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Strong Concatenable Processes� An Approach to
the Category of Petri Net Computations

Vladimiro Sassone

BRICS
� � Computer Science Department

University of Aarhus� Denmark

Abstract� We introduce the notion of strong concatenable process for Petri
nets as the least re�nement of non�sequential �concatenable�processes which can
be expressed abstractly by means of a functor Q� � from the category of Petri
nets to an appropriate category of symmetric strict monoidal categories with free
non�commutative monoids of objects� in the precise sense that� for each net N �
the strong concatenable processes of N are isomorphic to the arrows of Q�N ��
This yields an axiomatization of the causal behaviour of Petri nets in terms of
symmetric strict monoidal categories�

In addition� we identify a core�ection right adjoint to Q� � and we characterize
its replete image in the category of symmetric monoidal categories� thus yielding
an abstract description of the category of net computations�

Introduction

Petri nets� introduced by C�A� Petri in ���� �see also ��	� 
���� are unanimously
considered among the most representative models for concurrency� since they
are a fairly simple and natural model of concurrent and distributed computation�
However� Petri nets are� in our opinion� not yet completely understood�

Among the semantics proposed for Petri nets� a relevant role is played by the
various notions of process ��
� 
� 
�� whose merit is to provide a faithful account
of computations involving many di�erent transitions and of the causal connec�
tions between the events occurring in a computation� However� process models�
at least in their standard forms� fail to bring to the foreground the algebraic
structure of nets and their computations� Since such a structure is relevant
to the understanding of nets� they fail� in our view� to give a comprehensive
account of net behaviours�

The idea of looking at nets as algebraic structures �
�� ��� 
�� 
�� �� �� ����
has been given an original interpretation by considering monoidal categories
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Strong Concatenable Processes

as a suitable framework ����� In fact� in ���� �� the authors have shown that
the semantics of Petri nets can be understood in terms of symmetric monoidal
categories�where objects are states� arrows processes� and the tensor product
and the arrow composition model respectively the operations of parallel and
sequential composition of processes� In particular� ��� introduced concatenable
processes�the slightest variation of Goltz�Reisig processes �
� on which sequen�
tial composition can be de�ned�and structured concatenable processes of a
Petri net N as the arrows of the symmetric strict monoidal category P�N ��
This yields an axiomatization of the causal behaviour of a net as an essentially
algebraic theory and thus provides a uni�cation of the process and the algebraic
view of net computations�

However� also this construction is somehow unsatisfactory� since it is not
functorial� More strongly� as illustrated in Section 
� given a morphism between
two nets�which is nothing but a simulation�it may not be possible to identify
a corresponding monoidal functor between the respective categories of compu�
tations� This situation� besides showing that our understanding of the structure
of nets is still incomplete� has also other drawbacks� the most relevant of which
is probably that it prevents us to identify the category �of the categories� of net
computations� i�e�� to axiomatize the behaviour of Petri nets �in the large��

This paper presents an analysis of this issue and a solution based on the
new notion of strong concatenable processes� introduced in Section �� These
are a slight re�nement of concatenable processes which are still rather close to
the standard notion of process� namely� they are Goltz�Reisig processes whose
minimal and maximal places are linearly ordered� In the paper we show that�
similarly to concatenable processes� the strong concatenable processes of N can
be axiomatized as an algebraic construction on N by providing an abstract sym�
metric strict monoidal category Q�N � whose arrows are isomorphic to the strong
concatenable processes of N � The category Q�N � constitutes our proposed ax�
iomatization of the behaviour of N in categorical terms�

The key feature of Q� � is that� di�erently from P� �� it associates to net N
a monoidal category whose objects form a free� non�commutative monoid� The
reason for renouncing to commutativity� a choice that at �rst glance may seem
odd� is explained in Section 
� where the following negative result is proved�
under very reasonable assumptions� no mapping from nets to symmetric strict
monoidal categories whose monoids of objects are commutative can be lifted to
a functor� since there exists a morphism of nets which cannot be extended to
a monoidal functor between the appropriate categories� Thus� abandoning the
commutativity of the monoids of objects seems to be a price that has to be paid
in order to obtain a functorial version of the algebraic semantics of nets given
in ���� Then� bringing such a condition at the level of nets� instead of taking
multisets of places as sources and targets of computations� we consider strings
of places� a choice which leads us directly to strong concatenable processes�

�



Strong Concatenable Processes

Correspondingly� a transition of N is represented by many arrows in Q�N ��
one for each di�erent �linearization� of its pre�set and its post�set� However�
such arrows are �linked� to each other by a �naturality� condition� in the precise
sense that� when collected together� they form a natural transformation between
appropriate functors� This naturality axiom is the second relevant feature ofQ� �
and it is actually the key to keep the computational interpretation of the new
category Q�N � surprisingly close to the category P�N � of concatenable processes�

Concerning functoriality� in Section � we introduce TSSMC
�� a category of

symmetric strict monoidal categories with free non�commutative monoids of ob�
jects� called symmetric Petri categories� whose arrows are equivalence classes of
those symmetric strict monoidal functors which preserve some further structure
related to nets� and we show that Q� � is a functor from Petri� a rich category
of nets introduced in ����� to TSSMC

�� In addition� we prove that Q� � has
a core�ection right adjoint N � ��TSSMC

� � Petri� This implies� by general
reasons� that Petri is equivalent to an easily identi�ed core�ective subcategory
of TSSMC

�� namely the replete image ofQ� �� The category TSSMC
�� together

with the functors Q� � and N � �� constitutes our proposed axiomatization ��in
the large�� of Petri net computations in categorical terms�

Although this contribution is a �rst attempt towards the aims of a functorial
algebraic semantics for nets and of an axiomatization of net behaviours �in the
large�� we think that the results given here help to deepen the understanding
of the subject� We remark that the re�nement of concatenable processes given
by strong concatenable processes is similar and comparable to the one which
brought from Goltz�Reisig processes to them� Clearly� the passage here is less
obvious on intuitive grounds� since it brings us to model Petri nets� which after
all are just multiset rewriting systems� using strings� It is important� however�
to remind that the result of Section 
 makes strong concatenable processes
�unavoidable� if a functorial construction is desired� In addition� from the
categorical viewpoint� our approach is quite natural� since it is the one which
simply observes that multisets are equivalence classes of strings and then takes
into account the categorical paradigm� following which one always prefer to
add suitable isomorphisms between objects rather than considering explicitly
equivalence classes of them�

Some preliminary related results appear also in �
���

Notation� Given a categoryC� we denote the composition of arrows inC by the usual symbol
� and follow the usual right to left order� The identity of c � C is written as idc� However�
we make the following exception� When dealing with a category in which arrows are meant to
represent computations� in order to stress this� we write arrow composition from left to right�
i�e�� in the diagrammatic order� and we denote it by � � Moreover� when no ambiguity arises�
idc is simply written as c� We shall use SSMC to indicate the category of �small� symmetric
strict monoidal categories and symmetric strict monoidal functors� Since the monoidal cat�
egories considered in the paper are always strict monoidal and �non�strictly� symmetric� we
may sometimes omit to mention all the attributes without causing misunderstandings�
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Strong Concatenable Processes

The reader is referred to ��
� for the categorical concepts used in the paper� The basic
de�nitions concerning monads and symmetric strict monoidal categories are summarized� re�
spectively� in Appendices A and B�

Acknowledgements� I wish to thank Jos�e Meseguer and Ugo Montanari to whom I am
indebted for several discussions on the subject� Thanks to Mogens Nielsen� Claudio Hermida
and Jaap Van Oosten for their valuable comments on an early version of this paper�

� Concatenable Processes

In this section we recall the notion of concatenable process ��� and we give the
de�nitions which will be used in the rest of the paper�

Notation� Given a function � from a set S to the set of natural numbers �� its support is
the subset of S consisting of those elements s such that ��s� � �� We denote by S� the set
of �nite multisets of S� i�e�� the set of all functions from S to � with �nite support� We shall
represent a �nite multiset � � S� as a formal sum

L
i�I

nisi where fsi j i � Ig is the support

of � and ni � ��si�� i�e�� as a sum whose summands are all nonzero�

Remark� We recall that S� is a commutative monoid� actually the free commutative monoid
on S� under the operation of multiset union with unit element the empty multiset �� Clearly�
� can be extended to an endofunctor � �� on Set� the category of �small� sets and func�
tions� by taking� for each f �S� � S�� the monoid homomorphism f��S�� � S

�
� de�ned

by f��
L

i�I
nisi� �

L
i�I

nif�si�� This gives a monad �see Appendix A� �� ��� �� �� on

Set� where �S�S � S� is the function which maps s � S to the singleton multiset s� and
�S � �S��� � S� is the monoid homomorphism which sends a multiset of multisets � to the
multiset

L
� obtained as union of the elements of �� Of course� the � ���algebras are exactly

the commutative monoids and the � ���homomorphisms are the monoid homomorphisms�

Definition ��� �Petri Nets�
A Place	Transition Petri �PT� net is a structure N � ���N � �

�
N �TN � S�N ��

where TN is a set of transitions� SN is a set of places� ��N and ��N are functions�

A morphism of PT nets from N� to N� is a pair hf� gi� where f �TN� � TN� is a
function and g�S�N�

� S�N�
is amonoid homomorphism� such that hf� gi respects

source and target� i�e�� they make the two rectangles obtained by choosing the
upper or lower arrows in the parallel pairs of the diagram below commute�

TN� S�N�

TN� S�N�

��N� ��

��N�

��

f

��
g

����N� ��

��N�

��

This� with the obvious componentwise composition of morphisms� de�nes the
category Petri of PT nets�
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�� Concatenable Processes

This describes a Petri net precisely as a graph whose set of nodes is a free
commutative monoid� i�e�� the set of �nite multisets on a given set of places�
The source and target of an arc� here called a transition� are meant to represent�
respectively� themarkings consumed and produced by the �ring of the transition�

Definition ��� �Process Nets and Processes�
A process net is a �nite� acyclic net � such that

i� for all t � T�� ����t� and ����t� are non�empty sets �as opposed to possibly
empty multisets��

ii� for all pairs t� �� t� � T�� �i��t�� � �i��t�� � �� for i � �� ��

Given N � Petri� a process of N is a morphism �� � � N � where � is a
process net and � is a net morphism which maps places to places �as opposed
to morphisms which map places to markings��

For the purpose of de�ning processes at the right level of abstraction� we
need to make some identi�cations� Of course� we shall consider as identical pro�
cess nets which are isomorphic and� consequently� we shall make no distinction
between two processes �� � � N and ��� �� � N for which there exists an
isomorphism �� �� �� such that �� �� � �� Observe that the constraint on �
is relevant� since we certainly want process morphisms to map a single compo�
nent of the process net to a single component of N � Otherwise said� process
are nothing but labellings of �� which in turn is essentially a partial ordering of
transitions� with an appropriate element of N �

The equivalence of the following de�nition of P�N � with the original one
in ��� has been proved in �

��

Definition ���
The category P�N � is the monoidal quotient �see Appendix B� of F�N �� the
free symmetric strict monoidal category generated by N � modulo the axioms

�a�b � ida�b if a� b � SN and a �� b�

t� �id � �a�a � id � � t if t � TN and a � SN �

�id � �a�a � id�� t � t if t � TN and a � SN �

where � is the symmetry isomorphism of F�N ��

The arrows of P�N � have a nice computational interpretation in terms of a
slight re�nement of the classical notion of process consisting of a suitable layer
of labels to the minimal and to the maximal places of process nets in order to
distinguish among di�erent istances of a place in a process of N �

�



Strong Concatenable Processes

Definition ��� � f�indexed orderings�
Given the sets A and B together with a function f �A � B� an f�indexed
ordering of A is a family f�b j b � Bg of bijections �b� f���b�� f�� � � � � jf���b�jg�
f���b� being as usual the set fa � A j f�a� � bg�

Informally� an f�indexed ordering of A is a family of total orderings� one
for each of the partitions of A induced by f � In the following� given a process
net �� let min��� and max��� denote� respectively� its minimal and maximal
elements� which must be places�

Definition ��� �Concatenable Processes�
A concatenable process of N is a triple CP � ��� �� L� where

� �� �� N is a process of N �

� � is a ��indexed ordering of min����

� L is a ��indexed ordering of max����

Two concatenable processes CP and CP � are isomorphic if their underlying
processes are isomorphic via an isomorphism � which respects the ordering�
i�e�� such that ��

�����a�����a�� � ���a��a� and L�
�����b�����b�� � L��b��b� for all

a � min��� and b � max���� As in the case of processes� we identify isomorphic
concatenable processes�

Clearly� it is possible to de�ne an operation of concatenation of concaten�
able processes� whence their name� We can associate a source and a target in
S�N to any concatenable process CP � namely by taking the image through � of�
respectively� min��� and max���� where � is the underlying process net of CP �
Then� the concatenation of concatenable processes ���� �� � N� ��� L���u� v
and ���� �� � N� ��� L��� v � w is realized by merging the maximal places of
�� and the minimal places of �� using both the values of �� and �� and the
labellings to match those places one�to�one� Under this operation of sequential
composition� the concatenable processes of N form a category CP�N � with iden�
tities those processes consisting only of places� which therefore are both minimal
and maximal� and such that � � L�

Concatenable processes admit also a tensor operation � which can be though
of as the operation of putting two processes side by side and reorganizing the
labelling from left to right� The concatenable processes consisting only of places
are the symmetries which make CP�N � into a symmetric strict monoidal cate�
gory� this clari�es that the role of the symmetries in a process is that of regulating
the �ow of causality between subprocesses by permuting tokens appropriately�

Proposition ���
CP�N � and P�N � are isomorphic�
Proof
 See ���� X
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�� A Negative Result about Functoriality

� A Negative Result about Functoriality

Among the primary requirements usually imposed on constructions like P� �
there is that of functoriality� One of the main reasons supporting the choice
of a categorical treatment of semantics is the need of specifying further the
structure of the systems under analysis by giving explicitly the morphisms or�
in other words� by specifying how the given systems simulate each other� This�
in turn� means to choose precisely what the relevant �behavioural� structure of
the systems is� It is therefore clear that such morphisms should be preserved
at the semantic level� In our case� the functoriality of P� � means that if N
can be mapped to N � via a morphism hf� gi� which by the very de�nition of
net morphisms implies that N can be simulated by N �� there must be a way�
namely P�hf� gi�� to see the processes of N as processes of N ��

Unfortunately� this is not possible for P� �� More precisely� although it might
be possible to extend P� � to net morphisms� it is de�nitely not possible to
associates to a net morphism a symmetric monoidal functor� i�e�� a functor
which respects the monoidal structure of processes� which is certainly what is
to be done in our case� The problem� as illustrated by the following example� is
due to the particular shape of the symmetries of P�N � which� on the other hand�
is exactly what makes P�N � capture quite precisely the notion of processes of N �

Example ���
Consider the nets N and �N in the picture below� where we use the standard
graphical representation of nets in which circles are places� boxes are transitions�
and sources and targets are directed arcs� We have SN � fa�� a�� b�� b�g and TN
consisting of the transitions t�� a� � b� and t�� a� � b�� while S �N � f�a��b���b�g
and T �N contains �t�� �a� �b� and �t�� �a� �b��

a� a� �a

t� t� �t� �t�

b� b� �b� �b�

��
��

��

��
��

��

��
��������
������� �

� �
��

� �
� �

��

� �
� �

��

� �
� �

����
��

��
��

��
��

��
��

The morphism hf� gi� where f�ti� � �ti� g�ai� � �a and g�bi� � �bi� i � �� �� cannot
be extended to a monoidal functor P�hf� gi��P�N � � P� �N �� Suppose in fact
that F is such an extension� Then� it must be F�t�� t�� � F�t���F�t�� � �t���t��
Moreover� since t� � t� � t� � t�� we would have

�t� � �t� � F�t� � t�� � �t� � �t��

�



Strong Concatenable Processes

But this is impossible� since the leftmost and the rightmost terms of the chain
of equalities above are di	erent arrows of P� �N ��

The problem can be explained formally by saying that the category of sym�
metries sitting inside P�N �� say SymN � is not free� and this is why we cannot
�nd an extension to P�N � of the morphism hf� gi�N � �N 	� P� �N �� In fact�
De�nition ��� states that SymN is generated modulo the axiom

�a�b � ida�b if a �� b in SN �

Clearly� it is exactly this conditional axiom with a negative premise which pre�
vents SymN from being free� To make things worse� the theory illustrated
extensively in ��� 
�� makes it clear that� in order for P�N � to have the interest�
ing computational meaning it has� such an axiom is strictly needed� Moreover�
it is easy to observe that as soon as one imposes further axioms on P�N � which
guarantee to get a functor� one annihilates all the symmetries and� therefore�
destroys the ability of P�N � of dealing with causality�

There does not seem to be an easy and satisfactory solution to the functo�
riality problem for P� �� A possible solution which comes naturally to the mind
would consist of looking for a non strict monoidal functor� i�e�� a functor F
together with a natural transformation ��F �x�� � F �x��

�� F �x� � x�� which
substitutes the equality required by strict functors� However� simple examples
show that this idea does not lead anywhere� at least unless P� � is heavily mod�
i�ed also on the objects� since it is not possible to choose the components of �
�naturally��

The following proposition shows that the problem illustrated in Example 
��
is serious� actually deep enough to prevent any naive modi�cation of P� � to be
functorial�

Proposition ���
Let X � � be a function which assigns to each net N a symmetric strict monoidal
category whose monoid of objects is commutative and contains SN � the places
of N � Suppose further that the group of symmetries at any object of X �N �
is �nite� Finally� suppose that there exists a net N with a place a � N such
that� for each n 
 �� we have that the component at �na� na� of the symmetry
isomorphism of X �N � is not an identity�

Then� there exists a Petri net morphism hf� gi�N� � N� which cannot be ex�
tended to a symmetric strict monoidal functor from X �N�� to X �N���

Proof
 The key of the proof is the following observation about monoidal categories�
Let C be a symmetric strict monoidal category with symmetry isomorphism c�
Then� for all a � C and for all n � �� we have �ca��n���a	

n 
 id� where� in order
to simplify the notation� throughout the proof we write na and cnx�y to denote�

	



�� A Negative Result about Functoriality

respectively� the tensor product of n copies of a and the sequential composition
of n copies of cx�y� To show that the above identity holds� consider for i 
 �� � � � � n
the functor Fi from C

n� the cartesian product of n copies of C� to C de�ned as
follows�

�x�� � � � � xn	 xi � � �xn � � �xi��

�y�� � � � � yn	 yi � � � yn � � � yi��

� ��

�f������fn�

��
�fi���fnf����fi���

��� ��

CC
n Fi ��

Moreover� consider the natural transformations �i�Fi
�� Fi��� i 
 �� � � � � n� � and

�n�Fn � F� whose components at x�� � � � � xn are� respectively� cxi�xi�� ���xnx����xi��

and cxn �x� ���xn�� � Finally� let � be the sequential composition of ��� � � � � �n� Then�
� is a natural transformation x� � � �xn

�� x� � � �xn built up only from components
of c� From the Kelly
MacLane coherence theorem ���� ��� �see also Appendix B	 we
know that there is at most one natural transformation consting only of identities
and components of c� and since the identity of F� is one such transformation�
we have that � 
 idF� � Then� instantiating each variable with a� we obtain
�ca��n���a	

n 
 idna� as required�

It may be worth observing that the above property holds also for n 
 �� provided
we de�ne �a 
 e and c�x�y 
 id�

It is now easy to conclude the proof� Let N � be a net such that� for each n� we have
c�na�na �
 id � where c� is the symmetry natural isomorphism of X �N ��� and let N
be a net with two distinct places a and b and with no transitions� and let c� be
the symmetry natural isomorphism of X �N �� Since the group of symmetries at ab
is �nite� there is a cyclic subgroup generated by ca�b� i�e�� there exists k � �� the
order of the subgroup� such that �ca�b	

k 
 id and �ca�b	
n �
 id for any � � n � k�

Let p be any prime number greater than k� We claim that the Petri net morphism

hf� gi�N � N �� where f is the �unique	 function � � TN � and g is the monoid

homomorphism such that g�b	 
 �p� �	a and g is the identity on the other places

of N � cannot be extended to a symmetric strict monoidal functor F�X �N �� X �N ���

In fact� from the �rst part of this proof� we know that �ca��p���a	
p 
 �� Moreover�

by general results of group theory� the order of the cyclic subgroup generated by

ca��p���a must be a factor of p and then� in this case� � or p� In other words� either

ca��p���a 
 id or �ca��p���a	
n �
 id for all � � n � p� If the second situation occurs�

then we have F��ca�b	
k	 
 id and also F��ca�b	

k	 
 �c�F�a��F�b�	
k 
 �c�a��p���a	

k �
 id�

i�e�� F cannot exists� Thus� in order to conclude the proof� we only need to show

that� in our hypothesis� c�a��p���a �
 id� For this� it is enough to observe that

c�a��p���a 
 id implies c�na�na 
 id for n 
 p � �� which is against our hypothesis

on N �� In fact� c�ka��p���a 
 ac��k���a��p���a � c�a��p���ana� whence it follows directly

that c��p���a��p���a 
 id� X

The contents of the previous proposition may be restated in di�erent terms
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by saying that in the free category of symmetries on a commutative monoidM
there are in�nite homsets� This means that dropping axiom �a�b � ida�b in
the de�nition of P�N � causes an �explosion� of the structure of the symmetries�
More precisely� if we omit that axiom� we can �nd some object u such that
the group of symmetries on u has in�nite order� Of course� since symmetries
represent causality� and as such they are integral parts of processes� this makes
the category so obtained completely useless for the kind of application we have
in mind�

The hypothesis of Proposition 
�
 can be certainly weakened in several ways�
at the expense of complicating the proof� However� we avoided such complica�
tions� since the conditions stated above are already weak enough if one wants to
regard X �N � as a category of processes of N � In fact� since places represent the
atomic bricks on which states are built� one needs to consider them in X �N ��
since symmetries regulate the ��ow of causality�� there will be cna�na di�erent
from the identity� and since in a computation we can have only �nitely many
�causality streams�� there will not be categories with in�nite groups of sym�
metries� Therefore� the given result means that there is no chance to have a
functorial construction of the processes of N on the line of P�N � whose objects
form a commutative monoid�

� The Category Q�N �

In this section we introduce the symmetric strict monoidal category Q�N � which
is meant to represent the processes of the Petri net N and which supports
a functorial construction� This will allow us to characterize the category of
categories of net behaviours� i�e�� to axiomatize the behaviour of nets �in the
large�� In fact� although ���� and ��� clarify how the behaviour of a single net
can be captured by a symmetric strict monoidal category� because of the missing
functoriality of P� �� nothing is said about what the semantic domain for Petri
net behaviours should be�

Proposition 
�
 shows that� necessarily� there is a price to be payed� Here�
the idea is to renounce to the commutativity of the monoids of objects� More
precisely� we build the arrows of Q�N � starting from the Sym�

N � the �free�
category of symmetries over the set SN of places of N � This makes transitions
have many corresponding arrows in Q�N �� however� all the arrows of Q�N �
which di�er only by being instances of the same transition are linked together
by a �naturality� condition whose role is to guarantee that Q�N � remains close
to the category P�N � of concatenable processes� Namely� the arrows of Q�N �
correspond to Goltz�Reisig processes in which the minimal and the maximal
places are totally ordered�

��
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Similarly to SymN � Sym
�
N serves a double purpose� From the categorical

point of view it provides the symmetry isomorphism of a symmetric monoidal
category� while from the semantics viewpoint it regulates the �ow of causal
dependency� It should be noticed� however� that here the point of view is strictly
more concrete than in the case of SymN � In fact� generally speaking� a symmetry
in Q�N � must be interpreted as a �reorganization� of the tokens in the global
state of the net which� when reorganizing multiple instances of the same place�
as a by�product� yields a exchange of causes exactly as SymN does for P�N ��
Notation� In the following� we use S� to indicate the set of ��nite� strings on the set S�
more commonly denoted by S�� In the same way� we use � to denote string concatenation�
while � denotes the empty string� As usual� for u � S�� we indicate by juj the lenght of u
and by ui its i�th element�

Remark� The construction of S�� which under the operation of string concatenation is the
free monoid on S� admits a corresponding monad �� ��� �� �� on Set� In this case � �� is the
functor which associates to each set S the monoid S� and to each f �S� � S� the monoid
homomorphism f��S�� � S

�
� such that f��u� �

N
i
f�ui�� �S�S � S� is the injection

of S in S�� and �S�S
��

� S� is the obvious monoid homomorphism mapping a string of
elements of S� to the concatenation of its component strings� Recall that the algebras for
such a monad are the monoids and the homomorphisms are the monoids homomorphisms�

Remark� A permutation of n elements is an automorphism of the segment of the �rst n

positive natural numbers� The set ��n� of the n� permutations of n elements is a group under
the operation of composition of functions� The neutral element of ��n� is the identity function
on f�� � � � � ng and the inverse of 	 is its inverse function 	��� The group ��n� is called the
symmetric group on n elements� or of order n�� Due to its triviality� the notion of permutation
of zero elements is never considered� However� to simplify notations� we shall assume that the
empty function���� � is the �unique� permutation of zero elements�

A permutation 	 leaves i �xed if 	�i� � i� A transposition is a permutation which leaves
all the elements �xed but two� say i and j� which are exchanged� We shall denote such a 	

simply as �i j�� Transpositions are a relevant kind of permutations� since each permutation
can be written as a composition of transpositions� Moreover� since any transposition �i j� can
be expressed as the composition of �swappings� of adjacent integers� we have that the n � �
transpositions on adjacent integers �� 
�� �
 ��� � � � �n � � n� generate the group ��n�� In
view of this fact� in the following we shall use the term transposition to indicate exclusively
permutations of the kind �i i� ���

Definition ��� �The Category of Permutations�
Let S be a set� The category Sym�

S has for objects the strings S� and an arrow
p�u� v if and only if p � ��juj�� i�e�� p is a permutation of juj elements� and v
is the string obtained by applying the permutation p to u� i�e�� vp�i� � ui�

Arrows composition in Sym�
S is obviously given by the product of permutations�

i�e�� their composition as functions� here and in the following denoted by � �

Graphically� we represent an arrow p�u � v in Sym�
S by drawing a line

between ui and vp�i�� as for example in Figure ��

Of course� it is possible to de�ne a tensor product on Sym�
S together with

interchange permutations which make it a symmetric monoidal category �see
also Figure �� where � is the permutation �� 
���

��
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Figure �� The monoidal structure of Sym�
S

Definition ��� �Operations on Permutations�
Given the permutations p�u� v and p��u� � v� in Sym�

S their parallel compo�
sition p� p��u� u� � v � v� is the permutation such that

i 	�

�
p�i� if � � i 
 juj
p��i � juj� � juj if juj � i 
 juj� ju�j

Given � � ��m� and m strings ui in S�� i � �� � � � �m� the interchange permu�
tation ��u�� � � � � um� is the permutation p such that

p�i� � i�
h��X
j��

jujj�
X

��j����h�

jujj if
h��X
j��

jujj � i 

hX

j��

jujj�

Clearly� � so de�ned is associative and furthermore a simple calculation
shows that it satis�es the equations

�p� p�� � �q � q�� � �p � q�� �p� � q�� and idu � idv � idu�v�

It follows easily that the mapping �� Sym�
S � Sym�

S � Sym�
S de�ned by

�u� u�� u� v

�v� v�� v � v�

� ��

�p�p��

��
�p�p��

��� ��

Sym�
SSym�

S � Sym�
S

� ��

is a functor making Sym�
S a strict monoidal category� Finally� the symmetric

structure of Sym�
S is made explicit through the interchange permutations�

��
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Proposition ��� � Sym�
S is symmetric strict monoidal�

For any set S� the family � � f��u� v�gu�v�Sym�
S
provides the symmetry isomor�

phism endowing Sym�
S with a symmetric monoidal structure�

Proof
 Recall that ��u� v	 is the interchange permutation de�ned from the permu

tation � 
 �� �	 in ���	� It is just a matter of performing a few calculations to
verify that� for any p� u � u� and p�� v � v�� the equations de�ning a symmetry
isomorphism i�e�� equations ��	 in Appendix B which in the current case reduce to

���u� v	�w	 � �v� ��u�w		 
 ��u� v �w	

��u� v	 � �p� � p	 
 �p� p
�	 � ��u�� v�	

��u� v	 � ��v� u	 
 u� v

hold� Observe that� in fact�

��u� v	�i	 


�
i� jvj if � � i � juj

i� juj if juj � i � juj� jvj

which shows the second equation� Moreover� it implies that ���u� v	 � �p��p		�i	 is
equal to p�i	 � jvj if � � i � juj� and is equal to p��i� juj	 if juj � i � juj� jvj� On
the other hand� we have that ��p�p�	 � ��u�� v�		�i	 is equal to p�i	�jv�j 
 p�i	�jvj
if � � i � juj and p��i� juj	� juj� juj 
 p��i� juj	 if juj � i � juj� jvj� Therefore�
the �rst equation holds� Concerning the last equation� we have that

���u� v	�w	�i	 


���
�	

i� jvj if � � i � juj

i� juj if juj � i � juj� jvj

i if juj� jvj � i � juj� jvj� jwj

and� since

�v � ��u�w		�i	 


�
i if � � i � jvj
i� jwj if jvj � i � jvj� juj
i� juj if jvj� juj � i � jvj� juj� jwj�

we have the required equality� X

The previous proposition justi�es the use of the name symmetries for the
arrows of the groupoid Sym�

S � The key point about Sym
�
S is that it is a free

construction� In order to show it� we need the following lemma ���� ���

Lemma ���
The symmetric group ��n� is �isomorphic to� the group G freely generated from
the set f�i j � 
 i � ng� modulo the equations �see also Figure 
�

�i�i	��i � �i	��i�i	��

�i�j � �j�i if ji� jj 
 �� ���

�i�i � e�

where e is the neutral element of the group�

��



Strong Concatenable Processes

� 
 �

� 
 �

� 
 �

� 
 �

�����

	 

� ������	 

� ������

�����
�����

	 

� ������	 

� �

�

� 
 �

� 
 �

� 
 �

� 
 �

	 

� ������

�����
�����

	 

� ������	 

� ������

�����	 

� �

� 
 � �

� 
 � �

� 
 � �

�����

	 

� ������	 

� ������

�����	 

� �

�

� 
 � �

� 
 � �

� 
 � �

	 

� ������

�����
�����

	 

� ������	 

� �

� 


� 


� 


�����

	 

� ������

�����

	 

� ������	 

� �

�

� 


� 


	 

� �

	 

� �

Figure 
� Some instances of the axioms of permutations

Proof
 The proof is by induction on n� First of all� observe that for n 
 � and
n 
 � the set of generators is empty and the equations are vacuous� Hence� G is
the free group on the empty set of generators� i�e�� the group consisting only of the
neutral element� which is �isomorphic to	 ���	 and ���	�

Suppose now that the thesis holds for n � � and let us prove it for n � �� It
is immediately evident that the permutations of n � � elements are generated by
the n transpositions� i�e�� by those pemutations which leave all the elements �xed
but two adjacent ones� which are exchanged� Moreover� the transpositions satisfy
axioms ��	� as a quick look to Figure � shows� It follows that the order of G must
not be smaller than the order of ��n � �	� i�e�� jGj � �n � �	�� where j j is the
cardinality function� Moreover� there is a group homomorphism h�G � ��n � �	
which sends �i to the transposition �i i��	� and since the transpositions generate
��n��	� we have that h is surjective� Thus� in order to conclude the proof� we only
need to show that h injective� which clearly follows if we show that jGj 
 �n��	��

Let H be the subgroup of G generated by f��� ��� � � � � �n��g and consider the n��
cosets H�� � � � � Hn��� where Hi 
 H�n � � � �i 
 fx�n � � � �i j x � Hg� � � i � n� and
Hn�� 
 H� Then� for � � i � n� � and � � j � n� consider Hi�j� The following
cases are possible�

i � j � �� By the second of axioms ��	� �j is permutable with each of �i� � � � � �n
and� therefore�

Hi�j 
 H�n � � � �i�j

��
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Figure �� The parallel composition of permutations


 H�j�n � � � �i


 H�n � � � �i 
 Hi�

i � j� Again by the second of ��	� �j is permutable with each of �i� � � � � �j�� and�
therefore�

Hi�j 
 H�n � � � �i�j


 H�n � � � �j���j�j���j � � � �i


 H�n � � � �j���j���j�j�� � � � �i by the �rst of ��	


 H�j���n � � � �j���j�j�� � � � �i by the second of ��	


 H�n � � � �i 
 Hi�

i 
 j� Then Hj�j 
 H�n � � � �j�j which� by the third of ��	� is H�n � � � �j�� 
 Hj���

i 
 j � �� Then Hj���j 
 H�n � � � �j���j 
 Hj�

In other words� for � � j � n� the sets H� � � � Hn�� remain all unchanged by post


multiplication by �j� except for Hj and Hj�� which are exchanged with each other�

Now� since each element of G is a product �i� � � � �ik � it belongs to H�i� � � � �ik � i�e��
to one of the Hi� Hence� G is contained in the union of the Hi�s� It follows

immediately that� if H is �nite� we have that jGj � �n � �	 � jHj� However� by

induction hypothesis� H is �isomorphic to	 ��n	� and thus H is �nite and jHj 
 n��

Therefore� jGj � �n� �	�� which concludes the proof� X

We are now ready to show the announced fact about Sym�
S �

Proposition ���
Let S be a set� let C be a symmetric strict monoidal category and let F be a
function from S to the set of objects of C� Then� there exists a unique symmetric
strict monoidal functor F� Sym�

S � C extending F �
Proof
 Let � be the tensor product� e the unit object� and ��x��x�

�
�� x��x� the

symmetry natural isomorphism in C� There is of course a choice forced upon us
for the behaviour of F on objects� the monoidal extension of F � i�e�� the mapping

F��	 
 e and F�u� v	 
 F�u	� F�v	 for u� v � S
�
�

��
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Concerning morphisms� we know by Lemma ��� that each arrow in Sym�
S can be

written as a composition of transpositions� Moreover� observe that the transposi

tion �i i��	�u�a�b�v� u�b�a�v� where u is a string of length i��� coincides
in Sym�

S with the tensor of ��a� b	� a�b� b�a with appropriate identities� namely
�u� ��a� b	� v	� Thus� recalling also that �� ��a� b	 
 ��a� b	 
 ��a� b	 � �� the
following de�nition de�nes F on all the arrows of Sym�

S�

F�u� ��a� b	 � v	 
 F�u	� �F�a��F�b� � F�v	 a� b � S� u� v � S
��

F�p � p�	 
 F�p�	 	 F�p	� ��	

Observe that both the equations ��	 are forced by the de�nition of symmetric strict
monoidal functor �see axioms ��	 in Appendix B	� It follows that the extension
of F to a strict monoidal functor� if it exists� is unique and must be given by ��	�
Then� in order to conclude the proof� we only need to show that F is well
de�ned
and that it is a symmetric monoidal functor�

We �rst show that F is well
de�ned� For this� it is enough to show that the
axioms ��	 of Lemma ��� are preserved by F� In fact� this implies that applying
the de�nition of F to two di�erent factorizations of p actually yields the same result�
i�e�� it implies that F is well
de�ned� Concering axioms ��	� the third one matches
directly with the fact that the inverse of �F�a��F�b� is �F�b��F�a�� while the second
one follows easily from the fact that � is a functor� In fact� in the hypothesis� we
have �i 
 �u� ��a� b	� v� c�d�w	 and �j 
 �u� b�a� v���c� d	�w	� Thus�
we have that

F��i � �j	 
 �F�u	� F�b	� F�a	� F�v	� �F�c��F�d� � F�w		 	

�F�u	� �F�a��F�b� � F�v	� F�c	� F�d	� F�w		


 �F�u	� �F�a��F�b� � F�v	� �F�c��F�d� � F�w		


 �F�u	� �F�a��F�b� � F�v	� F�d	� F�c	� F�w		 	

�F�u	� F�a	� F�b	� F�v	� �F�c��F�d� � F�w		


 F��j � �i	

Finally� concerning the �rst axiom� we have

F��i � �i�� � �i	 
 �F�u	� �F�b��F�c� � F�a	� F�v		 	

�F�u	� F�b	� �F�a��F�c� � F�v		 	

�F�u	� �F�a��F�b� � F�c	� F�v		


 �F�u	� F�b	� �F�a��F�c� � F�v		 	

�F�u	� �F�a��F�b��F�c� � F�v		


 �F�u	� �F�a��F�c��F�b� � F�v		 	

�F�u	� F�a	� �F�b��F�c� � F�v		


 �F�u	� F�c	� �F�a��F�b� � F�v		 	

�F�u	� �F�a��F�c� � F�b	� F�v		 	

�F�u	� F�a	� �F�b��F�c� � F�v		


 F��i�� � �i � �i��	

��
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where the third equation is by naturality of � and the others follow from the
coherence axiom for ��

Let us prove that F is a symmetric monoidal functor� Since C is a symmetric strict
monoidal category� we have �e�x 
 �e�e�x 
 �e�x � e 	 e� �e�x 
 �e�x 	 �e�x� and
since �e�x is invertible� it follows that �e�x 
 idx� Of course� the same holds for
every symmetric strict monoidal category� Therefore� since F�idu	 
 F����� u		
and �e�F�u� 
 idF�u�� we have that F�idu	 
 idF�u�� This� together with the second
of the equations ��	� means that F is a functor�

Observe further that for permutations p� u � v and p��u� � v� in Sym�
S we have

p� p� 
 �p� u�	 � �v � p�	 �see also Figure �	� Then� we have that

F�p� p
�	 
 F�v� p

�	 	 F�p� u
�	 
 �F�v	� F�p�		 	 �F�p	� F�u�		 
 F�p	� F�p�	�

i�e�� F is a strict monoidal functor�

Finally� thanks to the coherence axiom for symmetries� i�e�� the �rst of axioms ��	��

we have that ��a� b � c	 
 ���a� b	 � c	 � �b � ��a� c		 and thus� by the aforesaid
axiom and by the coherence of ��

F���a� b � c		 
 F����a� b	� c	 � �b� ��a� c			


 �F �b	� �F �a��F �c�	 	 ��F �a��F �b� � F �c		


 �F �a��F �b��F �c� 
 �F�a��F�b�c��

Now� by considering the inverses of the arrows appearing in the coherence axiom�

we have that ��a � b� c	 
 �a � ��b� c		 � ���a� c	 � b	 and that �F�a�b��F�c� 


��F�a��F�c��F�b		 	 �F�a	��F�b��F�c�	� Therefore� it follows easily by induction that

F���u� v		 
 �F�u��F�v�� Then� F maps each component of the symmetry natural

isomorphism of Sym�
S to the corresponding component of �� i�e�� F is a symmetric

monoidal functor� X

This result proves that the mapping S 	� Sym�
S extends to a left adjoint

functor from Set to SSMC� the standard category of symmetric strict monoidal
�small� categories and symmetric strict monoidal functors� Equivalently� we can
say that Sym�

S is the free symmetric strict monoidal category on the set S�

Corollary ���
Let S be the symmetric strict monoidal category whose monoid of objects is S��
the free monoid on S� and whose arrows are freely generated from a family of
arrows cu�v�u�v � v�u� for u� v � S�� subject to the axioms ��� in Appendix B
�with � properly replaced by c�� Then S and Sym�

S are isomorphic�

�Strictly speaking� the �rst and the third of ��� are the coherence axioms for symmetries�
However� by abuse of language� we shall often refer to the �rst of ��� as the coherence axiom�

��
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Proof
 By de�nition� S is the free monoidal category on S� In fact� since the

axioms ��	 which de�ne S hold in all symmetric strict monoidal categories� it is

immediate to verify that S enjoys the universal property stated in Proposition ����

Then� exploiting in the usual way the uniqueness condition in this universal prop


erty� we have that the functors F�Sym�
S � S and G�S � Sym�

S which are the

identity on the objects and which map� respectively� ��u� v	 to cu�v and cu�v to

��u� v	 are inverse to each other� X

Now� we can de�ne of Q�N �� In the following� given a string u � S�� let
M�u� denote the multiset corresponding to u� and given a net N let Sym�

N

denote the category Sym�
SN
�

Definition ��	 �The category Q�N ��
Let N be a net in Petri� Then Q�N � is the category which includes Sym�

N as
subcategory and has as additional arrows those de�ned by the following inference
rules�

t�M�u��M�v� in TN
tu�v�u� v in Q�N �


�u� v and ��u� � v� in Q�N �

� ��u� u� � v � v� in Q�N �


�u� v and �� v � w in Q�N �

 � ��u� w in Q�N �

plus the axioms expressing the fact that Q�N � is a symmetric strict monoidal
category with symmetry isomorphism � �see Appendix B�� and the following
axiom involving transitions and symmetries�

p � tu��v� � tu�v � q where p�u� u� in Sym�
N and q� v� v� in Sym�

N � � �

It is worth noticing that axiom � � entails� as a particular case� the last two
axioms in the De�nition ��� of P�N �� called axioms �!� in ���� whenever they
make sense in Q�N �� In fact� axiom � � asserts that any diagram of the kind

u u�

v v�

p ��

tu�v

��
tu��v�

��
q

��

commutes� Now� �xed u � u� and v � v�� choosing p � id � respectively q � id �
one obtains the �rst� respectively the second of axioms �!�� Of course� when
v �� v� one rather obtains tu�v � q � tu�v�� and when u �� u� one has p � tu�v � tu��v�

Exploiting Corollary ���� it is easy to prove that the following is an alterna�
tive description of Q�N ��

�	
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Proposition ��

Q�N � is �isomorphic to� the category C whose objects are the elements of S�N
and whose arrows are generated by the inference rules

u � S�N
idu�u� u in C

u� v in S�N
cu�v�u� v � v � u in C

t�M�u��M�v� in TN
tu�v�u� v in C


�u� v and ��u� � v� in C

� ��u � u� � v � v� in C


�u� v and �� v � w in C

� ��u� w in C

modulo the axioms expressing that C is a strict monoidal category� namely�


� idv � 
 � idu�
 and �
� ��� � � 
� ��� ���

�
� �� � � � 
� �� � �� and id� � 
 � 
 � 
� id�� ���

idu � idv � idu�v and �
� 
��� �� � ��� � �
� ��� �
�� ����

the latter whenever the righthand term is de�ned� the following axioms corre�
sponding to axioms ��� expressing that C is symmetric with symmetry isomor�
phism c

cu�v�w � �cu�v � idw�� �idv � cu�w��

cu�u�� �� � 
� � �
� ��� cv�v� for 
�u� v� ��u� � v�� ���

cu�v� cv�u � idu�v�

and the following axiom corresponding to axiom � �

p � tu��v� � q � tu�v where p�u� u� and q� v� � v are symmetries�

Proof
 It is enough to observe that the de�nition of C is simply the de�nition of

Q�N � enriched with the axiomatization of Sym�
N provided by Corollary ���� X

The previous proposition is relevant� since it gives a completely axiomatic
description of the structure of Q�N � which can be useful in many contexts� In
the following� we shall at each time use as de�nitions of Q�N � and Sym�

N those
versions best suited for the actual application�

We show next that Q� � can be lifted to a functor from the category of
Petri nets to an appropriate category of symmetric strict monoidal categories
and �equivalence classes of� symmetric strict monoidal functors� The issue is
not very di"cult now� since most of the work has been done in the proof of
Proposition ���� We start by showing that Q� � is a pseudo�functor from Petri

to SSMC in the sense made explicit by Proposition ��
 below� More precisely�
we extend Q� � to a mapping from Petri net morphisms to symmetric strict

�
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monoidal functors in such a way that identities are preserved strictly� while net
morphism composition is preserved only up to a monoidal natural isomorphism�
In order to do that� the key point which is still missing is to be able to embed N
into Q�N �� To achieve this� we assume for each set S a function inS �S

� � S�

such that M�inS���� � �� i�e�� a function which chooses a �linearization� of
each � � S�� Clearly� corresponding to di�erent choices of the functions inS �
we shall have a di�erent�yet equivalent�extension of Q� � to a pseudo�functor�
We would like to remark that this apparent arbitrariness of Q� � is not at all a
concern� since the relevant fact we want to show now is that such an extension
exists� Moreover� we shall see shortly that introducing the category SSMC

�

one can completely dispense with the functions inS � In the following� given a
net N � we shall use inN to denote inSN �

Remark� An elegant way to express the idea of �linearization� of a multiset� would be to
look for a morphism of monads in� � ��

�

� � ��� This would indeed simplify the following
formal development and would make Q� � be a functor Petri � SSMC� However� such a
morphism does not exist� It is worth noticing that this is because it is not possibile to choose
the functions inN �naturally��

Proposition ��� �Q� ��Petri� SSMC�
Let hf� gi�N� � N� be a morphism in Petri� Then� there exists a symmetric
strict monoidal functor Q�hf� gi��Q�N�� � Q�N�� which extends hf� gi� More�
over� Q�idN � � idQ
N � and Q�hf�� g�i � hf�� g�i� �� Q�hf�� g�i� � Q�hf�� g�i��

Proof
 Let hf� gi�N� � N� be a morphism of Petri nets� Since g is a monoid
homomorphism from the free monoid S�N�

to S�N�
� it corresponds to a unique

function g 	 	SN�
from SN� to S�N�

� where 	 is the unit of the �commutative

monoid� monad� Then� we obtain �g 
 inN� 	 g 	 	SN�
�SN� � S�N�

� i�e�� a function
from SN� to the set of objects of Q�N��� Then� from Proposition ���� we have
the symmetric strict monoidal functor F��SymSN�

� Q�N��� Clearly� the objects

component of F� is �
SN�
	 �g�� where �
 is the multiplication of the �monoid�

monad� Finally� we extend F� to a functor F from Q�N�� to Q�N�� by considering
the symmetric strict monoidal functor which coincides with F� on SymN�

and maps
tu�v�u� v to f�t	F�u��F�v��F�u	� F�v	� Since monoidal functors map symmetries
to symmetries� and since f�t	 is a transition of N�� it follows immediately that F
preserves axiom ��	� i�e�� that F is well de�ned�

We show next that the above de�nition makes Q� � into a pseudo
functor� First of

all� observe that whatever the choice of inN � the function SN �� S�N
inN� S�N is the

inclusion of SN in S
�
N � It follows from the uniqueness part of the universal property

stated in Proposition ��� that Q�idN ��Q�N �� Q�N � is the identity functor� Now
consider hf�� g�i�N� � N� and hf�� g�i�N� � N� and� for i 
 �� �� let Fi be
Q�hfi� gii��Q�Ni�� Q�Ni��� and let F be Q�hf�	f�� g� 	g�i�� We have to show that
F 

 F�F�� Let u � S�N�

� By de�nition� we have that F�ui	 
 inN� 	 g� 	 g��ui	 is a

permutation of F�F��ui	 
 �
SN�
	�g�� 	�g��ui	 and� therefore� there exists a symmetry

si�F�ui	� F�F��ui	 in Q�N��� Then� we take su to be s��� � ��sn�F�u	� F�F��u	�
where n is the lenght of the string u� We shall prove that the family of the su�

��
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for u � S�N�
is a natural transformation F

�� F�F�� Since s is clearly a monoidal
transformation and each su is an isomorphism� this concludes the proof�

We must show that for any ��u � v in Q�N�� we have F��	 � sv 
 su � F�F���	�
Exploiting the characterization of Q�N�� given by Proposition ���� we proceed
by induction on the structure of �� The key to the proof is that s is monoidal�
i�e�� su�v 
 su � sv� as a simple inspection of the de�nition shows� If � is an
identity� then the claim is obvious� Moreover� if � is a transition tu�v� then we
have F��	 
 f� 	f��t	F�u��F�v� and F�F���	 
 f��f��t		F�F��u��F�F��v� and the thesis
follows immediately from axiom ��	� Let us consider now � 
 ��u� v	� Since F and
F�F� are symmetric strict monoidal functors� the equation we have to prove reduces
to ��F�u	�F�v		 � sv�su 
 su�sv � ��F�F��u	�F�F��v		� which certainly holds since
f��u� v	g

u�v�S��
is a natural transformation x��x�

�� x��x�� If � 
 ������� where

���u� � v� and ����u�� � v�� then� by induction� we have F���	 � sv� 
 su� � F�F���
�	

and F����	 � sv�� 
 su�� � F�F���
��	� Then� we deduce

F���	� F����	 � sv� � sv�� 
 su� � su�� � F�F���
�	� F�F���

��	�

which is F��	 � sv 
 su � F�F���	� Finally� in the case � 
 �� � ���� where ���u� v

and ����u� w� the induction is mantained by pasting the two commutative squares
in the following diagrams� which exist by the induction hypothesis

F�u	 F�F��u	

F�v	 F�F��v	

F�w	 F�F��w	

F����

��

su ��

F�F���
��

��

F�����

��

sv
��

F�F���
���

��
sw

��

Thus� F��	 � sv 
 su � F�F���	� which concludes the proof� X

Therefore� due to technical reasons concerned with the lack of naturality of
the functions inN � Q� � fails to be a functor from Petri to SSMC� It is only a
pseudo�functor� However� it is worth remarking that this failure is intrinsically
di�erent from the situation for P� �� and that the pseudo�functoriality of Q� �
is already a valuable result� In fact� in the case of P� �� we cannot lift net
morphisms to functors between the categories of processes� a failure which may
possibly rise doubts on the structure chosen to represent the processes of the
single net� while in the case of Q� �� we just cannot de�ne arrow composition
better that �up to isomorphism�� This simply brings us to the conclusion that
SSMC is not the correct target category for the functorial construction we are
looking for� Indeed� as we shall see in the following� it is easy to identify a
category SSMC

� of symmetric strict monoidal categories such that Q� � is a
functor Petri � SSMC

�� Actually� this construction is already implicit in
Proposition ��
 and corresponds to taking an appropriate quotient of SSMC�

��



Strong Concatenable Processes

Definition ���� �Symmetric Petri Categories�
A symmetric Petri category is a symmetric strict monoidal category C in SSMC

whose monoid of objects is the free monoid S� for some set S�

For any pair C and D of symmetric Petri categories� consider the binary
relation RC�D on the symmetric strict monoidal functors from C to D de�ned
as F RC�D G if and only if there exists a monoidal natural isomorphism �� F �� G

whose components are all symmetries� Clearly� RC�D is an equivalence relation�
Moreover� if F��C� � C and G��D� D

� are symmetric strict monoidal functors�
then whenever F RC�D G we have G�FF� RC��D� G

�
GF

�� In fact� if �� F �� G then
G
��F�� F�FG� �� F

�
GG

�� where G��F� is clearly monoidal and all its components
are symmetries� In other words� the family R is a congruence with respect to
functor composition� Therefore� the following de�nition makes sense�

Definition ���� �The category SSMC
��

Let SSMC
� be the quotient of the full subcategory of SSMC consisting of the

symmetric Petri categories modulo the congruence R�

Of course� concerning SSMC
� there is the following easy result�

Proposition ���� �Q� ��Petri� SSMC
��

Q� � extends to a functor from Petri to SSMC
��

Proof
 For hf� gi�N� � N�� let Q�h� f� gi� be the equivalence class of the functor in
SSMC from Q�N�� to Q�N�� described in Proposition �� �

Then� by the cited proposition� for any PT netN � we have thatQ�idN � 
 �idQ�N ��R�

which is the identity ofQ�N �� Moreover� we have proved that� for hf�� g�i�N� � N�

and hf�� g�i�N� � N� in Petri� there exists a monoidal natural isomorphism

s�Q�hf� 	 f�� g� 	 g�i� 

 Q�hf�� g�i� 	Q�hf�� g�i� whose components are symmetries�

Then� Q�hf�	f�� g�	g�i� 
 Q�hf�� g�i�	Q�hf�� g�i� in SSMC
�� i�e�� Q� � is a functor

from Petri to SSMC
�� X

Observe that� when describing Q�hf� gi� in SSMC
�� there is no need to

consider the family of functions in� since the extensions of hf� gi to a symmetric
strict monoidal functor corresponding to di�erent choices of inS yield the same
functor in SSMC

��

However� the category SSMC
� is still too general for our purpose� In par�

ticular� it is easily noticed that Q� � is not full �though faithful�� i�e�� that that
there are functors from Q�N�� to Q�N�� in SSMC

� which do not correspond to
any morphism from N� to N� in Petri� This signi�es that SSMC

� has too little
structure to represent net behaviours precisely enough� in other terms� since the
structure of the objects of a category C is �encoded� in the morphisms of C� it

��
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signi�es that the morphisms of SSMC
� do not capture the structure of sym�

metric Petri categories precisely enough� Speci�cally� the transitions� which are
de�nitely primary components of nets� and as such are treated by the morphisms
in Petri� have no corresponding notion in SSMC

�� we need to identify such a
notion and re�ne the choice of the category of net computations accordingly�

Notation� Given a symmetricmonoidal categoryC� we use SymC to indicate the subcategory

of C consisting of the symmetries� i�e�� of those arrows which are build up from identities and
components of symmetry isomorphism of C�

The key to accomplish our task is the following observation about axiom � �
in De�nition ���� as already mentioned� it simply expresses that the collection of
the arrows tu�v of Q�N �� for t � TN and u� v � S�N � is a natural transformation�
Namely� for C a symmetric Petri category with objects S�� and � a multiset
in S�� let SymC�� be the full subcategory of SymC consisting of those objects

u � S� such that M�u� � �� and let inC�� be the inclusion of SymC�� in C�

Then� for �� �� � S�� one obtains a pair of parallel functors �C�� and �C���
by composing inC�� and inC��� respectively with the �rst and with the second
projection of SymC�� � SymC��� �

SymC��

SymC�� � SymC��� C

SymC���

inC��

FFFFFFF��

��

yy
yy

yy
y��

�C�� ��

�C���
��

��

EEEEEEE��
in
C���

xx
xx

xx
x��

It follows directly from the de�nitions that� when C is Q�N �� axiom � � states
exactly that� for all t� � � �� � TN � the set ftu�v j M�u� � ��M�v� � ��g is a
natural transformation from �Q
N ��� to �Q
N ���� �

A further very relevant property of the transitions of N when considered
as arrows of Q�N � is that of being decomposable as a tensor only trivially and
as a composition only by means of symmetries� This is easily captured by the
following notion of primitive arrow�

Definition ���� �Primitive Arrows�
Let C be a symmetric Petri category� An arrow � in C is primitive if

i� � is not a symmetry�

ii� � � 
� � implies 
 is a symmetry and � is primitive� or viceversa�

iii� � � 
� � implies 
 � id� and � is primitive� or viceversa�

��
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A simple inspection of De�nition ��� shows that the only primitive arrows
in Q�N � are the arrows tu�v� for t�M�u� � M�v� a transition of N � As a
consequence� the natural transformations � ��Q
N ���

�� �Q
N ���� whose compo�
nents are primitive are in one�to�one correspondence with the transitions of N �
Following the usual categorical paradigm� we then use the properties that char�
acterize the transitions of N in Q�N �� expressed in abstract categorical terms�
to de�ne the notion of transition in any symmetric Petri category�

Definition ���� �Transitions of Symmetric Petri Categories�
Let C be a symmetric Petri category and let S� be its monoid of objects� A
transition of C is a natural transformation � ��C��

�� �C��� � for �� �
� in S��

whose components �u�v are primitive arrows of C�

It is clear now what the extra structure required in SSMC
� is� transitions

must be preserved by morphisms of symmetric Petri categories� Formally� for
C and D in SSMC

� and F�C� D in SSMC� F respects transitions if� for each
transition � ��C��

�� �C��� of C� there exists a transition � ���D���
�� �D���� of D

such that F��u�v� � � �
F�u��F�v� for all �u� v� in SymC�� � SymC��� � in this case� we

say that � � corresponds to � via F�

Lemma ����
If F�C� D preserves transitions� then for any transition � of C� there exists a
unique transition � � of D which corresponds to � via F�

Proof
 First observe that� for any symmetric Petri category C and any pair of
natural transformations �� � ��
C��

�� 
C��� whenever �u�v 
 � �u�v for some u and v�
then � 
 � �� In fact� for any u� and v� there exists �s� s�	� �u�� v	 � �u� v�	 in
SymC�� � SymC��� � and then �u��v� 
 s� �u�v� s

� 
 s� � �u�v � s
� 
 � �u��v� �

Now consider the transitions � � and � �� ofD and suppose that they both correspond

to � via F� Then� F��u�v	 
 � �
F�u��F�v� 
 � ��

F�u��F�v�� which implies � � 
 � ��� X

The previous lemma shows that any symmetric strict monoidal functor which
preserves transitions de�nes a mapping between the respective sets of transi�
tions� Then next lemma proves that this extends to the arrows of SSMC

��

Lemma ����
If F R G� then F respects transitions if and and only if G does so� and then � �

corresponds to � via F if and only if � � corresponds to � via G�

Proof
 Let �� F �� G�C� D be a monoidal natural isomorphism whose components

are symmetries� suppose that F respects transitions� and consider a transition

� �
C��
�� 
C��� � By hypothesis� there exists a transition � ��
D�	�

�� 
D�	�� of

D such that F��u�v	 
 � �F�u��F�v� for all �u� v	 � SymC�� � SymC��� � Then� by

naturality of �� G��u�v	 
 ���
u � � �

F�u��F�v���v� and therefore� by naturality of � ��

G��u�v	 
 � �
G�u��G�v� and the proof is concluded� X

��
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It follows now from Lemma ���� that the next de�nition is well given�

Definition ���	 �Symmetric Petri Morphisms and the Category TSSMC
��

A morphism of symmetric Petri category is an arrow in SSMC
� which respects

transitions� We shall use TSSMC
� denote the �lluf� subcategory of SSMC

�

whose arrows are the morphisms of symmetric Petri categories�

Finally� it is easy to prove that Q� � is actually a functor to TSSMC
��

Proposition ���
 �Q� ��Petri� TSSMC
��

The functor Q� � restricts to a functor from Petri to TSSMC
��

Proof
 It is enough to verify that� for any morphism hf� gi�N� � N� in Petri� a

representative F ofQ�hf� gi� respects transitions� But this follows at once� since f is

a function from TN� to TN� � since F�tu�v	 
 f�t	F�u��F�v�� and since the transitions

of Q�Ni� are exactly the natural transformations ftu�v j M�u	 
 ��M�v	 
 ��g�
for t� � � �� � TNi � X

Interestingly enough� we can identify a functor from TSSMC
� to Petriwhich

is a core�ection right adjoint to Q� �� It is worth remarking that this answers to
a possible legitimate doubt about the category TSSMC

�� in principle� in fact�
the functoriality of Q� � could be due to a very tight choice of the target cate�
gory� e�g�� the congruence R could induce too many isomorphisms of categories
and Q� � make undesirable identi�cations of nets� The existence of a core�ec�
tion right adjoint to Q� � is� of course� the best possible proof of the adequacy
of TSSMC

�� it implies that Petri is embedded in it fully and faithfully� More
precisely� Petri is �equivalent to� a core�ective subcategory of TSSMC

�� This
result supports our claim that TSSMC

� is an axiomatization of the category of
net computations�

Proposition ���� �Q� � a N � ��Petri� TSSMC
� �

Let C be a symmetric Petri category� and let S� be its monoid of objects� De�ne
N �C� to be the Petri net ���� ���T � S��� where

� T is the set of transitions � ��C��
�� �C��� of C�

� ���� ��C��
�� �C���� � ��

� ���� ��C��
�� �C���� � ���

Then� N � � extends to a functor TSSMC
� � Petriwhich is right adjoint to Q� ��

In addition� since the unit is an isomorphism� the adjunction is a core
ection�

Proof
 Given any symmetric Petri category C� there is a �unique	 symmetric strict
monoidal functor �C�QN �C�� C which is the identity on the objects and which
sends the component at �u� v	 of the transition � � � � �� of N �C�� in the following

��
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denoted by �� �u�v� to the component �u�v of the corresponding natural transfor

mation � �
C��

�� 
C��� � SymC�� � SymC��� � C� In fact� by naturality of � � we

have that s��u� �v� 
 �u�v � s
� for any symmetries s�u� u� and s�� v � v� in SymC�

It follows then directly from De�nition ��� that the conditions above de�ne �C
�uniquely	 as a symmetric strict monoidal functor from QN �C� to C� In addition�
since it clearly preserves transitions� we have that �C is a �representative of a	 mor

phism of symmetric Petri categories� We shall prove that �C enjoys the following

couniversal property� for each K�Q�N � � C in TSSMC
�� there exists a unique

morphism hf� gi�N � N �C� in Petri such that the following diagram commutes�

QN �C� C

Q�N �

�C ��

Q�hf�gi�

OO

K
ooo

ooo
ooo

ooo
��

This proves that N � � is right adjoint to Q� �� in symbols� Q� � a N � ��

Let S� denote the monoid of objects of C� and let ���� ���T � S�	 be N �C�
and F any representative of K� Since the object component of F is a monoid
homomorphism� we have M�F�u		 
 M�F�v		 whenever M�u	 
 M�v	� Then�
the function g� S�N � S� which sends � to M�F�u�		� for u� any linearization
of �� is a well de�ned monoid homomorphism� Moreover� g does not depend
on the chosen representative of K� for if F R F

� then� for all u � S�� there is
a symmetry �u�F�u	 � F

��u	� whence M�F�u		 
 M�F��u		� Concerning the
transitions� consider f �TN � T de�ned as f�t	 
 � � where � is the transition
of C corresponding via F to the transition ftu�vg of Q�N �� By Lemma ����� f is
well
de�ned� and by Lemma ����� it does not depend on the representative of K�
Moreover� since f�t� � � ��	 
 � implies that � �
C�g���

�� 
C�g����� we have that
hf� gi�N � N �C� is a morphism in Petri�

We have to prove that �C 	Q�hf� gi� 
 K in TSSMC
�� Without loss of generality�

exploiting the fact that R is a congruence� we prove that � 	 G 
 F for choosen
representatives � of �C� G of Q�hf� gi�� and F of K� In particular� we can assume

that � is the identity on the objects and that G�u	 
 F�u	 for all u � S
�
N � Then�

�G�tu�v	 
 ���f�t	�G�u��G�v�	 
 f�t	G�u��G�v� 
 �F�u��F�v� 
 F�tu�v	� the last equal

ity being since � is the transition of C corresponding to ftu�vg via F� The required
equality of functors follows now directly from De�nition ���� Finally� the unique

ness of hf� gi follows immediately� since if the diagram has to commute� then both
the de�nitions of f and g are forced�

By general results in category theory� the component 	N �N � NQ�N � of the unit

of Q� � a N � � is the unique arrow which makes the diagram commute when C is

Q�N � and K is the �equivalence class of the	 identity of Q� �� Applying the previous

part of the proof� we have that 	N 
 hf� gi� where g is the identity of S�N and f

sends t � TN to ftu�vg � TNQ�N �� Since by the de�nitions of N � � and of transition

of Q�N � we know that f is an isomorphism� we conclude that 	N is such� X

��
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We end this section by characterizing the replete image of Q� � in TSSMC
��

Proposition ���� �Petri �� PSSMC�
Let PSSMC be the full subcategory of TSSMC

� consisting of those symmetric
Petri categories C whose arrows can be generated by tensor and composition
from symmetries� and components of transitions of C� uniquely up to the ax�
ioms of symmetric strict monoidal categories� i�e�� axioms ��� and ���� and the
naturality of transitions� i�e�� axiom � ��

Then� PSSMC and Petri are equivalent�

Proof
 By general results in category theory� it is enough to show that C belongs to

PSSMC if and only if the component �C�QN �C�� C of the counit of Q� � a N � �

is an isomorphism� Let � be a representative of �C� Clearly� �C is iso if and

only if � is such� Moreover� since � is an isomorphism on the objects� it is iso if

and only if it is an isomorphism on each homset� Then the result follows� since

each arrow of C can be written as tensor and composition of symmetries and

component of transitions if and only if � is surjective on each homset� and this

can be done uniquely �up to the equalities that necessarily hold in any symmetric

Petri category	 if and only if � is injective on each homset� X

� Strong Concatenable Processes

In this section we introduce a slight re�nement of concatenable processes and we
show that they are abstractly represented by the arrows of the category Q�N �� In
other words� we �nd a process�like representation for the arrows of Q�N �� This
yields a functorial construction for the category of the processes of a net N � Once
again most of the work has already been done in the proof of Proposition ���
and therefore our task is now easy�

Definition ��� �Strong Concatenable Processes�
Given a petri net N in Petri� a strong concatenable process of N is a tuple
��� �� L� where �� �� N is a process of N � and ��min��� � f�� � � � � jmin���jg
and L�max��� � f�� � � � � jmax���jg are isomorphisms� i�e�� total orderings of�
respectively� the minimal and the maximal places of ��

An isomorphism of strong concatenable processes is an isomorphism of the un�
derlying processes which� in addition� preserves the orderings � and L� As usual�
we identify isomorphic strong concatenable processes�

So� a strong concatenable process is a non�sequential process where the
minimal and maximal places are linearly ordered� Graphically� we shall rep�
resent strong concatenable processes by using the usual representation of non�
sequential processes enriched by labelling the minimal and the maximal places
with the value of� respectively� � and L� An example is shown in Figure ��

��
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Figure �� A strong concatenable process for the net of Example 
��

As in the case of concatenable processes� it is easy to de�ne an operation
of concatenation of strong concatenable processes� We associate a source and
a target in S�N to each strong concatenable process by taking the string corre�
sponding to the linear ordering of� respectively� min��� and max���� Then� the
concatenation of ���� �� � N� ��� L���u � v and ���� �� � N� ��� L��� v � w
is the concatenable process ��� �� N� �� L��u� w de�ned as follows �see also
Figure ��� where� in order to simplify notations� we assume that S�� and S��

are disjoint�

� Let A be the set of pairs �x� y� such that x � max����� y � min����
and ��y� � L�x�� By the de�nitions of concatenable processes and of
their sources and targets� each element of max���� belongs exactly to
one pair of A� and of course the same happens to min����� Consider
S� � S�� nmax���� and S� � S�� nmin����� Then� let in��S�� � S��A
be the function which is the identity on x � S� and maps x � max���� to
the corresponding pair in A� De�ne in��S�� � S��A analogously� Then�

� � ���� ���T�� � T�� � �S� � S� �A����

where � denotes the disjoint union of sets and functions� and

� �� � in�� � �
�
��
� in�� � �

�
��
�

� �� � in�� � �
�
��
� in�� � �

�
��
�

� Suppose �i � hfi� gii� for i � �� �� and consider the function g�a� � gi�a�
if a � Si and g��x� y�� � g��x� � g��y� otherwise� Then � � hf� � f�� gi�

� ��a� � ���a� if a � min���� and ���x� y�� � ���x� if �x� y� � min����

� L�a� � L��a� if a � max���� and L��x� y�� � L��y� if �x� y� � max����

�	
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Figure �� An example of the algebra of strong concatenable processes

Proposition ���
Under the above de�ned operation of sequential composition� the strong con�
catenable processes of N form a category CQ�N � with identities those processes
consisting only of places� which therefore are both minimal and maximal� and
such that � � L�

Strong concatenable processes admit a tensor operation � such that� given
SCP� � ���� �� � N� ��� L���u� v and SCP� � ���� �� � N� ��� L���u�� v��
SCP��SCP� is the strong concatenable process ��� �� N� �� L��u�u� � v�v�

given below �see also Figure ���

� � � �����
� ����

� ����
� ����

�T�� � T�� � �S�� � S�� �
���

� � � �� � ���

� ��in��a�� � ���a� and ��in��a�� � jmin����j� ���a��

� L�in��a�� � L��a� and L�in��a�� � jmax����j� L��a��

It is easy to verify that � is a functor �� CQ�N � � CQ�N � � CQ�N �� The
strong concatenable processes consisting only of places are analogous in CQ�N �

�
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of the permutations of Q�N �� In particular� for any u� v � S�� the strong
concatenable process ���u� v� consisting of places in one�to�one correspondence
with the elements of the string u� v mapped by � to the corresponding places
of N � and such that ��ui� � i� ��vi� � juj � i� L�ui� � jvj � i and L�vi� � i�
plays in CQ�N � the role played by the permutation ��u� v� in Q�N � �see also
Figure ���

Proposition ���
Under the above de�ned tensor product CQ�N � is a symmetric strict monoidal
category whose symmetry isomorphism is the family f���u� v�gu�v�S�

N

� Moroever�

the subcategory of CQ�N � consisting of the processes with only places is the
category of symmetries of CQ�N � and is isomorphic to Sym�

N �

Proof
 Concerning the �rst claim� it is enough to verify that CQ�N � satis�es the
axioms ��	 with respect to � and the symmetries ���u� v	 de�ned above� The task
is really immediate and thus omitted�

Let Sym be the subcategory of the processes consisting only of places of CQ�N ��

Since � restricts to a functor Sym�Sym � Sym� we have that Sym is a symmet


ric strict monoidal category with symmetry isomorphism f���u� v	g
u�v�S�

N

� Then�

by Proposition ���� there exists a functor F from Sym�
N to Sym� corresponding to

the identity function on S�N � which is the identity on the objects and such that

F���u� v		 
 ���u� v	� Moreover� since for any u� v � S
�
N the strong concatenable

processes from u to v in Sym are clearly isomorphic to the permutations p�u� v

in Sym�
N � it follows easily that F is full and faithful� Therefore� F is an isomor


phism� This means that Sym is generated via composition and tensor product

from the symmetries ���u� v	 and from the identities� i�e�� that Sym is the category

of symmetries of CQ�N �� X

The transitions t of N are faithfully represented in the obvious way by pro�
cesses with a unique transition which is in the post�set of any minimal place
and in the pre�set of any maximal place� minimal and maximal places being in
one�to�one correspondence� respectively� with ��N �t� and �

�
N �t�� Thus� varying �

and L on the process corresponding to a transition we obtain a representative
in CQ�N � of each instance tu�v of t in Q�N � �see also Figure ���

We can show the announced correspondence between CQ�N � and Q�N ��

Proposition ���
CQ�N � and Q�N � are isomorphic�

Proof
 First of all observe that CQ�N � satis�es axiom ��	 of De�nition ���� the
symmetries and the �instances of	 transitions being as explained above� In order to
prove this claim� let Tu�v 
 �
�� !� � N� ��� L�	 and Tu� �v� 
 �
��!� � N���� L�	
be di�erent instances of some transition t� and let S� u � u� and S�� v � v� be
symmetries of CQ�N �� Moreover� suppose that S�� and S� correspond� respectively�

��
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Figure �� A transitions tu�v�u� v and the symmetry ��u� v� in CQ�N �

to the permutations p�u� � u and q� v � v� in Q�N �� Then� S�� � Tu�v � S is
�isomorphic to	 �
��!� � N�p 	 ��� q 	 L�	� Consider the function g�S
� � S
�

such that g�x	 
 ���
� �p����x			 if x � min�!�	 and g�x	 
 L��

� �q�L��x			 if x �
max�!�	� Clearly� by de�nition of !� and !�� g is an isomorphism� Moreover�
since for each x � min�!�	 and y � max�!�	 we have that u���x� 
 u�p����x�� and
vL��y� 
 u�q�L��y��� it follows that 
��g�x		 
 u����g�x�� 
 u�p����x�� 
 u���x� 
 
��x	
and that 
��g�y		 
 u�L��g�y�� 
 u�q�L��y�� 
 uL��y� 
 
��y	� Therefore� we have

an isomorphism hf� g�i�!� � !�� where g��S�
�
� S�
�

is the free monoidal
extension of g and f is the function which maps the unique transition in !� to the
unique transition in !�� Then� S

�� � Tu�v � S� 
 Tu� �v� � i�e�� ��	 holds�

Thus� since by de�nition Q�N � is the free symmetric strict monoidal category built
on Sym�

N plus the additional arrows in TN and which satis�es axiom ��	� there is a
strict monoidal functor H�Q�N �� CQ�N � which is the identity on the objects and
sends the generators� i�e�� symmetries and transitions� to the corresponding strong
concatenable processes� We want to show that H is an isomorphism� Observe
that� by Proposition ���� we already know that H is an isomorphism between the
corresponding categories of symmetries�

fullness� It is completely trivial to see that any strong concatenable process SCP

may be obtained as a concatenation SCP� � � � � � SCPn of strong concatenable
processes SCP i of depth one� Now� each of these SCP i may be split into the
concatenation of a symmetry Si�� the tensor of the �processes representing the	
transitions which appear in it plus some identities� say ui �

N
j
T i
j and �nally

another symmetry Si�� The intuition about this factorization is as follows� We
take the tensor of the transitions which appear in SCP i in any order and multiply
the result by an identity concatenable process in order to get the correct source and
target� Then� in general� we need a pre
concatenation and a post
concatenation
with a symmetry in order to get the right indexing of minimal and maximal places�
Then� we �nally have

SCP 
 S�
� � �u� �

N
j
T �
j 	 � �S

�
� � S�

� 	 � � � � � �S
n��
� � Sn� 	 � �un �

N
j
Tn
j 	 � S

n
�

which shows that every strong concatenable process is in the image of H�

��
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faithfulness� The arrows of Q�N � are equivalence classes� modulo the axioms stated
in De�nition ���� of terms built by applying tensor and sequential composition to
the identities idu� the symmetries cu�v� and the transitions tu�v� We have to show
that� given two such terms � and �� whenever H��	 
 H��	 we have � 
E ��
where 
E is the equivalence induced by the axioms ��	� ��	 and ��	�

First of all� observe that if H��	 is a strong process SCP of depth n� then � can
be proved equal to a term

�
� 
 s�� �idu� �

N
j
��j 	� s�� � � � � sn��� �idun �

N
j
�nj 	� sn

where� for � � i � n� � ij 
 �tij	ui
j
�vi
j
and the transitions tij� for � � j � ni� are

exactly the transitions of SCP at depth i and where s�� � � � � sn are symmetries�
Moreover� we can assume that in the i
th tensor product

N
j
� ij the transitions are

indexed according to a global ordering � of TN assumed for the purpose of this
proof� i�e�� ti� � � � � � tini � for � � i � n� Let us prove our claim� It is easily shown
by induction on the structure of terms that using axioms ��	 � can be rewritten as
��� � � � ��h� where �i 


N
k
�ik and �ik is either a transition or a symmetry� Now�

observe that by functoriality of �� for any ���u� � v�� ����u�� � v�� and s�u � u�
we have �� � s � ��� 
 �idu� � s� idu�� 	� ��

� � idu � ���	� and thus� by repeated
applications of ��	� we can prove that � is equivalent to �s�� ���� �s� � � � � �sh��� ��h�
where �s�� � � � � �sh�� are symmetries and each ��i is a tensor

N
k
��ik of transitions

and identities� The fact that the transitions at depth i can be brought to the i
th
tensor product� follows intuitively from the facts that they are �disjointly enabled��
i�e�� concurrent to each other� and that they depend causally on some transition at
depth i� �� In particular� the sources of the transitions of depth � can be target
only of symmetries� Therefore� reasoning formally as above� they can be pushed
up to ��� exploiting axioms ��	� Then� the same happens for the transitions of
depth �� which can be brought to ���� Proceeding in this way� eventually we show
that � is equivalent to the composition ��s�� ����� ��s� � � � � ��sn��� ���n� ��sn of the symmetries

��s�� � � � � ��sn and the products ���i 

N

k

���
i

k of transitions at depth i and identities�

Finally� the order of the ���
i

k can be permuted in the way required by �� This
is achieved by pre
 and post
composing each product by appropriate interchange

symmetries� More precisely� let � be a permutation such that
N

k

���
i

��k� coincides

with idui �
N

j
� ij � suppose that ���

i

k�u
i
k � vik� for � � k � ki� Then� by de�nition

of interchange permutation in Sym�
N � we have that

��ui�� � � � � u
i
ki
	� �
N

k
���
i

��k�	 
 �
N

k
���
i

k	���v
i
�� � � � � v

i
ki
	�

and then� since ��ui�� � � � � u
i
ki
	 is an isomorphism� we have that

�idui �
N

j
� ij	 
 ��ui�� � � � � u

i
ki
	��� �

N
k

���
i

k	���v
i
�� � � � � v

i
ki
	�

Now� applying the same argument to �� one proves that it is equivalent to a
term �� 
 p����� p�� � � � pn����n� pn� where p�� � � � � pn are symmetries and �i is
the product of �instances of	 the transitions at depth i in H��	 and of identities�

��
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Then� since H��	 
 H��	� and since the transitions occurring in �i are indexed in
a predetermined way� we conclude that �i 
 �idui �

N
j
�� ij	� where �� ij 
 �tij		ui

j
�	vi
j

i�e��

�
� 
 s�� �idu� �

N
j
�t�j	u�

j
�v�
j
	� s�� � � � � sn��� �idun �

N
j
�tnj 	unj �v

n
j
	� sn

�
� 
 p�� �idu� �

N
j
�t�j		u�

j
�	v�
j
	� p�� � � � � pn��� �idun �

N
j
�tnj 		un

j
�	vn
j
	� pn� ��	

In other words� the only possible di�erences between �� and �� are the symmetries
and the sources and targets of the corresponding instances of transitions� Observe
now that the steps which led from � to �� and from � to �� have been performed by
using the axioms which de�ne Q�N � and since such axioms hold in CQ�N � as well
and H preserves them� we have that H���	 
 H��	 
 H��	 
 H���	� Thus� we
conclude the proof by showing that� if � and � are terms of the form given in ��	
which di�er only by the intermediate symmetries and if H��	 
 H��	� then �

and � are equal in Q�N ��

We proceed by induction on n� Observe that if n is zero then there is nothing to
show� since we know that H is an isomorphism on the symmetries� s� and p�� and
thus � and �� must coincide� To provide a correct basis for the induction� we need
to prove the thesis also for n 
 ��

depth �� In this case� we have

� 
 s�� �idu �
N

j
�tj	uj �vj 	� s�

� 
 p�� �idu �
N

j
�tj		uj �	vj 	� p��

Without loss of generality we may assume that p� and p� are identities� In fact�
we can multiply both terms by p��

� on the left and by p��
� on the right and obtain

a pair of terms whose images through H still coincide and whose equality implies
the equality in Q�N � of the original � and ��

Let �
�!� N� ��L	 and ��
� �!� N� ��� �L	 be� respectively� the strong concatenable
processes H�idu�

N
j
�tj	uj �vj 	 and H�idu�

N
j
�tj		uj �	vj 	� Clearly� we can assume

that H�s�	 and H�s�	 are respectively �
��!� � N���� �	 and �
��!� � N�L�L�	�
where !� is min�!	� !� is max�!	� 
� and 
� are the corresponding restrictions
of 
� and �� and L� are the orderings respectively of the minimal and the maximal
places of !�

Then� we have that H�s�� �idu �
N

j
�tj	uj �vj 	� s�	 is �
�! � N���� L�	� and by

hypothesis there is an isomorphism ��! � �! such that �
 	 � 
 
 and which
respects all the orderings� i�e�� �����a		 
 ���a	 and �L���b		 
 L��b	� for all a � !�

and b � !�� Let us write idu �
N

j
�tj	uj �vj as

N
k
�k and idu �

N
j
�tj		uj �	vj

as
N

k
��k� where �k� respectively ��k� is either a transition �tj	uj �vj � respectively

�tj		uj �	vj � or the identity of a place in u� Clearly� � induces a permutation� namely
the permutation � such that ����k� 
 ���k	� In order for � to be a morphism
of nets� it must map the �places corresponding to the	 pre
set� respectively post

set� of �tj	uj �vj to �the places corresponding to the	 pre
set� respectively post
set�
of �t��j�		u��j� �	v��j� � It follows that �
��!� � N�L�L�	� which is H�s�	� must be

��
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a symmetry obtained by post
concatenating the image via H of the interchange
symmetry ���v�� � � � � �vki	 in CQ�N � with a tensor product

N
j
S�
j of symmetries�

one for each t occurring in �� where S�
j � vj � �vj� whose role is to reorganize the

tokens in the post
sets of each transitions� Reasoning along the same lines� we can
conclude that �
��!� � N� �� ��	� which is H�s�	

��� must be a symmetry obtained
by concatenating a tensor product

N
j
S�
j � where S�

j �uj � �uj is a symmetry�

with the image via H of the interchange symmetry ���u�� � � � � �uki 	� Then� since H
is an isomorphism between SymQ�N � and SymCQ�N �� s� and s� must necessarily

be� respectively� ���u�� � � � � �uki	
��� �idu�

N
j
s�j	� and �idu�

N
j
s�j 	����v�� � � � � �vki	�

where s�j � �uj � uj and s�j � vj � �vj are symmetries�

Then� by distributing the tensor of symmetries on the transitions and using ��	�
we show that � 
 ���u�� � � � � �uki 	

��� �idu �
N

j
s�j � �tj	uj �vj � s

�
j	����v�� � � � � �vki 	 


���u�� � � � � �uki 	
��� �idu �

N
j
�tj		uj �	vj 	����v�� � � � � �vki	� which� by de�nition of inter


change symmetry� is �idu �
N

j
�tj		uj �	vj 	� Thus� we have � 
E � as required�

Inductive step� Suppose that n � � and let � 
 ������ and � 
 ������� where

�� 
 s�� �idu� �
N

j
��j 	� s�� � � � � sn�� and ��� 
 �idun �

N
j
�nj 	� sn

�� 
 p�� �idu� �
N

j
���j 	� p�� � � � � pn�� and ��� 
 �idun �

N
j
��nj 	� pn

We show that there exists a symmetry s in Q�N � such that H���� s	 
 H���	 and
H�s������	 
 H����	� Then� by the induction hypothesis� we have ���� s	 
E ��

and �s������	 
E ���� Therefore� we conclude that ���� s� s������	 
E �������	� i�e��
that � 
 � in Q�N ��

Let �
�! � N� ��L	 be the strong concatenable process H��	 
 H��	� Without
loss of generality we may assume that the strong processes H���	 and H���	 are�

respectively� �
� !� � N� ��� L��	 and �
�� !� � N� ��� L	� 	� where !� is the subnet

of depth n � � of !� �� is the appropriate restriction of � and �nally L�� and
L	� are orderings of the places at depth n � � of !� Consider the symmetry
S 
 ��
� �!� N� ��� �L	 in CQ�N �� where

� �! is the process nets consisting of the maximal places of !��

� �
� �!� N is the restriction of 
 to �!�

� �� 
 L�� �

� �L 
 L	� �

Then� by de�nition� we have H���	�S 
 H���	� Let us consider now ��� and ����

We can assume that H����	 and H����	 are� respectively� �
���!�� � N���
��

� L��	 and

�
���!�� � N��	
��

� L��	� where !�� is the process net obtained by removing from !

the subnet !�� L�� is the restriction of L to !��� and ��
��

and �	
��

are orderings of
the places at depth n� � of !� Now� in our hypothesis� it must be L�� 
 ��

��

and
L	� 
 �	

��

� which shows directly that S���H����	 
 H����	� Then� s 
 H���S	 is
the required symmetry of Q�N ��

Then� since H is full and faithful and is an isomorphism on the objects� it is an

isomorphism and the proof is concluded� X

��
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Conclusions

In this paper we studied the issue of functoriality for the categorical#algebraic
viewpoint of Petri net processes introduced in ���� We gave a negative result
showing that no naive modi�cation of P�N � can be functorial� Then� we intro�
duced the strong concatenable processes as the least modi�cation of concaten�
able processes which takes such a result into account and we showed that the
construction of the strong concatenable processes can be expressed via a functor
Q� �� This shows that� in a sense� strong concatenable processes are the least
extension of concatenable processes which yields functoriality� i�e�� the least ex�
tension of Goltz�Reisig processes which yields an operation of concatenation and
admits a functorial treatment�

In addition� the paper proposed TSSMC
� as an axiomatization of the cate�

gory of �categories of� net behaviours� the appropriateness of such a category to
the purpose has been proved by showing that Q� � embeds core�ectively Petri
in TSSMC

��

The choice of the category of Petri nets studied in the paper� namely Petri
exactly as de�ned in ���� and used in ���� has been suggested by the existence
of the open problem of functoriality of the process semantics� It is worth re�
marking� however� that such a category is rather general� in the precise sense
of allowing all the reasonable morphisms� as introduced in �
�� 
��� which map
transitions to transitions� Nevertheless� more general kinds of morphisms� e�g��
mapping transitions to computations� have been occasionally proposed in the
literature �
�� ���� A question which may be worth investigating in the future
concerns the categorical axiomatizations of the behaviour of nets� analogous to
the one presented here� when such morphisms are considered�
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A Monads

A monad �	� �
� on a category C is a triple �T� �� ��� where T�C � C is an
endofunctor� �� IdC

�� T is a natural transformation� called the unit of the
monad� ��T� �� T is a natural transformation� called the multiplication of the
monad� such that

� � �T � �T � � � T� �Unit law��

� � T� � � � �T �Associative law��

Monads are strictly related to algebraic constructions� In order to appreciate
this fact� one should think of T as being the �free construction�� in the precise
sense of associating to each object c � C a �free algebra� Tc on c� one should
think of � as the injection of c in the �free algebra� on it� and one should think
of � as providing the interpretation for the operations in Tc�

A T�algebra is a pair �c� h�� where c � C and h�Tc� c is a morphism� called
the structure map� such that

h � �c � idc �Unit��

h � Th � h � �c �Associativity��

Observe that for any c we have that �Tc� �c� is an algebra�

A morphism of T�algebras� or T�homomorphism� f � �c� h� � �c�� h�� is an
arrow f � c� c� in C such that

h� � Tf � f � h�

T�algebras and their morphisms de�ne the category CT�

The well know fact that homomorphisms of algebras whose source is a
free algebra Tc are uniquely identi�ed by their behaviour on c has the fol�
lowing counterpart in the theory of monads� there is a bijection between the
T�homomorphisms �Tc� �c� � �c�� h�� in CT and the arrows c � c� in C� Such
one�to�one correspondence is expressed by following diagram�

HomC�c� c�� Hom
C
T ��Tc� �c�� �c

�� hc���


 �hc��T� �

��

��
��c

OO

In fact� for each arrow f � c � c� in C� it follows from the naturality of � that
hc� � Tf � �c � hc� � �c� � f � which� by the unit law of structure maps� is f �
On the other hand� given a homomorphism g� �Tc��c�� �c�� hc��� we have that
hc� �T�g��c� � g��c�T�c by de�nition of T�homomorphism� and g��c�T�c � g
by the unit law of monads�
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B Symmetric Strict Monoidal Categories

A symmetric strict monoidal category ��� �� �
� is a category C together with a
functor ��C� C � C� called the tensor product� and a selected object e � C�
the unit object� such that �� when viewed as a pair of operations respectively
on objects and arrows of C� forms two monoids whose units are e and ide� and
together with a family of arrows �x�y�x� y � y � x� for x and y objects of C�
such that� for each f �x� y and g�x� � y� in C�

�idy � �x�z� � ��x�y � id z� � �x�y�z

�g � f� � �x�y � �x� �y� � �f � g�� ���

�y�x � �x�y � idx�y

Notice that the equations above mean� respectively� that � satis�es the relevant
Kelly�MacLane ���� ��� coherence axiom� that � � f�x�ygx�y�C is a natural
transformation � ����$� where $ is the endofunctor on C�C which �swaps�
its arguments� and that �x�y is an isomorphism with inverse �y�x� The role of �
is to express the commutativity �up to isomorphism� of the structure by giving
explicitly the isomorphism� e�g�� between x�y and y�x� Then� the axioms above
guarantee the reasonable requirement that between two given objects there is
at most one such structural isomorphism� i�e�� they guarantee the coherence of
the structural isomorphism ��

Theorem 
��� ���� Every diagram of natural transformations each
arrow of which is obtained by repeatedly applying � to �instances�
of � and identities� where in turn �instances� means components
of the natural transformation at objects of C obtained by repeated
applications of � to e and to �variables�� commutes�

A symmetry in a symmetric monoidal category is any arrow obtained as
composition and tensor of �instances� of � and identities� We write SymC to
denote the subcategory of a symmetric monoidal category C whose objects are
those of C and whose arrows are the symmetries of C�

A symmetric strict monoidal functor from �C��� e� �� to �D���� e�� ��� is a
functor F�C� D such that

F�e� � e��

F�x� y� � F�x��� F�y�� ���

F��x�y� � ��
Fx�Fy �

These data de�ne the category SSMC of symmetric strict monoidal �small�
categories and symmetric strict monoidal functors�

�
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Given the symmetric strict monoidal categories C and D and the symmetric
strict monoidal functors F�C � D and G�C � D� a monoidal transformation
from F to G is a natural transformation �� F �� G such that

�e � ide� �

�u�v � �u �
� �v� �	�

Given a �symmetric monoidal� category C and a familyR of binary relations
on the homsets of C �in particular a set of equations E on parallel arrows of C�
the �monoidal� quotient of C modulo R� is the category C�R� whose objects
are those of C and whose arrows are the equivalence classes of the arrows of C
modulo the least equivalence closed with respect to arrow composition �and
tensor product� which contains R�
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