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Abstract

Set constraints are relations between sets of terms. They have been
used extensively in various applications in program analysis and type
inference. Recently, several algorithms for solving general systems
of positive set constraints have appeared. In this paper we consider
systems of mixed positive and negative constraints, which are consid-
erably more expressive than positive constraints alone. We show that
it is decidable whether a given such system has a solution. The proof
involves a reduction to a number-theoretic decision problem that may
be of independent interest.

1 Introduction

Set constraints are formal inclusions or negated inclusions between expres-
sions representing subsets of Ty, the set of ground terms over a finite ranked
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alphabet ¥. Formally, a positive set constraint is of the form £ C I and a
negative set constraint is of the form £ £ F, where E and F' are expressions
built from a set X = {x,y,...} of variables ranging over subsets of Ty, the
usual set-theoretic operators 0, 1, U, N, and ~, and an n-ary set operator f
for each n-ary symbol f € ¥ with semantics

A system S of constraints is satisfiable if there is an assignment of subsets
of T to the variables satisfying all the constraints in S.

Set constraints have numerous applications in program analysis and type
inference [3,4, 7,12, 13,15, 16, 17, 18]. Most of these systems deal with pos-
itive constraints only. Several algorithms for determining the satisfiability of
general systems of positive constraints have appeared [1, 5, 6, 9, 11]. In [1],
the satisfiability problem for a system S of positive constraints is shown to be
equivalent to deciding whether a certain finite hypergraph constructed from
S has an induced subhypergraph that is closed (see Section 4). This char-
acterization is used to obtain an exhaustive hierarchy of complexity results
depending on the number of elements of ¥ of each arity.

In this paper we consider systems of mixed positive and negative con-
straints. Negative constraints considerably increase the power of the con-
straint language and have important applications in program analysis. For
example, in [3, 4], opportunities for program optimization are identified by
an ad hoc technique for checking the satisfiability of systems of negative con-
straints. Set constraints with only nullary symbols correspond to Boolean
algebras over a finite set of atoms; in [14] general results on solving negative
constraints in arbitrary Boolean algebras are given.

In this paper we give a general decision procedure for determining whether
a given system of mixed positive and negative constraints over an arbitrary
signature is satisfiable. The proof reduces the satisfiability problem to a
reachability problem involving Diophantine inequalities which may be of in-
dependent interest. We reduce the satisfiability problem to the Diophantine
problem and then show that the Diophantine problem is decidable. The
proof has a nonconstructive step involving Dickson’s Lemma and does not
give any complexity bounds.

The decidability result for systems of positive and negative set constraints
has recently been obtained independently by Gilleron, Tison, and Tommasi
[10] using automata-theoretic techniques.



2 Set Expressions and Set Constraints

There is some variation in the literature regarding the definition of set ex-
pressions and set constraints, depending on the operations allowed. The
following definition is taken from [1].

Let ¥ be a finite ranked alphabet consisting of symbols f, each with an
associated arity arity(f) € N. Symbols in ¥ of arity 0, 1, 2, and n are called
nullary, unary, binary, and n-ary, respectively. Nullary elements are often
called constants. The set of elements of ¥ of arity n is denoted ¥,,.

The set of ground terms over ¥ is denoted Ts. This is the smallest set such
that if ¢1,...,1, € Ty and f € ¥, then ft;...t, € Tx. If X = {z,y,...}
is a set of variables, then Ty (X) denotes the set of terms over ¥ and X,
considering the elements of X as symbols of arity 0.

Let B = (U, N, ~, 0, 1) be the usual signature of Boolean algebra. Other
Boolean operators such as & (symmetric difference) are defined from these
as usual. Let X + B denote the signature consisting of the disjoint union of
Y and B. A set expression over X is any element of Ty15(X). The following
is a typical set expression:

flg(zUy),~g(zNy)) U a

where f € Y9, g € ¥4, a € Yy, and z,y € X. We use I, F,... to denote set
expressions. A Boolean expression over X is any element of Tg(X).

A positive set constraint is a formal inclusion £ C F, where F and F
are set expressions. We also allow equational constraints £ = F', although
inclusions and equations are interdefinable: £ C F'is equivalent to FU F =
F,and F = F is equivalent to £ & F C 0. A negative set constraint is the
negation of a positive set constraint: £ £ For E # F.

We interpret set expressions over the powerset 27> of 1. This forms an
algebra of signature ¥ 4+ B where the Boolean operators have their usual set-

theoretic interpretations and elements f € Y, are interpreted as functions
f:(2T)" — 212 such that

A set assignment is a map

o: X — 9o



assigning a subset of Ty to each variable in X. Any set assignment o extends
uniquely to a (X 4+ B)-homomorphism

U:T2+B(X) — QTE

by induction on the structure of the set expression in the usual way. The set
assignment o satisfies the positive constraint £ C F if o(F) C o(F), and
satisfies the negative constraint £ £ F if o(F) £ o(F). We write o | ¢ if
the set assignment o satisfies the constraint ¢. A system & of set constraints
is satisfiable if there is a set assignment o that satisfies all the constraints in
S; in this case we write o = §. We write S | ¢ if all set assignments that
satisfy S also satisty . The satisfiability problem is to determine whether a
given finite system S of set constraints over X is satisfiable.

A truth assignment is a map u : X — 2 where 2 = {0,1} is the two-
element Boolean algebra. Any truth assignment u extends uniquely to a B-
homomorphism v : Tg(X) — 2 inductively according to the rules of Boolean
algebra. If X = {xy,...,2,,}, we use the notation

to denote the truth value of the Boolean formula B under the truth assign-
ment z; — a;, 1 <0 < m.

3 Expressibility

Systems of mixed positive and negative constraints are strictly more expres-
sive than systems of positive constraints alone. We will prove this as a
corollary of a general compactness theorem for positive constraints.

Theorem 3.1 (Compactness) A system S of positive set constraints is
satisfiable if and only if all finite subsets of S are satisfiable.

Proof. The implication (=) is straightforward. For the other direction,
suppose S 1is finitely satisfiable. We wish to construct a satisfying set as-
signment for §. By Zorn’s Lemma, there exists a maximal finitely satisfiable
set S of positive constraints containing S. One can show that for all ground
terms t and set expressions F, exactly one of the constraints ¢t C £, ¢t C~F



is in 3; if neither is in 3, then S is not maximal, and if both are, then S is
not finitely satisfiable. Now define a map

o(E) = {t|tC EeS}.

One can show by induction on the structure of set expressions that o is a
valid set assignment and satisfies §. For example, to show that

o(fEy ... E) = {fti...t, |t €o(l), 1<i<n},
note
teo(fEy...E,) < tC [E.. E,€S. (3.1)

Then ¢ must be of the form ft;...¢,, otherwise S would not be finitely
satisfiable. Now we use the fact that

to argue that t C fFE,...E, € S iff t; C Fk; € 3, 1 <@ < n, otherwise
S would not be finitely satisfiable. Combining this with (3.1) and using the
induction hypothesis, we get

tEO‘(fEl...En) < tZ'EO'(Ei), 1< <n.

To show that o satisfies all constraints of 3, let £ C F be any constraint
in §. For any term ¢,

teo(ll)) = tC FeS
= tCFeS (3.2)
= teo(l);

the reason for the implication (3.2) is that
({CE ECF = (CF,

and if t C F were not in 3’, then t C~F would be, and S would not be
finitely satisfiable. a



Corollary 3.2 Finite systems of mixed positive and negative constraints are
strictly more expressive than systems of positive constraints only.

Proof. Consider the single negative constraint x # 0 over any ranked
alphabet Y with at least one constant and at least one symbol of higher
arity. Solutions are o : {x} — Ty with o(x) nonempty. Let S be any set,
finite or infinite, of positive constraints over any set of variables X containing
x. We claim that it is not the case that the set

{o(z)|o: X = 1T%, 0 S}

is exactly the set of nonempty subsets of T%.
Consider the infinite set of positive constraints

S U {t Crx|tels}.

Either this is satisfiable or not. If so, then there is a satisfying set assignment
o. But t € o(~a) for all terms ¢, so o(z) = 0 and ¢ E S, and the claim is
verified. If not, then by compactness there is a finite subset F' C 1% such
that

S U {t Crx|teF)

is not satisfiable. Therefore there is no solution o of § with o(x) = {t},
where ¢ is any term not in F'. a

4 Set Constraints and Hypergraph Closure

In [1] it is shown how to transform a given system of positive set constraints
into an equivalent system in a special normal form. The transformation does
not significantly increase the size of the system. Applying this transformation
to a system containing negative constraints, we obtain the following normal
form. Let X be a set of variables, and for each [ € X, let

Zy = {10 <i < arity(f), = € X}

be a set of variables such that the sets X and Zy, f € X are pairwise disjoint.
A system of set constraints in normal form (with respect to X and the Z;)
consists of



e a positive constraint B =1, B € Tg(X)

e for each f € ¥, a positive constraint Cy =1, Cy € Tg(Zy)
e positive constraints
2, = fu N
o= f1o121...1
foreach f € ¥, andeach 1 <:<nand x € X
e a finite set of negative constraints D # 0, one for each element D of a

given finite set D C Tg(X).

The last component is absent with positive constraints only.
As described in [1], a system of set constraints S in normal form deter-
mines a hypergraph

H = (U, Ef| feX)

as follows. The vertex set U is the set of all truth assignments v : X — 2
satisfying B. FEach such truth assignment corresponds to a conjunction of
literals (also denoted w) in which each variable in X occurs exactly once,
either positively or negatively, such that « C B tautologically. The variable
x occurs positively iff u(z) = 1. We often call the elements of U atoms
because they represent atoms (minimal nonzero elements) of the free Boolean
algebra on generators X modulo B = 1, where “minimal” is in the sense of
the natural order on the Boolean algebra. It follows from elementary Boolean
algebra that each Boolean expression over X is equivalent modulo B =1 to
a disjunction of atoms.

For each f € X, the hyperedge relation Iy of H is defined to be the set
of all (n 4 1)-tuples (ug,...,u,) € U such that

Colzl = wi(z)) = 1. (4.3)

Intuitively, we think of the formula C'; as a Boolean-valued mapping on

(n + 1)-tuples of truth assignments to X. To emphasize this intuition, we
abbreviate the left hand side of (4.3) by

Crlug, ...,y .



Thus
(wgy ... un) € By iff Cylug,...,u,] =1.

In general, the size of H can be exponential in the size of S.

An (n + 1)-ary hyperedge relation Ey of the hypergraph H is said to be
closed if for each n-tuple wuy,...,u, € U", there exists ug € U such that
(wo, Uty ... u,) € Fy. In the case n = 0, this definition just says EyNU # 0.
Abusing notation, we can think of F; as a function

Ef:U" — 2V

where

Er(ur, ... u,) = {uo | (wo,ury. .. u,) € Ef} .

In this view, Ey is closed iff E¢(uq,...,u,) # 0 for each n-tuple uq,...,u, €
U"™. The hypergraph H is said to be closed if all its hyperedge relations are
closed.

The induced subhypergraph of H on vertices U’ C U is the hypergraph

H = (U, By | feX)

such that £} = Ey N (U')"*! for f € X,.

The hypergraph closure problem is the problem of determining whether a
given hypergraph H has a closed induced subhypergraph.

The following theorem was proved in [1].

Theorem 4.1 The hypergraph H corresponding to a system S of positive set
constraints has a closed induced subhypergraph if and only if S is satisfiable.

In brief, the proof of [1] establishes a one-to-one correspondence between
set assignments o satisfying § and maps 6 : Ty, — U such that for all f € X
and for all terms ft;...1,,

O(ftr.. 1) € Ep(0(th),....0(1)) . (4.4)

The set assignment corresponding to 6 is

o(z) = {t]00)(x) =1}

o(zl) = o(f1...121...1)
o(z),) = o(fl...1 Nx).

n



Thus deciding the satisfiability of & is tantamount to determining the
existence of a map 6 satisfying (4.4). In turn, this is equivalent to the
hypergraph closure problem: if such a 6 exists, then the induced subhy-
pergraph of H on the image of # is closed, and conversely, if there ex-
ists a closed induced subhypergraph on vertices U’ C U, then one can
inductively define 6(ft,...%,) to be the lexicographically first element of
UnNE0(ty),....0(t)).

In the presence of negative constraints D # 0, D € D, the map 6 must not
only satisfy (4.4), but must also take on some value u such that u(D) = 1 for
each D € D. Thus in the presence of negative constraints, the satisfiability
problem becomes:

Problem 4.2 Given a finite set D of Boolean formulas D € Tg(X) and a
hypergraph H = (U, E; | f € X) specified by B € Tg(X) and Cy € Tg(Zy),
f € X, determine whether there exists a map 0 : Ty — U satisfying (4.4)
such that

for each D € D there exists an atom u in §(1x) satisfying D, (4.5)

where §(Tx) denotes the image of Tx under the map 6.

5 A Reachability Problem

Our decision procedure first reduces the satisfiability problem for mixed sys-
tems of positive and negative set constraints to a certain reachability problem
involving Diophantine inequalities. In this section we define the reachability
problem and give the reduction.

First we describe the reachability problem on an intuitive level. Let X be
a set of variables ranging over N, the natural numbers. Suppose we are given
a finite system ' of formal inequalities p < ¢, where p and ¢ are polynomials
in the variables X with coefficients in N, such that

e cach left hand side p is a sum of variables in X
e cach variable occurs in at most one left hand side.

An assignment is a map u : X — N. FEach assignment u extends uniquely to
an evaluation morphism u : N[ X] — N which evaluates polynomials at u. A
variable z is said to be enabled under an assignment u if either



e the variable x does not occur on the left hand side of any constraint in

C'; or

e the unique constraint in (' in which = appears on the left hand side is
a strict inequality under the assignment .

Consider the following nondeterministic procedure. Starting with the
zero assignment, repeatedly choose a variable that is enabled and “fire” it by
incrementing it by 1. The reachability problem is to decide whether there
exists a sequence of legal firings that allows a particular distinguished variable
to be fired.

We give a more rigorous presentation of this problem below, then reduce
the satisfiability problem to this problem. In Section 6 we show that the
reachability problem is decidable.

5.1 Polynomials and Assignments

We use the term ring to mean commutative ring with unit and semiring to
mean commutative semiring with unit.

Let Z denote the ring of integers and N C 7Z the semiring of natural
numbers with the usual addition and multiplication operations. For X a
finite set of variables, let Z[X] denote the ring of polynomials in the variables
X with integer coefficients and N[X] C Z[X] the semiring of polynomials
with positive coefficients. The ring Z[X] is the free ring on generators X and
the semiring N[X] is the free semiring on generators X.

Any map u : X — R to a ring R extends uniquely to a ring homomor-
phism v : Z[X] — R. If S is a semiring and S C R, and if u(z) € S for
z € X, then the restriction of u : Z[X] — R to domain N[X] is a semiring
homomorphism N[X] — S, and is the unique semiring homomorphism ex-
tending v : X — S. We will concentrate on the case S = N and R = Z; we
call such a map an assignment. However, functional composition of polyno-
mials is effected by the same construction with S = N[X] and R = Z[X].

Intuitively, an assignment u : X — Nshould be regarded as an assignment
of values to the variables, and u(g) the result of evaluating the polynomial ¢
on those values.

The set of assignments, considered as functions of X, forms a commuta-
tive monoid V under pointwise addition v + v : @ — u(x) + v(z), 2 € X,

10



with identity element the zero assignment 0 : x — 0, + € X. The monoid V
is isomorphic to the commutative monoid NI¥! with ordinary addition under
the map v — (v(x) | x € X).

Care must be taken here: it is not the case that (v +v)(q) = u(q) + v(q)
for ¢ € Z[X] in general. The value of (u+v)(q) is governed by the definition
of the unique extension of assignments to homomorphisms. For example,

(ut+v)(z+1) = (utv)(z)+(utov)(l) = ulz)+ov(z)+1,
whereas
wz+1l)+o(e+1) = ul@)+o(x)+2.
However, we do have the following useful inequality:

Lemma 5.1 For any q € N[X],

(u+v)(q) = ulq)+v(g)—0(q)

with equality holding if q is affine (i.e., linear plus a constant term).

Proof. This can be proved by induction on the form of ¢q. Note that 0(q)
is the constant term of ¢. For € X, we have (u 4+ v)(x) = u(x) + v(x), and
for constants @ € N, (v +v)(a) = a = u(a) +v(a) — 0(a). For polynomials of
the form pg where neither p nor ¢ has a constant term,

(u+v)(pg) = (u+0)(p) (u+tv)iq)
> (u(p) +v(p)) - (ulq) + v(q))
> u(p)-ulg) +o(p) vig)
= u(pq) +v(pg) -

Finally, for polynomials of the form p + ¢,

(ut+o)(pt+q) = (uto)(p)+(u+v)(g)
u(p) +v(p) — 0(p) + ulq) + v(q) — 0(q)
= u(p+q)+vip+q) —0(p+q)

Y

with equality holding if p and ¢ are affine, by the induction hypothesis. O

11



In particular, (u + v)(q) = u(q) + v(q) if ¢ is linear with constant coefficient
0.

For v : X — N an assignment, let inc, : Z[X| — Z[X] be the unique ring
homomorphism such that

inc,(z) = z4v(z), z€X.

Informally, inc,(p) is the polynomial obtained from p by substituting «+v(x)
for x. Intuitively, inc, says, “Automatically increase the value of + € X
by v(z).” Restricted to domain N[X], inc, is a semiring homomorphism
N[X] — N[X], for which we use the same name.

The homomorphism inc, is the unique map such that the diagram

ZIX]~_u+v
incv\ \ Z (5.6)
Z[X] /u'

commutes, i.e. such that uwoinc, = u + v: for v € X,

(uto)(z) = u@)+o()
= u(x+v(x)) (5.7)
= wu(inc,(z)) .
Equation (5.7) holds since v(x) is a constant. Since the homomorphisms u+v
and v oinc, agree on X, they agree everywhere. The homomorphism inc,
is unique, since it is determined by its values on x € X, and the polynomial
inc,(z) is determined by its set of values u(inc,(z)) = u(x) + v(x).
By composing two copies of (5.6), one observes that the set

Z = {inc, | v an assignment }

forms a monoid under functional composition o with identity incg. Moreover,
7 is isomorphic to the monoid of assignments ¥V under the map v — inc,;
i.€.,

inc,,, = 1inc,oing, .

The map v +— inc, is bijective, since v can be recovered uniquely from inc,
by taking « = 0 in (5.7).

12



It follows immediately that inc, and inc, commute under composition,
i.e. Inc, o1lnc, = Inc, o Inc,.

One application of particular importance will be incrementing the value
of a variable x under an assignment u by 1. The new assignment is u 4 0,
where é,(x) = 1 and 6,(y) = 0 for y # x. The effect of applying incs, to a
polynomial ¢ is the same as substituting 4+ 1 for = in q.

Let X* denote the monoid of finite-length strings over X. This is the
free monoid on generators X. Elements of X™* will be denoted o, 7, p, ...

There is a unique monoid homomorphism [ ] : X™ — V extending the
map ¢ — 6,, © € X. The image of ¢ = x7---x, under this map is [o] =
S, bz, Applied to z, the function [o] gives the number of occurrences of =
in the string o. This is known in formal language theory as the Parikh map.
By a slight abuse of notation, we omit the braces [ | when using [o] as a
function; thus o(x) denotes the number of occurrences of x in o, and o(q) is
the value of the polynomial ¢ under the assignment [o].

5.2 Systems of Diophantine Inequalities

We consider finite systems ' of Diophantine inequalities of the form p < ¢
where p, ¢ € N[X] such that

e cach left hand side p is a sum of distinct variables; and

e cach variable in X occurs in at most one left hand side.

There is no restriction on the form of the right hand sides ¢ except that they
be in N[X]. The inequalities in C' are called (Diophantine) constraints. A
variable x € X is said to be constrained in C' if x occurs on the left hand side
of some constraint in C'. In this case we denote the unique such constraint
by con (x,C). If & does not occur on the left hand side of any constraint in
C, then z is said to be unconstrained in C', and we write con (z,C') = *.

We say that the assignment u satisfies the constraint p < ¢ if u(p) < u(q).
We say that u satisfies C' if u satisfies all the constraints in €. We say that
o € X™ satisfies a constraint or set of constraints if [o] does.

5.3 The Nonlinear Reachability Problem

Let €' be a system of Diophantine constraints as described above and let
o € X be a fixed distinguished variable.

13



Definition 5.2 Let 0 € X™. The constraint p < ¢ € C is said to be o-
enabled if o(p) < o(q); i.e., the inequality is strict under the assignment [o].
The variable € X is said to be (o, C)-enabled if either

e z is unconstrained in ', or

e & is constrained in €' and con (z, (') is o-enabled.

a

A tree, for our purposes, is a nonempty prefix-closed subset 7' of X™. The
root of T' is €. The parent of o # € is the longest proper prefix of 0. A leaf
of T'is an element of T' that is not a parent. A path of T' is a maximal subset
of T' linearly ordered by the prefix relation.

The system (' gives rise to a tree

Te = {o € X*|for all prefixes 7 of o, x is (7, (')-enabled.}

The tree T describes the possible legal sequences of firings that can take
place according to the informal description of the nonlinear reachability prob-
lem given in Section 5.

Definition 5.3 The Nonlinear Reachability Problem (NRP) is to determine,
given C', whether T contains an element o such that o(a¢) > 0. Such a o is
called a solution of the given instance C' of the NRP. O

In other words, determine whether there exists a legal firing sequence such
that the distinguished variable z¢ is fired.

Note that € satisfies C' since [¢] = 0, and if o satisfies C' and x is (o, C)-
enabled, then ox satisfies C, since [ox] = [o] + é,. It follows by induction
that o satisfies C' for every o € Tz, In other words, if o satisfies €' and z is
(0,C)-enabled, then we can fire # and the resulting assignment still satisfies
C'. The converse is false in general; i.e., it is possible that both o and oz
satisfy C' but x is not (o, C')-enabled: consider the constraint « < x.

5.4 Reduction of Set Constraint Satisfiability to Non-
linear Reachability

Theorem 5.4 The satisfiability problem for systems of mized positive and
negative set constraints reduces effectively to a finite disjunction of instances
of the Nonlinear Reachability Problem.

14



Proof. As argued in Section 4, the satisfiability problem for systems of
mixed positive and negative constraints is equivalent to Problem 4.2. Using
the notation of Problem 4.2, let U be the set of all subsets V' C U such that
for all D € D there exists a v € V with v(D) = 1. Consider a modified
version of Problem 4.2 in which condition (4.5) is replaced by the condition

V CoTy). (5.8)

Then Problem 4.2 is equivalent to the disjunction over all V' € U of instances
of the modified version. Furthermore, we will only need to construct a finite
partial approximation ¢’ to @ satisfying (4.4) and (5.8), provided

e the domain of & is closed downward under the subterm relation

o there is a closed induced subhypergraph of H containing the image of
.

The second property will allow 6" to be completed to a total function 8, as
described below.

Thus the problem now becomes:

Problem 5.5 Given a hypergraph H = (U, E; | f € ¥) specified by B and
Cy, [ €3, and a subset V. C U, determine whether there exist U' C U and
a partial map 0 : Ts — U’ with finite domain such that

o the induced subhypergraph on U’ is closed

o the domain of 0 is closed downward under the subterm relation
o 0 satisfies ({.4) on all terms in its domain

o V CH(ly) CU.

Consider the following nondeterministic procedure for constructing §. We
first guess the subset U’ containing the target set V and check that it is
closed. We start with # totally undefined. At any point, say we have a
partial  with finite domain closed downward under the subterm relation.
We nondeterministically pick some term ft;...t, such that the 0(¢;) are
defined but §(ft1...1,) is not yet defined, nondeterministically choose some
uwin Ef(0(t1),...,0(t,)) NU’, and assign 8(fty...1,) := u. We are always

15



able to continue, since U’ is closed. We halt successfully when and if all
elements of V' have been chosen as 6(t) for some t.

During this process, we use an integer variable @y fu, .. u,, n = arity(f),
to count the number of terms of the form ft;...¢, such that

e 9(t;) exists and equals u;, 1 <¢ < n, and
o O(fty1...1,) exists and equals u.

There is one such variable for each choice of f in X, uy,...,u, € U’ where
n = arity(f), and u € U' N Ey(uq, ..., uy).
Now for each f € ¥, and uy,...,u, € U’, consider the formal inequality

n M

Ly UL yereyUn S xui Ul yeees¥Um (59)
Z 7f7 El El H Z Z 2 El El
=1 m

wEU'NE (U1, . tn) : =0 wy,...,vym €U’
g€ Xm

where M is the maximum arity of symbols in ¥. This inequality has the
following significance. Given a partial map 6, let

B, = {t]0(t) exists and equals u}
Af7u17...7un = {ftl R 5 | t; € Bu“ 1< 7 < n} .

The value of the right hand side of (5.9) is the size of Ay, 4,, which is the
the size of the direct product B,, x --- x B,,. The value of the left hand
side of (5.9) is the size of the subset of Ay, . ., consisting of all elements ¢
for which 6(t) is defined. The inequality expresses the fact that 6 is defined
on the subterms of ¢ before being defined on ¢.

Consider the collection C' of all such inequalities (5.9). To say that a
variable @y f., .. 4, 15 enabled says that there exists a term ¢ with head sym-
bol f such that € is defined on the n immediate subterms and takes values
U1, ..., U, on those subterms respectively, but (¢) is not yet defined. To fire
T, fruy..un Says that we choose one such t and define 0() := w.

The process of defining 6 from the bottom up as described above corre-
sponds to a sequence of legal firings. Conversely, any legal sequence of firings
gives a corresponding sequence of definitions of § starting with the totally
undefined map.

We have thus reduced the satisfiability problem for systems of mixed
positive and negative set constraints to a disjunction of instances of the
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problem of determining, given C' and V', whether there is a finite sequence
of legal firings after which for all v € V' there are f and wy, ..., u, such that
the value of @, 54, 4, 1S nONZETO.

We reduce this problem to a finite disjunction of instances of the NRP
as follows. For each v € V', choose f and uq,...,u, and let y, = 24 50y -
Add the constraint

Lo S H Yo

veV

where z( is a new variable, and make zy the distinguished variable of the
NRP so obtained. The variable xy can be fired only after all the y, have
been fired. The problem above is equivalent to the disjunction of all such
instances of the NRP over all possible choices of the y,. O

6 Decidability of the Nonlinear Reachability
Problem

In this section we prove the decidability of the NRP. We will start by defining
several technical concepts on which our proof is based and deriving their
basic properties. The most important of these concepts are the notions of
exposed and inhibited variables and admissible strings. Intuitively, a variable
is exposed in a polynomial ¢ if incrementing it causes the value of ¢ to increase.
The intuition behind the definition inhibited variable is that it does no good
to increment such a variable under the current state of affairs. A string o is
admissible it it never increments any inhibited variable. We show that if there
exists a solution, then there exists an admissible one. The final argument
shows that if we construct the tree Tz breadth-first, ignoring nonadmissible
strings, then along any path we will eventually encounter either a solution, a
leaf with no admissible extensions, or a configuration that allows us to reduce
the size of the system.

6.1 Reset

We first describe a useful technical device called a reset. Intuitively, after
executing a firing sequence o that is legal with respect to a set of constraints
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C, we can construct a new instance of the problem inc,(C') (defined below)
which allows us to proceed as if we were starting afresh.

Definition 6.1 Let C' be a system of Diophantine constraints as defined in
Section 5.2. It o € T, we define T2 to be the subtree of T¢: rooted at o:

170 = {re X" |or ey}
This set is nonempty and prefix-closed, therefore a tree. a

Note that [o] alone determines whether a variable is o-enabled. It follows
inductively that if 0,7 € T and [o] = [7], then TZ = T(.

Let v be any assignment satisfying ', and let inc, be as in Section 5.1.
Let inc,(C') denote the system of constraints

inc,(C') = {p<inc,(¢)—v(p)|p<qeC}.

The right hand sides inc,(¢) —v(p) are in N[X], since the constant coefficient
of inc,(q) is at least v(p). This is a consequence of the fact that v satisfies

C:

v(p) < wv(g) = 0(inc,(q)) .

Moreover, x is constrained in C' iff it is constrained in inc,(C'), since all the
left hand sides are the same.

Note also that the constraint p < inc,(¢) — v(p) € inc,(C) is equivalent
to inc,(p) < inc,(g), since inc,(p) = p + v(p) for p a sum of variables.

Lemma 6.2 Let C be a set of constraints and o € T, Then

Tg — Tincg(O)-

Proof. Certainly € is a member of both trees. Moreover, for any constraint
p < ¢ € C, we have from (5.6) that

T(inc,(¢ —p)) = or(¢—p),

and con (z,C') = con(z,inc,(C)), thus = is (7,inc,(C))-enabled iff z is
(o7,C)-enabled. Thus the trees are identical. O
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6.2 Order

Our algorithm will construct part of the tree Ti>. During this construction,
we will want to keep track of the values of ¢ — p for p < ¢ € (', since this
information will help us determine when we have reached a situation in which
progress has been made. We define the order < for this purpose. We also
define the order <x, which is just the natural order on the set of assignments.

Definition 6.3 For ' a system of constraints and 0,7 € X, define
e o <xr7ifo(z)<7(x)foralxecX
e o <crifo(qg—p)<71(¢—p)forallp<qgeC
o 0 <xcr1ifbotho <x7Tand o <¢r
o 0 =¢ 7 il both o <p 7 and 7 <, 0.

a

It follows from Lemma 5.1 and the observation that 0(¢) is the constant
coefficient of ¢ that for ¢ € N[X], if 0 <x 7 then o(q) < 7(q).

Note that the relations <x and <¢ depend only on the assignments o]
and not on the strings o themselves. Note also that if o7 € T then o <x o7.
The same statement is not true in general for <¢; for example, take o = ¢,

r=x,and C = {a <y+1}.
Lemma 6.4 Letx € X, 0,7 € X* such that 0 <x 7, and p < ¢ € C. Then
or(q—p)—olg—p) < 7a(g—p)—7lg—p).

Proof. Using Lemma 5.1 and the facts that [ox] = [o]4+ 6, and p is linear,
it follows that the inequality in the statement of the Lemma is equivalent to

ox(q) —o(q) < 7a(q) —7(q) -
By (5.6), this is equivalent to

o(inc,(q) —¢) < 7(inc,(q) — ¢q) .

But this inequality follows from the assumptions of the Lemma, since 0 <x 7
and inc,(q) — ¢ € N[X]. O
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Lemma 6.5 Let 0,7 € T and x € X.
(i) If x is (0,C)-enabled and o <¢ 7, then = is (1,C)-enabled.
(ii) If o <x 7 then ox <x Ta.

(iii) If o <xc 7, then oo <x ¢ Tx.

Proof. The assertions (i) and (ii) are straightforward consequences of the
definitions. The assertion (iii) follows from (ii) and Lemma 6.4. O

6.3 Well Partial Orders and Dickson’s Lemma

A well partial order is a partially ordered set in which every infinite se-
quence has an infinite monotone nondecreasing subsequence. That is, for

every infinite sequence dg, dq, ..., there exist indices 7o < 727 < --- such that
diy <diy <---.

Lemma 6.6 (Dickson’s Lemma) The set N¥ of k-tuples of natural num-
bers under the componentwise order is a well partial order.

For a proof of Dickson’s Lemma, see [8].

We will use Dickson’s Lemma in the argument below to conclude that
along any infinite path in Ty, we must eventually have o <o o7r. Here we
are taking k = |C| and comparing the k-tuples (o(¢ —p) | p < g € C).

6.4 Exposed Variables

Intuitively, a variable = is o-exposed in a polynomial ¢ iff, after executing
o, firing ¢ would cause the value of ¢ to increase strictly. The following
definition and lemma make this intuition precise.

Definition 6.7 Let € X and o € T, We say that = is o-exposed in a
monomial ¢gz‘, where z does not appear in ¢, if 7 > 1 and o(q) # 0. For
q € N[X], we say that z is o-exposed in ¢ if = is o-exposed in some monomial
of ¢. We say that x is (o, C)-exposed if x is o-exposed in ¢ for some p < g € C.

O
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Lemma 6.8 Let € X, ¢ € N[X], and 0 € Ti;. Then z is o-exposed in q
iff o(q) < ox(q).

Proof. Since o and ox are homomorphisms and all values are nonnegative,
it suffices to show the result for monomials az’, a € N[X — {z}]. Since
s2(a) = o(a),

safer) — o(ar’) = o(a)(o(x)+1) —a@)) = 0,
with equality holding iff ¢ = 0 or o(a) = 0. O

The following lemma establishes some basic properties of the notion of
exposure and its relation to enabling and the relation <.

Lemma 6.9 Letx € X, p<qge(C, and o,7 € T¢.

(i) If x is o-exposed in ¢ and o <x T, then x is T-exposed in q (once
exposed, always exposed).

(ii) If x is o-exposed in q, then ox(q — p) > o(q — p); moreover, if x does
not occur in p, then the inequality is strict.

(tit) If x is not (o,C)-exposed, then ox <¢ 0.

(iv) The property of exposure in the right hand side of a constraint p < ¢ €
C' is preserved under a reset. Formally, x s or-exposed in q iff © s
T-exposed in inc,(q) — o(p).

(v) If o(x) > 0, x is not o-exposed in ¢, and x is oy-exposed in ¢, then y
is o-exposed in q.
Proof. Except for (iv) and (v), all statements are direct consequences of

Definition 6.7 and Lemma 6.8.
To prove (iv), we use (5.6) and Lemma 6.8:

ore(q) —o7(q) = T(inc,(q)) —7(inc,(q))
= ta(inc,(q) — o(p)) — 7(inc,(q) — a(p))
since o(p) is a constant.

For (v), there must be a monomial az’ of ¢, ¢ > 1, a € N[X — {z}],
such that o(a) = 0 and oy(a) > 0. Then y # x, since & does not appear
in a. Since o(z) = oy(x) > 0, we have o(az') = 0 and oy(az’) > 0, thus
oy(q) > o(q). By Lemma 6.8, y is o-exposed in ¢. O
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6.5 Inhibited Variables and Admissible Strings

The technical notion of an inhibited variable captures the idea that, under
the current state of affairs, firing the variable makes no progress toward a
solution. Intuitively, firing a variable makes progress only if the variable is
exposed, so that firing it might enable another variable, or has value 0, so
that firing it might contribute to the exposure of another variable.

We will formalize and prove a result that says intuitively that any string
o can be simulated by another string 7 in which no inhibited variable is ever
fired. Such a string 7 is called admissible.

Definition 6.10 Let C' be a system of Diophantine constraints and o € T¢.
We say @ € X is (o0, C)-inhibited if

e z is unconstrained in C',

e 1 is not (o, C)-exposed, and

e o(x)>0.
We say that ¢ € X* is C-admissible if 0 € T, and for all prefixes 7y of o,
y is not (7, C')-inhibited. O

Lemma 6.11 (i) If y is (o,C)-inhibited, then o(p) = oy(p) and o(q) =
oy(q) for all constraints p < q € C. In particular, oy =¢ o.

(i) If y,z are (o,C)-inhibited, then z is (oy,C)-inhibited. (This also ap-
plies to the case y = z.)

Proof.

(i) Since y is unconstrained, it does not appear in p, therefore o(p) =
oy(p). Since y is not o-exposed in ¢, we have o(q) = oy(q) by Lemma
6.8.

(ii) Surely oy(z) > o(z) > 0 and z is still unconstrained in C'. To show
that z is not (oy,C)-exposed, consider an arbitrary term ay‘z’ of ¢,
where p < g € C, 57 > 1, and a € NX —{y,z}]. (If y = z, take
i = 0.) We want to show that oy(ay’) = 0. Since z is (o, C')-inhibited,
we have o(ay’) = 0. Since y is (o, C')-inhibited, we have o(y) > 0, thus
o(a) = 0. Since y does not occur in a, we have oy(a) = o(inc,(a)) = 0,
therefore oy(ay’) = oy(a) - oy(y’) = 0.
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The following two lemmas imply that we can restrict our attention to
admissible strings when looking for solutions.

Lemma 6.12 For every o € T, there exvists a C-admissible string v € T¢
such that o <q 1.

Proof. Let us call a prefix oy of o bad if y is (o1, C)-inhibited. The
proof is by lexicographical induction on the length of o; among strings of
the same length, the number of bad prefixes; and among strings of the same
length and same number of bad prefixes, the length of the longest bad prefix
(“longer” is “smaller” in the induction). If o is null or has no bad prefix,
there is nothing to prove. If the longest bad prefix oyy is o itself, then since
y is not (o, C)-exposed, we have by Lemma 6.9(iii) that o1y <¢ oy, and
we are done by the induction hypothesis. Otherwise, there exists a z and oy
such that o = o1yz03. Now z is not (o1y, C')-inhibited, by the maximality
of o1y. Neither is it (o1, C)-inhibited, by Lemma 6.11(ii). Moreover, z is
(01,C)-enabled, by Lemma 6.11(i) and the fact that it is (o1y,C)-enabled,
and y is (012, C')-enabled since it is unconstrained. Therefore oyzyoy € T is
of the same length as o, but with either strictly fewer bad prefixes (if oqzy
is not a bad prefix) or the same number of bad prefixes and a strictly longer
maximal one (if it is). The result follows from the induction hypothesis. O

Lemma 6.13 If a given instance of the NRP with constraints C' has a solu-
tion, then it has an admissible solution.

Proof. lLet o be a solution of minimal length. Then o is of the form
Tao and 7(xg) = 0. By Lemma 6.12, there exists an admissible p such that
T <¢ p. If p(xg) > 0, then p is the desired admissible solution. Otherwise,
xo is (p,C')-enabled (since 7 <¢ p and ¢ is (7, (')-enabled) and not (p,C)-
inhibited (since p(x¢) = 0), therefore pxq is the desired admissible solution.

O

6.6 The Graphs H(o,C)

We now describe a family of graphs H(o,C) defined in terms of a given
system C of constraints and ¢ € Ty. The purpose of these graphs is to
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keep track of the exposed variables and how firing them can enable other
constraints, so that we can monitor the progress of a firing sequence.

Formally, H (o, () is a finite labeled directed graph with vertices C'U {x}.
For each p < ¢ € €' and x € X such that = is g-exposed in ¢, there is an
edge labeled x from con (z,C') to p < ¢. (Recall that con (x, (') is * if z is
unconstrained in C', otherwise con (x, (') is some constraint p < ¢ € C.) Self-
loops are allowed in this definition: if = is constrained in C' by the constraint
p < g and x is o-exposed in ¢, H(o, (') has a self-loop labeled x on the vertex
pP=q.

It follows from Lemma 6.9(i) that if o <x 7 then H(o, () is a subgraph
of H(r,C). In particular, H(o,C') is a subgraph of H(cxz,C). Moreover, it
follows from Lemma 6.9(ii) that if o € T, @ is (o, C')-enabled, and H(o, )
contains an edge labeled z into p < ¢, then p < ¢ is ox-enabled.

We can think of H(o, () as a net in which tokens are passed around as
variables are fired. Firing a variable = causes at least one token to be passed
from con (z,C) along all edges labeled x to other constraints in which x is
exposed, enabling those constraints. The number of tokens that are passed
depends on the values of o(¢ — p) for p < ¢ € C, but by Lemma 6.9(ii), it is
always at least one.

Lemma 6.14 Let o1 € T such that o <o or. Assume further that T
contains at least one variable constrained in C. Then H(ot,C) contains
either a cycle all of whose labels are in 7 or an edge out of * whose label is
in T.

Proof. Let = be constrained in C' by the constraint p < ¢, and suppose
that « occurs in 7 at least once. Then o(p) < o7(p). Also, o(¢—p) < o7(g—
p), since 0 <¢ or. Combining these inequalities, we obtain o(q) < o7(q).
By Lemma 6.8, there must be a y € X and a prefix py of 7 such that y is
op-exposed in ¢. Then H(op,C) contains an edge labeled y from con (y, ()
to con (x,C'). Since H(op, (') is a subgraph of H(or, ('), this edge also exists
in H(or,C).

Now either y is unconstrained in C', in which case con (y,C') = * and we
are done, or we can continue in the same fashion with y. Following these
edges backwards, we must eventually either arrive at * or cycle. O
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6.7 Equivalence of Problem Instances

In our decidability proof, we will show that as a computation o unfolds, the
graph H(o, (') develops in certain ways that occasionally allow us to simplify
C', for instance by discarding a constraint or a variable. In such cases we will
construct a new system D that is structurally simpler than €' but equivalent
in the sense that D has a solution iff C' does. The following definition gives
the formal notion of equivalence of systems that we have in mind.

Definition 6.15 Let C, D be systems of constraints. We write C' < D if for
every o € Ty there is a 7 € Tp such that o <x 7. We write ' = D and say
that C' and D are equivalent if both €' < D and D < (. O

It follows immediately from this definition that it ¢' = D, then C has a
solution if and only if D does.

6.8 Proof of Decidability

Let C' be a system of Diophantine constraints. The following three lemmas,
Lemmas 6.16, 6.17, and 6.18, identify three situations that will allow a struc-
tural simplification of the system C. We suggest that the reader skip the
proofs of these lemmas on first reading and go directly to Theorem 6.19.

Lemma 6.16 Let p < g € C. If C has an unconstrained variable 0-exposed
in g, then

¢ = C—{p<q}.

Proof. Let " = C — {p < ¢q}. The easier direction is C' < C'. If y
is (o, C')-enabled then y is also (o, C’)-enabled, since y is either constrained
by the same constraint in €' and C’ or unconstrained in C’. Tt follows that
Te C Teo.

For the other direction, suppose o € T, Let  be a C-unconstrained
variable 0-exposed in ¢q. Let n = || and let

T = XTx--TO = T 0.
—_———

n

Then ¢ <y 7. We show that 7 € Ty. Certainly 2" € T¢, since x is
unconstrained. It remains to show that ¢ € T%". Resetting and using Lemma
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6.2, it suffices to show o € Tiye (cy- Thus we need to show that for any
prefix py of o, y is (p,inc(C'))-enabled. This follows from the fact that y
is (p, C')-enabled: for any f < g € (",

p(incn(g — f)) = pa"(g) — p(f) since x does not occur in f
= plg—1),

and for the constraint p < ¢,

p(inc,»(qg —p)) = pax™(q) — p(p) since x does not occur in p
> plg)+n—p(p) by Lemmas 6.8 and 6.9(i)
> plg)+n—|p| since p is linear
> 0 since |p| < n.
O

Lemmas 6.17 and 6.18 deal with two different kinds of cycles that can
arise in H(o,C'). The first is used when the cycle is a self-loop on a single
vertex, and the latter is used when the cycle has at least two vertices.

Lemma 6.17 If H(e,C) has a self-loop labeled x on vertex p < ¢, and if x
is (0,C)-enabled, let

o {(C—{pﬁq})U{p—xéq—x}a if ¢ -« € N[X]
N C—{p<q}, otherwise.

Then C = (.

Proof. Since x is 0-exposed in ¢, by Definition 6.7 that ¢ has a term of
the form ax* where a,k € N and a,k > 1; i.e., ¢ can be written ¢’ + z*
with ¢/ € N[X]. If the first alternative in the definition of C” holds, i.e. if
¢ has a linear term ax, then we can take & = 1. If the second alternative
holds, we can take k& > 1. Let us call these two cases (i) and (ii), respectively.
Either way, since con (x, (') is p < ¢,  also occurs in p, and since p is linear,
p=p + x for some p’ € N[X].

First we show C' < (7. This is immediate for case (ii) as in Lemma
6.16. For case (i), note that ¢ — p = ¢’ — p’. Thus for any ¢ € X*, any
variable y € X — {x} is (0, C)-enabled iff it is (o, C’)-enabled, and since x is
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unconstrained in C’; x is always (o, C’)-enabled. It follows that T C Tev,
thus C < (.

Now we show C" < C for both cases. Let o € Ter, and let n = max{2, |o|}.
Let o’ be obtained by deleting all occurrences of x from o, and let 7 = 2"¢”.
Then o <y 7. We claim that 7 € Tix. Since x is 0-exposed in ¢ and (0,C)-
enabled, by Lemmas 6.8 and 6.9(i), 2" € T¢, so we need only prove that
o' € TZ". Resetting by Lemma 6.2, it suffices to prove that o’ € Tine,n(c)-
We need to show that for any prefix p'y of o', y is (p’,inc,»(C'))-enabled.
This will follow from the fact that y is (p, C’)-enabled, where py is the unique
prefix of o such that p'y is py with all occurrences of x removed (note y # «,
since it occurs in o’).

Suppose p has m occurrences of x. For any f <g¢g € C — {p < q},

plinc(g—f)) = pa"(g)— p(f) since x does not occur in f
= px""(g) = p(f)

plg) = p(f)

= plg—1)-

For the argument involving constraint p < ¢, we split on cases. In case (i),

Y

pllinen(q—p)) = pa"(¢ —p)
pla™(q') — p(p') since x does not occur in p’

n—m !

px" " (q') — p(p')
p(q) — p(p)
plqd =7') .

Y

In case (ii),

p'(incn(q — p))

=9
83
—~
=
X
|
b\
—~
’E\
~—
|
=9
83
—~
=
~—

VoIV IV IV
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Lemma 6.18 [f there is a cycle in H(e,C) on vertices

D = {p0§q07---7pn—1 SQn—l} 9

then C' = ", where
n—1
po= > pi
=0
n—1
¢ = >
i=0

¢ = (C-D)U ).

Proof. First we show C' < (7. As above, it suffices to show that for any
assignment o € T and variable y, if y is (0, C)-enabled then y is (o, C')-
enabled. If con (y,C) ¢ D, then con (y,C’) = con (y,C), thus y is (o, C)-
enabled iff it is (o, C’)-enabled. Otherwise, if con(y,C) € D, say pr < g
for some 0 < k& < n — 1, then con (y,C") is p’ < ¢'. Since o € T, we have
o(p;) < o(g), 0 <i < n—1. Moreover, since y is (o, (C)-enabled, we have
o(pr) < o(qx). Thus o(p') < o(¢'), so y is (0, C’)-enabled.

Now we show €’ < (. Assume without loss of generality that the vertices
in D occur on the cycle of H(e,C') in the order py < qo, ..., Prn—1 < ¢u-1 and
that y; is the label on the edge from p; < ¢; to pir1 < g1, 0 <2 <n—1
(arithmetic on subscripts is modulo n).

The intuitive idea behind the following argument is that if some y; is
enabled, then firing y; enables y;11, and so on; thus we can imagine a token
being passed around the cycle D, enabling whichever p; < ¢; € D is needed.

Let ¢ € Ter. We construct by induction on the length of o a string
o' € Te such that ¢ <x ¢ o’. Define ¢ = e. Now suppose oy € T and o
has been defined. By the induction hypothesis,

(1) g SX,C’ 0'/
(i) o' € Te.

Since y is (o, C’)-enabled, by (i) we have that y is (¢/, C’)-enabled.
If con(y,C)isin C'— D or con(y,C) = *, let (oy)’

(oy), and since con (y,C') = con(y,C"), y is (¢',C)-

oy <¢r o'y by Lemma 6.5(iii).

= o'y. Then oy <x
enabled. Moreover,

28



If con(y,C) is in D, say pr < qx, then con (y,C") is p’ < ¢'. By (i) and
(i),

o) < ),
o(p) < o(¢), 0<i<n—1.

It follows that there must exist an 7z, 0 < < n — 1, such that

o'(pi) < o'(q) - (6.10)
Define
(oy) = o'yiyinyira- - yr1y
(the sequence ¢,¢ + 1,..., k — 1 wraps modulo n if necessary). Then oy <y

(oy). By (6.10), y; is (¢/,C')-enabled. Since each y; is 0-exposed in ¢;41,

0 <j < n-—1,it follows inductively that each y; is (¢'y;yiy1---yj-1,C)-

enabled, and y is (0'y;yiq1 - - - yx—1, C')-enabled. Thus o'y yi41 - yr—1y € Te.
It remains to show that oy < (oy)'. For p < ¢in C — D,

(oy)'(a—p) = (oy)(q) = (oy)'(p)
y(q) = (ay)'(p)

= oy(q)— oy(p) since the y; do not appear in p
Yl

V4
q

q

—p) -

>Q

For p/ < ¢/, since each y; is 0-exposed in ¢;41 and hence also in ¢/, by Lemma

6.9(ii) we have

U/yiyi+1yi+2 s yk-ﬂJ(q/ - p’)

(cy)'(¢' = p')

> oYirrYirz o yr—y(d = p')

> o'y yr-ay(d — 1)

>

> o'yld =) (6.11)
By Lemma 6.5(iii) and the induction hypothesis, (6.11) is bounded below by
oylq' —p'). O

Theorem 6.19 [t is decidable whether a given instance C of the NRP has
a solution.
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Proof. We proceed by induction on the complexity of C'. If C' = §, then
all variables are unconstrained and therefore enabled, thus we can increment
xo immediately. Otherwise assume C' is nonempty.

We identify a number of cases below, each of which allows us to reduce
the size of C' in some respect (either fewer constraints or fewer constrained
variables). In each case, the induction hypothesis gives a procedure for de-
ciding whether the smaller system has a solution, and this will determine
whether C' has a solution.

Case 1 ( contains an unconstrained (0, C')-exposed variable. By Lemma
6.16, C' is equivalent to a system with fewer constraints.

Case 2 H(e,C) has a self-loop labeled x, and = is (0,C')-enabled. By
Lemma 6.17, C' is equivalent to a system with either fewer constrained vari-
ables or fewer constraints.

Case 3 H(e,C) has a cycle on a set of at least two vertices. By Lemma
6.18, C is equivalent to a system with fewer constraints.

Case 4 None of Cases 1, 2, or 3 apply. In this case, consider the set 7™
consisting of all admissible strings in Tz. The set T2™ contains the empty
string € and is closed under the prefix relation, so it is a tree. For any
o€ T3 or € Ta™ iff 2 is (0, C)-enabled but not (o, C)-inhibited. By
Lemma 6.13, C has a solution if and only if it has one in 73™,

Now let TY, be the subtree of T3Y™ obtained by deleting all strings con-
taining a proper prefix of the form o7, where |7| > |X| and ¢ <¢ o7. The
tree T/, has no infinite paths, since Dickson’s Lemma (Lemma 6.6) says that
any infinite path must contain vg,v{,v,,... such that each v; is a proper
prefix of vi41 and each v; <¢ viqq; thus vy <¢ vix|41 and the difference in
their lengths is at least |X| + 1, so this infinite path would be pruned in
the construction of T/,.. By Koénig’s Lemma, T/, is finite, since it is finitely
branching. The tree T{, can be constructed effectively since the conditions
for extending a branch and for pruning are effective.

Since any extension in T of a solution is a solution, C' has a solution iff
it has a solution of the form o7 € TAM™ for some leaf o of Tf.. The leaves o
are of two types, not necessarily mutually exclusive:
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(i) All (o,C)-enabled variables are (o, C)-inhibited. Leaves of this form

are leaves of T3 since they have no C-admissible extensions.

(ii) The leaf o is of the form 7p, where 7 <¢ 7p and |p| > |X|. Leaves
of this form are not necessarily leaves of T3 but are obtained by
pruning 729 in the construction of T7,.

If o(xg) > 0 or ¢ is (0,C)-enabled for some leaf o, we are done: in the
former case, o is a solution, and in the latter, oz is a solution. Otherwise,
there is no admissible solution extending a leaf of the form (i). Thus we are
left with leaves of the form (ii). For each such leaf 7p, where 7 <¢ 7p and
|p| > | X|, since 7p is C-admissible, for every prefix va of p, either

e 1z is constrained in C',
e 1 is (Tv,()-exposed, or
e Tu(x)=0.

Suppose p contains a variable constrained in C'. By Lemma 6.14, H(7p,C)
contains either an edge out of * or a cycle whose labels are in p. If the former,
we revert to Case 1 after resetting. If the latter and the cycle is of length at
least two, we revert to Case 3 after resetting. Otherwise there is a self-loop
in H(rp,C) with label @, where va is a prefix of p. If that self-loop already
exists in H(7v,C'), then since x is Tv-enabled, we revert to Case 2 after
resetting. Otherwise, let vy be the shortest prefix of p such that H(rvy,C)
contains that self-loop. By Lemma 6.9(v), x is Tvy-enabled, and we revert
to Case 2 after resetting.

If all variables occurring in p are unconstrained in C' and at least one is
(tv, C')-exposed for some prefix v of p, then H(7v, (') has an edge out of *,
and we revert to Case 1 after resetting.

Finally, if all variables occurring in p are unconstrained in €' and not
(1p, C)-exposed, we must have Tv(x) = 0 for every prefix vz of p, otherwise
the string would not be admissible. But since |p| > | X]|, at least one variable
must be fired twice, so this situation cannot occur. a
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