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FULLY DYNAMIC TRANSITIVE CLOSURE IN

PLANE DAGS WITH ONE SOURCE AND ONE SINK

THORE HUSFELDT

BRICS�

Department of Computer Science� University of Aarhus
Ny Munkegade� DK����� �Arhus C� Denmark

��th September ����

Abstract� We give an algorithmfor the DynamicTransitive Clo�
sure Problem for planar directed acyclic graphs with one source
and one sink� The graph can be updated in logarithmic time
under arbitrary edge insertions and deletions that preserve the
embedding� Queries of the form �is there a directed path from
u to v�� for arbitrary vertices u and v can be answered in loga�
rithmic time� The size of the data structure and the initialisation
time are linear in the number of edges�

The result enlarges the class of graphs for which a logarithmic
	or even polylogarithmic
 time dynamic transitive closure algo�
rithm exists� Previously� the only algorithms within the stated
resource bounds put restrictions on the topology of the graph
or on the delete operation� To obtain our result� we use a new
characterisation of the transitive closure in plane graphs with one
source and one sink and introduce new techniques to exploit this
characterisation�

We also give a lower bound of �	logn� log logn
 on the amor�
tised complexity of the problem in the cell probe model with log�
arithmic word size� This is the �rst dynamic directed graph prob�
lem with almost matching lower and upper bounds�

This work was partially supported by the ESPRIT II Basic Research Actions
Program of the EC under contract no� ���� 	project ALCOM II
�

�Basic Research in Computer Science� Centre of the Danish National Research
Foundation






�� Introduction

���� Dynamic algorithms� Two issues motivate the search for dy�
namic algorithms� From a practical point of view	 we want to solve

problems faster by recomputing parts of the solution as the instance is
subject to changes	 rather than having to recompute the entire solution
from scratch� From a theoretical point of view	 we can hope for more
insight into the nature of the problem and the dynamic realm itself�

Fully dynamic algorithms with logarithmic or polylogarithmic bounds
on the update and query times are interesting from both points of view�
Firstly	 we can hope for implementations that are useful in practice	
especially if the data structure is simple� Although impressive other
asymptotically sublinear bounds for a variety of problems have been
found	 the applicability of many of these algorithms is dubious in sight
of the complicated data structures involved�

Secondly	 the evolving 
eld of dynamic complexity theory identi
es
problems with these execution times with the class of �e�ciently dy�
namisable
 problems	 called D for �dynamic
 in ���� or	 less euphonically	
incrPOLYLOGTIME for �incremental polylogarithmic time
 in �����

Recently	 exciting progress has been made in the quest for polyloga�
rithmic update and query times in such di�erent areas as string match�
ing ���	 parsing ���� and expression evaluation ��	 �	 ���� The realm of
graph theory is more elusive� Many basic graph problems like Spanning
Trees	 Connected Components	 Shortest Paths	 etc�	 reduce to Reach�
ability	 which seems to be hard in the dynamic case� For undirected
graphs	 one can hope for polylog�time solutions as long as the graph is
plane	 see ��	 ��� For directed graphs	 not even that restriction is enough�
the best algorithm for Dynamic Reachability on planar digraphs is due
to Subramanian ���� and performs in amortised time O�n��� logn��

This is interesting to the theoretician because in the parallel realm	
the Reachability Problem is easy� Recall that the problem on the gen�
eral class of directed graphs is complete for NLOGSPACE	 which is
safely contained in NC�� Our lack of understanding of the interplay be�
tween parallel and dynamic computations �or	 symbolically	D vs� NC�
could be closely connected to the lack of understanding of the dynamic
complexity of the Reachability Problem	 see �����

���� Sketch of result� Let us brie�y state the result of this paper�
Sections ��� and ��� contain more precise de
nitions�
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Figure �� Two plane graphs with one source and one sink

We give an algorithm for the Transitive Closure Problem� on directed
acyclic graphs that are drawn in the plane without intersecting edges
and have exactly one source and one sink	 see Figure �� The algorithm
handles queries of the form �is there a directed path from vertex u to
vertex v�
 and updates that add or remove arbitrary edges	 as long as
the topology and embedding of the graph are not violated� Updates
and queries are processed in time logarithmic in the number of edges of
the graph� The data structure can be initialised in linear time and uses
linear space�

Together with an easily proved lower bound	 this characterises the
complexity of the Dynamic Transitive Closure Problem on this class of
graphs within a log logn factor� The algorithm is pleasantly simple and
should be easy to implement e�ciently �the most complicated part is the
dynamic tree data structure from ����	 which also contains a discussion
of implentation issues�� The analysis is less simple and takes up most of
the paper�

���� Relation to previous results� Two partial solutions to this prob�
lem are known�

��� Tamassia and Preparata ���� consider the special case where the
source and the sink are on the same face� They allow the same
update operations as the present algorithm	 as long as the source
and the sink remain on the same face�

��� Tamassia and Tollis ���� give an algorithm that allows the source
and the sink to be on di�erent faces� To this end	 they replace
the repertory of update operations to get rid of fundamental
problems with edge deletion of this approach� They show how

�We will use the terms transitive closure and reachability interchangeably when
referring to directed graphs�
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to simulate edge deletion using a linear number of their primitive
operations�

Both of these algorithms rely on the following well�known fact� The
transitive closure of a plane st�graph can be expressed as the intersection
of two total orders �L and �R� Symbolically	

u � v � u �L v � u �R v�

where we write � for the transitive closure� The 
rst paper shows that
in the restricted case	 �L and �R are easily maintained as the graph
changes� The second paper shows under which updates the orderings
remain maintainable in the general case� Kelly ��� has shown that for
general planar graphs	 the number of total orders needed to express the
transitive closure as their intersection is unbounded�

The present algorithm subsumes and extends the results from ���	
��� in that it removes the restrictions of both� To this end	 we use a
di�erent characterisation of reachability� Let us contrast it with the
above approach� We maintain two orders �call them �S and �T for a
moment� with the property that

u � v � �w � V � u �T w �w �S v�

It is by no means clear how to handle the existential quanti
er over the
vertices V of the graph in logarithmic time� Indeed	 our algorithm will
not be able to identify such a w	 but merely determines its existence�

���� Roadmap� This report is organised as follows� Below	 we give
some preliminary de
nitions and state the problem precisely� We also
derive a lower bound for the problem	 using known techniques� In Sec�
tion �	 we precisely state the above characterisation of the transitive clo�
sure in st�graphs and brie�y re�prove the result of ����� Section � gives
an algorithm for the general case that performs well in the amortised

sense� We then remove the amortisation in Section � to get worst�case
bounds�

�� Preliminaries

���� Graphs� A graph is embeddable on a surface if it can be drawn
on the surface such that the edges do not intersect except at their end�
points� A graph is planar if it is embeddable in the plane� Using the
stereographic projection	 it is easily shown that a graph is planar if and



�

only if it is embeddable on the sphere� For a more thorough coverage of
planar graphs	 see any text on graph algorithms	 e�g� �����

For node v of a digraph we let deg��v� and deg��v� denote its out� and
indegree	 respectively� A vertex v is a source if deg��v� � �	 and a sink

if deg��v� � �� We are now ready to de
ne the class of graphs studied
in this paper� The terminology is somewhat awkward �but standard��

De�nition ���� A directed acyclic graph is an st�graph if it has exactly
one source and one sink� A spherical st�graph is a planar st�graph that
is embedded in the plane� If in that embedding the source and the sink
are on the same face	 the graph is a plane st�graph�

We require st�graphs to be acyclic	 which agrees with the de
nition
of ���� and disagrees with the one from ����� Figure � shows two spher�
ical st�graphs	 the left of which is also a plane st�graph� The following
properties of spherical st�graphs can be shown� the last two items may
excuse �spherical
 and �plane
 the above de
nition�

��� Every vertex is on a simple directed path from s to t	 called an
st�path�

��� In every embedding	 the incoming edges to any vertex appear
consecutively around the vertex	 and so do the outgoing edges�
this determines the left face left�v� and the right face right�v�
of a vertex	 see Figure �� This implicitly de
nes an order of the
edges appearing around v	 say	 from the leftmost outgoing edge
to the leftmost incoming edge in the clockwise direction� We
will sometimes refer to this order as the ordering of the edges

around v�
��� The boundary of every face consists of two directed paths with

common origin and terminus vertices	 see Figure ��
��� Every spherical st�graph can be embedded on the sphere such

that all edges are directed upward �i�e�	 their projection on some

xed direction in the plane is positive�� For example	 we could
embed the graph from Figure � by placing the curved arc on the
opposite side of the sphere�

��� Every plane st�graph can be embedded in the plane such that
all edges are directed upward�

In the rest of this paper	 G � �V�E� will denote a spherical st�graph
with source s and sink t	 vertices V and edges E	 unless otherwise stated�



�

q
�
��
A
AK
J
J�
�
�
��
vleft	v

right	v


qq
q q
q
q

HHY �
���A

AK
�
��
���

B
BBM

f

Figure �� A vertex and a face in a spherical st�graph

Often	 n will denote the size of the problem	 i�e� the number of edges in
the graph� For brevity	 we will sometimes use the notation u � v if there
is a path from u to v� We will write u k v if neither u � v nor v � u�

���� Dynamic Transitive Closure� We consider the Dynamic Tran�

sitive Closure Problem for spherical st�graphs� Namely	 we present a data
structure that handles the following operations �for clarity	 we have spelt
out the embedding�preserving restrictions on the update operations��

Insert�u� v�� Insert an edge from vertex u to vertex v if they are
on the same face and the new edge does not induce a directed
cycle	
Delete�u� v�� Delete the edge from u and v provided deg��u� �
� and deg��v� � �	
Query�u� v�� �Is there is a path from u to v�
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Figure �� Updates

Alternatively	 we could also allow all possible insertion and deletion
operations and let the data structure decide which updates violate the
restrictions� To this end	 we could use the planarity testing data struc�
ture of Tamassia ���� to decide if u and v are on the same face� The
acyclicity condition is of course easily checked using our own data struc�
ture� Edge �u� v� induces a cycle if and only if there is a path from
v to u� The restriction on the deletion operation is easily checked by
maintaining the in� and outdegree with each vertex�
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���� Lower bound� Our update operations are su�ciently versatile to
admit a lower bound proof for the problem� The model is the cell probe
model with logarithmic word size ����� Fredman and Saks give a lower
bound of ��logn� log logn� on the amortised complexity of the Dynamic

Parity Pre�x Problem� Given a vector x�� � � � � xn of bits	 maintain a
data structure that is able to react to the following operations for all
j � �� � � � � n�

Flip	j
� Negate the value of xj�

Query	j
� Return
Lj

i�� xi	 the parity of the 
rst j elements�

We reduce this problem to the Dynamic Transitive Closure Problem
introduced above� similar reductions have recently also been used by
Miltersen et al� ���� and Rauch ���� for other graph problems� We give
the full proof to gain more familiarity with the topology and the update
operations� Note that there is no obvious way to transform the proof to
the case of plane st�graphs or to the update repertory of �����

Theorem ���� The Dynamic Transitive Closure Problem on spherical

st�graphs requires amortised time ��logn� log logn� in the cell probe

model with logarithmic word size�

Proof� Let x�� � � � � xn be an instance of the Dynamic Parity Pre
x Prob�
lem� Construct the planar st�graph G � �V�E� as follows� The vertex
set V contains source s and sink t as well as �n�� vertices v�� � � � � vn��
and v��� � � � � v

�
n��� Intuitively	 vi and v�i correspond to variable xi� The

edge set E is constructed from the values of the variables� If xi is
false then E includes the edges �vi� vi��� and �v�i� v

�
i���	 else it con�

tains �vi� v�i��� and �v�i� vi���� The 
gure below gives an example for
�x�� � � � � x�� � ��� �� �� ���
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We embed the crossing edges of G by mapping one of them to the
opposite side of the sphere� It is not hard to see that we can simulate
every update operation to the vector x�� � � � � xn using a constant number
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of insert and delete operations on G without violating its topology� For
the query operation	 observe that

jM
i��

xi � � � v� � v�j��� j � �� � � � � n�

Thus a lower bound on the Pre
x Problem implies a lower bound on the
Transitive Closure Problem�

���� Related work� Italiano et al� ��� present a dynamic reachability
algorithm for series parallel digraphs� apart from these and the class
studied in the present paper	 no other class of digraphs is known to the
author that allows fully dynamic reachability algorithms within poly�
logarithmic time bounds� The only other nontrivial upper bound is the
already cited O�n��� logn� for plane graphs from ����� It is easy to see
that the ��logn� log logn� lower bound from this paper applies to that
problem� no better lower bound is known�

Other dynamic problems on planar st�graphs are studied in ��� and
����� Reference ���� contains pointers to a vast number of applications
of these graphs within visibility representations	 graph drawing and em�
bedding	 motion planning	 computational geometry	 lattice theory	 and
VLSI design�

�� Properties of Spherical st�Graphs

���� Two trees� We employ an idea used in many polylog�time dy�
namic graph algorithms� Decompose the graph into a number of trees
such that all the necessary information can also be derived from the
trees�

De�nition ���� The tree SG is the subgraph of G constructed by re�
moving all edges that are not the leftmost incoming edge of any vertex�
Similarly	 the tree TG is constructed by removing all edges that are not
the leftmost outgoing edge to any vertex� When the graph is 
xed	 we
will drop the subscripts on S and T �

See Figure �	 which shows S and T for the graph from Figure ��
Observe the following facts�

��� S and T are indeed trees	
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Figure �� A graph G with corresponding trees SG and TG�

��� S is divergent and rooted at s	 while T is convergent and rooted
at t �hence the names�	

��� no subpath of T can ever leave another path to the right	 and
no subpath of S can ever enter another path from the right�

Let us emphasise the last innocent�looking and obvious item	 since we
will use it quite often�

Fact ���� If a subpath of T crosses a subpath of S� it does so from right

to left�

We need some notation� For vertex v � V we let Sv denote the unique
path from s to v in S and let Tv denote the unique path from v to t in
T � For u� v � V we let s� denote the last vertex that is on both Sv
and Su� Let t� denote the 
rst vertex that is on both Tv and Tu� The
path pu is the subpath of the concatenation of Su and Tu from s� to
t�� Symmetrically	 pv is the sub�path of the concatenation of Sv and Tv
from s� to t�� The 
gure below depicts this construction�

rr
r r
A
AK
�
��

�
s
s�

u v

Su Sv r r
rr

�
��
A
AK
�

t

t�

u v

Tu Tv

rr
r r
rr

�

�

A
A
�
�

�
��
A
AK

u v

s

t

s�

t�

pu pv r
r r
r
A
A
�
�

�
�A
AU

s�

t�

u v
�

Whenever it seems convenient	 we will also refer to the two paths as
pl and pr	 such that pl is the path leaving s� to the left and pr is the
other path�

We will boldly confuse the edges of G with their embedding to alle�
viate notation� Namely	 we introduce the curve 	 which is the concate�
nation of �the embeddings of� pl and pr� The orientation of 	 will be
such that it agrees with the direction of pl and the reversed direction of
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pr� Recall that a curve is closed if its endpoints coincide	 it is simple if
it does not intersect itself except at its endpoints� Note that 	 is closed
and not necessarily simple�

���� Reachability in Spherical st�graphs� The next lemma is the
crux of our algorithm� It captures the following fact about reachability
in spherical st�graphs� To get from vertex u to vertex v one can always
choose a path whose 
rst half stays in T and whose last half stays in S�

Lemma ���� Let �S and �T denote the predecessor relation in S and

T � respectively� Then

u � v � �w � V � u �T w �w �S v�

Proof� Assume for contradiction that there is a path p from u to v even
though Sv and Tu are vertex�disjoint�
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Note that Su crosses neither Sv �else S would not be a tree� nor Tu
�else G would have a cycle�� Similarly	 Tv crosses neither Tu nor Sv nor
Su �the latter would form a cycle with p�� So we have the situation
depicted to the left in the above 
gure modulo the symmetrical case
where u appears to the right of v�

Without loss of generality	 we can split p into three parts pu	 p� and
pv	 such that pu is a �possibly empty� sub�path of Tu	 pv is a �possibly
empty� sub�path of Sv and p� �which contains at least one vertex� has
no vertices in common with either Tu or Sv�

Note that p� leaves Tu before t� �else there would be a cycle in G�
and does so to the right by Fact ���� Similarly	 p� enters Sv after s�

and does so from the right� The right part of the 
gure above conveys
the absurdity of this� Part of p� is in the interior of 		 while another
part is in the exterior� Hence p� must cross 	 somewhere	 but cannot by
construction�
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���� The plane case� To see some of the present machinery in motion
and to get our hand dirty before we study the full problem	 let us derive
an algorithm for the case of plane st�graph�

We must handle the existential quanti
er of the last lemma without
searching all of V � We will show that the existence of w �between u and
v
 can be read o� the edges around s� and t��

Lemma ���� In a plane st�graph� the reachability information between

u and v is uniquely determined by the appearance of pu and pv around

s� and t��

Proof� The proof is a case analysis on the behaviour of pu and pv between
s� and t�� We shall see that there are only four cases	 depicted below�
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First note that if s� � u then there is a path from u to v and we are
done� Similarly	 the cases s� � v	 t� � u	 and t� � v are trivial�

Assume 
rst that pu leaves s� to the right of pv� There are two cases�
Either pu stays to the right of pv �until the two paths 
nally meet at t��
or it does not� In the former case �the leftmost example in the 
gure�	
there cannot be a path from v to u by Lemma ����

In the latter case	 pu must cross pv at some point to get to the other
side� It cannot enter it anywhere except between s� and t�	 by acyclicity
of G and construction of t�	 hence it enters at some vertex w �� t�� Since
w is on both pu and pv	 one of the following must hold� �i� u � w and
v � w	 �ii� u � w and w � v	 �iii� w � u and v � w	 or �iv� w � u
and w � v� The reader should check that all possibilities but the second
contradict Fact ��� or induce an undirected cycle in S or T � Hence	 by
transitivity of �	 we have u � v� Similar arguments show that once pu
has reached the left side of p	 it cannot come back� hence it enters t� left
of pv� This is the third example in the 
gure above�

We can repeat the analysis for the case where pu leaves s� left of pv
�depicted by the second and fourth examples�	 to complete Table ��
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Put succinctly	 u and v are connected if and only if pu and pv �switch
sides�


pu leaves s� right of pv y y n n
pu enters t� right of pv y n y n

Reachability u k v u � v v � u u k v

Table �� Reachability in the plane case

������ Data Structures� We maintain the following information�

��� With every vertex v� Two sequences of the incoming and out�
going edges of v	 respectively	 ordered according to the cyclic
ordering around v �see the remarks after De
nition ����� We
can used balanced search trees for this�

��� The trees S and T using the dynamic tree data structure of
Sleator and Tarjan �����

������ Updates� After each insertion or deletion we must reorganise our
data structures� An edge can be inserted into or deleted from the edge
list around a vertex in time O�logn�� maintaining the two dynamic trees
is a standard technique�

������ Queries� Evert u and v in S to 
nd their nearest common ancestor
s�	 see ����� Evert u and v in T to 
nd their nearest common ancestor t��
From the edge lists around s� and t� we see which of pu and pv appears
rightmost� By Table �	 this yields the reachability information�

In summary	we have re�proved the following theorem due to Tamassia
and Preparata ����	 using a di�erent characterisation�

Theorem ���� The Dynamic Transitive Closure Problem for plane st�
graphs can be solved in time O�logn�� where n denotes the number of

edges� The data structure uses linear space and can be initialised in

linear time�
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µ

Figure �� The sphere� problems �left� and remedy �right��

���� Additional concepts for spherical graphs� Let us reiterate the
gist of the last section�

��� If u and v are connected	 then pu and pv intersect	
��� If pu and pv intersect	 then they �switch sides	
 i�e�	 they appear

around s� in another order than they do around t��

The 
rst item still holds in the spherical case� The second does not�
The 
rst two 
gures above show why the sphere is much more di�cult
than the plane� Paths can wrap around� the reader can easily check that
both examples contradict Table �� The remedy is to keep track of the
globe�trotting of 	 by maintaining a chain of faces between the poles	 as
indicated in the third 
gure� it is helpful to view this chain of faces as a
path 
 in the dual of the graph� The chain is called the meridian and
formally introduced in Section �� First	 we introduce some additional
concepts to be able to formalise what we just sketched�

De�nition ���� A region is a maximal topologically connected subset
in the complement of 	� A curve is proper if it intersects 	 only at points
where 	 does not intersect itself� We de
ne the function Ind that maps
points to integers as follows� For x in a region the index Ind�x� is the
minimumnumber of intersections between 	 and 
 over all proper curves

 from s to x� Note that Ind is constant on every region	 vanishes on
the region of s	 and in the plane case	 also on the region of t�

For Ind�t� � �	 we de
ne the orientation of t as follows� Let x be a
point in a region incident to the region of t such that Ind�x� � Ind�t�	��
Let 
 be a proper curve from x to t that crosses 	 only once� Then the
orientation of t is positive if 
 crosses 	 from left to right	 and negative

otherwise�

Perhaps more intuitively	 the orientation of t is the direction of the
closed curve that separates the region of t from its neighbouring region
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pr right of pl at t
� y n n y y n n n y y n n

pu right of pv at s� � � y n y n y n y n y n
Index of t � � � �� �� 
� �� � �� �� 
� ��
Orientation of t � � � � � � � � � � � �

Reachability u k v u � v v � u

Table �� Reachability in the spherical case�

with lower index� If this curve is oriented clockwise	 the orientation of
t is positive� The 
gure below shows some examples where Ind�t� � �
and the orientation of t is positive�
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The next lemma	 which is the spherical analogue to Lemma ���	 states
that the concepts we introduced su�ce to characterise the reachability
information�

Lemma ���� The reachability information between u and v is uniquely

determined by �i� the index of t� �ii� the orientation of t� and �iii� the
appearance of pu and pv around s� and t��

As Table � did in the plane case	 Table � shows the precise connec�
tion �dashes denote arbitrary or unde
ned entries�� Note that indeed
the reachability information is uniquely determined by the information
above the rule� As one would expect	 the case analysis is considerably
more complicated than for the plane case� Figure � shows the possible
behaviour of pu and pv and can be used as a graphical proof of the lemma�
The reader should check that all cases are consistent with Table ��

Obviously	 the sceptical reader should have no reason to believe that
the examples in Figure � exhaust all possible cases� Unfortunately	 the
formal proof is somewhat tedious and unintuitive� We con
ne it to the
next section� At 
rst reading the reader may simply choose to accept
the result and continue to Section ��
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�i�
Ind	t
 � �

u k v �ii�

Ind	t
 � �

u on pr� u � v

v on pr� v � u

�iii�

Ind	t
 � �

�

u k v �iv�

Ind	t
 � ��

�

u on pr� u � v

v on pr� v � u

�v�

Ind	t
 � ��

�

u on pr� u � v

v on pr� v � u �vi�

Ind	t
 � ��

�

u on pr� v � u

v on pr� u � v

�vii�

Ind	t
 � 
�

�

u on pr � v � u

v on pr� u � v

Figure 	� Canonical examples of the behaviour of pu
and pr on the sphere� The two topmost cases appear
also in the plane	 while the 
ve other cases exploit the
possibility to travel around the sphere� In all cases we
give the index of t	 and	 if the latter is nonzero	 the
orientation of the region of t� In these cases	 the ori�
entation of 	 is depicted by arrows� Fat dots indicate
the possible positions of u and v� Examples �iii� to �vii�
each represent an in
nite number of cases in which the
paths cross any number of times� in all those cases	 the
orientation and the reachability information is the same�
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���� Towards a proof of Lemma ���� We have chosen to split the
proof into a series of �easy� lemmas� We begin with some concepts
that give a more 
ne�grained view of 	� Assume that pr enters pl at
vertices w�� � � � � wk	 with wk � t�	 and leaves it at vertices w�

�� � � � � w
�
k	

with w�
� � s� �the ordering agrees with the topological ordering of the

vertices�� Then for i � �� � � � � k	 the curve 	i consists of the subpath of
pl from w�

i to wi and the �reversed� subpath of pr from wi to w�
i�
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The 
gure above gives an example� Note that all 	i are subcurves of
	� On the other hand	 not all of 	 is necessarily part of some 	i� The
following lemma follows easily from the construction�

Lemma ���� Let 	�� � � � � 	k be a collection of curves as above� Then

��� every 	i is a simple closed curve�

��� for i �� j� the curves 	i and 	j are disjoint except for the case

j � i � �� where they may intersect at wi � w�
i���

Proof� Clearly	 every 	i is closed� Moreover	 it consists of a part from pr
that cannot intersect itself �else there would be a cycle in G� and does
not intersect pl before wi by construction� likewise	 pl does not intersect
itself	 so 	i is simple� The same argument shows that two curves cannot
intersect except as stated�

Let us introduce a shorthand notation that captures the way pl and pr
cross� The entrance sequence E of pr and pl is a string of k letters from
fR�Lg de
ned according to how the two paths cross� There is a letter
in the sequence for every wi	 and that letter is an R if pr enters pl from
the right at wi	 and an L if it enters from the left � Note that pr enters
pl at least once	 namely at t�	 so the entrance sequence is nonempty�
The entrance sequence for the example above is RL� Let us show that
all letters but possibly the last are the same�
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Lemma ���� E � R� 
 L�R
R�L 
 L��

Proof� Assume without loss of generality that u is on pl� Assume 
rst
that LR is a substring but not a su�x of the sequence	 so pr crosses pl

rst from left to right �say	 at vertex wi� and then from right to left �at
vertex wi���� From Fact ��� we learn that u � wi and wi�� � u which
contradicts the ordering of the wi� The case RL is analogous�

The next lemma is obvious	 now that we have split 	 into simple
curves� We leave the proof to the reader�

Lemma ��
� Let E denote an entrance sequence of length k� Then the

k curves 	�� � � � � 	k satisfy�

��� 	� separates s from t i� E begins with an L�
��� 	i separates s from t for i � �� � � � � k 	 ��
��� 	k separates s from t i� LL or RR is a su�x of E or E � L�

Moreover� 	i is oriented clockwise i� Ei � L�

Lemma ���� There is only one curve if and only if u k v� Otherwise�

u � v if and only if E� � R and pu � pr or E� � L and pv � pr�

Proof� If u and v are connected then 	 is non�simple from Lemma ���	 so
the 
rst part of the statement holds� Assume E� � R and pu � pr	 so pu
crosses pv from right to left� From Fact ��� we see that u � w� and w� �
v and are done by transitivity� The other cases are symmetrical�

Proof of Lemma ���� The proof is an easy but slightly tedious case anal�
ysis on the four di�erent types of entrance sequences� The last two lem�
mas yield the number of cycles that separate s from t	 their orientation
and the reachability information� By inspection	 all cases are seen to be
consistent with Table ��

�� Algorithm for Sequences of Updates

���� The Meridian� We use the results of the last section to construct
an algorithm that performs well in the amortised sense	 i�e�	 a sequence
of m updates and queries takes time O�m logn��

As mentioned in the last section	 one of the main ideas behind our
algorithm is to maintain a chain of faces between the poles	 which we
will now de
ne�



��

De�nition ���� A meridian �F �� E�� consists of a sequence of meridian

faces F � � hf�� � � � � fmi and meridian edges E� � he�� � � � � em��i such
that

��� for i � �� � � � �m	 �	 edge ei is on the boundaries of fi and fi��	
��� fi �� fj for i �� j �this implies ei �� ej��

Moreover	 f� � left�s� and fm � left�t��

It is easy to see that the meridian corresponds to a proper curve 
 in
the sense of De
nition ��� by viewing the meridian as a path in the dual
G� of G and overlaying the embeddings of G� and G in a straightforward
way� We only have to observe that a path inG� can never contain a point
that embeds a vertex fromG� Recall the right half of Figure � on page ��
for an example�

���� How to count wrap�arounds� For curves � and 
 we let �r��� 
�
denote the number of times � crosses 
 from right to left� Symmetrically	
�l��� 
� denotes the number of times � crosses 
 from left to right�

Note that �l and �r have the nice property that if we decompose �
into proper curves ��� � � � � �k then we have	 e�g�	

�l��� 
� �
kX
i��

�l��i� 
�������

If � is a closed curve and 
 is a proper curve �with respect to �� whose
endpoints are on the same region �with respect to ��	 then 
 must leave
the region bounded by � as often as it enters it	 so

�l��� 
�	 �r��� 
� � �l�
� ��	 �r�
� �� � ��

These properties are exploited in the proof of the following lemma�

Lemma ���� The index and the orientation of t are given by the abso�

lute value and the sign of

�r�
� pl� � �l�
� pr� 	 �l�
� pl�	 �r�
� pr��

respectively�
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Proof� Observe that the meridian connects a point in the region of s	
namely left�s�	 to a point in the region of t	 namely left�t�� Let 	�� � � � � 	k	
with k � Ind�t�	 denote the simple closed subcurves of 	 that separate s
from t� It is an easy corollary to lemmas ��� and ��� that the curves have
the same orientation� Note that the meridian must cross all k curves at
least once	 but may take a detour� It can go back across a previously
crossed curve and return later� Thus the index of t is given by

Ind�t� �
��� kX
i��

�r�
� 	i�	 �l�
� 	i�
����

We can split each 	i into appropriately indexed subpaths pil and pir of pl
and pr �and remember to reverse the direction of the latter� to derive

Ind�t� �
��� kX
i��

�r�
� p
i
l� � �l�
� p

i
r�	 �l�
� p

i
l�	 �r�
� p

i
r�
����

All other subpaths of pl and pr form a number of closed curves that do
not in�uence ��
� ��	 so we can extend the above sum to include all of pl
and pr without changing the result� This proves the 
rst statement�

For the second statement	 observe that the orientation of t is positive
if and only if all 	i are oriented clockwise� In that case	 the value of

kX
i��

�r�
� 	i� 	 �l�
� 	i�

is negative	 else it is positive� Indeed	 the expression evaluates to either
Ind�t� or 	 Ind�t�	 depending on the orientation of t�

���� Data Structure� We extend the data structure of Section �����	
keeping the sequences of outgoing and incoming edges around every ver�
tex and the dynamic trees for S and T � The extensions are�

��� We maintain the sequences of meridian faces F � and edges E�

under insertion and deletion of subsequences	 e�g�	 using bal�
anced trees�

��� With every edge e that is in either S or T 	 we store

�r�
� e� �

�
�� if e � ei for some ei � E� and right�e� � fi	

�� otherwise�




�

which tells us if e is crossed by the meridian from right to left�
Symmetrically	 we store �l�
� e�	 which can be derived analo�
gously� Using ����� above	 we can now in time O�log jEj� calcu�
late the value of �r�
� p� and �l�
� p� for every dynamic path p
of S or T � see ���� for the details and terminology�

��� With every face	 we keep a topologically ordered sequence of the
edges on the two paths that bound the face�

������ Queries� For the query operation	 we again evert u and v in S
and T to 
nd their order around s� and t�� Using Lemma ��� and the
data structure above	 we 
nd the index and orientation of t� Finally	 we
refer to Table � for the answer�

������ Insertions� Consider the case where a new edge e is inserted into
face f 	 splitting it into f � and f ��� The edge lists around f � and f �� are
easily derived from the edge lists around f � The meridian is una�ected
if f �� F �� Otherwise	 one or both of f � and f �� may become part of
the updated meridian	 depending on where the meridian edges appear
around f �we use the edge list around f to decide which case we are in��
For example	 if there is a meridian edge on both f � and f ��	 they both
become part of the meridian and e becomes a new meridian edge� In
any case	 there are only a constant number of updates to the meridian
lists�

A straightforward analysis shows that all operations can be performed
in logarithmic time	 including the updates to the values of �l and �r
stored in S and T �

������ Deletions� Consider the case where deletion of the edge e between
faces f � and f �� creates a new face f � Creating the edge list around f is
handled as above�

In contrast	 the meridian may change drastically� The change occurs
when both f � and f �� are meridian faces� We cannot just merge them
into one	 as that would violate the second condition of De
nition ��� �
put more graphically	 the meridian curve 
 would no longer be simple�

To remedy this	 we must remove everything between f � and f �� from
the meridian	 as shown in Figure �� Even though the data structure for
the meridian face and edge lists can be updated in logarithmic time	 the
values �l�
� e� and �r�
� e� at every removed meridian edge e also have
to be changed	 which takes time O�n logn� in the worst case� However	
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Figure 
� Deletion of an edge that separates two
meridian faces

an easy amortisation argument �store a credit with each meridian edge�
shows that a sequence of m updates and queries can be executed in time
O�m logn��

In summary	 we have the following theorem�

Theorem ���� The Dynamic Transitive Closure Problem on spherical

st�graphs can be solved in amortised time O�logn�� where n denotes the

number of edges� The data structure uses linear space and can be ini�

tialised in linear time�

�� Worst case time bounds

���� Sketch of technique� We will now remove the amortisation	 a
task that involves some rather tedious arguments� We start with a rough
sketch� Obviously	 the major problem is that we do not have time to
remove the meridian cycles arising from a delete operation� However	
it is not very hard to believe that such meridian cycles can be shown
not to in�uence the proof of Lemma ���� In a nutshell	 whenever a path
crosses a such a merdian cycle	 it most re�cross the same cycle later in
the other direction �meridian cycles cannot seperate s from t�� Hence
we choose to let sleeping dogs lie� We do not remove the meridian cycles
but instead just make sure that they stay cycles as the graph undergoes
further changes�

The minor problem left is that this results in more and more merid�
ian cycles as we go	 so we use �global rebuilding
 ���� to construct an
unpolluted data structure in the background�

Now for the details�







���� False meridians� We introduce some more meridians �Ek� F k� for
r � �� To distinguish them from the meridian �E�� F �� of De
nition ���	
we from now on refer to the latter as the prime meridian�

De�nition ���� A false meridian �F k� Ek� for r � � of size l consists of
a sequence of faces F k � hfk� � � � � � f

k
l i and Ek

m � hek� � � � � � e
k
l i such that

��� for i � �� � � � � l	 �	 edge eki is on the boundaries of fki and fki��	
��� edge el is on the boundaries of fkl and fk� 	
��� fki �� fkj for i �� j �this implies eki �� ekj ��

Thus the di�erence between a false meridian and the prime meridian
is that the former is cyclic in the sense that the last face is incident to
the 
rst� Also	 a false meridian need not contain left�s� nor left�t�� The
embedding of a false meridian is a closed proper curve�

Our algorithm will not be able to distinguish false meridians from the
prime one� More precisely	 when 	 crosses a meridian at some point	
the algorithm cannot locally deduce whether this meridian is the prime
meridian or some other� Let us argue that this does not matter�

Denote by 
k the curves that correspond to false meridians� Since
these curves are closed we can use the discussion from Section ��� to
derive

�r�

k� 	�	 �l�


k� 	� � ��

for all 
k� Hence we can add the vanishing termX
k��

��
k� pl� � �l�

k� pr�	 �l�


k� pp� 	 �r�

k� pr��

where the sum is over all false meridians	 to expression ����� without
changing the result�

���� Data structure� Now that we have seen that the false meridians
do not mess up our analysis	 let us see that they even make life simpler�

We modify the data structure from the amortised case as follows�

��� With every edge we store the valueX
k��

�r�

k� e�������

where the sum is over all meridians including the prime� Like�
wise	 we store

P
�l�
k� e��




�

��� The two balanced trees for each face that maintain the two se�
quences of edges around the face are modi
ed so that each inter�
nal node computes the sum of the values stored at its children�
This allows us to calculate the valueX

i

X
k

�r�

k� ei�

for each sequence of faces heii that appear consecutively around
the face in time logarithmic in the length of the sequence� Like�
wise for �l�

Note that we do not maintain sequences of false meridians �but still
maintain the prime meridian�� The false meridians appear in the data
structure only implicitly in the value from ����� stored at each edge� Let
us very brie�y sketch how to handle the updates�

������ Insertions� Whenever a new edge is inserted into a face that ap�
pears on some �possibly false� meridian	 we have to update the value
from ������ The modi
ed balanced search trees with each face allows us
to compute the number of meridians that enter and leave the two new
faces� From these values	 we can derive the value stored with the new
edge consistently with some legal rearrangement of the false meridians�

������ Deletions� Whenever an edge deletion induces a cycle in the prime
meridian	 we remove that cycle from the corresponding list in the data
structure as before and make the removed cycle a new false meridian�
Figure � gives an example�
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Figure �� Edge deletion	 worst case
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���� Global rebuilding� We are almost 
nished� The only problem is
that the number of false meridians is unbounded and hence the values
stored with each edge may at some point become exponential�

To avoid this	 we use the standard trick of global rebuilding �see Chap�
ter � of ������ Construct a new data structure in the background	 based
on only the prime meridian� After a linear number of operations	 the
construction has 
nished and we switch to this new structure �which
may already have some false meridians but nevertheless cannot be too
large�� Now all calculation takes place using the new data structure and
we refresh the old data structure in the background� This process of
switching data structures is repeated ad in�nitum� We leave the details
with the reader�

Theorem ���� The Dynamic Transitive Closure Problem on spherical

st�graphs can be solved in time O�logn�� The data structure uses linear

space and can be initialised in linear time�

�� Conclusion

We have characterised the complexity of the dynamic transitive clo�
sure problem on planar embedded graphs with one source and one sink
within a factor log logn�

Note that it is easy to extend the data structure to cope with a report

operation that outputs a path from u to v if it exists in time O�logn��r	
where r denotes the length of the path� We leave the detail to the reader�


��� Open questions� It would be aesthetically pleasing to close the
gap between the upper and the lower bound� Dietz ��� has removed the
log logn factor in other dynamic problems	 maybe similar techniques
apply� However	 the necessary overhead supposedly dwarfs the asymp�
totic improvement for all realistic input sizes and the result would be of
theoretical interest only�

Upper bounds on the Dynamic Transitive Closure Problem in the gen�
eral case are still weak� Maybe slight extensions of the class of spherical
st�graphs can be handled by techniques similar to this papers
� For ex�
ample	 the class of graphs that admit an upward planar drawing could
be the next target� Along another path	 one could try to remove the
acyclicity condition� More ambitiously	 we could look for improved lower
bounds for the general problem�
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