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C
P

O
M

odels
for

G
SO

S
L

anguages
—

P
artI

BRICS
Basic Research in Computer Science

CPO Models for GSOS Languages
Part I: Compact GSOS Languages

Luca Aceto
Anna Ingólfsdóttir
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Abstract

In this paper� we present a general way of giving denotational semantics to a class
of languages equipped with an operational semantics that �ts the GSOS format of
Bloom� Istrail and Meyer	 The canonical model used for this purpose will be Abram

sky�s domain of synchronization trees� and the denotational semantics automatically
generated by our methods will be guaranteed to be fully abstract with respect to the
�nitely observable part of the bisimulation preorder	 In the process of establishing
the full abstraction result� we also obtain several general results on the bisimulation
preorder �including a complete axiomatization for it
� and give a novel operational
interpretation of GSOS languages	

� Introduction

This study is part of an on�going research programme on the meta�theory of process
description languages� This line of research aims at contributing to the systematic devel�
opment of process theory by o�ering results that hold for classes of process description
languages� As these languages are often equipped with a Plotkin�style Structural Opera�
tional Semantics �SOS� ��	
� this way of giving semantics to processes has been a natural
handle to establish results that hold for all languages whose semantics is given by means
of inference rules that �t a certain format� Examples of the kind of meta�theoretic results
that have been systematically derived from the form of the SOS rules may be found in�
e�g�� ��
� ��� ��� ��� ��� ��� ��� ��� 

� ��� �� 
�� ��� �	� ��� �
� So far� this line of re�
search has produced a wealth of results which generalize and explain several of the most
important theorems and constructions in process theory� For example� given a language
with an SOS semantics� an examination of the SOS rules is often all that is needed to
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guarantee that a notion of behavioral equivalence or preorder will be preserved by the
constructs in the language ���� ��� 

� 
�� ��� ��� ��
� that a process equivalence can be
equationally characterized ��� �
� or that a language is implementable ���� 
�
�
Following a bias towards operational methods in process theory that dates back to

Milner�s original development of the theory of CCS ���� ��
� most of the work reported
in the aforementioned references is concerned with operational� axiomatic semantics� for
processes and the relationships between the two� In particular� it is by now clear that
it is often possible to automatically translate an operational theory of processes into an
axiomatic one ��
� Moreover� in certain circumstances� it is also possible to derive an SOS
semantics from an axiomatic one� as witnessed by the developments in ��
� �
�
Axiomatic semantics and proof systems for programming and speci�cation languages

are often closely related to denotational semantics for them� particularly if the Scott�
Strachey approach ���
 is followed� A paradigmatic example of the development of a
semantic theory of processes in which behavioural� axiomatic and denotational semantics
coexist harmoniously� and may be used to highlight di�erent aspects of process behaviours
is the theory of testing equivalence developed by De Nicola and Hennessy ��	� ��
� In
this theory� a process can be characterized operationally in terms of its reaction to ex�
periments� and denotationally as a so�called acceptance tree ��	
� Acceptance trees allow
one to fully describe the behaviour of a process while abstracting completely from the
operational details of its interactions with all the possible testers� Moreover� the domain�
theoretic properties of this model allow one to establish properties of the behavioural
semantics that would be very di�cult to derive using purely operational methods� �See�
e�g�� the results in ���� Sect� ���
��
To our mind� the coincidence of axiomatic� behavioural�operational and denotational

semantics enjoyed by the theory of processes presented in ���
 does not only reinforce the
naturality of the chosen notion of program semantics� but allows one to make good use of
the complementary bene�ts a�orded by these semantic descriptions in establishing prop�
erties of processes� However� developing these three views of processes for each process
description language from scratch and proving their coincidence is hard� subtle work� in
addition� to quote from ���
� giving denotational semantics to programming languages us�
ing the Scott�Strachey approach �involves an armamentarium of mathematical weapons
otherwise unfamiliar in Computer Science�� We thus believe that it would be bene��
cial to develop systematic ways of giving denotational semantics to process description
languages� following the Scott�Strachey approach� starting from their SOS description�
Of course� this is only worthwhile if the denotational semantics produced by the pro�
posed techniques is automatically guaranteed to be in agreement with the behavioural
and axiomatic views of processes� In particular� we should like to generate a denota�
tional semantics that matches exactly our operational intuition about process behaviour�
i�e�� that is fully abstract� in the sense of Milner and Plotkin ���� �
� ��� 
�
� with re�
spect to a reasonable notion of behavioural semantics� This paper aims at giving a small
contribution in this direction�

�In this paper� we shall use the term axiomatic semantics to denote the characterization of process
semantics by means of �in	equationally based proof systems� This branch of process theory is referred to
as algebraic semantics by some authors �see� e�g�� the title of 
��
	� In this study� we prefer to reserve the
term algebraic semantics for the approach to programming language semantics described in� e�g�� 
��� ��
�
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��� Results

In this paper� we present a general way of giving denotational semantics to a class of
languages equipped with an operational semantics that �ts the GSOS format of Bloom�
Istrail and Meyer ���� ��
� The canonical model used for this purpose will be Abramsky�s
domain of synchronization trees D presented in ��
� and the denotational semantics auto�
matically generated by our methods will be guaranteed to be fully abstract with respect to
the �nitely observable part of the bisimulation preorder studied in� e�g�� ���� �	� �
� ��� �
�
Moreover� in the process of establishing the full abstraction result� we also present an al�
gorithm� along the lines of those given in ��� �
� to generate a complete axiomatization
of the bisimulation preorder� thus ful�lling our aim of giving behavioural� axiomatic and
denotational accounts of process behaviour that are in complete agreement� As a byprod�
uct of our denotational semantics� we shall be able to establish very general results about
the behavioural bisimulation preorder that would be hard to prove using purely opera�
tional de�nitions� �For an example� cf� Thm ������ This is one of the major theoretical
advantages of having several complementary semantic views of a language� proofs of pro�
gram properties that may be very involved or even hard to �nd in one semantics can
be approached in a totally di�erent way in another� On a more speculative note� the
denotational semantics we propose may also have some practical interest� For example�
powerful e�ective induction rules like Scott Induction �see� e�g�� ���� ��
 for a discussion
of this proof principle� become usable to reason about process �in�equalities� and proofs
about processes can� at least in principle� be carried out within the kind of axiom systems
supported by a tool like LCF ���
�
The class of GSOS systems we shall give denotational semantics to will have the

structure of most standard process algebras �see� e�g�� ���� ��� ��� ��
�� They will consist
of a set of operations to construct �nite� acyclic process graphs� and a facility for the
recursive de�nition of behaviours� Borrowing a terminology introduced in ���
 in the
context of denotational semantics� we shall refer to these languages as compact GSOS
languages� Their operational semantics will be given in terms of a variation on the
standard model of labelled transition systems ��	
 that takes divergence information into
account� This will be done in such a way that the bisimulation preorder is a precongruence
with respect to all the operators in the language� In order to obtain this substitutivity
result� special care must be taken in interpreting negative premises in GSOS rules� in
particular� negative premises will only be interpreted over convergent �or fully speci�ed�
processes� �A similarly motivated choice is made in �
�
� where negative premises are only
interpreted over stable processes� i�e�� processes that cannot perform internal transitions��
Intuitively� this is because� in order to �nd out what a process cannot do� we need to
know precisely what its capabilities are� and the initial behaviour of a divergent process
is only partially speci�ed� A consequence of our choice is that� for example� the rule

x
a
�

f�x�
a
� f�x�

cannot be used to derive that the term f��� has an a�labelled transition to itself� where
� denotes the typical totally divergent process with no transitions� As a byproduct of our
approach� we are able to give a simple semantics to GSOS languages in which negative
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premises are allowed to coexist with unguarded recursive de�nitions� This contrasts with
the standard GSOS semantics given in ���� ��
 in which the interplay between negative
premises and unguarded recursion may lead to the operational speci�cation of languages
without a well�de�ned operational semantics� �See� e�g�� ���� ��
 and Sect� � of this paper
for an example��
Our �rst main result is that� with our choice of operational semantics for GSOS

languages� the bisimulation preorder is substitutive with respect to all language contexts�
�See Thm� ��� and Thm� ��
�� Moreover� as a consequence of general results established
by Abramsky in ��
� we are able to give a characterization of the �nitely observable �or
�nitary� part of the bisimulation preorder for every GSOS language� Intuitively� this is
the preorder obtained by restricting the prebisimulation relation to observations of �nite
depth�
We then show how to automatically give a denotational semantics for a GSOS lan�

guage in terms of Abramsky�s domain of synchronization trees D� To this end� following
the ideas of initial algebra semantics ���� ��� ��� �

� it is su�cient to endow Abramsky�s
model with an appropriate continuous algebra structure in the sense of ���� ��� ��
� This
we do by showing how the GSOS rules de�ning the operational semantics of an opera�
tion symbol f of a compact GSOS language can be used to de�ne a continuous function
fD of the appropriate arity over the domain of synchronization trees D� In de�ning the
semantic counterparts of the operations in a compact GSOS language� we shall rely on
a description of the domain D presented in ���
� where it is shown how to reconstruct D
from a suitable preorder over �nite synchronization trees� This view of D will allow us
to de�ne each semantic operation fD in stepwise fashion from monotonic operations over
�nite synchronization trees� We hope that this choice will make the presentation more
accessible to readers who are unfamiliar with domain theory ���� 
�
�
As a result of our general framework� we shall then show that the denotational seman�

tics so obtained is guaranteed to be in complete agreement with the chosen behavioural
semantics� More precisely� for every compact GSOS language� the denotational seman�
tics produced by the general approach presented in this paper is always fully abstract
with respect to the �nitary part of the bisimulation preorder� The key to the proof of
this result is a general theorem that states that� for every compact GSOS language� the
�nitary part of the bisimulation preorder is completely determined by how it acts on
recursion�free processes� Relations that have this property are called algebraic in ���
�
The proof of the algebraicity of the behavioural preorder is rather involved� and relies on
an algorithm for generating an inequational theory that is partially complete with respect
to the bisimulation preorder� in the sense of ��

� for arbitrary compact GSOS systems�
The partially complete axiomatization generated by our methods proves exactly all the
valid inequalities of the form P � Q� where P is a recursion�free term and Q is any term�
It can be lifted to the whole of a compact GSOS language by adding to the proof system
a very powerful induction rule� called ��induction in ���
�

��� Outline of the Paper

The paper is organized as follows� Section � presents the basic notions on transition
systems and prebisimulation that will be needed in this study� We then go on to present
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GSOS languages and rules� �rst we discuss recursion�free languages in Sect� �� and present
our new transition systems semantics for them� The main result of Sect� � is that our
operational view of GSOS languages induces operations that are substitutive with respect
to the bisimulation preorder� Section � introduces GSOS languages with recursion and
their operational semantics� There we show how to apply our approach to give reasonable
operational semantics to languages combining operations de�ned using negative premises
with arbitrary recursive de�nitions� Section � is devoted to background material on
algebraic and denotational semantics needed for the remainder of the paper� Compact
GSOS languages are introduced in Sect� ���� Our method for giving a denotational
semantics to arbitrary compact GSOS languages is presented in Sect� ���� where the
proof of full abstraction of the resulting semantics is also given� Finally� we present in
Sect� � an algorithm that� for any compact GSOS language� generates an inequational
theory that is partially complete with respect to the bisimulation preorder� The paper
concludes with some remarks on our work and a mention of topics for further research�
As this is not an introductory paper on the meta�theory of process description lan�

guages� we have taken the liberty of referring the readers to other publications in the
literature for motivations and some of the background technical material� We hope�
however� that our choice of presentation will make the paper accessible to uninitiated
readers�

��� Related Work

The work reported in this paper is by no means the �rst attempt to systematically derive
denotational models from SOS language speci�cations� The main precursors to this work
in the �eld of the meta�theory of process description languages may be found in the
work by Bloom ��	
� and by Rutten and Turi ���� ��� ��� ��
� In his unpublished paper
��	
� Bloom gives operational� logical� relational and three denotational semantics for
GSOS languages without negative premises and unguarded recursion� and shows that
they coincide� Bloom�s work is based on the behavioural notion of simulation ���
� and
two of his denotational semantics are given in terms of Scott domains based on �nite
synchronization trees� On the other hand� the work by Rutten presented in ���� ��� ��

gives methods for deriving a denotational semantics based on complete metric spaces and
Aczel�s non�well�founded sets ��
 for languages speci�ed in terms of sub�formats of the
tyft�tyxt format due to Groote and Vaandrager ���
� In particular� the reference ���
 gives
a detailed and clear introduction to a technique� called processes as terms by Rutten� for
the de�nition of operations on semantic models from operational rules� Rutten�s general
�processes as terms� approach could have been applied to yield an equivalent formulation
of the semantic operations on �nite synchronization trees we present in Sect� ���� in this
study� however� we have plumped for the more direct construction of the operations given
in Def� ���� The work presented in the aforementioned papers by Rutten has recently
been generalized by Rutten and Turi in ���
� In that paper� the authors show how to give
denotational semantics to languages speci�ed by transition system speci�cations in full
tyft�tyxt format ���
� and investigate in a categorical perspective the essential properties
of semantic domains that make their de�nitions possible�
In ��
� various notions of process observations are considered in a uniform algebraic
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framework provided by the theory of quantales �see� e�g�� ���
�� The methods developed
by Abramsky and Vickers in ��
 yield� in a uniform fashion� observational logics and
denotational models for each notion of process observation they consider� Their work is�
however� semantic in nature� and ignores the algebraic structure of process expressions�
In the area of the semantics of functional programs� developments that are somewhat

similar in spirit to those pursued in this study are presented by Smith in �
	
� In that
paper� Smith studies a natural notion of preorder over programs written in a simple
functional programming language� and shows how any ordering on programs with certain
basic properties can be extended to a term model that is fully abstract with respect to
it�
Finally� it is hard to underestimate the debt that our work owes to the pioneering work

of Abramsky� Hennessy� Milner� Plotkin and their coworkers in the �eld of denotational
models for concurrency� Without the inspiration of seminal papers like ���� ��� �	� �� ��
�
this work would simply not have been possible�

� Preliminaries on Labelled Transition Systems

We begin by reviewing the basic notions on transition systems that will be needed in
this study� The interested reader is invited to consult� e�g�� ��	� �	
 for more details and
extensive motivations�
The operational semantics of the languages considered in this paper will be given in

terms of a variation on the model of labelled transition systems ��	
 that takes divergence
information into account� We refer the interested readers to� e�g�� ���� �
� �	� ��
 for
motivation and more information on �variations on� this semantic model for reactive
systems�

De�nition ��� �Labelled Transition Systems with Divergence� A labelled tran�
sition system with divergence �lts� is a quadruple �P�Lab��� ��� where�

� P is a set of processes� ranged over by s� t�

� Lab is a set of labels� ranged over by ��

� �� P�Lab�P is a transition relation� As usual� we shall use the more suggestive

notation s
�
� t in lieu of �s� �� t� ���

� �� P is a divergence predicate� notation s ��

We write s 	� read �s de�nitely converges�� i� it is not the case that s �� and s � t i�
s

a
� t for some a � Lab ��� stands for the re�exive and transitive closure of ��� The

sort of a process s is de�ned as follows�

sort�s� �
n
a � Lab j 
t� u � s�� t

a
� u

o
�

An lts is sort��nite i� sort�s� is �nite for every process s�
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A useful source of examples for labelled transition systems with divergence is the set
of �nite synchronization trees over a set of labels Lab� denoted by ST�Lab�� These are
the sets generated by the following inductive de�nition�

f�i � Lab� ti � ST�Lab�g
i�I

fh�i� tii j i � Ig��f�g
 � ST�Lab�

where I is a �nite index set� and the notation ��f�g
 means optional inclusion of ��
As it will become clear in a moment� the symbol � will be used to represent the fact
that a synchronization tree is divergent� The set of �nite synchronization trees ST�Lab�
can be turned into a labelled transition system with divergence by stipulating that� for
t � ST�Lab��

� t � i� � is in t� and

� t
�i� ti i� h�i� tii is in t�

The behavioural relation over processes that we shall study in this paper is that of
prebisimulation ���� �	� �
� ��
 �also known as partial bisimulation ��
��

De�nition ��� �Prebisimulation� Let � � �P�Lab��� �� be an lts� Let Rel�P� denote
the set of binary relations over P� De�ne the functional F � Rel�P�� Rel�P� by�

F �R� � f�s� t� j 
� � Lab

� s
�
� s� � 
t� � t

�
� t� and s� R t�

� s 	� t 	 and �t
�
� t� � 
s� � s

�
� s� and s� R t�
g

A relation R is a prebisimulation i� R� F �R�� We write s� �� s� i� there exists a
prebisimulation R such that s� R s�� �The subscript � will be omitted when this causes
no confusion�	

The relation � is a preorder over P based on a variation on bisimulation equivalence
���� ��
� Its kernel will be denoted by �� i�e�� ��� � ���� Intuitively� s� � s� if s��s
behaviour is at least as speci�ed as that of s�� and s� and s� can simulate each other when
restricted to the part of their behaviour that is fully speci�ed� A divergent state s with no
outgoing transition is a minimal element with respect to �� and intuitively corresponds
to a process whose behaviour is totally unspeci�ed  essentially an operational version
of the bottom element � in Scott�s theory of domains ���� ��� 
�
�
Although the relations � and � have been de�ned over a given lts� we often want to

use them to compare processes from di�erent lts�s� for example� we shall often compare
states in an lts with �nite synchronization trees� This can be done in standard fashion by
forming the disjoint union of the two systems� and then using � and � on the resulting
lts� In the sequel� this will be done without further comment�

Notation ��� The largest prebisimulation over an lts obtained as the disjoint union of
an lts � and the lts of �nite synchronization trees will be denoted by �� throughout the
paper�
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In this study� we shall be interested in relating the notion of prebisimulation to a preorder
on processes induced by a denotational semantics given in terms of an algebraic domain
���� 
�
� As such preorders are completely determined by how they act on �nite processes�
we shall be interested in comparing them with the ��nitely observable�� or �nitary� part
of the bisimulation in the sense of� e�g�� ���� �

� The following de�nition is from ��
�

De�nition ��	 The �nitary preorder �F is de�ned on any lts by

s �F s� � 
t � ST�Lab�� t � s� t � s� �

An alternative method for using the functional F to obtain a behavioural preorder is to
apply it inductively as follows�

� ��� Rel�P��

� �n��� F ��n�

and �nally ���
T
n�� �n� Intuitively� the preorder �� is obtained by restricting the

prebisimulation relation to observations of �nite depth� The preorders �� �� and �F

are� in general� related thus�
� � �� � �F �

Moreover the inclusions are� in general� strict� The interested reader is referred to ��

for a wealth of examples distinguishing these preorders� and a very deep analysis of their
general relationships and properties� Here we simply state the following useful result�
which is a simple consequence of ��� Lem� ���	
�

Lemma ��
 Let �P�Lab��� �� be an lts with divergence� Then� for every t � ST�Lab��
s � P� t � s i� t �� s�

In what follows we shall have some use for the notion of prebisimulation up to �� �See
Sect� ��� Following Milner ���� ��
 and Walker ���
� this is de�ned as follows�

De�nition ��� Let �P�Lab��� �� be an lts with divergence� A relation R � P � P is a
prebisimulation up to � if� for all s�� s� � P� � � Lab� s� R s� implies


� if s�
�
� s��� then for some s��� s

��
� � P� s�

�
� s��� and s�� R s�� � s��� �

�� if s� 	 then

�a	 s� 	� and

�b	 if s�
�
� s��� then for some s��� s

��
� � P� s�

�
� s��� and s��� � s�� R s���

The usefulness of the above notion is summarized by the following lemma that can be
shown by simple arguments along the lines of ���� Lemma ���
�

Lemma ��� Let �P�Lab��� �� be an lts� Suppose that a relation R � P � P is a pre�
bisimulation up to �� Then s� R s� implies s� � s��






� GSOS Languages

We assume some familiarity with process algebra and structural operational semantics
�see� e�g�� ���� ��� ��� ��� �	� ��� ��� ��
 for more details and extensive motivations��
Let Var be a denumerable set of meta�variables ranged over by x� y� A signature

! consists of a set of operation symbols� disjoint from Var� together with a function
arity that assigns a natural number to each operation symbol� Throughout this paper�
following the standard lines of algebraic semantics �see� e�g�� ���� ��
�� we shall assume
that signatures contain a distinguished function symbol � of arity zero to denote the
totally unspeci�ed� or divergent� process� i�e�� a process about whose behaviour we have
no information�� The set �!�Var� of terms over ! and Var �abbreviated to �!� when
the set of variables is clear from the context or immaterial� is the least set such that

� Each x � Var is a term�

� If f is an operation symbol of arity l� and P�� � � � � Pl are terms� then f�P�� � � � � Pl�
is a term�

We shall use P�Q� � � � to range over terms and the symbol � for the relation of syntactic
equality on terms� T�!� is the set of closed terms over !� i�e�� terms that do not contain
variables� Constants� i�e� terms of the form f��� will be abbreviated as f �
A !�context C��x
 is a term in which at most the variables �x appear� C� �P 
 is C��x


with xi replaced by Pi wherever it occurs� We say that a relation R � T�!�� T�!� is
closed with respect to !�contexts i� for every !�context C��x
 and vectors of closed terms
�P and �Q of the appropriate length

�P R �Q implies C� �P 
 R C� �Q


where the relation R is extended pointwise to vectors of equal length�
Besides terms we have actions� elements of some given �nite set Act� which is ranged

over by a� b� c� A positive transition formula is a triple of two terms and an action� written
P

a
� P �� A negative transition formula is a pair of a term and an action� written P

a
��

In general� the terms in the transition formula will contain variables� Transition formulae
will be ranged over by ��

De�nition ��� �GSOS Rules� Suppose ! is a signature� A GSOS rule r over ! is an
inference rule of the form�

Sl

i��

n
xi

aij
� yij j� � j � mi

o
�

Sl

i��

n
xi

bik
� j� � k � ni

o
f�x�� � � � � xl�

c
� C��x� �y


���

where all the variables are distinct� mi� ni � 	� f is an operation symbol from ! with
arity l� C��x� �y
 is a !�context� and the aij� bik� and c are actions in Act�

�In fact� as it will become clear in the remainder of this paper� � is just syntactic sugar for the recursive
term �x�X � X	� See Sect� � for details�
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It is useful to name components of rules of the form ���� The operation symbol f is
the principal operation of the rule� and the term f��x� is the source� C��x� �y
 is the tar�
get �sometimes denoted by target�r��� c is the action �sometimes denoted by action�r���
the formulae above the line are the antecedents� and the formula below the line is the
consequent� If� for some i� mi � 	 then we say that r tests its i�th argument positively�
Similarly if ni � 	 then we say that r tests its i�th argument negatively� An operation f
tests its i�th argument positively �resp� negatively� if it occurs as principal operation of a
rule that tests its i�th argument positively �resp� negatively�� We say that an operation
f tests its i�th argument if it tests it either positively or negatively�

De�nition ��� �GSOS Systems� A GSOS system is a pair G � �!G�RG�� where !G
is a �nite signature and RG is a �nite set of GSOS rules over !G containing no rules
with � as principal operation�

Example
 An example of GSOS system� the language preACP��
�� is presented in Fig� ��

We shall use this concrete language as a running example throughout the paper to illus�
trate our de�nitions and results�
The language preACP�� is a subset of ACP ���
 with action pre�xing in lieu of general

sequential composition� Its parallel composition operator� denoted by k� is parameterized
with respect to a partial� commutative and associative communication function 	 � Act�
Act 
 Act� An operation in preACP�� that uses the power of negative premises� at least
in the presence of a non�trivial priority structure on actions� is the priority operation �
of Baeten� Bergstra and Klop ���
� In order to de�ne this operation� we assume a given
partial ordering relation � on Act� Intuitively� b � a is interpreted as �action b has
priority over action a��
The sub�language of preACP�� consisting only of the operations �� �� a� and " will

be denoted by FINTREE�� We shall use the standard process algebra conventions for the
FINTREE� language� For example� for I � fi�� � � � � ing a �nite index set� we write

P
i�I Pi

for Pi� " � � �" Pin � By convention�
P

i�� Pi stands for ��
�

GSOS systems have been introduced and studied in depth in ���� ��
� Intuitively� a
GSOS system gives a language� whose constructs are the operations in the signature !G�
together with a Plotkin�style structural operational semantics ��	
 for it de�ned by the
set of conditional rules RG� In this study� the operational semantics of a GSOS system
will be given in terms of labelled transition systems with divergence� In order to obtain
this non�standard interpretation� we aim at using the rules in a GSOS system G to
de�ne a divergence predicate over terms and a transition relation in such a way that our
de�nitions�

�� specialize to those originally given by Bloom� Istrail and Meyer in their seminal
studies ���� ��
 when divergence is not taken into account�

�� give results that are in agreement with those already presented in the literature
when applied to known process description languages� and

�Here we follow the spirit of the terminology suggested in 
��
�

�	



Signature Arity Rules

� 	 no rules

� 	 no rules

a� �a � Act� � a�x
a
� x

" � x
a
�x�

x�y
a
�x�

y
a
�y�

x�y
a
�y�

k � x
a
�x�

xky
a
�x�ky

y
a
�y�

xky
a
�xky�

x
a
�x��y

b
�y�

xky
c
�x�ky�

	�a� b� � c

� � x
a
�x��	�b�a
x

b
�

�	x

a
��	x�


Figure �� The language preACP��

�� produce operators that are well�behaved with respect to the notion of prebisimula�
tion� i�e�� operations for which prebisimulation is a precongruence�

First of all� we shall use the rules in a GSOS systems to de�ne a divergence �or under�
speci�cation� predicate on the set of closed terms over !G� In fact� as is common practice
in the literature on process algebras� we shall de�ne the notion of convergence� and use
it to de�ne the divergence predicate we are after� Intuitively� a term P is convergent
if the set of its initial transitions is fully speci�ed� The basic divergent term is �� the
totally unspeci�ed process� A term of the form f� �P � is convergent i� the set of its initial
transitions only depends on those arguments Pis whose initial behaviour is completely
known� This informal discussion motivates the following de�nition�

De�nition ��� �Convergence� Let G � �!G�RG� be a GSOS system� The convergence
predicate 	G �abbreviated to 	 when the GSOS system G is clear from the context	 is the
least predicate over T�!G� that satis�es the following clause�

f�P�� � � � � Pl� 	G if


� f �� �� and

�� for every argument i of f � if f tests i then Pi 	G�

We write P �G i� it is not the case that P 	G�

When applied to the language preACP��� Def� ��� gives the following convergence pred�
icate�

� � 	�

� if P 	 and Q 	� then P " Q 	 and PkQ 	�

� if P 	 then ��P � 	�

��



The reader familiar with the literature on prebisimulation over CCS�like languages will
have noted that the above de�nition generalizes those given in� e�g�� ���� �
� �	
� For
instance� when applied to the recursion�free fragment of the version of Milner�s SCCS
considered in ��

� it delivers exactly Hennessy�s converge predicate�
We shall now present our non�standard operational semantics for GSOS languages�

As stated above� we take as our starting point the original theory developed by Bloom�
Istrail and Meyer� Informally� the original intent of a GSOS rule is as follows� Suppose
that we are wondering whether f� �P � is capable of taking a c�step� We look at each rule
with principal operation f and action c in turn� We inspect each positive antecedent
xi

aij
� yij� checking if Pi is capable of taking an aij�step for each j and if so calling the

aij�children Qij� We also check the negative antecedents� if Pi is incapable of taking a
bik�step for each k� If so� then the rule �res and f� �P �

c
� C� �P � �Q
� Roughly� this means

that the transition relation associated with a GSOS system in ���
 is the one de�ned by
structural induction on terms using the rules in RG�
In the presence of divergence information� we shall de�ne the transition relation over

terms in a similar vein� However� we shall interpret negative transition formulae over
convergent processes only� Intuitively� to know that a process cannot initially perform a
given action� we need to �nd out precisely all the actions that it can perform� If a process
is divergent� its set of initial actions is not fully speci�ed� thus we cannot be sure whether
such a process satis�es a negative transition formula or not�
For the sake of completeness� we shall now formally de�ne the lts with divergence

induced by a GSOS system following ���� ��� �
� �Our presentation follows the one given
in ��
 more closely��

De�nition ��	 A closed !�substitution is a function 
 from variables to closed terms
over the signature !� For each term P � P
 will denote the result of substituting 
�x� for
each x occurring in P � For t a term� transition formula� GSOS rule� etc�� we write t

for the result of substituting 
�x� for each x occurring in t�

The notation fP��x�� � � � � Pn�xng� where the Pis are terms and the xis are distinct vari�
ables� will often be used to denote the substitution that maps each xi to Pi� and leaves
all the other variables unchanged�

De�nition ��
 Let G be a GSOS system� A transition relation over the signature !G is
a relation � � T�!G�� Act � T�!G��

Let� be a transition relation and 
 a closed substitution� For each transition formula
�� the predicate �� 
 j� � is de�ned by

�� 
 j� P
a
� Q

�

� P
 a� Q


�� 
 j� P
a
�

�

� P
 	G and � 
Q � P
 a� Q

For H a set of transition formulae� we de�ne

�� 
 j� H
�

� 
� � H � �� 
 j� �

��



and for r �
H

�
a GSOS rule of the form �
	�

�� 
 j�
H

�

�

�
�
�� 
 j� H � �� 
 j� �

�
�

The reader familiar with the literature on Hennessy�Milner logics ���
 for prebisimulation�
like relations will have noted that our notion of satisfaction for negative transition formu�
lae is akin to that for formulae of the form �a
F given in� e�g�� ��	� 
�� 
�� �� 

� In those
references� the new interpretation is necessary to obtain monotonicity of the satisfaction
relation with respect to the appropriate notion of prebisimulation� In this study� our in�
terpretation of negative premises will be crucial to obtain operations that are monotonic
with respect to the notion of prebisimulation� �See� e�g�� Thm� ����� Basically� it will
ensure that� for a closed term P � the transition formula P

a
� holds i� Q

a
� holds for

every closed term with P � Q�

De�nition ��� Suppose G is a GSOS system and � is a transition relation over !G�
Then � is sound for G i� for every rule r � RG and every closed !G�substitution 
� we

have �� 
 j� r� A transition P a� Q is supported by some rule
H

�
� RG i� there exists

a substitution 
 such that �� 
 j� H and �
 �
�
P

a
� Q

�
� The relation � is supported

by G i� each transition in � is supported by a rule in RG�

The requirements of soundness and supportedness are su�cient to associate a unique
transition relation with each GSOS system�

Lemma ��� For each GSOS system G there is a unique sound and supported transition
relation�

Proof
 The unique sound and supported transition relation associated with a GSOS
system G is the one de�ned by structural recursion on terms using the rules in RG�
with the proviso that� as formalized in Def� ���� negative transition formulae can only be
satis�ed by convergent terms� The interested reader is referred to the proof of Propn� ���
for details� �

We write �G for the unique sound and supported transition relation for G�

Lemma ��� Suppose G is a GSOS system� Then the transition relation �G is �nitely

branching� i�e�� for every P � T�!G�� the set Der�P � �
n
�a�Q� j P

a
�G Q

o
is �nite�

Proof
 A minor modi�cation of the proof of the standard result for GSOS languages in
���
� �

The lts with divergence speci�ed by a GSOS system G is then given by

lts�G� � �T�!G���G� �G� �

��



The largest prebisimulation over lts�G� will be denoted by �G� and its kernel by �G�
�The subscript G will be omitted from these relations when this causes no confusion��

Example
 We exemplify our approach using our running example� the language in Fig� ��
by considering some identities involving simple terms that use the priority operation ��
The term ���� is divergent� as � is� Moreover it does not have any transition because

� has none� We thus have that ���� � ��
Consider a term of the form P � a�� " �� with a a maximal element in the poset

�Act���� i�e�� with a an action with maximal priority� Then the rule for � with action a
has no negative antecedents� and it can be used to establish the transition ��P �

a
� �����

Indeed� this is the only transition that is possible from ��P �� As ��P � is divergent� as P
is� it is easy to see that ��P � � a�� " ��
On the other hand� if a is not maximal in the poset �Act���� the rule for � with action

a will have at least one negative antecedent� As P is divergent� that rule cannot be used
to derive a transition from the term ��P �� It thus follows that ��P � � �� if a is not
maximal in the poset �Act���� �

��� Prebisimulation is a Precongruence

We are now ready to establish the �rst main result of this paper� Namely� we shall prove
that the operations of a GSOS system preserve the semantic notion of prebisimulation�
This is the import of the following theorem�

Theorem ��� Let G be a GSOS system� Then �G is a precongruence for all operation
symbols f of G� i�e�� �
i � Pi �G Qi� � f� �P � �G f� �Q��

Proof
 Consider the least relation R satisfying the following conditions�

�� �G � R� and

�� if Pi R Qi for � � i � l� then f� �P � R f� �Q��

Note thatR so de�ned is the smallest relation that contains �G and is closed with respect
to all !G�contexts�
The statement of the theorem follows immediately if we prove that R is a prebisimu�

lation� This we show by induction on the de�nition of the relation R� Assume thus that
P R Q� By the de�nition of R� we have that either

�� P �G Q� or

�� P � f� �P �� Q � f� �Q� and Pi R Qi� for some �P � �Q�

If P �G Q� then the clauses of De�nition ��� are trivially met as �G is itself a prebisim�
ulation included in R� We shall thus concentrate on showing that they are met when
P � f� �P �� Q � f� �Q� and Pi R Qi� for some �P � �Q� under the inductive hypothesis that
they are met for each pair of terms Pi R Qi�
We check that each clause of the de�nition of prebisimulation is met in turn�

��



� Assume that P � f� �P �
c
�G R for some R � T�!G�� We shall show that Q �

f� �Q�
c
�G S for some S such that R R S�

As f� �P �
c
�G R and �G is supported by RG� there exist a rule r for f of the

form ���� and a closed substitution 
 such that�

�� f��x�
 � f� �P �� i�e�� 
�xi� � Pi for very i � f�� � � � � lg�

�� C��x� �y

 � R�

�� for every � � i � l� � � j � mi� 
�xi� � Pi
aij
�G 
�yij�� and

�� for every � � i � l with ni � 	� 
�xi� � Pi 	G and� for every � � k � ni�

Pi
bik
�G�

We aim at using r to construct a matching transition from f� �Q� with respect to R�
This requires checking that all the antecedents of rule r are suitably met by �Q�

We examine the positive antecedents �rst� As Pi R Qi for each � � i � l� by
induction we have that for every � � i � l� � � j � mi� there exists a term Sij such
that

� Qi

aij
�G Sij� and

� 
�yij� R Sij�

This implies that the positive antecedents of r can be met by using the substitution

� �
n
�Q��x� �S��y

o
�

As Pi R Qi and Pi 	G if ni � 	 �� � i � l�� another application of the inductive
hypothesis gives that for every � � i � l with ni � 	� ��xi� � Qi 	G and ��xi� �

Qi
bik
�G� � � k � ni� i�e�� all the negative antecedents of rule r can also be met by

the substitution � �

Thus the substitution � and the rule r can be used to derive the transition

f� �Q�
c
�G C��x� �y
� �

We are now left to show that R � C��x� �y

 R C��x� �y
� � However� this is immediate
from the fact that� by construction� R is closed with respect to all !G�contexts�

� We now show that f� �P � 	G implies f� �Q� 	G� Assume that f� �P � 	G� By the
de�nition of the predicate 	G� this is because f �� � and� for every argument i of f �
f tests i implies that Pi 	G� As Pi R Qi� the induction hypothesis gives that Qi 	G
for every i tested by f � Thus f� �Q� 	G�

� Assume that f� �P � 	G� f� �Q� 	G and f� �Q�
c
�G S� We shall show that f� �P �

c
�G R

for some term R such that R R S� As f� �Q�
c
�G S and �G is supported by RG�

there exist a rule r for f of the form ���� and a closed substitution � such that�

�� f��x�� � f� �Q�� i�e�� ��xi� � Qi for very i � f�� � � � � lg�

�� C��x� �y
� � S�

��



�� for every � � i � l� � � j � mi� ��xi� � Qi

aij
�G ��yij�� and

�� for every � � i � l with ni � 	� ��xi� � Qi 	G and ��xi� � Qi

bik
�G� for

� � k � ni�

As before� we aim at using r to construct a matching transition from f� �P � with
respect to R� This requires checking that all the antecedents of rule r are suitably
met by �P �

First of all� note that� as f� �P � 	G� we have that Pi 	G for every argument i that is
tested by f � In particular� it follows that Pi 	G for every argument i that is tested
by r� Thus� by the fact that Pi R Qi for � � i � n and induction� we obtain that�

� for every � � i � l� � � j � mi� there exists a term Rij such that Pi
aij
�G Rij

and Rij R ��yij�� and

� for every � � i � l with ni � 	� Pi 	G and Pi
bik
�G� for � � k � ni�

Consider now the substitution 
 �
n
�P��x� �R��y

o
� By construction� the substitution


 satis�es the antecedents of rule r� 
 and r can therefore be used to derive the
transition

f� �P �
c
�G C��x� �y

 �

We are now left to show that C��x� �y

 R C��x� �y
� � Again� this follows easily from
the fact that the relation R is closed with respect to !G�contexts�

This proves that R is a prebisimulation� �

It is interesting to remark here that the above theorem would not hold if we allowed
negative premises to be satis�ed by divergent terms� As a simple example of this fact�
consider the operation � in our running example� and let us assume that the poset �Act���
is non�trivial� Let a be an action that is not maximal in the poset �Act���� and consider
the term P � a�� " �� If we were allowed to interpret negative premises over divergent
terms� then the rule for � with action a could be used to derive the transition ��P �

a
� �����

However� any term of the form a��"b�� with b � a �these terms exist as a is not maximal
in �Act���� would have the properties that�

�� P � a�� " b��� and

�� ��a�� " b���
a
��

This would imply that ��P � �� ��a�� " b����

� GSOS Systems with Recursion

In this section we consider GSOS languages that include explicit recursive de�nitions of
processes� Let G � �!G�RG� be a GSOS system� and let PVar be a fresh denumerable
set of process variables �X�Y � PVar�� The set of recursive terms over !G and PVar�
denoted by REC�!G�PVar�� is given by the following BNF syntax�

P ��� X j f�P�� � � � � Pl� j �x�X � P �

��



where X � PVar� f is an operation symbol in !G of arity l and �x is a binding construct�
This gives rise to the usual notions of free and bound variables in terms� The set of closed
recursive terms �or programs� will be denoted by CREC�!G�PVar�� We shall assume a
standard notion of substitution of terms for free process variables� and use� with abuse of
notation� PfQ�Xg to denote term P in which each free occurrence ofX has been replaced
by Q� after possibly renaming bound variables in P � �The details of the operation of
substitution in the presence of binders like �x are standard� and will not be important
in this study� The interested reader is invited to consult� e�g�� �
�
 for details�� General
substitutions mapping process variables to programs in CREC�!G�PVar� will be denoted
by boldface Greek letters like ��
We shall now de�ne an operational semantics for the set of programs CREC�!G�PVar�

in terms of an lts with divergence� following the techniques presented in Sect� �� Again�
our aim is to give an operational semantics for recursive terms which is� as much as
possible� in the spirit of the standard GSOS approach� One of the corner�stones of the
GSOS philosophy is the use of structural recursion on terms to de�ne the transition
relation associated with a GSOS system� �Note that� for recursive terms� this requires
de�ning the transition relation for arbitrary open terms in REC�!G�PVar��� This suggests
the following rule schemata to give the operational semantics of recursion�

x
a
� y

�x�X � x�
a
� yf�x�X � x��Xg

���

Such a variation on the rule for recursion used in� e�g�� CCS ���
 has been applied in� e�g��
���
� and is discussed in detail in ���
� As argued in ���
� for guarded recursive terms��
this rule for recursion gives the same results as the standard one based on unfoldings�
namely�

xf�x�X � x��Xg
a
� y

�x�X � x�
a
� y

���

Moreover� rule ��� has the bene�t of leading to an e�ective operational semantics that
associates a �nitely branching lts with each program ���
� However� in this paper� our
main desideratum of a recursion rule is that it allows us to interpret recursive terms as
�xed�points� i�e�� we should like the following equation to hold�

�x�X � P � � Pf�x�X � P ��Xg � ���

This requirement rules out the use of rule ���� as� in general� ��� does not hold for
unguarded recursive terms if their semantics is given using it� As an example� consider
the GSOS system obtained by adding to FINTREE� the operation f given by the rule�

x
a
� y

f�x�
b
� �

���

Then� as process variables have no transitions� the open term f�X�"a�� can only exhibit
one transition� namely f�X�"a��

a
� �� Therefore� the only transition that can be inferred

�In Milner�s CCS� a program P is guarded if every occurrence of a process variable in P is within the
scope of an a� operation� Generalizations of this idea are presented in 
��� ��� �
�

��



for the term P � �x�X � f�X� " a��� using rule ��� is

�x�X � f�X� " a���
a
� � �

On the other hand� the term f�P � " a��� obtained by unwinding the recursive de�nition
of P once� has also the possibility of performing a b�transition� This implies that P ��
f�P � " a��� For this reason� the semantics of recursive terms will be given in this study
by means of the standard recursion rule ����
In order to de�ne the operational semantics of CREC�!G�PVar�� we need� �rst of all�

to extend the convergence predicate to CREC�!G�PVar�� This can be done in standard
fashion following� e�g�� ���� �
� 

�

De�nition 	�� The convergence predicate 	Grec �abbreviated to 	 when the GSOS sys�
tem G is clear from the context	 is the least predicate over CREC�!G�PVar� that satis�es
the following clauses�


� f�P�� � � � � Pl� 	Grec if

�a	 f �� �� and

�b	 for every argument i of f � if f tests i then Pi 	Grec�

�� �x�X � P 	 	Grec if Pf�x�X � P 	�Xg 	Grec�

Again� we write P �Grec i� it is not the case that P 	Grec�

The motivation for the above de�nition is the following� a term P is divergent if its initial
transitions are not fully speci�ed� This occurs either when the initial behaviour of term
P depends on under�speci�ed arguments like � or in the presence of unguarded recursive
de�nitions� For example� the terms �x�X � X� and �x�X � f�X��� where f is the
operation given by rule ��� are not convergent as the initial behaviour of these processes
depends on itself� It is immediate to see that the predicates 	G and 	Grec coincide over
T�!G�� the set of recursion�free terms in CREC�!G�PVar�� We remark here that� when
applied to SCCS ���
 and the version of CCS considered in ���
� the above de�nition
delivers exactly the convergence predicates given by Hennessy in ��

 and Walker in ���
�
respectively�
We shall now show how to associate a transition relation with a GSOS language with

recursion� Of course� we should like the transition relation to be at least sound and
supported in the sense of Def� ����� Moreover� as it is the case for languages de�ned
by rules without negative premises� we should like to associate the least such relation
with a GSOS language with recursion� We shall now show that this can indeed be done�
and that the extra structure given by the convergence predicate can be put to good use
in giving a simple way of constructing the transition relation determined by a GSOS
language with recursion� �The interested reader may wish to compare what follows with
the techniques presented in the beautiful study ���
�� The basic idea of the construction
given in the proof of the following proposition is to build the transition relation associated

�To be precise� we should extend Def� ��� to arbitrary transition formulae� This is straightforward in
light of Def� ���� See also 
��
�

�




with CREC�!G�PVar� in two steps� In the �rst step of the construction� we derive the
transitions emanating from convergent terms by induction on the convergence predicate
following the approach outlined in the previous section� and using the rule schemata ��� to
derive the transitions of recursive terms� In the second� we use the information about the
transitions that are possible for convergent terms to determine the outgoing transitions
for all the terms in CREC�!G�PVar��
The second step of the construction outlined informally above will use a notion of

proof of a transition from a set of inference rules which is a slight modi�cation of the
standard one presented in� e�g�� ���
� This we now present for the sake of completeness�

De�nition 	�� Let G be a GSOS system� An oracle for G is a set O of transitions of
the form P

a
� Q� where P�Q � CREC�!G�PVar� and P 	Grec�

Let O be an oracle for G� Let P�Q � CREC�!G�PVar� and a � Act� A proof with
oracle O of the transition formula P

a
� Q from G is a well�founded� upwardly branching

tree whose nodes are labelled by positive transition formulae of the form P � b
� Q� with

P ��Q� � CREC�!G�PVar� and b � Act� such that�

� the root is labelled with P
a
� Q�

� if P � c
� Q� is the label of a node� and Children is the set of labels of the nodes directly

above it� then�

� either� there are an instance �

�
of rule �
	 and a substitution 
 � Var �

CREC�!G�PVar� such that f�
g � Children and �
 � P � c
� Q��

� or� Children �
n
Pi

aij
� Qij j � � i � l� � � j � mi

o
� and there are a rule r � RG

of the form �
	 and a substitution 
 � Var� CREC�!G�PVar� such that�

� Children �
Sl

i��

n

�xi�

aij
� 
�yij�j� � j � mi

o
�

� for every � � i � l with ni � 	� 
�xi� 	Grec and 
�xi�
bik� R � O �� � k �

ni� for no R � CREC�!G�PVar�� and

� P � c
� Q� �

�
f��x�

c
� C��x� �y


�

�

Proposition 	�� For every GSOS language with recursion CREC�!G�PVar�� there exists
a smallest sound and supported transition relation over CREC�!G�PVar�� This transition
relation will be denoted by �Grec� Moreover� for every P � T�!G��

P
a
�Grec Q � Q � T�!G� and P

a
�G Q � ���

Proof
 First of all� we show how to construct a sound and supported transition relation
�Grec over CREC�!G�PVar�� We then proceed to prove that�Grec is indeed the smallest
relation with these properties�

� Construction of�Grec� We shall construct the relation�Grec over CREC�!G�PVar�
in two steps� and the construction outlined below will guarantee that the result is
sound and supported� In the �rst step of the construction� we derive the transitions
emanating from convergent terms only� In the second step� we use the informa�
tion about the transitions that are possible for convergent terms to determine the
outgoing transitions for all the terms in CREC�!G�PVar��

��



� Step � � We determine the transitions that are possible for convergent terms
by induction on the predicate 	Grec� To this end� let us assume that P 	Grec�
We shall now show how to construct the set

Der�P � �
n
�a�Q� j P

a
�Grec Q

o
by examining the possible forms P may take�

� Case P � f� �P �� As P 	Grec� it must be the case that f �� � and� for every
argument i that is tested by f � Pi 	Grec� By the inductive hypothesis�
we may then assume that we have already constructed the set Der�Pi�
for each such i� Note that this means that we have complete information
about the transitions that are possible from every argument tested by any
rule for f � We now stipulate that �a�Q� � Der�P � i� there exist a rule
r � RG for f of the form ���� and a substitution 
 such that�

�� 
�xi� � Pi for every i�

�� C��x� �y

 � Q�

�� for every positive transition formula xi
aij
� yij in H � we have that

�aij� 
�yij�� � Der�Pi�� and

�� for every negative transition formula xi
bik
� in H � we have that for no

R� �bik�R� � Der�Pi��

� Case P � �x�X � R�� As P 	Grec� it must be the case that

Rf�x�X � R��Xg 	Grec �

By the inductive hypothesis� we may assume that we have already con�
structed the set Der�Rf�x�X � R��Xg�� We now stipulate that

Der�P � � Der�Rf�x�X � R��Xg� �

It is immediate to see that� by construction� the transition relation for conver�
gent terms de�ned above is indeed sound and supported� Moreover� it assigns
a transition to a convergent recursion�free term i� �G does�

� Step 	 � Let O �
n
P

a
�Grec Q j P 	Grec and �a�Q� � Der�P �

o
� The transition

relation is extended to divergent terms as follows� For a divergent term P � the
transition P

a
�Grec Q holds i� it has a proof with oracle O from G in the sense

of Def� ����

Again� the soundness and supportedness of the resulting transition relation is im�
mediate by construction� and so is the agreement with�G for recursion�free terms�

� Leastness of�Grec� First of all� it is easy to show� by induction on the convergence
predicate� that any sound and supported transition relation � must coincide with
�Grec for convergent processes� i�e�� that for every convergent P � action a and
Q � CREC�!G�PVar��

P
a
�Grec Q � P

a
� Q �

�	



The leastness of �Grec is then ensured by Step � of the above construction� and
can be proven by a simple induction on the depth of the proof of transitions�

�

To exemplify the construction in the above proof on a pathological example� let us con�
sider the term �x�X � odd�X��� where the operation odd is given by the rule�

x
a
�

odd�x�
a
� �

This operation is standardly used in the literature to show that negative premises and
unguarded recursive de�nitions can lead to inconsistent speci�cations� �See� e�g�� ���
��
The reason for this phenomenon is that� if we follow the standard GSOS approach� the
equation

X � odd�X� ���

cannot have any solution� In fact� with the standard operational interpretation of GSOS
systems and general transition system speci�cations with negative premises ���� ��
� a
process P solving the above equation would have to exhibit an a�transition i� it does not
have one� In our approach� instead� the above equation has a unique solution modulo ��
To see that this is indeed the case� note� �rst of all� that �x�X � odd�X�� is a divergent
term� It is then easy to see that� because of our requirement that negative premises in
rules be interpreted over convergent terms only� the above rule can never be applied to
derive a transition for �x�X � odd�X��� Thus we have that this term has no transition
and is divergent� i�e�� that �x�X � odd�X�� � �� It is easy to see that� modulo �� � is
the unique solution of Eqn� ����
When applied to the languages considered in ��
� ��
� the theory that we have so far

presented delivers exactly the transition system semantics for SCCS and CCS given in
those references�
With the above de�nitions� the operational semantics of a GSOS language with re�

cursion CREC�!G�PVar� is given by the lts with divergence

lts�Grec� � �CREC�!G�PVar��Act��Grec� �Grec� �

This lts is in general neither �nitely branching nor image �nite ���
� For example� the
term �x�X � a��kX� in our running example has a countably in�nite set of a�derivatives�
However� the lts associated with a GSOS system with recursion is guaranteed to be weakly
�nitely branching in the sense of ��
� This is the import of the following result�

Proposition 	�	 �Weak Finite Branching� Let G be a GSOS system� Then� for ev�
ery P � CREC�!G�PVar�� P 	Grec implies Der�P � is �nite�

Proof
 By induction on the relation 	Grec� �

Fact 	�
 Let G be a GSOS system� Then equation ��	 is sound with respect to �Grec�
i�e�� for every P � REC�!G�PVar� containing at most X free�

�x�X � P 	 �Hrec Pf�x�X � P 	�Xg �

��



Because Act is assumed to be �nite� the lts with divergence giving semantics to a GSOS
system with recursion is a fortiori sort��nite� As a corollary of general results by Abram�
sky� we then have the following characterization of the �nitary bisimulation preorder over
lts�Grec� for any GSOS language G�

Proposition 	�� Let G be a GSOS system� Then the preorders �F and �� coincide
over lts�Grec��

Proof
 By Proposition ���� the lts �CREC�!G�PVar��Act��Grec� �Grec� is weakly �nitely
branching� By ��� Prop� ����
� any weakly �nitely branching lts satis�es Abramsky�s
axiom scheme of bounded non�determinacy �BN� �cf� ��� Page ���
�� The claim then
follows immediately by ��� Prop� ����
� as our lts is sort��nite� �

We end this section with a result showing that prebisimulation is preserved by recursion�
The techniques that we shall employ are modi�cations of those developed by Milner
���� ��
 and adapted by Walker to the setting of prebisimulation ���
�

De�nition 	�� Let P�Q � REC�!G�PVar� contain at most X�� � � � �Xn as free variables�
Then P �Grec Q i�� for every vector of programs R�� � � � � Rn � CREC�!G�PVar��

PfR��X�� � � � �Rn�Xng �Grec QfR��X�� � � � �Rn�Xng �

Theorem 	�� Let G be a GSOS system� Let P�Q � REC�!G�PVar� contain at most X
as a free variable� Then P �Grec Q implies that �x�X � P 	 �Grec �x�X � Q	�

Proof
 �Following Milner�� Let P�Q � REC�!G�PVar� contain at most X as a free
variable� and assume that P �Grec Q� To prove that �x�X � P � �Grec �x�X � Q�� it is
su�cient to show that the relation

R�
�
�Ef�x�X � P ��Xg� Ef�x�X � Q��Xg� j E contains at most X free

�
is a prebisimulation up to �Grec� For then� by taking E � X � it follows by Lemma ���
that �x�X � P � �Grec �x�X � Q�� We remark here that� by de�nition� the relation R is
closed with respect to !G�contexts�
To prove that the relation R is a bisimulation up to �Grec� it is su�cient to show that�

for every pair of closed terms �Ef�x�X � P ��Xg�Ef�x�X � Q��Xg� �R� the following
three claims hold�

�� If Ef�x�X � P ��Xg
a
�Grec P

�� then there exist Q�� Q�� such that

Ef�x�X � Q��Xg
a
�Grec Q

�� and P � R Q� �Grec Q
���

�� If Ef�x�X � P ��Xg 	Grec then Ef�x�X � Q��Xg 	Grec� and

�� If Ef�x�X � P ��Xg 	Grec� Ef�x�X � Q��Xg 	Grec and Ef�x�X � Q��Xg
a
�Grec

Q�� then there exist P �� P �� such that

Ef�x�X � P ��Xg
a
�Grec P

�� and P �� �Grec P
� R Q��

��



To prove that these claims do hold� we proceed as follows� First of all� we establish their
validity for convergent terms simultaneously by induction on the convergence predicate�
This will prove claims � and �� We then prove that claim � holds for all terms by induction
on the proof of the transition Ef�x�X � P ��Xg

a
�Grec P

�� This part of the proof uses
the validity of claims � and � for convergent terms�

� Proof of the claims for convergent terms� Assume thatEf�x�X � P ��Xg 	Grec� We
show that claims �#� above hold simultaneously by induction on the convergence
predicate�

� Proof of claim �� Assume that Ef�x�X � P ��Xg
a
�Grec P � and E has at

most X free� We prove that� for some Q��Q��� Ef�x�X � Q��Xg
a
�Grec Q

��

and P � R Q� �Grec Q
�� arguing by cases on the form E takes�

� Case E � X � In this case� by the de�nition of the convergence pred�
icate� it follows that Ef�x�X � P ��Xg � �x�X � P � 	Grec because
Pf�x�X � P ��Xg 	Grec� By the operational semantics�

Ef�x�X � P ��Xg � �x�X � P �
a
�Grec P

�

because Pf�x�X � P ��Xg
a
�Grec P

�� As P has at most X free� we can
now apply the inductive hypothesis for claim � to derive that� for some
Q�� Q�� Pf�x�X � Q��Xg

a
�Grec Q

� and P � R Q� �Grec Q
�� As P �Grec

Q� it follows that� in particular�

Pf�x�X � Q��Xg �Grec Qf�x�X � Q��Xg �

Thus there exists Q�� such that Qf�x�X � Q��Xg
a
�Grec Q

�� and Q� �Grec

Q��� By the de�nition of the operational semantics and the transitivity of
�Grec� we then have that �x�X � Q�

a
�Grec Q

�� and P � R Q� �Grec Q
���

� Case E � f� �E�� In this case� by the de�nition of the convergence pred�
icate� we have that Ef�x�X � P ��Xg � f� �Ef�x�X � P ��Xg� 	Grec be�
cause f �� � and Eif�x�X � P ��Xg 	Grec for every argument i tested by
f � Assume now that Ef�x�X � P ��Xg

a
�Grec P

�� By the de�nition of
the transition relation� this is because there exist a rule r of the form ���
and a substitution 
 � Var� CREC�!G�PVar� such that�

� for every � � i � l� 
�xi� � Eif�x�X � P ��Xg�

� for every � � i � l� � � j � mi� Eif�x�X � P ��Xg
aij
�Grec 
�yij��

� for every � � i � l with ni � 	� Eif�x�X � P ��Xg 	Grec and� for

� � k � ni� Eif�x�X � P ��Xg
bik
�Grec� and� �nally�

� P � � C� �Ef�x�X � P ��Xg� 
��y�
� where we use 
��y� to stand for the
vector of the 
�yij�s�

We aim at using the same rule r to �nd the required matching transition
from Ef�x�X � Q��Xg�
First of all� note that each Ei has at most X free� Moreover� for every
argument i that is tested by f � Eif�x�X � P ��Xg 	Grec� We may thus

��



apply the inductive hypothesis for claim � to infer that� for every � � i � l�
� � j � mi� there exist closed terms Q

�
ij �Q

��
ij such that

Eif�x�X � Q��Xg
aij
�Grec Q

��
ij and 
�yij� R Q�

ij �Grec Q
��
ij � �
�

An application of the inductive hypothesis for claims � and � allows us to
derive that� for every � � i � l with ni � 	� and � � k � ni�

Eif�x�X � Q��Xg 	Grec and Eif�x�X � Q��Xg
bik
�Grec � ���

Thus� by the de�nition of the transition relation� �
� and ���� rule r gives
that

Ef�x�X � Q��Xg
a
�Grec C� �Ef�x�X � Q��Xg� �Q��
 �

By setting

Q� � C� �Ef�x�X � Q��Xg� �Q�


Q�� � C� �Ef�x�X � Q��Xg� �Q��


we now have that�

P � R Q� �R is substitutive�

�Grec Q�� �Thm� ����

The proof for this case is then complete�

� Case E � �x�Y � F �� for some F with at most X and Y free� The
claim is trivially seen to hold if X � Y � as in this case X is not free
in E� Assume then that X �� Y � that Ef�x�X � P ��Xg 	Grec and
Ef�x�X � P ��Xg

a
�Grec P

�� By the de�nition of the convergence predi�
cate and simple properties of substitution� we have that

FfE�Y gf�x�X � P ��Xg 	Grec

by a shorter inference� Similarly� by the de�nition of the transition rela�
tion� we have that

FfE�Y gf�x�X � P ��Xg
a
�Grec P

� � ��	�

Note now that the term FfE�Y g has at most X free� An application
of the inductive hypothesis for claim � to ��	� now gives that there exist
Q�� Q�� such that

FfE�Y gf�x�X � Q��Xg
a
�Grec Q

�� and P � R Q� �Grec Q
�� �

By the de�nition of the transition relation and simple properties of sub�
stitution� it then follows that

Ef�x�X � Q��Xg
a
�Grec Q

�� �

��



This completes the proof of claim � for convergent processes�

� Proof of claim 	� Assume that Ef�x�X � P ��Xg 	Grec and E has at most X
free� We prove that Ef�x�X � Q��Xg 	Grec arguing by cases on the form E

takes� The proof is straightforward and we only give one case as an example�

� Case E � X � We argue as follows�

Ef�x�X � P ��Xg 	Grec � �x�X � P � 	Grec

�E � X�

� Pf�x�X � P ��Xg 	Grec

�De�nition of 	Grec�

� Pf�x�X � Q��Xg 	Grec

�By induction�

� Qf�x�X � Q��Xg 	Grec

�P �Grec Q�

� �x�X � Q� 	Grec

�De�nition of 	Grec�

� Ef�x�X � Q��Xg 	Grec

�E � X�

� Proof of claim 
� Similar to the proof for claim ��

� Proof of claim � for all closed terms� We now show that claim � holds for all closed
terms by induction on the proof of the transition Ef�x�X � P ��Xg

a
�Grec P

�� The
proof proceeds by cases on the form of E� and the details are very similar to those
of the proof of claim � for convergent processes spelled out above� The interested
reader will have no di�culty in �lling the details�

�

By Thm� ��
 and an easy adaptation of the proof of Thm� ��� to CREC�!G�PVar�� we
then have that�

Corollary 	�� Let G be a GSOS system� Then �Grec is a precongruence over the lan�
guage CREC�!G�PVar��

� Background on Denotational Semantics

In this section� we review the basic notions of algebraic semantics and domain theory
that will be needed in the remainder of this study� The interested reader is invited to
consult� e�g�� ���� ��� ��� ��� ��� ��� �� 
�
 for more details and extensive motivation�

��



��� Preliminaries on Algebraic Semantics

We assume that the reader is familiar with the basic notions of ordered and continuous
algebras �see� e�g�� ���� ��� ��
�� however� in what follows we give a quick overview of the
way a denotational semantics can be given to a recursive language like REC�!G�PVar�
following the standard lines of algebraic semantics ���
� The interested reader is invited
to consult ���
 for an explanation of the theory�
In what follows� we let ! denote a signature in the sense of Sect� �� A !�algebra is

a pair �A�!A�� where A is the carrier set and !A is a set of operators fA � A
l � A�

where f � ! and l � arity�f�� We call fA the interpretation of the function symbol f
in the structure A� Let �A�!A� and �B�!B� be !�algebras� A mapping � � A � B is a
!�homomorphism if it preserves the !�structure� i�e�� if for every f � ! and vector �a of
elements of A of the appropriate length�

��fA��a�� � fB����a�� �

The term algebra T�!� is the initial !�algebra� i�e�� if �A�!A� is a !�algebra then there
is a unique !�homomorphism �A � T�!� � A� We refer to this homomorphism as the
interpretation of T�!� in A�
A !�domain �A�vA�!A� is a !�algebra whose carrier �A�vA� is an algebraic complete

partial order �cpo� �see� e�g�� ���
� and whose operations are interpreted as continuous
functions� The notion of !�poset �respectively !�preorder� may be de�ned in a similar
way by requiring that �A�vA� be a partially ordered �resp� preordered� set and that
the operators be monotonic� The notion of !�homomorphism extends to the ordered
!�structures in the obvious way by requiring that such maps preserve the underlying
topological structure as well as the !�structure�
For any !�structure A� be it ordered or not� the set �PVar � A
 of A�environments

will be denoted by ENVA� and ranged over by the meta�variable �� The �unique� inter�
pretation of T�!�PVar� in A is the mapping A���

 � T�!�PVar� � �ENVA � A
 de�ned
recursively by�

A��x

�
�

� ��x�

A��f�P�� � � � � Pl�

�
�

� fA�A��P�

�� � � � �A��Pl

��

If A is a !�domain the interpretation extends to the set REC�!�PVar� of recursive terms
over ! by setting

A���x�X � P �

�
�

� Y�a�A��P 

��X � a


where Y denotes the least �xed�point operator� As usual� ��X � a
 denotes the environ�
ment which is de�ned as follows�

��X � a
�Y �
�

�

�
a if X � Y
��Y � otherwise

Note that� for each closed recursive term P � CREC�!�PVar�� A��P 

� does not depend
on the environment �� The denotation of a closed term P will be denoted by A��P 

�

��



In what follows� we shall make use of some general results about the semantic map�
pings de�ned above� which may be found in ���� ��� ��
� The �rst states that for any
P � REC�!�PVar� there is a sequence of �nite approximations Pn � T�!�PVar� �n � N�
such that� for any !�domain A�

A��P 

 �
G

n��
A��Pn

 � ����

The second states that there is a syntactically de�ned relation between P and every �nite
approximation Pn� Let �� be the least !�precongruence which satis�es Eqn� � and the
inequation

� � X � ����

Then� for every n � 	� Pn �� P � �Note that the relation �� is contained in the
behavioural preorders � and ����
For any binary relation R over CREC�!�PVar�� the algebraic part of R� denoted by

RA� is de�ned as follows ���
�

P RA Q � 
n
m� Pn R Qm �

We say that R is algebraic i� R�RA� Intuitively� a relation is algebraic if it is completely
determined by how it behaves on recursion�free terms� Every denotational interpretation
A���

 induces a preorder vA over terms by�

P vA Q � A��P 

 vA A��Q

 �

The following result characterizes a class of denotational interpretations which induce
relations over terms that are algebraic�

Lemma 
�� Let A be a !�domain� Then the following statements hold�


� For all P�Q � CREC�!�PVar�� P vA
A Q implies P vA Q�

�� Assume that� for every P � T�!�� A��P 

 is a compact element in A� Then vA is
algebraic�

Proof
 Let ! be a signature� and A be a !�domain� We prove the two statements
separately�

�� Let P�Q � CREC�!�PVar� and assume that P vA
A Q� We prove that P vA Q as

follows�

P vA
A Q � 
n � 	
m � 	 � Pn vA Qm �By the de�nition of vA

A�
� 
n � 	
m � 	 � A��Pn

 vA A��Qm

 �By the de�nition of vA�
�� 
n � 	 � A��Pn

 vA

F
m��A��Q

m


�

F
n��A��P

n

 vA

F
m��A��Q

m



� A��P 

 vA A��Q

 �By Eqn� �����
� P vA Q�

��



�� To prove this statement we note that if A��Pn

 is a compact element in A then the
implication �� in the proof above may be replaced by a bi�implication� ��

�

In view of the above general lemma� the relations over terms induced by a denotational
semantics are always algebraic� provided that the denotations of recursion�free terms
are compact elements in the cpo A� We shall make use of this fact in the technical
developments to follow�

��� A Domain Equation for Synchronization Trees

In this section we recall Abramsky�s domain equation for synchronization trees� and
introduce the background in domain theory that is necessary to understand the paper�
The interested reader is referred to� e�g�� ���� 
�� ��� ��� 
�
 for more general information
on the theory of domains and denotational semantics� and to ��� Sect� �
 for a quick
reference to some of the results mentioned in this section�
The canonical domain we shall use to give a denotational semantics to a class of

GSOS languages is the domain of synchronization trees over a countable set of labels Lab
considered by Abramsky in his seminal paper ��
� This is de�ned to be the initial solution
D�Lab� in the category SFP �cf� ���
� of the domain equation

D�Lab� � ���	 � P �
X

��Lab

D�Lab�
 ����

where � is the one point domain� ���	 is lifting� � is coalesced sum�
P
is separated sum�

and P �D
 denotes the Plotkin powerdomain of D �cf� ���� ��
 for details on these domain�
theoretic operations�� We henceforth omit the parameter Lab as it will be always clear
from the context�
To streamline the presentation and make our results more accessible to uninitiated

readers� in this study we shall abstract completely from the domain�theoretic description
of D given by ����� Our description of the domain of synchronization trees D will follow
the one given in ���
� and we shall rely on results presented in that reference that show
how to construct D starting from a suitable preorder on the set of �nite synchronization
trees ST�Lab�� Our reconstruction of D will be given in three steps�

�� First of all� we shall de�ne a preorder v on the set of �nite synchronization trees
ST�Lab�� This preorder will be a reformulation of the Egli�Milner preorder over
ST�Lab� presented in ���
� �See Fact ��� below��

�� Secondly� we shall relate the poset of compact elements of D to the poset of equiv�
alence classes induced by �ST�Lab��v��

�� Finally� we shall use the fact that D is the ideal completion of its poset of compact
elements to relate it to �ST�Lab��v��

The approach outlined above will allow us to factor the de�nition of the continuous
algebra structure ���� ��� ��
 on D given in Sect� � in three similar steps� hopefully
making it simpler to understand�

�




De�nition 
�� We de�ne v as the least binary relation over ST�Lab� satisfying�

t v u if �
	 h�� t�i � t� 
h�� u�i � u � t� v u� and
��	 � � u� � � t and
�
	 h��u�i � u� �� � t or 
h�� t�i � t � t� v u��

The relation v so de�ned is easily seen to be a preorder over ST�Lab�� Its kernel will be
denoted by �� Moreover� it has the following useful property�

Fact 
�� For all t� u � ST�Lab�� t v u i� t � u�

Proof
 The �only if� implication follows because � satis�es the de�ning constraints of
v� and v is the smallest such relation� The proof of the �if� implication is an easy
induction on the combined size of the trees t and u� �

De�nition 
�	 �ST�Lab�� ��v
� stands for the poset whose elements are ��equivalence
classes of synchronization trees �denoted by �t
	� and whose partial ordering v
 is given
by�

�t
 v
 �u
 � t v u �

We can now relate the preorder of synchronization trees �ST�Lab��v� with the poset of
compact elements of D in a way that will allow us to de�ne� in a canonical way� continuous
operations on D from monotonic ones on �ST�Lab��v��
First of all� we recall from ��
 that D is� up to isomorphism� the algebraic complete

partial order �cpo� whose poset of compact elements �K�D��vK	D
� is given in ��
 by�

� K�D� is de�ned inductively as follows�

� � � K�D�

� f�g � K�D�

� � � Lab� d � K�D� � fh�� dig � K�D�

� d�� d� � K�D� � Con�d��d�� � K�D�� where Con denotes the convex closure
operation �see� e�g�� ��� page ��	
��

� vK	D
 is de�ned by�

d vK	D
 e � d � f�g or d vEM e

where vEM denotes the standard Egli�Milner ordering �see� e�g�� ��� Def� ���
��

From the above de�nitions� it follows that K�D� is a subset of the set of �nite synchro�
nization trees ST�Lab�� Hence it makes sense to compare the relations v and vK	D
 over
it� The following small result lends credence to our previous claims�

Fact 
�
 For all d� e � K�D�� d v e i� d vK	D
 e�

��



Proof
 From Abramsky�s results �see ��� Prop� ����
�� we have that D is �internally fully
abstract�� i�e�� that for all d�� d� � D�

d� � d� � d� vD d� �

The result now follows from Fact ��� and the fact that each compact element of D is in
ST�Lab�� �

As a consequence of this result� to ease the presentation of the technical results to follow�
from now on we shall always use v as our notion of preorder on K�D�� Using it� we may
rephrase the de�nition of convex�closure of a synchronization tree as follows�

Fact 
�� Let t � fh�i� tii j � � i � ng��f�g
 be a synchronization tree in ST�Lab�� Then
its convex�closure Con�t� is given by�

� � � Con�t� i� � � t�

� h�� t�i � Con�t� i� one of the following holds�

� there exist h�i� tii� h�j� tji � t such that �i � �j � � and ti v t� v tj� or

� � � t and� for some h�i� tii � t� �i � � and t� v ti�

For a synchronization tree t � fh�i� tii j � � i � ng��f�g
� its recursive convex�closure tc

is inductively de�ned as follows�

tc
�

� Con�fh�i� t
c
ii j � � i � ng��f�g
� � ����

It is not di�cult to see that� for every t � ST�Lab�� tc is a compact element of D�
Moreover� the function ���c � �ST�Lab��v�� �K�D��v� enjoys the following properties�

Lemma 
��


� For every t � ST�Lab�� t � tc�

�� For all t� u � ST�Lab�� t v u i� tc v uc�


� For all t� u � ST�Lab�� t � u i� tc � uc� i�e�� tc and uc are equal as sets�

�� For all t � ST�Lab�� tc � �tc�c�

As an immediate consequence of the lemma above we have the following�

Corollary 
�� The poset �ST�Lab�� ��v
� is isomorphic to �K�D��vK	D
� under the
isomorphism given by ���t
� � tc�

Assume now that fST � �ST�Lab��v�
l � �ST�Lab��v� is a monotonic function� We may

naturally use fST to de�ne a function fK	D
 � �K�D��v�
l � �K�D��v� as follows�

fK	D
��t
c�

�

�
�
fST�

�t�
�c

� ����

�	



It is easy to see that the function is well de�ned in this way� To see that it is monotonic�
assume that �tc v �uc� Then�

�t
c
v �uc � �t v �u �Lem� �������

� fST�
�t� v fST��u� �fST is monotonic�

� �fST�
�t��c v �fST��u��

c �Lem� �������

� fK	D
��t
c� v fK	D
��u

c� ����

In what follows we refer to the function fK	D
 de�ned above as f
c

ST� We extend this
notation to a set of operators !ST	Lab
 in the standard way�

An easy consequence of the previous theory is that� for any signature !� Eqn� ���� can
be used to induce a !�poset structure on the poset of compact elements from a !�preorder
structure on �nite synchronization trees� This is formalized in the following result� that
also relates the unique meaning maps from T�!� to the resulting algebraic structures�
denoted by ST���

 and K�D����

 respectively�

Corollary 
�� For any signature !� if �ST�Lab��v�!ST	Lab
� is a !�preorder then

�K�D��vK	D
�!
c

ST	Lab
� is a !�poset� Moreover� for every P � T�!��

K�D���P 

 � �ST��P 

�
c
�

Proof
 The �rst statement follows immediately from the previous theory� The second
follows from the initiality of T�!�� because the mappings K�D���cot

 and ���c � ST���

 are
both !�homomorphisms� �

The corollary above implies that we can lift any !�preorder structure on �ST�Lab��v� to
a !�poset structure on �K�D��v�� in the sense of ���
� in a canonical way� In Sect� ��� we
shall take advantage of this fact� Finally� from the theory of powerdomains ���� 
�� ��
�
we know that the domain of synchronization trees D is� up to isomorphism� the ideal
completion of the poset of compact elements K�D�� As a result of this observation�
we can extend any monotonic function fK	D
 � �K�D��v�

l � �K�D��v� to a continuous
function fD � �D�vD�l � �D�vD� by�

fD��k�
�

�
Gn

fK	D
��d� j �d � K�D� and �d vD
�k
o
� ����

The interested reader is invited to consult� e�g�� ���� sect� ���
 for a discussion of the
properties a�orded by this canonical extension� Thus ���� can be used to conservatively
extend any !�poset algebra structure on �K�D��v� to a continuous algebra structure on
D� in the sense of ���� ��� ��
�

� Denotational Semantics for Compact GSOS Languages

with Recursion

In this section we shall present a general technique to give denotational semantics in
terms of the Plotkin powerdomain of synchronization trees �see Sect� ���� for a class
of GSOS languages with recursion� The denotational semantics will be guaranteed to

��



be fully abstract� in the sense of Milner and Plotkin ���� ��� �
� 
�
� with respect to
the �nitary part of the prebisimulation relation� The languages that we shall consider
have the structure of most standard process calculi �see� e�g�� ���� ��� ��� ��
�� they will
consist of a set of operations to build �nite� acyclic labelled transition systems and a
facility for recursive de�nitions of behaviours� Thus we shall consider GSOS languages
with recursion in which in�nite behaviours can only be de�ned by means of recursive
de�nitions�

��� Compact GSOS Systems

The following notion from ��
 will allow us to pin down precisely a class of GSOS oper�
ations that map �nite processes to �nite processes� The semantic counterparts of these
operations will have the property of being compact in the sense of ���
� i�e�� of mapping
compact elements in the Plotkin powerdomain of synchronization trees to compact ele�
ments� In view of Lem� ���� denotational interpretations for the resulting languages will
induce algebraic preorders over terms�

De�nition ��� A GSOS rule of the general form �
	 is linear if each variable occurs
at most once in the target and� for each argument i that is tested positively� xi does not
occur in the target and at most one of the yij�s does� An operation from a GSOS system
G is linear i� all rules for it are linear� Finally� G itself is linear i� it only contains
linear rules�

The format of linear rules is a restriction of the general GSOS format in that no copying
of arguments is allowed and no argument for which there is a positive antecedent may
appear in the target of a rule� Moreover� there may be possibly many positive antecedents
for an argument xi in a rule� but at most one of the yij �s may appear in its target� As
far as we know� all the operations occurring in the standard process algebras are linear�
An example of a non�linear operation is the Kleene star operation ���
 given by the rules
�one pair of rules for each a � Act��

x
a
� x�

x�y
a
� x�� �x�y�

y
a
� y�

x�y
a
� y�

Modulo a di�erent treatment of termination� these rules may be found in ��

� where the
Kleene star operation is considered in the setting of ACP�

De�nition ��� ����� A GSOS system G is syntactically well�founded i� there exists a
function w from operation symbols in !G to natural numbers such that� for each rule
r � RG with principal operation symbol f and target C��x� �y
 the following conditions
hold�

� if r has no positive antecedents then W �C��x� �y
� � w�f�� and

� W �C��x� �y
� � w�f� otherwise�

where W � �!G�� N is given by

W �x�
�

� 	

W �f�P�� � � � � Pl��
�

� w�f� "W �P�� " � � �"W �Pl��

��



For example� the GSOS system in Fig� � is linear and syntactically well�founded� In fact�
it is su�cient to assign weight � to the action pre�xing operations and weight 	 to all
the other operations� On the other hand� no GSOS system containing a constant a� with
rule

a�
a
� a�

����

can be syntactically well�founded� Syntactic well�foundedness is decidable over GSOS
systems �cf� ��� Thm� ��

�� and� for linear GSOS systems� it is su�cient to guarantee
that terms are semantically well�founded in the sense of ��
�

De�nition ��� �Compact GSOS Systems� A GSOS system is said to be compact i�
it is linear and syntactically well�founded�

An example of a compact GSOS system is our running example� the language preACP��
in Fig� �� Other examples are the �nite alphabet versions of standard process algebras
like CCS ���
� CSP ���
 and ACP ���
� The following proposition� that can be proven
following the lines of ��� Prop� ���
� states the key property of compact GSOS systems�
namely that no term in a compact GSOS system exhibits in�nite derivations�

Proposition ��	 Let G be a compact GSOS system� Then G is well�founded� i�e�� for
every P � T�!G� there exists no in�nite sequence P�� a�� P�� a�� P�� � � � of terms in T�!G�
and actions in Act with P � P� and Pi

ai�G Pi�� for all i � 	�

As an immediate corollary of the above result and of Lem� ��
� if G is a compact GSOS
system� then we can unfold the �nite� acyclic process graph giving the operational se�
mantics of a term P � T�!G� to obtain that�

Corollary ��
 Let G be a compact GSOS system� Then� for every P � T�!G�� there
exists a synchronization tree tP � ST�Act� such that P � tP �

In what follows� we shall give a denotational semantics for GSOS systems with recursion
built on top of compact GSOS systems� In view of Cor� ���� in order to endow D with a
structure of a continuous �aka complete ordered !G�magma or !G�cpo� algebra ���� ���
��� ��
� it is su�cient to de�ne a monotonic !�structure on ST�Act�� An interpretation
for the GSOS language with recursion CREC�!G�PVar� built on top of G can then be
given in standard fashion� and will be shown to induce a fully abstract semantics for
CREC�!G�PVar� with respect to �� �

��� A Fully Abstract Denotational Semantics for Compact GSOS Sys�
tems

We shall now present a general method to give a denotational semantics in terms of the
Plotkin powerdomain of synchronization trees to compact GSOS systems� We shall then
show how to extend the results in this section to GSOS languages with recursion built
on top of such systems�
Let G be a compact GSOS language� We shall now give a way of de�ning� for each

!G�context C��x
� a function CST over ST�Act� of the appropriate arity� The de�nition of

��



CST will be given using the rules in RG as a guideline� First of all� note that it is su�cient
to de�ne semantic operations fST for each f � !G� as derived semantic operations can
then be obtained by function composition� The de�nition of the functions fST is given
by the inductive construction in Def� ���� Intuitively� the inductive construction of the
synchronization tree fST�

�t� given in Def� ��� is well�founded because� by the compactness
of G� whenever the premises of a rule of the form ��� can be met by a vector of �nite
synchronization trees �t� then either the weight of C��x� �y
 is strictly smaller than that of f �
or the weight of C��x� �y
 is the same as that of f � and the sum of the sizes of the arguments
of CST has decreased�

Before presenting the inductive de�nition of the synchronization tree fST�
�t�� we now

put the intuitive justi�cation of its well�foundedness on �rmer ground� First of all� we
associate with a class of relevant !G�contexts of the form C��x
 a measure of the complexity
of the synchronization tree CST�

�t
� where �t is a vector of synchronization trees of the
appropriate length�

De�nition ��� The height of a synchronization tree t � fha�� t�i� � � � � han� tnig��f�g
 �
ST�Act� is inductively de�ned by

ht�fha�� t�i� � � � � han� tnig��f�g
� � sup fht�ti� j � � i � ng" � �

De�nition ��� Let G be a compact GSOS system� and let w � !G � N be a weight
function for G in the sense of Def� ���� For each !G�context C��x
 in which each variable
occurs at most once� and vector of synchronization trees �t of the appropriate length we
de�ne the pair of natural numbers norm�C��x
��t� as

norm�C��x
��t� �
�
W �C��x
��

P
fht�ti� j xi occurs in C��x
g

�
�

Following ��� Prop� ���
� it can now be shown that�

Proposition ��� Let G be a compact GSOS system� Then� for every rule r in RG of the
form �
	� and vectors of trees �t � t�� � � � � tl� �u � u�� � � � u�m�

� � � ul� � � � ulml
such that� for

all � � i � l� � � j � mi� haij� uiji � ti�

norm�C��x� �y
��t�u� � norm�f��x���t�

where � denotes the lexicographic ordering over N�N� and �t�u denotes the vector obtained
by concatenating �t and �u�

Proof
 As G is compact� there exist functions w and W satisfying the requirements
in Def� ���� We proceed to prove the claim by distinguishing two cases� depending on
whether the rule r has positive hypotheses or not�

� If r has no positive premise� then� as G is syntactically well�founded� it follows that
W �C��x
� � w�f�� The claim then follows immediately as w�f� � W �f��x���

� Assume that r has at least one positive premise of the form xi
aij
� yij� As for all

� � i � l� � � j � mi� haij� uiji � ti� it follows that ht�uij� � ht�ti� for each such
transition formula�

��



AsG is syntactically well�founded� we have thatW �C��x� �y
� � w�f� � W �f��x��� We
claim that the sum of the heights of the trees corresponding to variables occurring
in C��x� �y
 is strictly smaller than the combined heights of the trees in the vector �t�
To see that this is the case� let

k
�

�
X

fht�ti� j xi occurs in C��x� �y
g"
X

fht�uij� j yij occurs in C��x� �y
g �

Then� we argue as follows�

k �
P

fijmi��g
�max��j�mi

ht�uij�
 "
P

fijmi��g
ht�ti�

�by linearity of r�

�
P

fijmi��g ht�ti� "
P

fijmi��g ht�ti�

�as ht�uij� � ht�ti� for each xi
aij
� yij� using 
i �mi � 	�

�
Pn

xi j xi occurs in f��x�
o ht�ti� �

This completes the proof of the claim� �

By the above result� we are now in a position to de�ne� for each l�ary operation f in a
compact GSOS system� the e�ect of applying the function fST � ST�Act�

l � ST�Act� to

a vector of trees �t by induction on the relation � over the norm given in Def� ���� This
is done in the following de�nition�

De�nition ��� Let G � �!G�RG� be a compact GSOS system� and let f be an l�ary
operation in !G� We de�ne the operation fST � ST�Act�

l � ST�Act� inductively by
stipulating that� for every t�� � � � � tl � ST�Act��

� � � fST�t�� � � � � tl� i� f � � or there is an argument i for f such that f tests its
i�th argument and � � ti�

� hc� ti � fST�t�� � � � � tl� i� there exist a rule for f of the form �
	 and a vector of
trees �u � u�� � � � u�m�

� � � ul� � � � ulml
such that�


� for all � � i � l� � � j � mi� haij� uiji � ti�

�� for all � � i � l with ni � 	� � �� ti and� for all � � k � ni� hbik� ui � ti for
no u � ST�Act�� and


� CST�
�t� �u
 � t� where CST denotes the derived semantic operation associated

with the !G�context C��x� �y
� If C��x
 is a variable xi� then CST�
�t
 � ti�

In the above de�nition� we have inductively de�ned the synchronization tree correspond�
ing to fST�

�t� assuming that we have already constructed the compact element CST�
�t� �u


needed in clause � above� This is justi�ed by Propn� ��
�
The reader might wonder about the basis of our inductive construction of the syn�

chronization tree CST�
�t
� i�e�� about the results it produces when norm�C��x
��t� � �	� ���

In this case� it is not di�cult to see that CST�
�t
 is either the empty tree� or it is the

completely unspeci�ed tree f�g� To see that this is the case� note� �rst of all� that if C��x


��



then either C��x
 is a variable xi� or C��x
 � f�C���x
� � � � � Cl��x
� for some operation f and
contexts C���x
� � � � � Cl��x
 of zero weight� Let us examine the form the tree CST�

�t
 may
take in these cases�

�� If C��x
 � xi� then� as norm�C��x
��t� � �	� ��� it must be the case that ht�ti� � ��
There are only two trees with height �� namely � and f�g� Thus CST�

�t
 � ti is of
the postulated form in this case�

�� If C��x
 � f�C���x
� � � � � Cl��x
�� then� again as norm�C��x
��t� � �	���� it must be the
case that ht�ti� � � for every xi occurring in C��x
� By structural induction this
means that� for each � � i � l� CiST�

�t
 is either � or f�g� Moreover� as G
is syntactically well�founded and the context C��x
 has zero weight� f has no rule
without positive antecedents� As every argument tested by f has no transition� it
is then immediate to see that no rule for f can be applied to derive that a pair
ha� ti � CST�

�t
� This again means that CST�
�t
 is either � or f�g�

We hope that the above discussion makes the aforementioned inductive construction more
understandable� The following example will� hopefully� also shed some light on it�

Example
 When applied to the language preACP��� the construction in Def� ��� pro�
duces the following functions�

� �ST � ��

� �ST � f�g�

� for every t � ST�Act�� aST�t� � fha� tig�

� for every t�� t� � ST�Act�� t��STt� � t� � t��

� for every t�� t� � ST�Act�� t�kSTt� is given by�

�� � � t�kSTt� i� � � t� or � � t��

�� hc� ti � t�kSTt� i� one of the following holds�

�a� there exists hc� t��i � t� such that t � t��kSTt�� or

�b� there exists hc� t��i � t� such that t � t�kSTt
�
�� or

�c� there exist ha� t��i � t� and hb� t
�
�i � t� such that c � 	�a� b� and t � t��kSTt

�
��

� for every t � ST�Act�� �ST�t� is given by�

�� � � �ST�t� i� � � t�

�� hc� t�i � �ST�t� i� there exists hc� t
�i � t such that�

�a� either c is maximal in �Act��� and �ST�t
�� � t��

�b� or c is not maximal in �Act���� for no action b � c and t� hb� t�i � d�
� �� t� and �ST�t

�� � t��

��



The reader familiar with ���
 will notice the similarity of these de�nitions with those
given in that reference� �

We shall now prove that the de�nition of the operations given in Def� ��� endows the
preorder of synchronization trees ST�Act� with a !G�preorder structure� To this end� it
is su�cient to prove that each operation fST is monotonic with respect to the preorder
v�

Theorem ���� �Monotonicity� Let G be a compact GSOS system� and f be an l�ary
operation in !G� Then the function fST given by the construction in Def� ��� is monotonic
with respect to v�

Proof
 We prove that for each !G�context C��x
 in which each variable occurs at most
once� and vectors of synchronization trees �t and �u of the appropriate length

�t v �u� CST�
�t
 v CST��u
 � ��
�

To show the above statement� we associate with each triple �C��x
��t� �u� the pair of natural
numbers �

W �C��x
��
P
fht�ti� " ht�ui� j xi occurs in C��x
g

�
�

We then prove that ��
� holds by well�founded induction on such pairs ordered lexico�
graphically� Let us assume that ��
� holds for every triple �D��y
� �w��v� which is strictly
smaller than �C��x
��t� �u� with respect to our chosen notion of ordering� We then prove
that� under this assumption� if �t v �u� then CST�

�t
 v CST��u
� In fact� it is easy to see that
it is su�cient to prove that ��
� holds when C��x
 � f��x� as compositions of monotonic
functions are monotonic�
In order to show that if �t v �u� then fST�

�t� v fST��u�� it is su�cient to establish the
following claims�

�� if � � fST��u� then � � fST�
�t��

�� if hc� ti � fST�
�t� then hc� ui � fST��u�� for some u � ST�Act� such that t v u�

�� if hc�ui � fST��u�� then either � � fST�
�t� or hc� ti � fST�

�t� for some t � ST�Act�
such that t v u�

We proceed by showing these three claims separately�

�� Assume that � � fST��u�� By the de�nition of the function fST� this is because
either f � � or there is an argument i for f such that f tests its i�th argument
and � � ui� If f � �� then Def� ��� immediately gives that � � fST�

�t�� Otherwise�
assume that there is an argument i for f such that f tests its i�th argument and
� � ui� As ti v ui� it follows that � � ti� Def� ��� then gives that � � fST�

�t��

�� Assume that hc� ti � fST�
�t�� By Def� ��� this is because there exist a rule r for f of

the form ��� and a vector of trees �v � v�� � � � v�m�
� � � vl� � � � vlml

such that�

�a� for all � � i � l� � � j � mi� haij� viji � ti�

��



�b� for all � � i � l with ni � 	� � �� ti and� for all � � k � ni� hbik� vi � ti for no
v � ST�Act�� and

�c� CST�
�t� �u
 � t� where CST denotes the derived semantic operation associated

with the !G�context C��x� �y
�

By �a� and �b� above� we have that�

� for every positive transition formula xi
aij
� yij in the antecedents of r� as ti v ui�

it follows that haij� wiji � u for some wij such that vij v wij�

� for every negative transition formula xi
bik
� in the antecedents of r� as ti v ui

and � �� ti� it follows that � �� ui and for no w � ST�Act�� hbik� wi � ui�

Thus rule r can be used� in conjunction with the vector of trees �w� to show that
hc�ui � fST��u�� where u � CST��u� �w
� We are now left to prove that t v u�
However� this follows immediately by the inductive hypothesis because� by linearity�
C��x� �y
 is a context in which each variable occurs at most once� and� as G is compact�
we have that either W �C��x� �y
� � w�f�� or r has at least one positive hypothesis�
W �C��x� �y
� � w�f� and the sum of the heights of the arguments of C��x� �y
 has
decreased� �Cf� Propn� ��
��

�� Assume that hc�ui � fST��u� and that � �� fST�
�t�� Following the proof of the

previous claim� we can then show that hc� ti � fST�
�t� for some t � ST�Act� such

that t v u� The details are omitted�

This completes the proof of ��
�� �

Because of the above result� the construction of Def� ��� allows us to de�ne� for each
operation symbol f in the signature of a compact GSOS system� a monotonic function
fST over the preorder of �nite synchronization trees ST�Act� of the appropriate arity�
This is exactly what is needed to endow the preorder �ST�Act��v� with the structure
of a !G�preorder� We now proceed to show that� for any compact GSOS system G� the
denotational semantics induced by K�D����

 for recursion�free terms in CREC�!G�PVar� is
fully abstract with respect to the bisimulation preorder� i�e�� that� for all P�Q � T�!G��

P � Q � K�D���P 

 v K�D���Q

 �

First of all� we relate the operational semantics of recursion�free terms to the transition
system view of ST�Act��

Lemma ���� Let G � �!G�RG� be a compact GSOS system� Then� for all P � T�!G��
the following statements hold�


� P 	G i� ST��P 

 	�

�� if P
a
�G Q then ST��P 



a
� ST��Q

�


� if ST��P 


a
� t then P

a
�G Q for some Q such that ST��Q

 � t�

�




Proof
 All the statements can be easily seen to hold by structural induction on P � State�
ments � and � must be proven simultaneously� The details are standard� and therefore
we omit them� �

Proposition ���� Let G � �!G�RG� be a compact GSOS system� Then� for all P �
T�!G�� P � ST��P 

�

Proof
 Lemma ���� tells us that the symmetric closure of the relation

R� f�P�ST��P 

� j P � T�!G�g

is a prebisimulation� �

The results we have established so far allow us to prove that our denotational semantics
is fully abstract with respect to the bisimulation preorder for recursion�free terms�

Theorem ���� �Full Abstraction for Recursion�free Terms� Let G be a compact
GSOS system� Then� for all P�Q � T�!G�� P � Q i� K�D���P 

 v K�D���Q

�

Proof
 We reason as follows�

P � Q � ST��P 

 � ST��Q

 �Prop� �����
� ST��P 

 v ST��Q

 �Fact� ����
� �ST��P 

�

c
v �ST��Q

�

c
�Lem� �������

� K�D���P 

 v K�D���Q

 �Cor� ����

�

Our aim in the remainder of this section will be to extend the above full abstraction result
to the whole of CREC�!G�PVar�� for any compact GSOS system G� First of all� in order
to de�ne an interpretation of programs in CREC�!G�PVar� as elements of D� we need to
de�ne a continuous !G�algebra structure on D� As �D�vD� is� up to isomorphism� the
unique algebraic cpo with �K�D��v� as poset of compact elements� this is easily done
by using Eqn� ���� to de�ne a continuous function fD for each f � !G� By the general
theory of algebraic semantics �see� e�g�� ���
�� we then have that� for all P�Q � T�!G��

D��P 

 vD D��Q

 � K�D���P 

 v K�D���Q

 � ����

In view of Thm� ����� our desired full abstraction result will follow if we prove that the
behavioural preorder �� is algebraic� This is because� from Lem� ��� and the fact that�
by our constructions� each term P � T�!G� is interpreted as a compact element of D� the
relation vD is algebraic� and two algebraic relations that coincide over T�!G� do� in fact�
coincide over the whole of CREC�!G�PVar�� The key to the proof of the algebraicity of
�� is the following general theorem providing a partial completeness result for � in the
sense of Hennessy ��
� 

 for arbitrary compact GSOS systems�
Before stating the partial completeness theorem� we introduce a technical notion from

��
 which will be useful in the remainder of this paper�

��



De�nition ���	 A GSOS system H is a disjoint extension of a GSOS system G if the
signature and rules of H include those of G� and H introduces no new rules for operations
of G�

Note that the relation �is a disjoint extension of� is a partial order over the set of GSOS
systems� Moreover� if H disjointly extends G then it is not hard to see that�

� for every program P in CREC�!G�PVar�� P 	Grec i� P 	Hrec�

� for all P�Q � CREC�!G�PVar�� P
a
�Grec Q implies P

a
�Hrec Q� and

� for all P � CREC�!G�PVar�� Q � CREC�!H �PVar�� P
a
�Hrec Q implies Q �

CREC�!G�PVar� and P
a
�Grec Q�

This means in particular that� for P�Q � CREC�!G�PVar�� P �Grec Q � P �Hrec Q�

Theorem ���
 �Partial Completeness� Let G be a compact GSOS system� Then
there exist a compact GSOS system H and a set of !H �inequations T such that�

� H disjointly extends G and FINTREE�� and

� for all P � T�!H�� Q � CREC�!H �PVar�� P �H Q i� T � f���g � P � Q�

The proof of this theorem is rather involved and occupies the whole of the next section�
It involves giving an algorithm for �nding a complete axiomatization of the relation �
over a disjoint extension of our original language following the lines of ��
� As the details
of the proof are not necessary to understand the developments of this section� we feel
free to assume Thm� ���� in what follows and defer its proof� Apart from its intrinsic
interest� the main consequence of Thm� ���� is the following key result that essentially
states that� for any compact GSOS system� �nite trees are compact elements with respect
to the preorder ��

Theorem ���� Let G be a compact GSOS system� Suppose that t is a synchronization
tree in ST�Act� and that P � CREC�!G�PVar�� Then t �Grec P i� there exists a �nite
approximation Pn of P such that t �Grec P

n�

Proof
 The �if� implication follows immediately from the fact that Pn �� P implies
Pn �Grec P � so we concentrate on the proof of the �only if� implication� The proof relies
on general properties of initial continuous algebras in inequational varieties that may be
found in� e�g�� ���
�
Let G be a compact GSOS system� Then� by Thm� ����� there exist a compact GSOS

H that disjointly extends G and FINTREE�� and a collection T of !H�inequations such
that� for all P � T�!H�� Q � CREC�!H �PVar�� P �Hrec Q i� T � f���g � P � Q� Let
CIT denote the initial continuous !H �algebra that satis�es the set of !H�inequations T �
Then� from the general theory of algebraic semantics� we have that� for all P � T�H��
Q � CREC�!H �PVar��

CIT ��P 

 � CIT ��Q

 � T � f���g � P � Q � ��	�

�	



Let t � ST�Act� and P � CREC�!G�PVar�� Assume that t �Grec P � As H is a disjoint
extension of G� we have that t �Hrec P � Moreover� as H disjointly extends FINTREE��
there exists a term Qt � T�!H� such that Qt �Hrec t �Hrec P � By Thm� ����� it follows
that T � f���g � Qt � P � By ��	�� we then have that CIT ��Qt

 � CIT ��P 

� By the
construction of CIT � the denotation of every recursion�free term in CREC�!
H

�PVar� is
a compact element in CIT � Using ����� this implies that CIT ��Qt

 � CIT ��P

n

 for some
�nite approximation Pn of P � Applying ��	� and the soundness of the inequations in T
with respect to �Hrec� we have that t �Hrec Qt �Hrec P

n� As Pn is a !G�term� and H
disjointly extends G� we �nally conclude that t �Grec P

n� as required� �

The above result� in conjunction with Propn� ���� allows us to prove that �� is indeed
algebraic�

Theorem ���� Let G be a compact GSOS system� Then the relation �� over lts�Grec�
is algebraic�

Proof
 We prove that� for all P�Q � CREC�!G�PVar�� P �� Q i� P �
A
� Q�

� Assume that P �� Q� We prove that P �A
� Q� i�e�� that for every �nite approxi�

mation Pn of P there exists a �nite approximation Qm of Q such that Pn �� Q
m�

Let Pn be a �nite approximation of P � Then� as �� is a !G�precongruence and the
de�ning laws for �� are sound with respect to it� we have that Pn �� P � As G is
compact and Pn � T�!G�� by Lem� ���� there exists a �nite synchronization tree
tPn such that tPn � Pn� Thus� by transitivity of ��� tPn �� Q� We may now apply
Thm� ���� to conclude that� for some �nite approximant Qm of Q� tPn � Qm� By
Lem� ���� it follows that Pn �� Q

m� as required�

� Assume that P �A
� Q� We prove that P �� Q� In fact� as �� coincides with the

�nitary part of � by Propn� ���� it is su�cient to show that P �F Q� Assume to
this end that t � P for some t � ST�Act�� We then reason as follows�

t � P � 
Pn � t � Pn �By Thm� �����
� 
Pn � t �� P

n �By Lem� ����
� 
Qm � t �� P

n �� Q
m �P �A

� Q�
� t �� Q ��� � ���
� t � Q �By Lem� ����

Thus P �F Q� as required�

�

It is interesting to note that the relation �� is� in general� not algebraic for arbitrary GSOS
systems� Consider� for instance� the GSOS system obtained by adding the constant a�

given by the rule ���� to our running example preACP��� Because of the presence of a
��

the resulting GSOS system is not compact� We claim that the relation �� is not algebraic
over this language� In fact� consider the terms a� and �x�X � a�X�� It is easy to see
that a� �� �x�X � a�X�� Moreover� for every n � �� �a��

n
� a�� However� for no �nite

��



approximation ��x�X � a�X��
n
of �x�X � a�X�� it holds that a� �� ��x�X � a�X��

n
�

This is because each ��x�X � a�X��
n
has the form an�� and a� ��n�� a

n���
In light of the above results� we can now show that� for any compact GSOS system

G� the denotational semantics for CREC�!G�PVar� is fully abstract with respect to �� �

Theorem ���� �Full Abstraction� Let G be a compact GSOS system� Then� for every
P�Q � CREC�!G�PVar�� P �� Q i� D��P 

 vD D��Q

�

Proof
 Let G be a compact GSOS system and P�Q � CREC�!G�PVar�� We proceed as
follows�

P �� Q � 
n
m � Pn �� Q
m By Lem�����

� 
n
m � D��Pn

 vD D��Q
m

 By Thm� ����

� P �� Q by property �����

�

When applied to the version of SCCS considered by Abramsky in ��
� the techniques we
have presented deliver a denotational semantics that is exactly the one given by Abramsky
in that paper� This is an easy consequence of Thm� ���
� Abramsky�s full abstraction
theorem ��� Thm� ����
 and the fact that� as remarked in Sect� �� the operational semantics
for SCCS generated by our methods is exactly the standard one given in ��

�

� Partial Completeness for Compact GSOS Languages

Our aim in this section is to give a proof of Thm� ����� The main ideas underlying
the proof of this partial completeness result are a generalization of those used� e�g�� by
Hennessy in ��

 to establish a similar result for Milner�s SCCS ���
� This generalization
of Hennessy�s approach is achieved along the lines of the developments in ��� �
� but the
details are quite di�erent from the ones in the aforementioned references�
Let G be a compact GSOS system� We present an algorithm that can be used to

generate a compact GSOS system H that disjointly extends G and FINTREE�� and a set
of !H�inequations such that� for all P � T�!H� and Q � CREC�!H �PVar��

P �H Q � T � f�Rec�g � P � Q ����

where �Rec� stands for equation ���� stating that a recursive term is equivalent to its
unwinding� As H is a disjoint extension of the GSOS system G we started from� we
have that �G coincides with �H over CREC�!G�PVar�� A solution to ���� thus solves� in
particular� the partial completeness problem for the original language G�
The equational theory T generated by the methods presented in this section will in�

clude the following set of inequations�� which will be henceforth referred to as TFINTREE� �

x" y � y " x ����

�x" y� " z � x" �y " z� ����

�As usual� an equation P � Q should be read as a shorthand for the pair of inequations P � Q and
Q � P �

��



x" x � x ����

x" � � x ����

� � x ����

It is not di�cult to see that the above inequations are sound in any GSOS system that
disjointly extends FINTREE�� Moreover� it is well�known that they are complete with
respect to � over FINTREE�� �See� e�g�� the results in ��
� 

��

Lemma ��� Let G be a GSOS system that disjointly extends FINTREE�� Then the
inequational theory TFINTREE� is sound with respect to �Grec�

In order to prove Thm� ����� we aim at generating GSOS systemH that disjointly extends
G and FINTREE�� and an inequational theory T over !H that includes TFINTREE� and
has the following properties�

� T is ��head normalizing for terms in T�!H�� Adapting the terminology in ���
� a
��head normal form is a term of the form

P
i�I ai�Pi�"�
� where the notation �"�


means that � is an optional summand� The inequational theory generated by our
methods will have the property that every recursion�free term in CREC�!H �PVar�
is provably equal to a ��head normal form� i�e��


P � T�!H�

X
i�I

ai�Pi�"�
 � T � P �
X
i�I

ai�Pi�"�
 � ����

� T is head normalizing for convergent terms in CREC�!H �PVar�� A head normal
form is a term of the form

P
i�I ai�Pi� The inequational theory generated by our

methods will have the property that every convergent term in CREC�!H �PVar� is
provably equal to a head normal form� i�e�� for every P � CREC�!H �PVar��

P 	Hrec � 

X
i�I

ai�Pi � T � f�Rec�g � P �
X
i�I

ai�Pi � ��
�

� T absorbes transitions� The inequational theory generated by our methods will be
such that for all P � CREC�!H �PVar� there exists a program P � � CREC�!H �PVar�
with the following properties�

T � P � P � ����

and� for all a � Act� Q � CREC�!H �PVar��

P � a
�Hrec Q � T � f�Rec�g � P � � P � " a�Q � ��	�

Our interest in inequational theories with the aforementioned properties stems from the
following result� from which� after having presented the promised algorithm� we shall be
able to derive Thm� �����

Theorem ��� Let H be a compact GSOS system that disjointly extends FINTREE��
Suppose that T is a collection of sound inequations with respect to �Hrec that extends
TFINTREE�� Suppose further that T is ��head normalizing for terms in T�!H�� head
normalizing for convergent terms in CREC�!H �PVar� and that T absorbes transitions�
Then ��
	 holds for such H and T �

��



Proof
 Assume that H is a compact GSOS system that disjointly extends FINTREE��
and that T is a collection of inequations over !H that includes TFINTREE� � is sound with
respect to �Hrec and has properties ����#��	�� We prove that ���� holds for such an H
and T �
The soundness part of the statement is guaranteed to hold by the proviso of the

theorem� by Fact� ��� and by Corollary ���� Therefore� we focus on the proof of partial
completeness� To this end� note� �rst of all� that� by Lem� ��
 and ���� Der�P � is �nite
for every P � T�!H�� Moreover� as H is compact� by Propn� ��� no term P � T�!H�
can have in�nite derivations� Thus we can associate with each P � T�!H� a natural
number depth�P �� denoting the maximum number of consecutive transitions possible
from P � Note further that� for any two terms P�� P� � T�!H� that are related by �Hrec�
depth�P�� � depth�P���
Assume now that P � T�!H� and that Q � CREC�!H �PVar�� Suppose further that

P �Hrec Q� We prove� using properties ����#��	� above that

T � f�Rec�g � P � Q � ����

The proof is by induction on depth�P �� We assume� as inductive hypothesis� that the
claim holds for all P � � T�!H�� Q

� � CREC�!H �PVar� with P
� �Hrec Q

� and depth�P �� �
depth�P �� and show that it holds for P and Q�
To show ����� by transitivity� it is su�cient to establish the following two claims�

�� T � f�Rec�g � P � P "Q� and

�� T � f�Rec�g � P " Q � Q�

We now proceed by proving the above claims separately� First of all� note that� as P �
T�!H�� by ���� we have that P is provably equal to a ��head normal form

P
i�I ai�Pi�"�
�

i�e��
T � P �

X
i�I

ai�Pi�"�
 � ����

Proof of Claim �� We prove that T � f�Rec�g � P � P "Q by distinguishing two cases�
depending on whether the ��head normal form for P has a � summand or not�

� Assume that the ��head normal form for P has a � summand� Then we simply
reason as follows�

T � P �
X
i�I

ai�Pi "�

�
X
i�I

ai�Pi "�" Q �By ���� and �����

� P " Q �

� Assume that the ��head normal form for P does not have a � summand�
Then� by the soundness of T � we have that

P �Hrec

X
i�I

ai�Pi �

��



It follows that P 	Hrec� As P �Hrec Q� it must also be the case that Q 	Hrec�
By ��
�� Q is provably equal to a head normal form

P
j�J bj�Qj� i�e��

T � f�Rec�g � Q �
X
j�J

bj�Qj �

As P �Hrec Q� P 	Hrec and Q 	Hrec� for every j � J there exists ij � I such
that aij � bj and Pij �Hrec Qj � Now note that depth�Pi� � depth�

P
i�I ai�Pi� �

depth�P �� Thus the inductive hypothesis can be applied to infer that

T � f�Rec�g � Pij � Qj �

Therefore�

T � f�Rec�g � P �
X
i�I

ai�Pi

�
X
i�I

ai�Pi "
X
j�J

aij �Pij �By repeated use of �����

�
X
i�I

ai�Pi "
X
j�J

bj�Qj �By the inductive hypothesis�

� P " Q �

This completes the proof of the �rst claim�

Proof of Claim 	� We now complete the proof by showing that T �f�Rec�g � P"Q � Q�
First of all� note that� as T absorbes transitions� there exists a program Q� �
CREC�!H �PVar� such that�

T � Q � Q� ����

and� for all a � Act and Q � CREC�!H �PVar��

Q� a
�Hrec Q

� � T � f�Rec�g � Q� � Q� " a�Q� � ����

By the soundness of the inequations in T and ����� we have thatX
i�I

ai�Pi�"�
 �Hrec P �Hrec Q �Hrec Q
� �

Thus� for every i � I there exists a term Qi such that Q� ai�Hrec Qi and Pi �Hrec Qi�
By induction� we infer that� for each such pair of processes �Pi�Qi��

T � f�Rec�g � Pi � Qi � ����

Therefore�

T � f�Rec�g � P "Q � P " Q� �By �����

�
X
i�I

ai�Pi�"�
 " Q�

��



�
X
i�I

ai�Pi�"Q
�
 " Q� �By possibly using �����

�
X
i�I

ai�Qi " Q� �By ���� and possibly using �����

� Q� �By repeated use of �����

� Q �Again by �����

The proof of the theorem is now complete� �

By the above theorem� all that is needed to show Theorem ���� is an algorithm that�
starting from a compact GSOS system G� allows us to generate a suitable disjoint exten�
sion H of G� and an inequational theory T that enjoys properties ����#��	�� This we now
present following the developments in ��� �
 closely� We take the liberty of referring the
reader to those references for detailed motivations for some of the technical de�nitions to
follow�

We now present the core of our strategy for axiomatizing GSOS operations� Following
��
� we proceed in two steps� �rst� we shall show how to axiomatize a class of particularly
well�behaved operations� the smooth operations introduced in Section ���� Secondly� we
shall extend our results to arbitrary GSOS operations in Section ����

Notation ��� For any term P in a GSOS system G that disjointly extends FINTREE��
the notation P �"� � Condition
 will stand for P "� if Condition is true� and P other�
wise�

��� Smooth Operations

In this subsection we give a way of generating an inequational theory that enjoys proper�
ties ����#��	� for the class of smooth operations� using the still simpler weakly distinctive
operations ���� �
 as a base case� The following de�nition is from ��
� where motivation
and examples of smooth operations may be found�

De�nition ��	 A GSOS rule is smooth if it takes the form

n
xi

ai� yiji � I
o
�

	
xi

bij
� ji � K� � � j � ni



f�x�� � � � � xl�

c
� C��x� �y


����

where I�K are disjoint sets such that I �K � f�� � � � � lg� and no xi with i � I appears in
C��x� �y
� An operation from a GSOS system G is smooth if all the rules for this operation
are smooth�

For example� the operations in the language preACP�� are smooth� with the possible
exception of the priority operation � which is only smooth if the priority structure on
actions is trivial�
In order to obtain an inequational theory for smooth operations with the required

properties� we shall �rst show how to obtain equations that describe the interplay between
such operations and the FINTREE� combinators� Lemmas ���#���� hold for arbitrary

��



GSOS systems� and will be stated in full generality even though� in the remainder of the
paper� we shall only apply them to obtain equations for smooth operations in compact
GSOS systems�

Lemma ��
 �Distributivity Laws� Let f be an l�ary smooth operation of a GSOS
system G that disjointly extends FINTREE�� and suppose i is an argument of f for which
each rule for f has a positive antecedent� Then f distributes over " in its i�th argument�
i�e�� for every GSOS system H that disjointly extends G�

f�X�� � � � �Xi " Yi� � � � �Xl� �Hrec f�X�� � � � � Xi� � � � �Xl� " f�X�� � � � � Yi� � � � �Xl� � ����

Proof
 A minor adaptation of the proof of ��� Lem� ���
� �

When applied to the communication�merge operation from ACP ���
 given by the rules
�one such rule for each triple of actions �a� b� c� with 	�a� b� � c��

x
a
� x�� y

b
� y�

xjy
c
� x�jy�

the above lemma gives the equations�

�X " Y �jZ � X jZ " Y jZ

X j�Y " Z� � X jY "X jZ

We now present lemmas that give divergence laws and inaction laws to describe the inter�
action between arbitrary operations and the FINTREE� constants � and �� respectively�
that is� laws which say when a term f� �P � is equivalent to � or �� The following lemmas
can certainly be generalized to yield more laws� but they will be enough for our purposes
in this study�

Lemma ��� �Divergence Laws� Suppose f is an l�ary smooth operation of a GSOS
system G that disjointly extends FINTREE�� and suppose that� for � � i � l� term Pi is
of the form �� �� Xi or Xi " �� Suppose further that the following conditions are met�


� for each rule for f of the form �
�	 there is an index i such that�

� either i � I� and Pi � � or Pi � ��

� or i � K� ni � 	 and Pi � � or Pi � Xi "��

and

�� for some argument i tested by f � Pi � � or Pi � Xi " ��

Then� for every GSOS system H that disjointly extends G�

f� �P � �Hrec � � ��
�

��



Proof
 Assume that H is a disjoint extension of G� and consider a substitution � �
PVar � CREC�!H �PVar�� Then condition � of the lemma ensures that f� �P �� does not
have any transition� and condition � ensures that f� �P �� �Hrec� Therefore f� �P �� �Hrec ��
as required� �

To give the reader an idea of the laws that are generated by the above lemma� we consider
the binary smooth operation � introduced in ��
 to axiomatize the priority operation ��
The de�nition of this operation� as that of �� assumes the presence of a partially ordered
set of actions �Act���� The operation � has rules �one for each a � Act��

x
a
� x�� y

b
� �for all b � a�

x�y
a
� ��x��

����

We apply the above lemma to generate divergence laws for � by considering the possible
forms that its arguments can take�

� Divergence laws when the �rst argument is �� In this case� the �rst condition of
the statement of Lem� ��� is met regardless of the form of the second argument�
However� condition � must also be met� This is not possible if the partial order on
actions is �at� i�e�� if no two actions are related by �� In that case� no divergence
laws are generated by the lemma when the �rst argument of � is the inactive�
convergent term �� Otherwise� Lem� ��� gives the following laws�

��� � �

���Y "�� � �

Note that� in the presence of law ����� the �rst law is redundant as it is provably
equal to a substitution instance of the second�

� Divergence laws when the �rst argument is �� In this case� the second argument can
be arbitrary� and every law generated by Lem� ��� can be obtained as a substitution
instance of the law�

��Y � � �

� Divergence laws when the �rst argument is a process variable X � In this case�
Lem� ��� produces no divergence law� In fact� as Act is �nite� there is at least one
action a which is maximal with respect to �� The instance of rule ���� for a has no
negative premise and condition ���� in the statement of the lemma cannot be met
for it� no matter what the form of the second argument of � is�

We remark here that the requirement ni � 	 in condition ���� of the statement
of the lemma is vital for the soundness of the generated equations� Without it�
Lem� ��� could be used to derive the unsound equation�

X�� � � �

This equation is unsound because� if a is an action in Act which is maximal with
respect to �� then

a���� � a���"���Act��� is not �at
 �� � �

�




� Divergence laws when the �rst argument is of the form X "�� Reasoning as in the
previous case� it is not hard to argue that Lem� ��� produces no divergence law�

Lemma ��� �Inaction Laws� Suppose f is an l�ary smooth operation of a GSOS sys�
tem G that disjointly extends FINTREE�� and suppose that� for � � i � l� term Pi is of
the form �� Xi or

P
n�N cn�Xn� Suppose further that the following conditions are met�


� for each rule for f of the form �
�	 there is an index i such that either �
	 i � I and
Pi � � or Pi �

P
n�N cn�Xn and ai �� fcn j n � Ng� or ��	 i � K� Pi �

P
n�N cn�Xn

and there exist n � N and � � j � ni with cn � bij� and

�� for no argument i tested by f � Pi is a process variable�

Then� for every GSOS system H that disjointly extends G�

f� �P � �Hrec � � ��	�

Proof
 Assume that H is a disjoint extension of G� and consider a substitution � �
PVar � CREC�!H �PVar�� Then condition � of the lemma ensures that f� �P �� does not
have any transition� and condition � ensures that f� �P �� 	Hrec� Therefore f� �P �� �Hrec ��
as required� �

Again� we show the above lemma in action by applying it to generate inaction laws for
the � operation� As before� we proceed by considering the possible forms the arguments
of � may take�

� Inaction laws when the �rst argument of � is �� In this case� condition � in the
statement of the lemma is always satis�ed� If the partial ordering on Act is �at�
then� does not test its second argument� which may take any of the forms speci�ed
in Lem� ���� all the equations generated by the lemma in this case may be obtained
as substitution instances of the law�

��Y � � �

Otherwise� � does test its second argument� and� by condition �� the second ar�
gument must be of the form

P
n�N an�Xn� �Recall that � �

P
n�� an�Xn�� The

corresponding law is�

��
X
n�N

an�Xn � � �

� Inaction laws when the �rst argument of � is a process variable X � This case is
ruled out by condition � of the lemma� and no equations are generated�

� Inaction laws when the �rst argument of � is of the form
P

n�N an�Xn for non�
empty N � In this case� in order to meet condition � in the statement of the lemma�
the second argument must be of the form

P
m�M bm�Ym and for every n � N there

exists m � M with bm � an� For every pair of such terms� Lem� �	 generates the
equation� X

n�N

an�Xn�
X
m�M

bm�Ym � � �

��



We now derive action laws� which tell when a process can take an action� These laws will
be given for a sub�class of smooth GSOS operations that test their arguments positively
in a consistent way� This class of smooth operations is characterized in the following
de�nition�

De�nition ��� Let f be an l�ary smooth operation in a GSOS system G� We say that
f is weakly distinctive i� every rule for f tests the same arguments positively�

For a weakly distinctive� smooth operation f in a GSOS system G� we write Test��f�
for the set of arguments tested positively by every rule for f � and Test��f� for the set of
arguments tested negatively by some rule for f �

For example� the operation a� for preACP��� and the left�merge and communication�
merge operations from ACP ���
 are weakly distinctive� As remarked previously� the
priority operation � is smooth i� the poset of actions �Act��� is �at� In that case� �
is also weakly distinctive� and uninteresting� Note also that� for a smooth operation f �
Test��f� and Test��f� are disjoint�
The notion of weak distinctiveness given above is a weakening of the notion of distinc�

tiveness introduced in ��
� Its de�nition di�ers slightly from that given in ��
 in that we
do not require that the operation f is positive� i�e� that rules for f do not have negative
antecedents� and consistent in the sense of ��� Def� ���
�

Notation ��� We write Act	 for the set Act � f�g� where � is a symbol not occurring
in Act�

For a term P of the form
P

i�I ai�Pi�"�
� Initials�P � will denote the subset of Act	 given
by fai j i � Ig��f�g
� where � � Initials�P � i� � is a summand of P �

De�nition ���� Let f be an l�ary weakly distinctive� smooth operation in a GSOS system

G� We say that a vector he�� � � � � eli over Act � �Act� is consistent with f i� for every
argument i of f � if i � Test��f� then ei � Act� and ei � Act	 otherwise�

Let f be an l�ary weakly distinctive� smooth operation in a GSOS system G� and let
the vector he�� � � � � eli be consistent with f � Then RG�f� he�� � � � � eli� will denote the set of
rules r � RG of the form �
�	 with f as principal operation such that�

r � RG�f� he�� � � � � eli� �

�
	 
i � Test��f�� ai � ei� and

��	 
i � K� ni � 	�
�
ei � fbij j � � j � nig � � and � �� ei

�
�

Intuitively� RG�f� he�� � � � � eli� is the set of rules for f that can be possibly used to derive
outgoing transitions from a term of the form f� �P � where� for each argument i for f �

�� if i � Test��f�� then Pi can initially perform an ei�action� and

�� if i � Test��f�� then Pi converges �encoded by the absence of � in the set ei� and
the set of initial actions that Pi can perform is exactly ei�

�	



For example� any tuple of the form ha�Bi� where a � Act and B � Act	 is consistent with
the� operation� For any GSOS systemG containing this operation� the setRG��� ha�Bi�
is a singleton if a is maximal in the poset �Act��� or � �� B and B does not contain any
b � a� and it is empty otherwise� In fact� for any operation f that� like �� is smooth and
distinctive in the sense of ��
� the set RG�f� he�� � � � � eli� is either empty or it contains a
single rule� This property does not hold in general for weakly distinctive operations� As
an example� consider a GSOS system G that contains the smooth� distinctive operation
� ���� ��� ��� ��
 given by the rules�

x� y
	
� x x� y

	
� y

Then the vector h���i is consistent with �� and RG��� h���i� contains both the above
rules�

Lemma ���� Suppose that f is a weakly distinctive smooth operation of arity l of a

disjoint extension G of FINTREE�� Let he�� � � � � eli be a vector over Act � �Act� that is
consistent with f � Finally� let �P be the vector of terms given by�

Pi �

��

��

ei�Yi i � Test��f�P
fb�Zb j b � eig�"� � � � ei
 i � Test��f�

Xi otherwise

where all the process variables are distinct� Then� for every disjoint extension H of G�

f� �P � �Hrec

X
r�RG	f�he��


�eli


action�r��target�r�
n
�P��x� �Y ��y

o

�"� �
�

i � Test��f� � � � ei

�
� f � �
 � ����

Proof
 Assume that H is a disjoint extension of G� and consider a substitution � �
PVar� CREC�!H �PVar�� By the de�nition of �P and the fact that f is smooth� it follows
immediately that a transition of the form f� �P ��

c
�Hrec Q holds i� there exists a rule r

in RG�f� he�� � � � � eli� with action c such that target�r�
n
�P��x� �Y ��y

o
� � Q� Similarly� the

form of Eqn� ���� ensures that f� �P �� converges i� the instantiated right�hand side of the
equation does� �

As an example� we apply the above lemma to derive action laws for the � operation

speci�ed by ����� As remarked previously� any vector over Act � �Act� that is consistent
with � has the form ha�Bi for some a � Act and B � Act	� We proceed to generate the
corresponding action law for � by distinguishing two cases� depending on whether a is
maximal in �Act� �� or not�

� If a is maximal in �Act���� then RG��� ha�Bi� is the singleton set containing the
only rule for � with action a� The equation generated by Lem� ���� then takes the
form�

a�Y�
X
b�B

b�Zb�"�
 � a���Y ��"�


��



where � is a summand of the right�hand side of the equation i� it appears as a
summand of the second argument i� � � B�

� If a is notmaximal in �Act���� then the form of the equation produced by Lem� ����
depends on whether there is a reason in the set B that prevents the application of
the only rule for � to derive a transition from the term a�Y�

P
b�B b�Zb�"�
� or

not�

� If b � a for some b � B or � � B� then RG��� ha�Bi� is empty� The equation
given by Lem� ���� in this case is then�

a�Y�
X
b�B

b�Zb�"�
 � ��"�


where � is a summand of the right�hand side of the equation i� it appears as
a summand of the second argument i� � � B ��

� Otherwise� RG��� ha�Bi� is the singleton set containing the only rule for �
with action a� and Lem� ���� gives the equation�

a�Y�
X
b�B

b�Zb � a���Y � �

The equations given by the above lemmas provide us with an equational theory that
is strong enough to establish properties ����#��	� for terms built from the FINTREE�
operations and weakly distinctive smooth operations� For the sake of clarity� we reiterate
below the de�nitions of the types of head normal forms we shall be interested in in the
remainder of the paper�

De�nition ���� A term P over a signature ! � !FINTREE� is in ��head normal form
if it is of the form

P
ai�Pi�"�
� We say that P is in head normal form if it is of the formP

ai�Pi�

We prove� �rst of all� that the equations generated by Lemmas ���#���� allow us to asso�
ciate a ��head normal form with each recursion�free program built from the FINTREE�
operations and weakly distinctive smooth operations�

Theorem ���� Suppose G is a GSOS system that disjointly extends FINTREE�� Let
! � !G � !FINTREE� be a collection of weakly distinctive smooth operations of G� Let
T be the equational theory that extends TFINTREE� n f����g with the following axioms�
for each operation f from !�


� for each argument i of f that is tested positively by f � a distributivity axiom �
�	�

�� for each vector he�� � � � � eli over Act � �Act� consistent with f an action law ��
	�


� all the divergence laws �
�	 for f � and

�As shown by this example� Lem� ���� also delivers inaction and divergence laws� For this reason�
the name �action lemma� we have used for it is a bit misleading� We hope that this does not cause any
confusion in the reader�

��



�� all the inaction laws ���	 for f �

Then the following statements hold�

� If T � P � Q then� for every disjoint extension H of G� P �Hrec Q�

� For every P � T�! � !FINTREE��� there exists a ��head normal form ��hnf�P �
such that

T � P � ��hnf�P � �

Proof
 The fact that if T � P � Q then� for every disjoint extension H of G� P �Hrec Q
follows immediately from Lem� ��� and Lemmas ���#����� We are thus left to show that�
for every P � T�!�!FINTREE��� there exists a ��head normal form ��hnf�P � such that�

T � P � ��hnf�P � � ����

This we will follow via a straightforward structural induction on P from the following
claim�
Claim
 Suppose f is an l�ary operation symbol from !� and P�� � � � � Pl � �!G� are all
in ��head normal form� Then there exists a term P � �!G� in ��head normal form such
that T � f�P�� � � � � Pl� � P �
The proof of the claim proceeds by induction on the combined size of P�� � � � � Pl� There
are four cases to examine�

Case �� There is an argument i that is tested positively by f and for which Pi is of the
form P �

i " P ��
i � As f is weakly distinctive� all rules for f test i positively� In this

case we can apply one of the distributivity laws ���� to infer

T � f�P�� � � � � Pl� � f�P�� � � � � P
�
i " P

��
i � � � � � Pl�

� f�P�� � � � � P
�
i � � � � � Pl� " f�P�� � � � � P

��
i � � � � � Pl� �

Next the induction hypothesis gives that there exist ��head normal forms P � and
P �� such that T � f�P�� � � � � P

�
i � � � � � Pl� � P � and T � f�P�� � � � � P

��
i � � � � � Pl� � P ���

Hence T � f�P�� � � � � Pl� � P � " P �� and the induction step follows� after possibly
using ���� once to eliminate duplicate �s in P � " P ���

Case 	� There is an argument i that is tested positively by f and for which Pi � ��
Since f is weakly distinctive� all rules for f test i positively� Thus T contains a
divergence law f�X�� � � � � Xi�����Xi��� � � � �Xl� � �� Instantiation of this law gives
T � f� �P � � �� and the induction step follows�

Case 
� There is an argument i that is tested positively by f and for which Pi � �� We
proceed by considering two sub�cases�

Case 
��� There is an an argument j that is tested negatively by f and for which
Pj is of the form P �

j " �� Since f is weakly distinctive� all rules for f test i

positively� Thus T contains a divergence law f� �Q� � �� where Qi � �� Qj �
Xj "� and Qh � Xh otherwise� Instantiation of this law gives T � f� �P � � ��
and the induction step follows�

��



Case 
�	� For every argument j that is tested negatively by f � Pj does not have
an � summand� Since f is weakly distinctive� all rules for f test i positively�
Thus T contains an inaction law T � f� �P � � �� and the induction step follows�

Case �� For all arguments k that are tested positively by f � Pk is of the form ak�P
�
k�

Then an application of the action law in T associated with the vector he�� � � � � eli�
where

ek �

�
ak if k is tested positively by f
Initials�Pi� otherwise

gives the required ��head normal form�

�

We now prove that ��
� holds for convergent terms built from weakly distinctive opera�
tions and the FINTREE� operations only� provided we add �Rec� to the equational theory
given by the previous theorem�

Theorem ���	 Suppose G is a GSOS system that disjointly extends FINTREE�� Let ! �
!G�!FINTREE� be a collection of weakly distinctive smooth operations of G� Let T be the
equational theory given by Thm� ��

� Then� for every P � CREC�!�!FINTREE� �PVar��
if P 	Grec then there exists a head normal form hnf�P � such that

T � f�Rec�g � P � hnf�P � �

Proof
 By induction on the convergence predicate 	Grec� The details are very similar to
those of the proof of Thm� ����� and are therefore omitted� We just remark here that no
divergence law need be used in the proof� and that the inductive hypothesis and equation
�Rec� are all that is needed to deal with the case P � �x�X � Q�� for some Q� �

We complete our analysis of terms built from weakly distinctive� smooth operations and
the FINTREE� operations only by showing that the equational theory used in Thm� ����
is strong enough to prove property ��	� for these terms�

Theorem ���
 Suppose G is a GSOS system that disjointly extends FINTREE�� Let ! �
!G�!FINTREE� be a collection of weakly distinctive smooth operations of G� Let T be the
equational theory given by Thm� ��

� Then� for every P � CREC�!�!FINTREE� �PVar�
and Q � CREC�!G�PVar��

P
c
�Grec Q � T � f�Rec�g � P � P " c�Q �

Proof
 Assume that P � CREC�! � !FINTREE� �PVar�� and that P
c
�Grec Q for some

Q � CREC�!G�PVar�� We show that T�f�Rec�g � P � P"c�Q� where T is the equational
theory given by Thm� ����� The proof of this claim is delivered in two steps� which mimic
the construction of the transition relation�Grec given in the proof of Propn� ���� First of
all� we show that the claim holds when P 	Grec by induction on the convergence predicate�
Next we prove that the property holds in general by induction on the depth of the proof
of the transition P

c
�Grec Q�

��



Case P 	Grec� We show� by induction on the convergence predicate� that if P
c
�Grec Q�

then T � f�Rec�g � P � P " c�Q� We proceed by a case analysis on the form P

takes� and only consider the two non�trivial cases�

Case P � f� �P �� for some f � ! and vector �P of programs in CREC�! �
!FINTREE� �PVar�� As the transition relation �Grec is supported� the transi�

tion P
c
�Grec Q holds because there exist a rule r � RG of the form ����� and

a substitution 
 � Var� CREC�!G�PVar� such that�

�� f��x�
 � f� �P �� i�e�� 
�xi� � Pi� for every � � i � l�

�� Pi
ai�Grec 
�yi�� for every i � I � Test��f��

�� Pi 	Grec and Pi
bij
� �� � j � ni�� for every i � K such that ni � 	� and

�� Q � C��x� �y

�

As P is convergent� for each argument i tested by f � Pi 	Grec� By the inductive
hypothesis� we thus have that� for each i � I �

T � f�Rec�g � Pi � Pi " ai�
�yi� � ����

By Thm� ����� it follows that� for every i � K with ni � 	� there exists a head
normal form hnf�Pi� such that�

T � f�Rec�g � Pi � hnf�Pi� � ����

Consider now the substitutions �� � � � Var� CREC�!G�PVar� given by�

��x� �

��

��

Pi " ai�
�yi� if x � xi for some i � I

hnf�Pi� if x � xi for some i � K with ni � 	

�x� otherwise

and

� ��x� �

�
ai�
�yi� if x � xi for some i � I
��x� otherwise

Note that� as f is smooth� for no i � I � xi occurs in the context C��x� �y
� Thus�
for every meta�variable x occurring in C��x� �y
�

T � f�Rec�g � 
�x� � � ��x� � ����

Now� by ���� and �����

T � f�Rec�g � f� �P � � f��x�


� f��x�� �

As f is weakly distinctive� T contains a distributive law for f of the form ����
for each i � I � Applying these laws repeatedly to the term f��x�� � we obtain
that�

T � f�Rec�g � f� �P � � f��x��

� f��x�
 " f��x�� �

� f� �P � " f��x�� � �

��



To prove the claim� it is thus su�cient to show that�

T � f�Rec�g � f��x�� � � f��x�� � " c�Q � ����

Consider now the vector he�� � � � � eli over Act � �
Act� with

ei �

��

��

ai if i � I
Initials�hnf�Pi�� if i � K and ni � 	
� otherwise

By construction� this vector is consistent with f � and r � RG�f� he�� � � � � eli��
Thus f contains the instance of law ���� associated with f and he�� � � � � eli�
Using this law and equations ����#����� we derive that�

T � f�Rec�g � f��x�� � � f��x�� � " c�C��x� �y
� �

� f��x�� � " c�C��x� �y

 �By �����

� f��x�� � " c�Q �

The proof for this case is therefore complete�

Case P � �x�X � S�� for some X � PVar and some term S � REC�! �
!FINTREE� �PVar� containing at most X free� As P

c
�Grec Q and P 	Grec� it

must be the case that SfP�Xg
c
�Grec Q and SfP�Xg 	Grec� By the inductive

hypothesis� we then have that

T � f�Rec�g � SfP�Xg � SfP�Xg" c�Q �

The claim now follows immediately by law �Rec��

General case� The proof is by induction on the depth of the proof of the transition
P

c
�Grec Q� The details are identical to those given above� and are therefore

omitted�

�

We now extend the above results to handle general smooth operations� This is achieved
by expressing these operations as a sum of weakly distinctive operations� in very much the
same way as the merge operation of ACP is expressed as a sum of the auxiliary operations
of left�merge and communication merge �see� e�g�� ���
 for a textbook presentation�� In
particular� the following proposition allows for the �discovery� of� e�g�� the auxiliary
operations of ACP� See ��
 for details and examples�

Proposition ���� Let G be a GSOS system that disjointly extends FINTREE�� Assume
that f is an l�ary smooth operation of G� Then there exists a disjoint extension G�

of G with l�ary weakly distinctive� smooth operations f�� � � � � fn such that the following
statements hold�


� if G is compact� then G� is also compact�

��



�� for every disjoint extension H of G�� and every vector of process variables �X of
length l�

f� �X� �Hrec f�� �X� " � � �" fn� �X� � ����

Proof
 Assume that f is an l�ary smooth operation of G� We show how to partition the
set R of rules for f in RG into sets R�� � � � � Rn in such a way that that� for all � � i � n�
f is weakly distinctive in the GSOS system obtained from G by removing all the rules in
R�Ri� This can be done by partitioning the set of rules for f according to the following
equivalence relation�

r �f r
� � r� r� are rules for f that test the same arguments positively�

Let R�� � � � �Rn be the equivalence classes of rules for f determined by �f � De�ne !G� to
be the signature obtained by extending !G with fresh l�ary operation symbols f�� � � � � fn�
Next de�ne RG� to be the set of rules obtained by extending RG� for each i� with rules
derived from the rules in Ri by replacing the operation symbol in the source by fi� It is
immediate to see that each operation fi so de�ned is weakly distinctive� and that ����
holds� Moreover� if G is compact then G� also is� as we may assign to each new operation
fi the same weight as f � �

��� General GSOS Operations

In this subsection we show how to axiomatize non�smooth operations� thus lifting prop�
erties ����#��	� to arbitrary GSOS languages with recursion�
First of all� we give a result that allows us to reduce the problem of axiomatizing ar�

bitrary GSOS operations to that of axiomatizing smooth ones� The proof of the following
proposition is an easy adaptation of those of ��� Lem� ����
 and ��� Propn� ����
�

Proposition ���� Suppose G is a GSOS system containing a non�smooth operation f

with arity l� Then there exists a disjoint extension G� of G with a smooth operation f �

with arity l� �possibly di�erent from l	� and there exist vectors �Z of l distinct process
variables� and �V of l� variables in �Z �possibly repeated	� such that�


� if G is compact� then so is G��

�� for every disjoint extension H of G�� the equation f��Z� � f ���V � is sound with
respect to �Hrec� i�e��

f��Z� �Hrec f
���V � � ��
�

In particular� as detailed in ��
� when applied to the priority operation �� the construction
given in the proof of the above proposition generates the � operation given by the rules
����� together with the equation�

��X� � X�X �

For any GSOS system G� the methods presented so far allow us to generate a disjoint
extension H of G� and an inequational theory T with the required properties ����#��	��

��



Theorem ���� Let G be a GSOS system� Then the disjoint extension H of G and
inequational theory T produced by the algorithm of Figure � have the following properties�


� If G is compact� then so is H�

�� For every GSOS system H � that disjointly extends H� the inequations in T�f�Rec�g
are sound with respect to �H�rec�


� T is ��head normalizing for every P � T�!H��

�� T is head normalizing for every P � CREC�!H �PVar� such that P 	Hrec�

�� T absorbes transitions�

Proof
 Assume that G is a GSOS system� Let H and T be the GSOS system and the
inequational theory generated by the algorithm in Figure ��
First of all� it is easy to see that adding a disjoint copy of FINTREE� to a com�

pact GSOS system results in a compact GSOS system�� Therefore� by Propn� ���� and
Lem� ����� it follows that H is compact if G was�
Next� note that� by applying instances of equations ���� and ��
� in T � we have that�

for each P � REC�H�PVar� there exists a term P � built from weakly distinctive operations
and FINTREE� operations only such that T � P � P ��
Finally� Theorems ����#���� can be applied to derive that T has properties �#� men�

tioned in the statement of the theorem� �

We are now �nally in a position to prove the promised partial completeness theorem for
compact GSOS languages� whose statement we reiterate below�

Theorem ���
 Let G be a compact GSOS system� Then there exist a compact GSOS
system H and a set of !H�inequations T such that�

� H disjointly extends G and FINTREE�� and

� for all P � T�!H�� Q � CREC�!H �PVar�� P �H Q i� T � f���g � P � Q�

Proof
 An immediate corollary of the above theorem and of Thm� ���� �

Theorem� ���� can be strengthened to a completeness theorem for the whole of the lan�
guage CREC�!H �PVar� with respect to �� � at the price of adding an in�nitary proof rule
to the theory T �f�Rec�g� This proof rule� called ��rule in ���
� states that if every �nite
approximation of a program P is provably smaller than� or equal to� a program Q� then
so is P � Formally�


n � N� Pn � Q

P � Q
����

where� for every n � N� Pn stands for the n�th �nite approximation of P � �See Sect� ���
for details��

�The reader familiar with the developments in 
�
 might recall that the semantic well�foundedness of
a GSOS system �see 
�� Def� ���
	 is in general not preserved by adding a disjoint copy of FINTREE�
and a fortiori of FINTREE	� to it� The same is true in our setting� As shown by our developments in
this section� however� the kind of problem highlighted in 
�� Sect� ���
 does not arise if one considers the
syntactic notion of compactness in lieu of the semantic one of well�foundedness�

�




Input A GSOS system G�

Output
A GSOS system H and an equational theory T with the properties mentioned
in Thm� �����

Step �� If G does not disjointly extend FINTREE� then add to it a disjoint copy of
FINTREE��

Step �� For each operation f that is non�smooth� apply the construction of Lemma ���� to
extend the system with a smoothed version of f � f �� Add all the resulting instances of
law �	�
 to TFINTREE� �

Step �� For each smooth� non�weakly�distinctive operation f �� !FINTREE� in the resulting
system� apply the construction of Propn� ���� to generate smooth� distinctive operations
f�� � � � � fn� The system so�obtained is the H we were looking for� Add to the equational
theory all the resulting instances of law �	�
�

Step �� Add to the equational theory obtained in Step � the equations given by applying
Theorem ���� to all the smooth� weakly distinctive operations in !H � !FINTREE� �
The result is the theory T we were looking for�

Figure �� The algorithm

Theorem ���� �Completeness for ��� Let G be a compact GSOS system� Then the
disjoint extension H of G and inequational theory T produced by the algorithm of Figure �
have the property that� for every P�Q � CREC�!H �PVar��

P �� Q � T � f�Rec�g � f����g � P � Q �

Proof
 We prove the two implications separately�

� Soundness� By Thm� ���
� we know that the inequations in T � f�Rec�g are sound
with respect to �Hrec� As �Hrec��� � they are a fortiori also sound with respect
to �� � As H is a compact GSOS system� by Thm� ���
 it follows that� for every
P�Q � CREC�!H �PVar��

P �� Q � D��P 

 vD D��Q

 �

As the relations induced by a denotational semantics are guaranteed to be precon�
gruences� �� is a precongruence over CREC�!H �PVar��

The only thing left to check is that the proof rule ���� is sound with respect to ��

over CREC�!H �PVar�� To this end� assume that P�Q � CREC�!H �PVar�� and that
Pn �� Q for every n � N� We prove that P �� Q� In fact� as �� is algebraic by
Thm� ����� the claim follows if we show that�


n � N
m � N � Pn �� Q
m � ��	�

To prove ��	�� let Pn be a �nite approximation of P � By assumption� we have
that Pn �� Q� As H is compact and P

n is a recursion�free term� by Corollary ����

��



there exists tPn � ST�Act� such that Pn �Hrec tPn � By Lem� ���� it follows that
Pn �Hrec Q� and therefore that tPn �Hrec Q� As H is compact� Thm� ���� gives
that there exists a �nite approximation Qm of Q such that tPn �Hrec Q

m� For such
a Qm� Pn �Hrec Q

m� By Lem� ���� Pn �� Q
m follows�

We have thus shown that ��	� holds� Hence P �� Q�

� Completeness� Let P�Q � CREC�!H �PVar� be such that P �� Q� We argue as
follows�

P �� Q � 
n � N
m � N � Pn �� Q
m

�By Thm� �����

� 
n � N
m � N � Pn �Hrec Q
m

�By Lem� ����

� 
n � N
m � N � T � f�Rec�g � Pn � Qm

�By Thm� �����

� 
n � N� T � f�Rec�g � Pn � Q

�Qn �� Q implies T � Qn � Q�

� T � f�Rec�g � f����g � P � Q �

The proof of the theorem is now complete� �

� Concluding Remarks

In this paper we have presented a general way of giving denotational semantics to compact
GSOS languages ���� ��
 in terms of the domain of synchronization trees D introduced
by Abramsky in his seminal paper ��
� The class of compact GSOS languages consists
of languages that have the structure of most standard process algebras� namely� they
include a set of operations to construct �nite� acyclic process graphs� and a facility for
the recursive de�nition of behaviours� We have shown that the denotational semantics for
compact GSOS languages automatically generated by our methods is guaranteed to be
fully abstract with respect to the �nitely observable part of the bisimulation preorder �F �
The relation �F has also been shown to coincide with �� for arbitrary GSOS languages�
as de�ned by Bloom� Istrail and Meyer in their original papers ���� ��
�
As stepping stones towards the aforementioned fully abstract denotational semantics

for compact GSOS languages� we have obtained several results of independent interest�
In particular� we have o�ered a novel operational interpretation of GSOS languages in
terms of labelled transition systems with divergence that relies heavily on a non�standard
treatment of negative premises in GSOS rules� The outcome of our approach is� at least
in our opinion� a simple operational semantics for GSOS languages in which negative
premises are allowed to coexist with unguarded recursive de�nitions� In this set�up� the
relations � and �� are guaranteed to be precongruences for arbitrary GSOS systems� and
a general algorithm� along the lines of those in ��
� provides partially complete inequational
axiomatizations for them in the sense of Hennessy ��

� Moreover� if the GSOS language

�	



under consideration is compact� our results guarantee that the preorder �� is algebraic� in
the sense of� e�g�� ���
� in this case� the partially complete axiomatization generated by our
methods can be extended to a complete proof system over the whole of a compact GSOS
language in standard fashion� The byproduct of the methods presented in this paper is a
trinity of semantic views of processes �behavioural� axiomatic and denotational� that are
guaranteed to be in complete agreement�
We hope that some of these general results� whose proofs for speci�c process descrip�

tion languages tend to be quite involved and mostly use variations on the same techniques�
will turn out to be useful to some of the members of our research community�

	�� The Bene
ts of Compactness

In this paper we have chosen to present in detail three di�erent semantic theories for
compact GSOS languages� The main bene�t of working with this class of GSOS languages
is that the whole body of results of algebraic semantics from references like ���� ��� ��� ��

has been at our disposal� This has allowed us to present general and� we hope� rather
strong results on prebisimulation� denotational models and axiomatic semantics for such
languages� Moreover� the class of compact GSOS languages includes many of the standard
process description languages �at least in their �nite alphabet versions�� and the general
results that rely on the compactness of the language under consideration we have been
able to establish �e�g�� the algebraicity of �� and the algorithm for generating a partially
complete axiomatization for prebisimulation� apply to these languages� However� there
are indeed some process description languages considered in the literature that are not
compact� A notable example of a non�compact process description language is SCCS
with the delay operation � ��
� ��
� speci�ed by the rules�

��x�
�
� ��x�

x
a
� x�

��x�
a
� x�

The presence of this operation makes SCCS non�compact� and thus some of the results
that we o�er in the paper do not directly apply to it� However� the delay operation is not
primitive in SCCS� In fact� for any process term P � it is easy to see that the following
equality holds�

��P � � �x�X � ��X " P � �

�The reader familiar with ��

 will have noticed that Hennessy uses the above equation
to deal with the � operation in constructing the term model for SCCS given in that ref�
erence�� Therefore restricting attention to the compact fragment of SCCS� as Abramsky
does in ��
� allows us to use our general results for compact GSOS languages to study
properties of prebisimulation� and does not lose any expressive power� Similar considera�
tions apply to non�compact versions of ACP obtained by adding variations on the Kleene
star operation ���
 to the set of core operations� �See� e�g�� ��
� ��
�� For example� modulo
a di�erent treatment of termination� the pre�x�iteration operation considered in ���
 is
speci�ed by the rules�

a�x
a
� a�x

x
b
� x�

a�x
b
� x�

��



For any process term P � it can be checked that�

a�P � �x�X � a�X " P � �

An example of an operation which� in conjunction with the � operation� is responsible
for the non�compactness of a language and that cannot be dealt with by reduction to
a suitable recursive de�nition �at least in the setting considered in this paper� is the
desynchronizing operation $ given by the rules �one such rule for each a � Act��

x
a
� x�

$�x�
a
� ��$�x���

This operation is present in the early versions of SCCS studied in ���� �
� ��
� As remarked
in ���� Page ���
� this operation is primitive� i�e�� it cannot be expressed in terms of the
other operations of SCCS�

	�� Further Work

As suggested by the title of this paper� we plan to direct our research e�ort to the study of
cpo�based denotational models for arbitrary GSOS languages� in such a way that many
of the results we have obtained for compact languages carry over to the more general
class� As mentioned in the main body of the paper� the preorder �� is� in general�
not going to be algebraic over arbitrary GSOS languages� As highlighted by Lem� ���
and the discussion which follows the proof of Thm� ����� this essentially depends on the
fact that� for such languages� the standard syntactic notion of �nite approximation from
���� ��� ��
 is in some sense inappropriate� as these terms may be semantically in�nite�
This means that more involved techniques might be needed for proofs of full abstraction�
The approach to this kind of results developed in ��

 might provide important hints for
the solution� We think that it would also be interesting to develop the above theory
for in�nitary versions of GSOS languages� i�e�� GSOS languages over a denumerable set
of actions� and with possibly countably in�nite sets of operations and rules� The work
presented in� e�g�� ��� �
 should provide guidelines for restricting our attention to those
in�nitary GSOS languages for which a continuous semantics can be given� �Cf� ��	
 for
an example of a language without a continuous fully abstract semantics��
On a more speculative note� the developments in ��� �
 hint at the possibility of

using the machinery developed by Abramsky in the aforementioned references and our
results on denotational semantics for compact GSOS languages to automatically generate
compositional proof systems for variations on Hennessy�Milner logics ���
� We think that
this is a very interesting avenue for future research� but much work remains to be done
in this direction�
On the operational side� it would be interesting to establish substitutivity results for

other prebisimulation�like relations that have been proposed in the literature� e�g�� those
studied by Walker in ���
 and the speci�cation preorder of Cleaveland and Ste�en ��

�
In particular� the study of rule formats for bisimulation�like relations that abstract from
unobservable transitions in process behaviours presented in ���
 should be adapted to
yield substitutivity results for �some of� the preorders studied by Walker in ���
�

��



The work we have presented in this paper represents an attempt to generalize to a
class of GSOS languages a collection of deep results that have been developed for several
process description languages in the literature� We believe that this kind of meta�theoretic
work is� by its own nature� experimental� and we hope that the reader will bear with us
for the experimental nature of the work we o�er in this study� The goodness of the results
we present is the result of a trade�o� between simplicity of de�nitions and proofs� and
the degree in which our work o�ers the results presented in the literature when applied
to particular languages�
We hope that we have given our readers convincing evidence that the theory we have

developed does specialize to the known ones for� e�g�� SCCS ���
� CCS ���
 and versions
of ACP ���
 with action�pre�xing in lieu of general sequential composition� However� we
make no claim that this work is optimal in any formal sense or applies equally well to
all known languages� In fact� we believe that there is much room for improvement� but
that our approach will work with minor adaptations also in the improved developments�
For example� our operational interpretation of GSOS languages relies on the de�nition
of a convergence predicate over programs� As argued in the paper� the convergence
predicate given in Def� ��� delivers results that are in agreement with those presented
in the literature for several process description languages� However� the treatment of
convergence a�orded by Def� ��� is� in certain cases� too syntactic� For example� the
clauses in that de�nition can not be used to derive that the term a� � is convergent�
where ��� stands for the sequencing operation given in ���
 by the rules�

x
a
� x�

x� y
a
� x�� y

x
b
� �
b � Act�� y

a
� y�

x� y
a
� y�

We believe that a more general treatment of convergence can be obtained by using ruloids�
in the sense of ���
� in lieu of rules in an appropriate way�
We also think that there is room for improvement in the algorithm used in the proof

of the partial completeness theorem for compact GSOS languages� For example� it would
be nice to make the inaction laws and the action laws generated by Lemmas ��� and �����
respectively� more aesthetically pleasing�
We plan to address these issues in our future work on the topics of this paper�
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RS-94-39 Ivan Damgård, Oded Goldreich, and Avi Wigderson.
Hashing Functions can Simplify Zero-Knowledge Proto-
col Design (too). November 1994. 18 pp.
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