Term System �LTS�� Historically� LTS was discovered as a term language
to decorate proof�rules for ILL� but it can be considered as a programming language
independently of its historical roots� The proof�rules will then appear as typing rules�
We then get the Curry�Howard isomorphism as follows� given a proof of A�� ���� An � A
in ILL� that is� a proof of the formula A� one can inductively construct a derivation of
a sequent x� � A�� ���� xn � An � t � A in LTS� that is� a term t of type A� Conversely�
if one has a derivable sequent x� � A�� ���� xn � An � t � A in LTS� there is an easy way
to get a proof of A�� ���� An � A in ILL� erase all variables and terms in the derivation
of the type assignment� The two processes are each others inverses modulo renaming of
variables� Proof�rules for ILL in Natural Deduction style are given in Appendix A and
LTS is introduced formally below�

��� De�nition of LTS�Rec

Types are given by the grammar s ��� I j s� s j s� s j s�s j s� s j 
s� and terms
by the grammar

t ��� x j
� j let t be � in t j
t� t j let t be x� y in t j
�x�t j tt j
�t� t� j fst�t� j snd�t� j
inl�t� j inr�t� j case t of inl�x� �� t j inr�y� �� t j
let t� ���� t be x�� ���� xn in 
t j derelict�t� j
discard t in t j copy t as x� y in t j
let t� ���� t be x�� ���� xn in recz�t

where t� ���� t means a sequence of n occurrences of t� In what follows� A�B�C�D will
range over types� and u� v� w� f will range over terms� Some terms can be assigned a type
in a way analogous to the typed ��calculus� The type assignments will have the form of
sequents x� � A�� ���� xn � An � u � A where x�� ���� xn are pairwise distinct variables and
fx�� ���� xng is the set of free variables of the term u� We will frequently write � instead of
x� � A�� ���� xn � An or A�� ���� An� and 
� instead of x� �
A�� ���� xn �
An or 
A�� ���� 
An� The
type assignments are derived according to the rules in Appendix C �which also contains
the rules for assignment of categorical semantics�� The notation will be abused when
necessary in the following way� the expression �� � u � A� can mean either the sequent
itself or a certain derivation of the sequent� The name of a rule� for example �Id�� can

	



mean either the rule itself or a certain instance of the rule� The actual interpretation is
to be decided by the context� The terms together with the typing rules for the fragment
corresponding to ILL will be called LTS� and the extension with recursion will be called
LTS�Rec� Note that if we remove the terms from the typing rules for LTS� we get the
proof�rules for ILL given in Appendix A� From now on� we will consider only typable
terms�

Note that the de�nition of sequents implicitly restricts use of the rules� It is for example
not possible to use the ��� I� rule if � and � have common variables�

��� Properties of LTS�Rec

The derivation of a type assignment is essentially unique �which actually is the essence of
the Curry�Howard isomorphism��

Proposition ��� If the sequent � � u � A is derived by a given derivation� then the rule
corresponding to the �rst rule instance above the sequent � � u � A which is di�erent from
an instance of �Exchange�� is uniquely determined by the term u�

Proof� Induction in the derivation of � � u � A� �

Lemma ��� �Substitution Property� If � � u � A and �� x � A�� � v � B both are
derivable s�t� the variables in � and ��� are pairwise distinct� then ����� � v�u�x� � B
is derivable too�

Proof� Induction in the derivation of �� x � A�� � v � B� �

The expression v�u�x� denotes the term v where u has been substituted for every free
occurence of x� and where bound variables of v have been renamed to avoid capture of
free variables in u�

��� The choice of rule for � introduction

Seen from a historical point if view� the term corresponding to the rule for introduction
of 
 has caused problems� In �Abr
��� the �rst Curry�Howard interpretation of ILL was
published� Here the rules are given in Gentzen style� named after the discoverer of a similar
system of proof�rules for classical logic� The Natural Deduction formulation was not
discovered at this time� In Gentzen style� we only have introduction rules� A connective
can be introduced on both sides of the sequent� in opposition to Natural Deduction style�
where we can either eliminate a connective� or introduce it on the right hand side� A
Gentzen style formulation of ILL can be found in Appendix B� The �
 � I� rule of the
Natural Deduction formulation corresponds to the �
�R� rule of the Gentzen formulation�
In the above mentioned article the �
�R� rule is decorated with the following terms�

x� �
A�� ���� xn �
An � u � A
�
�R�

x� �
A�� ���� xn �
An �
u �
A

�



The Gentzen style system enjoys the substitution property simply because it is a rule of
the system� namely the �Cut� rule� The problem� as pointed out in �Wad
��� is as follows�
The �Cut� rule together with �
 � R� �decorated with terms as above� forces a collapse
in the categorical model corresponding to the system� The 
 modality is interpreted as
a functor� and the two rules together would force 
 to be isomorphic to 

� The problem
is basically that a given sequent can have several derivations� and they all ought to give
rise to the same categorical interpretation� The presence of �Cut� gives us two di�erent
interpretations of the same sequent �unless 
 ��

 in a canonical way��

In �

� a new way to decorate the �
 � R� rule with terms� together with a Natural
Deduction formulation of ILL� was discovered by the authors of �BBdPH
�� �and by the
author of this paper�� The new decoration of �
�R� is as follows�

x� �
A�� ���� xn �
An � u � A
�
�R�

z� �
A�� ���� zn �
An � let z�� ���� zn be x�� ���� xn in 
u �
A

The new rule can coexist with �Cut� without collapsing the model� and the derivations
that with the old term decoration concluded with identical sequents� now concludes with
di�erent sequents �because the induced terms are di�erent�� We get a system equivalent
to LTS if we take the Gentzen style formulation of ILL and decorate it with terms as
originally done in �Abr
�� except that we pick the correct decoration of the �
� R� rule�
cf� the discussion above� The Natural Deduction style formulation of ILL is given in
Appendix A� The �
� I� rule of the Natural Deduction formulation� corresponding to the
above mentioned �
�R� rule of the Gentzen formulation� is as follows�

�� � w� �
A� � ���� �n � wn �
An x� �
A�� ���� xn �
An � u � A
�
� I�

��� �����n � let w�� ���� wn be x�� ���� xn in 
u �
A

��	 The choice of rule for recursion

We want to extend LTS with a rule for parameterised recursion� Values corresponding to
the parameters are copied in any reasonable semantics� so the corresponding types should
be of 
 type because we are in a linear context� Hence� a natural �rst choice would be�

x� �
A�� ���� xn �
An� z � B � u � B
�Recursion�

x� �
A�� ���� xn �
An � recz�u � B

An argument against this solution is that the function which assigns a �xpoint fy � B
to a function f � B 	 B in our canonical model dIa is not a�ne� that is� it can not be
internalised as a map �a �xpoint operator� in the category� Thus� since we want give a
denotational semantics to the rule in the category dIa �via a categorical semantics�� we
should look for another de�nition of recursion� The next suggestion is�

x� �
A�� ���� xn �
An� z �
B � u � B
�Recursion�

x� �
A�� ���� xn �
An � recz�u � B

This rule is actually the one used in �Mac
��� We can now give a denotational semantics
with our canonical model dIa� but LTS extended with this rule does not enjoy the Sub�
stitution Property� Now� we are trying to extend LTS� where the underlying proof�rules
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for ILL are in Natural Deduction style� with a rule for recursion� LTS would loose the
Substitution Property in a similar way if we replaced the �
� I� rule with the �rst of the
above mentioned �
�R� rules induced by the Gentzen formulation of ILL� We know how
to deal with this problem� so we solve the problem with the rule for recursion in a similar
way�

�� � w� �
A� � ���� �n � wn �
An x� �
A�� ���� xn �
An� z �
B � u � B
�Recursion�

��� �����n � let w�� ���� wn be x�� ���� xn in recz�u � B

LTS extended with this rule� �that is� LTS�Rec� enjoys the Substitution Property� and it
allows de�nition of operational as well as denotational semantics in natural ways�

� Operational semantics of LTS�Rec

��� De�nition of the operational semantics

We will now give an operational semantics for LTS in Natural Semantics style� We will
consider free variables as placeholders for canonical terms� which corresponds to a call�by�
value parameter passing strategy where we only substitute canonical terms for variables�

De
nition ��� A canonical term is a closed typable terms of one of the following shapes�

� d� e �x�u �u� v� inl�c� inr�d� let c�� ���� cn be x�� ���� xn in 	u

where c� d� e� c�� ���� cn are canonical terms�

Let T be the set of closed typable terms� and C the set of canonical terms� The evaluation
rules in Appendix E induces a relation� the evaluation relation� �	 
 T �C� Note how
the choice of call�by�value parameter passing strategy is re ected in the evaluation rule
for application� we evaluate a parameter to a canonical term before plugging it in�

De
nition ��� Given a term u� we will write u � i� there exists a term c s�t� u �	 c�
We will say that u converges�

��� Properties of the operational semantics

If one considers the Gentzen style formulation of LTS� then cut�elimination gives rise to
certain reductions on terms in the same way as cut�elimination in ordinary Intuitionistic
Logic gives rise to reductions on terms in the ��calculus� It turns out that the reductions
induced by our operational semantics without recursion all are reductions induced by
cut�elimination� It should be noted that our operational semantics only evaluates closed
terms� and not every redex corresponding to cut�elimination is reduced� For example�
every closed term �x�u is canonical� whatever is �inside� the abstraction� The operational
semantics enjoys the following properties�

Proposition ��� �Subject Reduction� If � u � A and u �	 c� then � c � A�
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Proof� Induction in the derivation of u �	 c� where we use the Substitution Property�
�

Proposition ��� �Determinacy� If u �	 c and u �	 d� then c � d�

Proof� Induction in the derivation of u �	 c� �

Proposition ��� �Convergence� If the term u is without recursion� then u ��

Proof� A modi�ed version of the proof in �Abr
��� �

� General considerations about the categorical se�

mantics

��� The connection to denotational semantics

In what follows� ��A�� will mean the interpretation of A and ��u�� the interpretation of u�
When appropriate� we will abuse notation and omit the brackets� We have stated a
reference where the categorical notions used can not be found in �Lan����

In denotational semantics� a type A is normally interpreted as a set ��A�� with a certain
structure� A term u of type A with free variables x�� ���� xn of type A�� ���� An is then
interpreted as a function ��u�� from ��A���� ���� ��An�� to ��A��� In particular� if u is closed�
then the interpretation is a point in ��A��� For example in �Win
��� computer programs
are interpreted as continuous functions between appropriate domains� One wants the
denotational semantics to have certain properties w�r�t� the operational semantics� Firstly�
it has to be sound� that is� evaluation has to preserve the denotation� Secondly� the
denotational and operational semantics has to agree w�r�t� relevant observations� This
is called adequacy� For example in �Win
��� a term may diverge because of recursion� so
one wants this to be re ected in the denotational semantics� a term ought to converge if
and only if it is interpreted as a non�bottom element in the relevant domain�

I will not give an explicit concrete denotational semantics of LTS�Rec here� but instead
give a categorical semantics� de�ned with the above mentioned goals in mind� It then
follows that any concrete category satisfying the axioms of the categorical model induce
a sound and adequate denotational semantics� The categorical semantics adheres to the
following fundamental ideas of the categorical treatment of proof theory�


 Formulas are interpreted as objects


 Proofs are interpreted as maps


 Proof�rules correspond to natural transformations between appropriate hom�functors�

In �BBdPH
�� a categorical semantics is given to a Gentzen style formulation of LTS with�
out additives� but it is not equivalent to the relevant parts of our categorical semantics�
Neither is their reductions on terms the same as the reductions on terms induced by the
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relevant part of our operational semantics� It is important to notice how the di�erences
in choice of rules for reductions on terms is re ected in di�erences in the choices of cate�
gorical semantics� For example� if we for a moment restrict our attention to LTS without
additives� then the reductions induced by our operational semantics is a strict subset of
the reductions induced by cut�elimination� as remarked earlier� Therefore the equations
imposed on our model to get soundness w�r�t� our Natural Semantics style operational
semantics are weaker than the equations imposed on their model to get soundness w�r�t�
the reductions on terms induced by cut�elimination� If we compare the full system con�
sisting of LTS�Rec equipped with the operational semantics given in the previous section
to the system given in �BBdPH
��� there is an important di�erence� the �rst system has
diverging terms� the second system does not� We therefore need additional categorical ma�
chinery to model convergence�divergence behaviour as we are interested in an adequacy
result�

��� Initial assumptions about the interpretation

Types will be interpreted as objects� and we want to interpret sequents as arrows be�
tween appropriate objects� So we need an operation on objects to �put together� the
interpretations of hypotheses into one object� To this end� we will assume that we are
dealing with a monoidal category �C� I���� Good reasons for this choice can be found in
�BBdPH
��� The interpretation of a sequent will be de�ned by induction in its derivation�
so we have to be sure that the de�nition is independent of the derivation� The derivation
of a sequent is unique up to applications of the �Exchange� rule� which suggests that our
category should be symmetric monoidal�

��� Modelling convergence
divergence behaviour

Following �Mog�
� � we assume that we have a monad �T� �� �� on C to model conver�
gence�divergence behaviour� This induces the usual kleisli operator kleisli as follows�

kleisliA�B � hom�A�TB� �	 hom�TA� TB�

kleisliA�B�f� � �TA
Tf� TTB

�B� TB�

The idea is to distinguish between A� the object of values of type A� and TA� the object
of computations of type A� Intuitively� � is the inclusion of values into computations� and
kleisli�f� is the extension of a function f from values to computations� to a function from
computations to computations� which �rst evaluates a computation� and then applies f
to the resulting value� In this context� canonical terms are to be thought of as values
and arbitrary closed terms as computations� A sequent x� � A�� ���� xn � An � u � A will
then be interpreted as a map ��u�� � ��A��� � ��� � ��An�� 	 T ��A�� because we consider free
variables as placeholders for canonical terms� Now� a program �a closed term� � u � A will
be interpreted as a point ��u�� � I 	 T ��A�� �a point is a map with domain I�� According
to the intuition� it should be considered as a value i� it has � as factor� In a concrete
case where the objects are CPOs of some kind� this corresponds to ��u�� being non�bottom�
This motivates the following de�nition�






De
nition ��� For any point f � I 	 TB� we will write f � i� there exists a map
h � I 	 B s�t� f � h! �B� We will say that f converges semantically�

As in the case with �Mog�
� we will use a strength natural transformation

t � ���� T ���	 T �����

to transform a pair consisting of a value and a computation into the computation of a
pair of values� The intuition is that t evaluates the second component� and returns the
pair of relevant values if the computation converges� Four diagrams have to commute�
but the most important one is the following�

A�B
Id� �� A� TB

�
�
�
�
�

�
R
T �A�B�

�

t

It says that if we transform a value�computation pair� where the computation is a value�
into the computation of a pair of values� then we get a value�

We also need to be able to transform a pair of computations into a computation of a pair
of values� Following �Mog�
�� a natural transformation

� � T ���� T ���	 T �����

is induced by the strength t as follows�

�A�B � ���! tTB�A!T ����!T �tA�B�!�A�B�

Where �� is the �symmetric� natural isomorphism� The intuition is that � �rst evaluates
the �rst component� if the �rst computation converges� it evaluates the second component�
and if the second computation also converge then it returns the pair of relevant values�
It makes the following diagram commute�

A�B
� � �� TA� TB

�
�
�
�
�

�
R

T �A�B�
�

�

It says that if both computations are values� then the resulting computation is a value
too�

��� Two examples� the �� � I	 and �� � E	 rules

According to previous assumptions� we are dealing with a symmetric monoidal category
�C� I��� with a monad �T� �� �� and a strength t on it� This is enough machinery to give

��



an example of an interpretation of a rule� We will interpret the logical connective � as
the tensor product given by the monoidal structure� that is� ��A�B�� � ��A��� ��B���

Warning� In what follows� the symbol � can be interpreted in three di�erent ways� as
a functor� as a logical connective� and as part of the syntax for terms�

Now� the rule for introduction of � looks like this�

� � u � A � � v � B
��� I�

��� � u� v � A�B

and should give rise to an operation on arrows�

�����
��u��� T ��A�� �����

��v��� T ��B��

������ �����
��u�v��� T ��A�B��

Hence� we de�ne�

��u� v�� � ������� �����
��u�����v��� T ��A��� T ��B��

�� T ���A��� ��B����

It is easy to see that this corresponds to the appropriate rule of the operational semantics�

u �	 c v �	 d

u� v �	 c� d

If we want to evaluate the two computations� u and v� then we evaluate both terms� and
if they both converge� the result is the two results paired together� This strategy is used
in the categorical as well as in the operational semantics� Now� the rule for elimination
of ��

� � w � A�B �� x � A� y � B � u � C

��� � let w be x� y in u � C

induces the following operation on arrows�

�����
��w��� T ��A�B�� ������ ��A��� ��B��

��u��� T ��C��

������ �����
Id���w��� ������ T ���A��� ��B���

t� T ������� ��A��� ��B���
kleisli���u���� T ��C��

Again� it is easy to see that this corresponds to the appropriate rule of the operational
semantics�

w �	 d� e u�d�x� e�y� �	 c

let w be x� y in u �	 c

We �rst evaluate w� and if it converges� it gives a pair of values� We then run u with
these values as the input� Again� we see that the same strategy is used in the categorical
as well as in the operational semantics� Recall that kleisli���u��� is the extension of ��u��
which �rst evaluates the computation given as input� and then applies ��u�� to the resulting
value� Note that we need the natural transformation t to be able to �move� a tuple of
parameters �that is� values� �inside� a computation�

��



� Categorical semantics of LTS�Rec

	�� Introduction to the category O

Before stating the de�nition of a categorical model for LTS�Rec� we need to know O�
the category of CPOs and continuous functions� A CPO is a partial order where every
increasing chain ffngn�� has a join

F
n�� fn� Note that we do not assume the existence

of a bottom element� A continuous function between CPOs is a monotone function that
preserves joins of increasing chains� The category O is cartesian closed! the �nite products
����� are induced by the usual structure on partial orders� and the exponential object�
is the set of continuous functions equipped with the pointwise order� We also have �nite
sums ����� induced by the usual structure on partial orders� The usual lift construction
on partial orders induces a strong monad ������ lift� down� u� on �O��� ��� see Appendix
G� Note that a cartesian category also is a monoidal category�

De
nition ��� If f is a function between partial orders� we will say that it re ects the
order i� f�x� � f�y� implies x � y whenever x and y are elements in the domain of f �

	�� De�nition of the categorical semantics

In this part we will state the necessary machinery to interpret LTS�Rec� To give a cate�
gorical semantics to the rule for recursion� we will assume that some of our constructions
are O�enriched� An O�category is a category where each hom�set has CPO structure such
that composition is continuous� An O�functor between O�categories is a functor between
the underlying categories which is continuous on each hom�set� Other notions from cat�
egory theory can be de�ned similarly in an O�enriched setting� but we shall not need it
here� See �Poi
�� for an introduction to enriched category theory�

Proposition ��� An O
category C induce the functor hom�I��� � C 	 O� If C moreover
is equipped with a monoidal structure �I��� where � is an O
functor� then a monoidal
structure on the functor hom�I��� is induced by the map n� � � 	 hom�I� I� and the
natural transformation n � hom�I���� hom�I��� �	 hom�I����� de�ned as n���� �
IdI and nA�B�f� g� � ���! �f � g�� respectively�

Remark� When assuming the functor � � C�C 	 C to be an O�functor� we are implicitly
assuming C � C to have the obvious O�enrichment induced by the O�enrichment of C�

Remark� The functor hom�I��� should be thought of as a functor that forgets all
structure on an object except the CPO structure on its points� It is easy to see that
hom�I��� is monotone on hom�sets when the maps in O are ordered pointwise! this
corresponds to the ordering of maps in C being included in the pointwise ordering w�r�t�
the partial order on points� Note that hom�I��� does not necessarily re ect the order
on hom�sets� This is for example not the case with the predIa model where the ordering
on hom�sets is the so�called stable order� If hom�I��� does re ect the order� then the
ordering of maps in C is the pointwise ordering�

De
nition ��� A categorical model for LTS�Rec is an O
category C equipped with�

��



�� a symmetric monoidal closed structure �I����� where � is an O
functor s�t� each
nA�B induced by the monoidal structure re�ects the order


� a symmetric monoidal comonad �
� 	� 
�mI�m� where 
 is an O
functor

�� monoidal natural transformations e �
���	 I and d �
���	
����
���

�� binary product � and sum � which both are preserved by hom�I���

�� a strong monad �T� �� �� t� and an isomorphism � � hom�I���� 	 hom�I� T ����
making �hom�I���� �� a functor of strong monads

�� a bottom element �A�B in every hom�A�TB� s�t� h!�A�B��I�Bfor every h � I 	 A

Remark� The assumption that the comonad is symmetric monoidal means that 
 is
a symmetric monoidal functor and 	 and 
 are monoidal natural transformations� see
Appendix G� When assuming the natural transformations e and d to be monoidal� we are
implicitly assuming the functors I and 
����
��� to have the obvious monoidal structure
induced by the monoidal structure on 
�

Remark� Since hom�I��� should be thought of as a functor that forgets all structure on
an object except the CPO structure on its points� then a property saying that hom�I���
respect some structure present on both C and O should be thought of as a property
saying that the structure on C behaves as the corresponding structure on O when only
CPO structure on points is considered� The way in which the structure on C behaves as
the structure on O is determined by the property of hom�I���� The requirement that
hom�I��� preserves products says that the points hom�I�A� B� of the product of two
objects is isomorphic to the product hom�I�A�� hom�I�B� of the points hom�I�A� and
hom�I�B� of the two objects� Similarly for sum� Condition � can also be stated in terms
of a preservation property of the hom�I��� functor! it is equivalent to commutativity of
the following diagram�

hom�I�A�

�
�
�
�
�

hom�I��A�B�

R
hom�I�B��

�

� �B� hom�I� TB�

where�� hom�I�A� �	 hom�I�B�� is the bottom element of homO�hom�I�A�� hom�I�B���
that sends every element in hom�I�A� to the bottom element of hom�I�B��� The require�
ment of an isomorphism � making �hom�I���� �� a functor of strong monads from the
strong monad �T� �� �� t� on �C� I��� to the strong monad ������ lift� down� u� on �O��� ��
say that the strong monad T behaves like the strong monad �����

De
nition ��� We can now de�ne a generalised cokleisli operator ��

� � hom�
A� � ����
An� B� �	 hom�
A� � ����
An� 
B�

��f� � �
A�� ����
An

�A�������An� 

A� � ����

An

mA������An� 
�
A�� ����
An�
�f� 
B�

��



Note that in case n � � then ��f� � mI! 
f � In case n � � this de�nition is consistent
with the usual cokleisli operator� It should be mentioned that the de�nition of � is due to
�BBdPH
��� Note that the de�nition of � is unrelated to the product structure� In �See�
��
another generalised cokleisli operator is used which is related to the product structure�

Proposition ��� If f �
A�� ����
An 	 B� then ��f�! 	B � f �

Proof� Straightforward calculation� �

Proposition ��	 If fi � I 	 Ai for i � f�� ���� ng� and h �
A�� ����
An 	 B� then

�I �� I � ���� I
��f���������fn�� 
A� � ����
An

��h�� 
B� �

���I �� I � ���� I
��f���������fn�� 
A� � ����
An

h� B��

Proof� Induction in n� �

Proposition ��
 If f � I 	 A� then the following diagram commutes�

I
��f� � 
A

I � I

��

� ��f� � ��f�� 
A�
A

dA

�

Proof� Straightforward calculation� where we use monoidality of d� �

Proposition ��� �A�B�� C is naturally isomorphic to �A� C� � �B � C��

Proof� The functor ����C has a right adjoint� wherefore it preserve sums� The isomor�
phism can be shown to be natural in A�B and C� �

De
nition ��� Given f �
A� � ����
An�
TB	 TB� de�ne f 	 �
A�� ����
An 	 TB as

f 	 �
G

n��

"n
f ���

where the continuous function "f � hom�
A� � ����
An� TB� �	 hom�
A� � ����
An� TB�
is de�ned as follows�

"f �h� �

�
A� � ����
An

D� 
A� � ����
An�
A�� ����
An

Id���h�� 
A�� ����
An�
TB
f� TB�

where D is a generalisation of the natural transformation d� that is�

DA������An �

�
A� � ����
An

dA������dAn� 
A��
A�� ����
An�
An

��� 
A� � ����
An�
A� � ����
An�

�	



The operator ���	 will be used to interpret the rule for recursion� Note that f"n
f ���gn�� is

an increasing chain in hom�
A�� ����
An� TB�� It follows from the usual �xpoint theorem
for CPOs that f 	 is well de�ned and equal to a uniquely determined least solution to the
equation x � "f �x�� A solution to this equation is actually what in a later section of this
paper will be called a linear �xpoint of the map f �

De
nition ���� The interpretation of formulas are de�ned by induction as follows�


 ����� � I


 ��A�B�� � ��A��� ��B��


 ��A� B�� � ��A��� T ��B��


 ��A�B�� � T ��A��� T ��B��


 ��A�B�� � ��A�� � ��B��


 ��
A�� �
T ��A��

Note how the interpretation of � re ects the call�by�value parameter passing of the
operational semantics� A term of type A� B expects a value of type A and computes a
value of type B� Therefore the interpretation of the type is ��A��� T ��B���

De
nition ���� Given a derivation of the sequent

x� � A�� ���� xn � An � u � A

we inductively de�ne a map

��A���� ���� ��An��
��u��� T ��A��

cf� the operations on arrows �corresponding to the typing rules� given in Appendix C�

As shown earlier� the proof is unique up to applications of the �Exchange� rule� Given a
derivable sequent� the interpretation is therefore uniquely determined�

	�� Properties of the categorical semantics

I will now sum up what we can obtain with the machinery de�ned� We will consider
naturality of the operation on arrows corresponding to recursion as naturality in the
interpretation of ��� �����n�

Proposition ���� The typing rules induce operations on arrows which are natural in the
interpretation of the unchanged components of the sequents�

Proof� Check each rule� �

This result gives us an extension of the Substitution Property essentially saying that
substitution corresponds to composition� This is necessary to deal with substitutions in
the operational semantics�

��



Lemma ���� �Substitution Lemma� If � � u � A and �� x � A�� � v � B both are
derivable s�t� the variables in � and ��� are pairwise distinct� and there exists a map
h � �����	 ��A�� with the property that ��u�� � h! �� then ����� � v�u�x� � B is derivable too
with the interpretation

������� ������ �����
Id�h�Id� ������ ��A��� �����

��v��� T ��B���

Proof� The theorem is proved by induction in the derivation of �� x � A�� � v � B� All
cases except �Id� are covered by the naturality property given by the previous theorem�
The �Id� case is trivial� �

Lemma ���� Given a canonical term � c � A� then ��c�� ��

Proof� Induction in the derivation of � c � A� �

Lemma ���� Given a canonical term � let c�� ���� cn be x�� ���� xn in 
u� then

��let c�� ���� cn be x�� ���� xn in 
u�� � ��h�! �

for some h � I 	 TA�

Proof� Induction in the derivation of � let c�� ���� cn be x�� ���� xn in 
u �
A� �

Theorem ���	 �Soundness Theorem� Given a closed term u s�t� u �	 c� then ��u�� � ��c���

Proof� See Appendix E�

To prove the �if� part of the Adequacy Theorem� we will use the fact that a �xpoint is
calculated in a certain way� namely as the join of a certain increasing chain in a hom�set�
We can then use the technique of Logical Relations to prove a result� which has the �if�
part of the Adequacy Theorem as a special case� Logical Relations relate the categorical
interpretation of a term to its operational behaviour�

De
nition ���
 �Logical Relations� Let TA be the set of closed typable terms of type A�
and CA the set of canonical terms of type A� We de�ne the relations

��
A� hom�I� ��A��� �CA �A� hom�I� T ��A���� TA

by induction in the type� The relation ��
A is de�ned in terms of relations corresponding

to smaller types as follows�


 IdI �
�
� �


 f ��
A�B d � e i�

�g � hom�I� ��A�����h � hom�I� ��B����

f � �I �� I � I
g�h� ��A��� ��B��� � g ��

A d � h ��
B e


 f ��
A�B �x�u i�

�g � hom�I� ��A�����c � CA�

g ��
A c � �I �� I � I

f�g� ���A��� T ��B���� ��A��
eval� T ��B��� �B u�c�x�

��




 f ��
A�B �u� v� i�

�g � hom�I� T ��A�����h � hom�I� T ��B���� f �
 g� h � � g �A u � h �B v


 f ��
A�B inl�c� i�

�g � hom�I� ��A���� f � g! inj� � g ��
A c


 f ��
A�B inr�d� i�

�h � hom�I� ��B���� f � h! inj� � h ��
B d


 f ��
�A let c�� ���� cn be x�� ���� xn in 	u i�

�g � hom�I� T ��A���� f � ��g� � g �A u�c��x�� ���� cn�xn�

The relation �A is de�ned in terms of ��
A as follows�


 f �A u i�
�g � hom�I� ��A���� f � g! � � �c � CA� u �	 c � g ��

A c

We are now in a position to prove that the predicate ��� �A u is inclusive for any term
� u � A� This amounts to the following lemma�

Lemma ���� �Inclusiveness Lemma� Let a term � u � A be given� If ffngn�� is an
increasing chain in hom�I� TA� s�t� fn �A u for every n� then

F
n�� fn �A u�

Proof� Induction in the type� �

Lemma ���� �Approximation Lemma� Let x� � A�� ���� xn � An � u � C be given� Let J
be a �nite set s�t� for all j � J we are given � vj � Bj and fj � hom�I� ��Bj��� with the
property that fj! � �Bj

vj� Moreover� assume that for each j we have a variable zj� s�t�
for all i� k � J we have i �� k � zi �� zk� s�t� fx�� ���� xng � fzjj j � Jg� and s�t� for all
r � f�� ���� ng and j � J we have xr � zj � Ar � Bj � We then have�

�I �� I � ���� I
fj������fjn� ��A���� ���� ��An��

��u��� T ��C��� �C u����� vj�zj� ����

where for all r in f�� ���� ng we have chosen jr s�t� xr � zjr �

Proof� See Appendix F�

Theorem ���� �Adequacy Theorem� Given a closed term u� then u � i� ��u�� ��

Proof� The interpretation of a canonical term converges semantically� which together with
Soundness gives the �only if� part� The �if� part is a special case of the Approximation
Lemma� �

	 Fixpoints in a linear context

In the categorical semantics of LTS�Rec we used the operator ���	 to interpret the rule
for recursion� The map f 	 was de�ned to be a certain solution to the equation x �
"f �x�� The previous section showed that this was an appropriate interpretation of the
rule for recursion in the sense that we get soundnes and adequacy results� Solutions to
the equation x � "f �x� are what we in this section will call linear �xpoints� which we will
characterise in terms of ordinary �xpoints�

��



��� Fixpoints as usual

The de�nitions and results concerning �xpoints and �xpoint operators in this subsection
can also be found in �Poi
��� To start things o�� we will state a de�nition of �xpoints in
a category with �nite products� In what follows� �A � A	 A�A is the diagonal map�

De
nition 	�� A category C with �nite products has �xpoints i� for every map

f � A�B 	 B there exists a speci�ed �xpoint fy � A	 B with the property that

fy � �A
	A� A�A

Id�fy� A�B
f� B�

Note how the diagonal map is used to copy parameters� We can deal with �xpoint
operators if the category is closed w�r�t� the product structure�

De
nition 	�� A cartesian closed category C has �xpoint operators i� for every object
B there is an arrow YB � �B � B�	 B with the property that for every f � A� B 	 B
the map curry�f�!YB is a �xpoint of f �

Fixpoints and �xpoint operators are related according to the following result�

Proposition 	�� A cartesian closed category C has �xpoints i� it has �xpoint operators�

Proof� De�ne YB � evaly� and conversely� given f � A � B 	 B� de�ne fy �
curry�f�!YB� �

��� Linear �xpoints

I will now consider �xpoints in a linear context� The paper �Bra� deals with this topic
from a proof theoretic point of view� We can not use the previous de�nition of �xpoints
because it assumes the presence of �nite products�

De
nition 	�� Let �C� I��� be a monoidal category equipped with a comonad �
� 	� 
�� and
with a natural transformation d �
���	
����
���� We say that C has linear �xpoints i�
for every map f �
A�
B 	 B there exists a speci�ed linear �xpoint f 	 �
A	 B with the
property that

f 	 � �
A
dA� 
A�
A

Id���f ��� 
A�
B
f� B�

It is simply an extension of the de�nition of �xpoints in a category with �nite products
to a linear context� where we have only a �diagonal map� dA for objects of the shape 
A�
We can deal with linear �xpoint operators if our category is closed w�r�t� the monoidal
structure�

De
nition 	�� Let �C� I����� be a monoidal closed category equipped with a comonad
�
� 	� 
�� and with a natural transformation d �
���	
����
���� We say that C has linear
�xpoint operators i� for every object B there is an arrow Y lin

B �
�
B � B�	 B with the
property that for every f �
A�
B	 B the map ��curry�f��!Y lin

B is a linear �xpoint of f �

��



Linear �xpoints and linear �xpoint operators are under appropriate circumstances related
in a way analogous to the way �xpoints are related to �xpoint operators� In what follows�
we need the notion of a categorical model of multiplicative ILL as de�ned in �BBdPH
���

De
nition 	�	 A linear category is a symmetric monoidal closed category �C� I�����
equipped with�


 A symmetric monoidal comonad �
� 	� 
�mI�m��


 Monoidal natural transformations e �
���	 I and d �
���	
����
��� such that
�� eA and dA are maps of coalgebras�

� eA and dA give the free coalgebra �
A� 
� structure of a cocommutative comonoid�
�� maps between free coalgebras are maps between cocommutative comonoids�

Remark� The assumption that the comonad is symmetric monoidal means that 
 is a
symmetric monoidal functor and 	 and 
 are monoidal natural transformations� When
assuming the natural transformations e and d to be monoidal� we are assuming the func�
tors I and 
����
��� to have the obvious monoidal structure induced by the monoidal
structure on 
� It can be shown that �I�mI� and �
A�
A� �
A� 
A�!m�A��A� are coalgebras�
The assumption that eA is a map of coalgebras amounts to eA being a map from �
A� 
A�
to �I�mI�� and the assumption that dA is a map of coalgebras amounts to dA being a map
from �
A� 
A� to �
A�
A� �
A� 
A�!m�A��A��

If we impose this extra structure on our category we get the following result�

Proposition 	�
 A linear category has linear �xpoints i� it has linear �xpoint operators�

Proof� De�ne Y lin
B � ��	�B�B � Id�! eval�	� and conversely� given f �
A�
B	 B� de�ne

f 	 � ��curry�f��!Y lin
B � �

Now� the de�nition of linear �xpoints can be explained in terms of �xpoints in the category
of free coalgebras� Given a category C equipped with a comonad �
� 	� 
�� the coEilenberg�
Moore category� C� is the category of coalgebras� and the category of free coalgebras is the
full subcategory of C�� whose objects are free coalgebras� that is� coalgebras of the type
�
A� 
�� Recall that we have an adjunction U � a F � between C� and C� The forgetful functor
U � � C� 	 C simply forgets the coalgebra structure� while the free functor F � � C 	 C�

takes an object A to the free coalgebra �
A� 
�� The adjunction induces the following
natural bijection between maps�

��C�h��A � homC���C� h�� �
A� 
���� homC�C�A�

where �C� h� is a coalgebra� and A is an object of C� The bijection is given by ��f� �
f ! 	A � C 	 A and ����g� � h! 
g � �C� h�	 �
A� 
��

In �Bie
�� it is shown that C� w�r�t� a symmetricmonoidal category �C� I��� equipped with
a symmetric monoidal comonad �
� 	� 
�mI�m� has an induced symmetric monoidal struc�
ture� the unit of the tensor product is given by �I�mI�� and given two coalgebras �A� k�
and �B�h�� their tensor product �A� k���B�h� is the coalgebra �A�B� �k� h�!mA�B�� If
moreover the category is a linear category �not necessarily with�� that is� ����A does
not necessarily have a right adjoint A � ����� then the symmetric monoidal structure

�




on C� is a �nite product structure� that is� �I�mI� is a terminal object� and � is a binary
product�

Theorem 	�� Let C be a linear category �not necessarily with ��� then
h � �
A� 
�	 �
B� 
� is a �xpoint of f � �
A� 
���
B� 
�	 �
B� 
� i�
��h� �
A	 B is a linear �xpoint of ��f� �
A�
B	 B�

Proof� Calculation� �

It is obvious that if the the category of free coalgebras is closed under �nite products in
C�� that is� the terminal object �I�mI� is isomorphic to a free coalgebra� and given two
free coalgebras �
A� 
� and �
B� 
�� their tensor product �A� k���B�h� is isomorphic to a
free coalgebra� then it inherits the �nite products from the ambient category� This leads
to the following result�

Corollary 	�� If C is a linear category �not necessarily with �� s�t� the category of free
coalgebras is closed under �nite products in C�� then the category of free coalgebras has
�xpoints i� C has linear �xpoints�

Proof� A straightforward consequence of the theorem� �

If the category of free coalgebras w�r�t� a linear category is closed under �nite products in
C� then it has �nite products� as mentioned above� In �Bie
�� it is shown that the category
of free coalgebras moreover is cartesian closed! given two free coalgebras �
A� 
� and �
B� 
��
their exponential object �
A� 
� � �
B� 
� is given by the free coalgebra �
�
A � B�� 
��
This leads to the following result�

Theorem 	��� If C is a linear category s�t� the category of free coalgebras is closed under
�nite products in C�� then the category of free coalgebras has �xpoint operators i� C has
linear �xpoint operators�

Proof� Follows from the previous results� �

This result can also be derived more explicitly� namely as a straightforward consequence
of the following theorem�

Theorem 	��� If C is a linear category s�t� the category of free coalgebras is closed under
�nite products in C�� then Y��B��� � �
B� 
�� �
B� 
�	 �
B� 
� is a �xpoint operator in the
category of free coalgebras i� ��Y��B���� �
�
B� B�	 B is a linear �xpoint operator in C�

Proof� Calculation� �

Now� under which circumstances is the category of free coalgebras closed under �nite
products# The following observation induces a su�cient condition�

Proposition 	��� Let C be a category equipped with a comonad �
� 	� 
�� If C has terminal
object � then �
�� 
� is a terminal object in C�� and if C has binary product � then
�
�A�B�� 
� is a binary product of �
A� 
� and �
B� 
� in C� �

��



Proof� The free functor F � � C 	 C� is right adjoint to U � � C � 	 C� Right adjoints
preserve �nite products� so if C has terminal object � then � is sent into a terminal object
�
�� 
� in C�� and if C has binary product �� then a product diagram A� A�B 	 B in
C is sent into a product diagram �
A� 
�� �
�A�B�� 
�	 �
B� 
� in C�� �

This has the consequence that if C is a linear category with �nite products� then the
category of free coalgebras is closed under �nite products�

Moreover� since both �I�mI� and �
�� 
� are terminal objects in C�� I is isomorphic to 
��
and analogously� since both �
A�
B� �
�
�!m�A��B� and �
�A�B�� 
� are products of �
A� 
�
and �
B� 
� in C�� 
A�
B is isomorphic to 
�A�B� such that the isomorphism is natural
in A and B� Thus we can de�ne a model of ILL as described in �See�
�� Calculations
show that the way the isomorphisms are de�ned and the universal property of �I�mI� and
�
A�
B� �
� 
�!m�A��B� forces 
 to take the cocommutative comonoid structure w�r�t� the
�nite products to the cocommutative comonoid structure w�r�t� the symmetric monoidal
structure� that is�

eA � �
A
�
�A� 
� �� I� dA � �
A

�	A� 
�A�A� ��
A�
A�

Note that the category of free coalgebras is equivalent to the coKleisli category� It is
straightforward to check that the comparison functor from C� to C � is an equivalence of
categories when considered as a functor from C� to the category of free coalgebras�

��� Generalisation of linear �xpoints

The de�nition of linear �xpoints can be generalised to an arbitrary number of parameters
such that it ��ts� the de�nition of recursion in a linear context�

De
nition 	��� �Generalisation� Let �C� I��� be a symmetric monoidal category equipped
with a symmetric monoidal comonad �
� 	� 
�mI�m� and a natural transformation
d �
���	
����
���� We say that C has linear �xpoints i� for every map
f �
A� � ����
An�
B 	 B there exists a speci�ed linear �xpoint f 	 �
A� � ����
An 	 B
with the property that�

f 	 � �
A� � ����
An

D� 
A� � ����
An�
A�� ����
An

Id���f ��� 
A� � ����
An�
B
f� B�

In linear categories� this generalisation is equivalent to the original de�nition of linear
�xpoints� Note that in case n � � we get the original de�nition� Similarly� the de�nition
of linear �xpoint operators can be generalised as follows�

De
nition 	��� �Generalisation� Let �C� I����� be a symmetric monoidal closed cat

egory equipped with a symmetric monoidal comonad �
� 	� 
�mI�m� and a natural trans

formation d �
��� 	
����
���� We say that C has linear �xpoint operators i� for ev

ery object B there is an arrow Y lin

B �
�
B � B� 	 B with the property that for every
f �
A�� ����
An�
B 	 B the map ��curry�f��!Y lin

B is a linear �xpoint of f �

In linear categories� this generalisation is equivalent to the original de�nition of linear
�xpoint operators� Note that in case n � � we get the original de�nition�

��




 Concrete models

It should be mentioned that the category of coherence spaces and linear stable functions
is not a model of LTS�Rec as de�ned above� This is also the case with the category
of coherence spaces and a�ne stable functions� where an a�ne function is de�ned as
below� The problem is that a model of LTS�Rec assumes the existence of an isomorphism
hom�I�A�� �� hom�I� TA�� which amounts to the points of TA being isomorphic �as
CPO$s� to the usual lift construction applied to the points of A� But the lift construction
applied to a coherence space is not necessarily a coherence space� thus� we can not use
the mentioned categories as models of LTS�Rec�


�� The category predIa

In what follows� we will present a concrete category which is a model of LTS�Rec� It is
the category of pre dI domains and a�ne stable functions� predIa� The details can be
found in the paper �Bra
	�� so we will only give a sketch of the constructions here� Pre
dI domains are de�ned as follows�

Let �D�v� be a �possible empty� poset� and assume that all non�empty �nitely bounded
subsets X have joins tX and meets uX� A subset X is �nitely bounded if and only if
every �nite subset of X has an upper bound� Note that D does not necessarily have a
bottom element�

An a�ne element of D is an element d s�t� d v tX � �x � X�d v x for any non�empty
�nitely bounded subset X� We will denote the set of a�ne elements of D by Da� D is
called prime algebraic i�

�d � D��fd	 � Dajd
	 v dg �� � � d � tfd	 � Dajd

	 v d�g

A �nite element of D is an element d s�t� d v tX � �x � X�d v x for any directed
subset X� We will denote the set of �nite elements of D by Do� D is called �nitary i�

�d � Do�jfd
	 � Djd	 v dgj 
�

A pre dI domain is a �nitary prime algebraic domain� A dI domain is a pre dI domain
with a bottom element�

A monotone function f is called stable i� f�uX� � uff�x�j x � Xg for any non�empty
�nitely bounded subset X� A monotone function f is called a�ne i� f�tX� �
tff�x�j x � Xg for any non�empty �nitely bounded subset X� An a�ne function f
between dI domains is called linear i� f��� ���

The trace Tr�f� of an a�ne stable function f � D 	 E is a subset of Da � Ea de�ned
analogously to the trace of a linear stable function between ordinary dI domains�

In what follows� X � means that X has an upper bound� First of all� we need a symmetric
monoidal closed structure on predIa� LetD and E be pre dI domains� The tensor product
of D and E is de�ned as follows�

D � E � �ft � Da � Eaj����t�� � � ����t�� � � t �� � � t is down�closed g���

��



The unit I is de�ned to be I � �f�g���� Moreover� we de�ne the internal�hom of D and
E as follows�

D � E � �fTr�f�j f � D 	 E in predIag���

Now� we want to have a symmetric monoidal comonad on predIa� We will just state how
the functor 
 is de�ned on objects� Given a pre dI domain D� we de�ne 
D as follows�


D � �ft � Doj t � � t �� �� t is down�closed g���

The CPO structure on homsets is the stable order� that is� it is the order induced by the
inclusion order on traces� and it is easy to check that the appropriate constructions enrich
w�r�t� this structure� We also have to de�ne monoidal natural transformations e and d�
Given X � D we de�ne pdqX � fd	 � Xjd	 v dg� and let Dm denote the set of minimal
elements of D� The traces of the components are de�ned as follows�

eD � f�fdg���jd � Dmg dD � f�pd t d	q� p�pdq� pd	q�q�jd� d	 � Do � d � d	g

Binary products and sums are de�ned as usual for CPOs� and the functor part of the
strong monad on predIa is the usual lift functor�

Note that predIa is actually a model of Intuitionistic A�ne Logic since I is a terminal
object�

In the categorical semantics we used the operator ���	 to interpret the rule for recursion�
Given a map f is de�ned to be a certain solution to the equation x � "f �x�� The solutions
to x � "f �x� are exactly the linear �xpoints of f � cf� the de�nitions given in previous
sections� Linear �xpoints is the same as �xpoints in the category of free coalgebras
under the assumption that we are dealing with a linear category� predIa is actually a
linear category� and the category of free coalgebras is equivalent to coK�predIa�� which
is isomorphic to predIs� the category of pre dI domains and continuous stable functions�
This category has �nite sums� but according to �HP
��� a cartesian closed category with
�xpoints and �nite sums is equivalent to the category with one object and one arrow�
Thus� predIs cannot have �xpoints of arbitrary maps which entails that predIa cannot
have linear �xpoints of arbitrary maps� But we do only need linear �xpoints of maps
with codomain in the image T � and we do have linear �xpoints of such maps� cf� the
categorical results given above since predIa is a model of LTS�Rec�

Now� if we for a moment make the simplifying assumption that we only apply ���	 to
maps without parameters� it is easy to see that linear �xpoints in predIa are the same as
�xpoints in dIs� the category of dI domains and continuous stable functions� Notice that
f �
TB	 TB as well as f 	 � I 	 TB are maps in the subcategory dIa� This category can
also be shown to be a linear category with structure inherited from predIa� Moreover�
it has �nite products� so the category of free coalgebras is closed under �nite products�
Again we have that the category of free coalgebras is equivalent to coK�dIa�� which is
isomorphic to dIs� the category of dI domains and continuous stable functions� Hence� to
calculate a linear �xpoint with the operator ���	 in predIa� is the same as calculating a
�xpoint in dIs�

��




�� The category O

The category O is itself a model of LTS�Rec� We take as the required symmetric monoidal
closed structure the cartesian closed structure� and as symmetric monoidal comonad we
take the identity functor equipped with appropriate identity maps as components of the
required natural transformations� The ordering on arrows is the pointwise ordering� and
it is easy to check that the appropriate constructions enrich w�r�t� this structure� We also
have to de�ne monoidal natural transformations e and d with components eA � A 	 �
and dA � A 	 A � A� As eA we take the canonical map to the terminal object� and as
dA we take the diagonal map� Binary products and sums are de�ned as usual for CPOs�
As strong monad we take the one induced by the lift construction on partial orders� It is
obvious that hom�I��� has the wanted properties�

Note that O is actually a model of Intuitionistic Logic since it is cartesian closed�
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A Appendix� ILL in Natural Deduction style

Axiom

�Id�
A � A

Structural rule

�� A�B�� � C
�Exchange�

�� B�A�� � C

Logical rules� the I���� fragment

��� I�
� �

� � � � � A
��� E�

��� � A

� � A � � B
��� I�

��� � A�B

� � A�B �� A�B � C
���E�

��� � C

�� A � B
�� �I�

� � A� B

� � A� B � � A
�� �E�

��� � B

Logical rules� the 
�� fragment

� � A � � B
��� I�

� � A�B

� � A�B
��� E��

� � A

� � A�B
��� E��

� � B

� � A
��� I��

� � A�B

� � B
��� I��

� � A�B

� � A�B �� A � C �� B � C
��� E�

��� � C

Logical rules� the � fragment

�� �
A� � ���� �n �
An 
A�� ���� 
An � A
�
� I�

��� �����n �
A

� �
A
�Dereliction�

� � A

� �
A �� 
A� 
A � B
�Contraction�

��� � B

� �
A � � B
�Weakening�

��� � B

��



B Appendix� ILL in Gentzen style

Axiom

�Id�
A � A

Structural rule

�� A�B�� � C
�Exchange�

�� B�A�� � C

Cut rule

� � A �� A � C
�Cut�

��� � C

Logical rules� the I���� fragment

�� �R�
� �

� � C
�� � L�

�� � � C

� � A � � B
���R�

��� � A�B

�� A�B � C
��� L�

�� A�B � C

�� A � B
�� �R�

� � A� B

� � A �� B � C
�� �L�

���� A� B � C

Logical rules� the 
�� fragment

� � A � � B
���R�

� � A�B

�� A � C
��� L��

�� A�B � C

�� B � C
��� L��

�� A�B � C

� � A
���R��

� � A�B

� � B
���R��

� � A�B

�� A � C �� B � C
��� L�

�� A�B � C

��



Logical rules� the � fragment


A�� ���� 
An � A
�
�R�


A�� ���� 
An �
A

�� A � C
�Dereliction�

�� 
A � C

�� 
A� 
A � C
�Contraction�

�� 
A � C

� � C
�Weakening�

�� 
A � C

��



C Appendix� LTS�Rec with categorical semantics

Axiom

�Id�

x � A � x � A A
�� TA

Structural rule

�Exchange�

�� x � A� y � B�� � u � C

�� y � B�x � A�� � u � C

��A�B ��
u� TC

� �B �A��

����	� ��A�B ��

u� TC

Logical rules� the I���� fragment

�� � I�

� � � � I
�� TI

�� � E�

� � w � � � � u � A

��� � let w be � in u � A

�
w� TI �

u� TA

� � �

�w� � � TI

t� T ��� I�
kleisli����u�� TA

��� I�

� � u � A � � v � B

��� � u� v � A�B

�
u� TA �

v� TB

� ��
u�v� TA� TB

�� T �A�B�

��� E�
� � w � A�B �� x � A� y � B � u � C

��� � let w be x� y in u � C

�
w� T �A�B� ��A�B

u� TC

� � �

�w� � � T �A�B�

t� T ���A�B�
kleisli�u�� TC

�� �I�

�� x � A � u � B

� � �x�u � A� B

� �A
u� TB

�
curry�u�� A� TB

�� T �A� TB�

�� �E�

� � f � A� B � � u � A

��� � fu � B

�
f� T �A� TB� �

u� TA

���
f�u� T �A� TB�� TA

�� T ��A� TB��A�
kleisli�eval�� TB

�




Logical rules� the 
�� fragment

��� I�

� � u � A � � v � B

� � �u� v� � A�B

�
u� TA �

v� TB

�

u�v�� TA� TB

�� T �TA� TB�

��� E��
� � w � A�B

� � fst�w� � A

�
w� T �TA� TB�

�
w� T �TA� TB�

kleisli�
��� TA

��� E�� Analogous�

��� I��
� � w � A

� � inl�w� � A�B

�
w� TA

�
w� TA

T �inj��� T �A�B�

��� I�� Analogous�

��� E�

� � w � A�B �� x � A � u � C �� y � B � v � C

��� � case w of inl�x� �� u j inr�y� �� v � C

�
w� T �A�B� ��A

u� TC � �B
v� TC

� ��

�w� �� T �A�B�

t� T ��� �A�B��
kleisli����
u�v��� TC

Logical rules� the � fragment

�
� I�

�� � w� �
A� � ���� �n � wn �
An x� �
A�� ���� xn �
An � u � A

��� �����n � let w�� ���� wn be x�� ���� xn in 
u �
A

��
w�� T 
TA� � ���� �n

wn� T 
TAn 
TA� � ����
TAn

u� TA

�� � ���� �n
w������wn� T 
TA�� ���� T 
TAn

�� T �
TA�� ����
TAn�
T ���u��� T 
TA

�Dereliction�
� � u �
A

� � derelict�u� � A

�
u� T 
TA

�
u� T 
TA

kleisli���� TA

�Weakening�

� � w �
A � � u � B

��� � discard w in u � B

�
w� T 
TA �

u� TB

�� �

�w� �� T 
TA

t� T ���
TA�
kleisli��
�e�����u�� TB

��



�Contraction�

� � w �
A �� x �
A� y �
A � u � B

��� � copy w as x� y in u � B

�
w� T 
TA ��
TA�
TA

u� TB

�� �

�w� �� T 
TA

t� T ���
TA�
kleisli��
�d��u�� TB

Other rules

�Recursion�

�� � w� �
A� � ���� �n � wn �
An x� �
A�� ���� xn �
An� z �
B � u � B

��� �����n � let w�� ���� wn be x�� ���� xn in recz�u � B

��
w�� T 
TA� � ���� �n

wn� T 
TAn 
TA� � ����
TAn�
TB
u� TB

�� � ���� �n
w������wn� T 
TA�� ���� T 
TAn

�� T �
TA�� ����
TAn�
kleisli�u��� TB

��



D Appendix� operational semantics for LTS�Rec

The I���� fragment

� �	 �

w �	 � u �	 c

let w be � in u �	 c

u �	 c v �	 d

u� v �	 c� d

w �	 d� e u�d�x� e�y� �	 c

let w be x� y in u �	 c

�x�u �	 �x�u

f �	 �x�v u �	 d v�d�x� �	 c

fu �	 c

The 
�� fragment

�u� v� �	 �u� v�

w �	 �u� v� u �	 c

fst�w� �	 c

w �	 �u� v� v �	 c

snd�w� �	 c

w �	 d

inl�w� �	 inl�d�

w �	 e

inr�w� �	 inr�e�

w �	 inl�d� u�d�x� �	 c

case w of inl�x� �� u j inr�y� �� v �	 c

w �	 inr�e� u�e�y� �	 c

case w of inl�x� �� u j inr�y� �� v �	 c

The � fragment

w� �	 c� � ���� wn �	 cn

let w�� ���� wn be x�� ���� xn in 
u �	 let c�� ���� cn be x�� ���� xn in 
u

u �	 let c�� ���� cn be x�� ���� xn in 
v v�c��x�� ���� cn�xn� �	 c

derelict�u� �	 c

w �	 d u�d�x� d�y� �	 c

copy w as x� y in u �	 c

w �	 d u �	 c

discard w in u �	 c

Other rules

w� �	 c� � ���� wn �	 cn u�c��x�� ���� cn�xn��
�let c�� ���� cn be x�� ���� xn in recz�u��z� �	 c

let w�� ���� wn be x�� ���� xn in recz�u �	 c

��



E Appendix� proof of the Soundness Theorem

Theorem E�� �Soundness Theorem� Given a closed term u s�t� u �	 c� then ��u�� � ��c���

Proof� Induction in the derivation of u �	 c�

I will only cover the most interesting case� namely the case where the last used rule is�

w� �	 c� � ���� wn �	 cn u�c��x�� ���� cn�xn��
�let c�� ���� cn be x�� ���� xn in recz�u��z� �	 c

let w�� ���� wn be x�� ���� xn in recz�u �	 c

Due to previous results� we know that for every r � f�� ���� ng there exists a hr � I 	 TAr

such that ��cr�� � ��hr�! �� We therefore have�

��let c�� ���� cn be x�� ���� xn in recz�u�� �

�I �� �rI
�r��cr��� �r T 
TAr

�� T ��r
TAr�
kleisli���u��

�
�� TA� �

�I �� �rI
�r���hr����� �r T 
TAr

�� T ��r
TAr�
kleisli���u��

�
�� TA� �

�I �� �rI
�r��hr�� �r
TAr

�r�� �r T 
TAr

�� T ��r
TAr�
kleisli���u��

�
�� TA� �

�I �� �rI
�r��hr�� �r
TAr

�� T ��r
TAr�
kleisli���u��

�
�� TA� �

�I �� �rI
�r��hr�� �r
TAr

��u��
�

� TA�

Now� to prove the result is a matter of direct computation�

��c�� �


��u�c��x�� ���� cn�xn��
�let c�� ���� cn be x�� ���� xn in recz�u��z��� �

�I �� ��rI�� I
��r��hr����������r��hr�����u��

�
�� ��r
TAr��
TA

��u��� TA� �

�I �� ��rI�� I
��r��hr���������r��hr�������u��

�
��� ��r
TAr��
TA

��u��� TA� �

�I �� ��rI�� I
��r��hr���������r��hr��� ��r
TAr�� ��r
TAr�

�Id�����u��
�
�����u��� TA� �

�I �� ��rI�� ��rI�
��r��hr�����r��hr��� ��r
TAr�� ��r
TAr�

�Id�����u��
�
�����u��� TA� �

�I �� �rI
�r�������hr����hr���� �r �
TAr�
TAr� �� ��r
TAr� � ��r
TAr�

�Id�����u��
�
�����u��� TA� �

�I �� �rI
�r���hr��d�� �r �
TAr�
TAr� �� ��r
TAr�� ��r
TAr�

�Id�����u��
�
�����u��� TA� �

�I �� �rI
�r��hr�� �r
TAr

D� ��r
TAr�� ��r
TAr�
�Id�����u��

�
�����u��� TA� �



�I �� �rI
�r��hr�� �r
TAr

��u��
�

� TA� �

�I �� �rI
�r��cr��� �r T 
TAr

�� T ��r
TAr�
kleisli���u��

�
�� TA� �


�I �� �rI
�r��wr��� �r T 
TAr

�� T ��r
TAr�
kleisli���u��

�
�� TA� �

��let w�� ���� wn be x�� ���� xn in recz�u��

& Cf� the induction hypothesis� && We are here using the fact that ��u��	 is a linear �xpoint
of ��u��� �

��



F Appendix� proof of the Approximation Lemma

Lemma F�� �Approximation Lemma� Let x� � A�� ���� xn � An � u � C be given� Let J
be a �nite set s�t� for all j � J we are given � vj � Bj and fj � hom�I� ��Bj��� with the
property that fj! � �Bj

vj� Moreover� assume that for each j we have a variable zj� s�t�
for all i� k � J we have i �� k � zi �� zk� s�t� fx�� ���� xng � fzjj j � Jg� and s�t� for all
r � f�� ���� ng and j � J we have xr � zj � Ar � Bj � We then have�

�I �� I � ���� I
fj������fjn� ��A���� ���� ��An��

��u��� T ��C��� �C u����� vj�zj� ����

where for all r in f�� ���� ng we have chosen jr s�t� xr � zjr �

Proof� If � � p � q � n and � � xp � Ap� ���� xq � Aq� that is� it is a subsequence of
x� � A�� ���� xn � An� we will then de�ne f
 � I 	 � to be the following morphism�

�I �� I � ���� I
fjp�����fjq� Ap � ����Aq�

We proceed by induction in the derivation of x� � A�� ���� xn � An � u � C� We will without
loss of generality assume that none of the variables fzjj j � Jg are bound in u�

I will only cover the most interesting case� namely the case where the last used rule is�

�� � w� �
A� � ���� �m � wm �
Am x� �
A�� ���� xm �
Am� z �
B � v � B

��� �����m � let w�� ���� wm be x�� ���� xm in recz�v � B

We want to prove that �� �B �let w�� ���� wm be x�� ���� xm in recz�v������ vj�zj� ���� where ��
is the following morphism�

�I �� �lI
�lf�l� �l �l

�l��wl��� �l T 
TAl

�� T ��l
TAl�
kleisli���v��

�
�� TB�

where l is in f�� ����mg� Now� assume that �� ���� We then have for every l�

�I
f�l� �l

��wl��� T 
TAl� � �I
kl� 
TAl

�� T 
TAl�

for some kl � I 	
TAl� We now apply the induction hypothesis on �l � wl �
Al and get
for every l�

wl����� vj�zj� ���� �	 cl and kl �
�
�Al

cl

for some cl � C�Al
� This entails that for every l we have kl � ��hl� for some hl � I 	 TAl�

Thus�

�� �

�I �� �lI
�l��hl�� �l
TAl

�l�� �l T 
TAl

�� T ��l
TAl�
kleisli���v��

�
�� TB� �

�I �� �lI
�l��hl�� �l
TAl

��v��
�

� TB� �

�I �� �lI
�l��hl�� �l
TAl

F
n��

�n���
� TB� �

�I

F
n��

������l��hl����n����� TB�

�	



where " is the continous function from hom�
TA� � ����
TAm� TB� to itself� induced by
the morphism ��u��� Now� due to the Approximation Lemma� it is enough to show that for
all n in ��

�I
�����l��hl����

n���� TB� �B �let w�� ���� wm be x�� ���� xm in recz�v������ vj�zj� ����

We will prove this by induction in n� The assertion is true in the case n � � because
any point followed by a bottom element is a bottom element� Let a number n be given
and assume that the assertion is true in case of this n� We then want to show that the
assertion is true in case of n� ��

First a small initial calculation�

�I
�����l��hl����

n���� TB� ���

entails due to the inner IH that there exists a d in CB such that�

�let w�� ���� wm be x�� ���� xm in recz�v������ vj�zj� ���� �	 d

But the rules for the evaluation relation then gives us�

let c�� ���� cm be x�� ���� xm in recz�v �	 d

The conclusion of the initial calculation is that�

�I
�����l��hl����n���� TB� �B let c�� ���� cm be x�� ���� xm in recz�v

But then the de�nition of the ��
�B relation entails that�

�I
�������l��hl����

n����� 
TB� ��
�B
�let c�� ���� cm be x�� ���� xm in recz�v�

We can now use the outer IH on x� �
A�� ���� xm �
Am� z �
B � v � B to obtaim�

�� �B v�c��x�� ���� cm�xm��
�let c�� ���� cm be x�� ���� xm in recz�v��z�

where �� is de�ned to be the morphism�

�I �� I � ���� I � I
��h���������hm���������l��hl����

n����� 
TA�� ����
TAm�
TB
��v��� TB�

Moreover�

�I
�����l��hl����

n������ TB� �

�I �� �lI
�l��hl�� �l
TAl

�ld� �l �
TAl�
TAl� �� ��l
TAl�� ��l
TAl�
�Id����n��������v��� TB� �

�I �� �lI
�l�������hl����hl���� �l �
TAl�
TAl� �� ��l
TAl�� ��l
TAl�

�Id����n��������v��� TB� �

�I �� I � I
������ ��lI�� ��lI�

��l��hl�����l��hl��� ��l
TAl�� ��l
TAl�
�Id����n��������v��� TB� �

�I �� I � I
���Id� ��lI�� I

��l��hl���Id� ��l
TAl�� I
�Id��������l��hl����

n��������v��� TB� �

�I �� ��lI�� I
��l��hl���Id� ��l
TAl�� I

�Id��������l��hl����
n��������v��� TB� �

�I
��� TB�

��



Now� our �nal calculation�

�I
�����l��hl����

n������ TB� ���

entails that�

v�c��x�� ���� cm�xm��
�let c�� ���� cm be x�� ���� xm in recz�v��z� �	 c

for some c� But the rules for the evaluation relation then gives us�

�let w�� ���� wm be x�� ���� xm in recz�v������ vj�zj� ���� �	 c

Hence�

�I
�����l��hl����

n������ TB� �B �let w�� ���� wm be x�� ���� xm in recz�v������ vj�zj � ����

which �nishes the proof that the above mentioned assertion is true in case of n� �� �

��



G Appendix� categorical prerequisites

G�� Monoidal categories

De
nition G�� A monoidal category is a �
tuple �C� I��� �� �� �� where C is a category
containing a neutral element I for a bifunctor � � C � C 	 C equipped with natural
isomorphisms �� �� � having components�

�A�B�C � A� �B � C�	 �A�B��C �A � I �A	 A �A � A� I 	 A

These are required to satisfy the socalled Kelly
Mac Lane equations� which are� the pen

tagon law �Id � ��!�! �� � Id� � �!�� the triangle law �! �� � Id� � �Id � ��� and
�I � �I � Such a monoidal category is symmetric if there is an additional �symmetry�
natural isomorphism � with components�

�A�B � A�B 	 B �A

satisfying �! � � Id� � � �!� � and �! �!� � �Id� ��!�! �� � Id��

A monoidal functor from �C� I��� �� �� �� to �C	� I 	��	� �	� �	� �	� is a functor F � C 	 C	

equipped with a map mI � � I 	 	 F �I� and a natural transformation m � F ����	 F ���	
F �� � �� which match the involved structure� that is� �Id �	 m�!m!F ��� � �	! �m �	

Id�!m� �mI � �
	 Id�!m!F ��� � �	� and �Id �	 mI ��!m!F ��� � �	� It is a symmetric

monoidal functor if additionally �	!m � m!F ���� F preserves the �symmetric� monoidal
structure �or� F is a morphism of �symmetric� monoidal categories� i� mI � and m are
isomorphisms�

A monoidal natural transformation between monoidal functors F�F 	 � C 	 C	 is a natural
transformation � � F 	 F 	 satisfying m!� � �� �	 ��!m	 and mI �!�I � m	

I ��

A �symmetric� monoidal closed category is a �symmetric� monoidal category where each
functor ����A has a right adjoint� it will be denoted by A� ����

Note that one obtains ��categories of �symmetric� monoidal categories�

G�� Monads

De
nition G�� A monad �T� �� �� on C is a functor T � C 	 C� and two natural trans

formations�

� � IdC 	 T � � TT 	 T

such that the following diagrams commute�

TTT
T� � TT

TT

�T

� � � T
�

�

T
�T � TT �

T�
T

�
�
�
�
�

IdT
R ��

�
�
�
�

IdT

T
�

�

��



De
nition G�� Let �C� I��� �� �� �� be a monoidal category and �T� �� �� a monad on
C� The monad is called strong i� there is a �strength� natural transformation t � ����
T ���	 T ����� s�t� the following diagrams commute�

A� �B � TC�
Id� t� A� T �B � C�

t� T �A� �B � C��

�A�B�� TC

�

� t � T ��A�B��C�
�

T�

I � TA
t� T �I �A�

�
�
�
�
�

�
R

TA
�

T�

A�B
Id� �� A� TB

�
�
�
�
�

�
R

T �A�B�
�

t

A� TTB
t� T �A� TB�

Tt� TT �A�B�

A� TB

Id� �

� t � T �A�B�
�

�

The usual de�nition of a map between monads assume that the domain and codomain
monads are on the same category� The following is a generalisation without this assump�
tion�

De
nition G�� A functor of monads from a monad �T� �� �� on C to a monad �T 	� �	� �	�
on C	 is a functor F � C 	 C	 and a natural transformation � � T 	F 	 FT s�t� the
following diagrams commute�

F

�
�
�
�
�

F�

R

T 	F

�	F

� � � FT

T 	T 	F
T 	�� T 	FT

�T� FTT

T 	F

�	F

� � � FT
�

F�

De
nition G�� Let �T� �� �� t� be a strong monad on a monoidal category �C� I��� and
�T 	� �	� �	� t	� a strong monad on a monoidal category �C	� I 	��	�� A functor of monads
�F� �� from �T� �� �� to �T 	� �	� �	� is a functor of strong monads i� F is monoidal and the
following diagram commutes�

FA�	 T 	FB
FA�	 �� FA�	 FTB

n� F �A� TB�

T 	�FA�	 FB�

t	

� T 	n � T 	F �A�B�
�� FT �A�B�

�

Ft

where n is the natural transformation giving monoidal structure to F �

��



G�� Comonads

De
nition G�	 A comonad �
� 	� 
� on C is a functor 
 � C 	 C� and two natural trans

formations�

	 �
	 IdC 
 �
	



such that the following diagrams commute�




 � 
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 � 








�




��
�
�
�
�

Id�

�
�
�
�
�

Id�

R

 �

	








� 
	 � 


De
nition G�
 Given a comonad �
� 	� 
� on C� one can de�ne the coKleisli category� C�
as follows� the objects are the same as in C� the morphisms are given by homC��A�B� �
homC�
A�B�� If f � A 	 B is an arrow in C�� then the corresponding arrow in C is
denoted by f
 �
A 	 B� Now� given f � A 	 B and g � B 	 C� arrows in C�� their
composition is de�ned to be �f ! g�
 � 
A! 
�f
�! g
 �
A 	 C� Given an object A� the unit
is de�ned to be �IdA�
 � 	A �
A	 A�

�
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