
B
R

IC
S

R
S-94-44

S.A
gerholm

:
A

H
O

L
B

asis
for

R
easoning

about
F

unctionalP
rogram

s

BRICS
Basic Research in Computer Science

A HOL Basis for Reasoning about
Functional Programs

Sten Agerholm

BRICS Report Series RS-94-44

ISSN 0909-0878 December 1994

Copyright c� 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk

A HOL Basis for

Reasoning about Functional Programs

by

Sten Agerholm

BRICS�

Department of Computer Science

University of Aarhus

Ny Munkegade

DK����� Aarhus C� Denmark

�
Basic Research in Computer Science�Centre of the Danish National Research Foundation�

Summary

Domain theory is the mathematical theory underlying denotational semantics� This the�
sis presents a formalization of domain theory in the Higher Order Logic �HOL� theorem
proving system along with a mechanization of proof functions and other tools to support
reasoning about the denotations of functional programs� By providing a �xed point oper�
ator for functions on certain domains which have a special unde�ned �bottom� element�
this extension of HOL supports the de�nition of recursive functions which are not also
primitive recursive� Thus� it provides an approach to the long�standing and important
problem of de�ning non�primitive recursive functions in the HOL system�

Our philosophy is that there must be a direct correspondence between elements of
complete partial orders �domains� and elements of HOL types� in order to allow the
reuse of higher order logic and proof infrastructure already available in the HOL system�
Hence� we are able to mix domain theoretic reasoning with reasoning in the set theoretic
HOL world to advantage� exploiting HOL types and tools directly� Moreover� by mixing
domain and set theoretic reasoning� we are able to eliminate almost all reasoning about
the bottom element of complete partial orders that makes the LCF theorem prover� which
supports a �rst order logic of domain theory� di�cult and tedious to use� A thorough
comparison with LCF is provided�

The advantages of combining the best of the domain and set theoretic worlds in the
same system are demonstrated in a larger example� showing the correctness of a uni�cation
algorithm� A major part of the proof is conducted in the set theoretic setting of higher
order logic� and only at a late stage of the proof domain theory is introduced to give
a recursive de�nition of the algorithm� which is not primitive recursive� Furthermore�
a total well�founded recursive uni�cation function can be de�ned easily in pure HOL
by proving that the uni�cation algorithm �de�ned in domain theory� always terminates	
this proof is conducted by a non�trivial well�founded induction� In such applications�
where non�primitive recursive HOL functions are de�ned via domain theory and a proof
of termination� domain theory constructs only appear temporarily�

i

Acknowledgments

This work was supported in part by the DART project funded by the Danish Research
Council �October
��
�December
��
� and in part by BRICS funded by the Danish
National Research Foundation �January
����June
����� I am grateful to my supervisor
Glynn Winskel for providing this �nancial support and for the freedom he has allowed me
in my work� Glynn also read a draft of the thesis� I would like to thank the following people
for discussions concerning this work� Flemming Andersen� Ralph�Johan Back� Richard
Boulton� Esben Dalsg�ard� Mike Gordon� Tom Melham� Kim Dam Petersen� Laurent Thery
and Glynn Winskel� Torben Amtoft has been a good room mate for more than two and a
half years� and commented on a draft of chapter �� Larry Paulson helped with questions
about the LCF system and digged up the LCF proof of correctness of the uni�cation
algorithm� I am grateful to Tom Melham and Mike Gordon for allowing me to stay at
Cambridge University in the Autumn
���� Tom made the practical arrangements�

iii

Contents

� Introduction �

�
 Domain Theory �

�� The HOL System �

�
 Logic of Computable Functions �

�� Goals �

�� Outline �

� Overview �
��
 A Formalization of Domain Theory �
�
��� The HOL�CPO System ��

����
 Notations for Cpos and Pointed Cpos � � � � � � � � � � � � � � � � � �

����� Notation for Cpo�typable Terms ��
����
 Other Syntactic�based Proof Functions � � � � � � � � � � � � � � � � ��
����� Other Tools ��

��
 Recursive Functions ��
��
�
 The Factorial Function ��
��
�� Ackermann�s Function �
�
��
�
 Equality of Two Recursive Functions � � � � � � � � � � � � � � � � �

��� Recursive Domains �
�
����
 Finite Values �
�
����� Lazy Sequences �
�
����
 In�nite Values �

��� Reasoning about In�nite Values �

����
 Structural Induction �

����� Fixed Point Induction ��
����
 Co�induction ��

��� Conclusion ��

� Basic Concepts of Domain Theory ��

�
 Representation ��

�� Partial Order �

�
 Complete Partial Order �

�� Continuous Functions ��

�� Dependent Lambda Abstraction ��

�� Constructions ��

���
 Discrete ��

���� Product ��

v

���
 Continuous Function Space ��

���� Lifting �

���� Sum ��

�� Identity and Composition ��

�� Fixed Point Operator ��

�� Fixed Point Induction ��

�
� Proof of Continuity of Composition ��

�
��
 Composition Preserves Continuity ��

�
��� Composition is Continuous �

�

 Discussion ��

�

�
 Sets as Types ��

�

�� Sets as Subtypes ��

�

�
 Comments on the Formalization ��

� Recursive Domains ��
��
 Finite�valued Recursive Domains �

��
�
 Lists �

��
�� Trees ��

��� In�nite Sequences ��
����
 Lazy Sequences ��
����� Lazy Lists ��

��
 In�nite Labeled Trees ��
��
�
 A Type of In�nite Trees ��
��
�� A Pointed Cpo of In�nite Trees �
��
��
�
 Constructors for In�nite Trees �
��

��� In�nite�valued Recursive Domains �
�

����
 Example� Lazy Lists �
��
����� The Method in General �
��

��� More General Domains �
��
����
 Broad Trees �
��

� The HOL�CPO System ���
��
 Notations for Cpos and Pointed Cpos �

�

��
�
 Algorithm for Proving Cpo Facts � � � � � � � � � � � � � � � � � � �

��
�� Proving Cpo Facts �

��� Notation for Cpo�typable Terms �

�
����
 Algorithm for Parsing �

�
����� Algorithm for Type Checking �

�
����
 Examples of Parsing �

�
����� Type Checking �
��
����� Switching the Interface On and O� � � � � � � � � � � � � � � � � � �
��

��
 Proving Inclusiveness �
��
��� Extending Notations �
��
��� Derived De�nition Tools �
��
��� Other Tools �

�

����
 Universal Cpos �

�
����� Reduction by De�nition �

����
 Fixed Point Induction �

�
����� Cases on Lifted Cpos �

����� Calculating Bottom in the Function Space � � � � � � � � � � � � � �

����� Function Equality �

	 Some Simple Examples ���

��
 Booleans and Conditionals �

�
��
�
 A Sum Cpo of Truth Values �

�
��
�� A Discrete Universal Cpo of HOL Booleans � � � � � � � � � � � � �

�

��� Natural Numbers �
�

����
 Reduction Theorems �
�

����� The Factorial Function �
��
����
 Proof of a Reduction Theorem �
��

��
 Using Fixed Point Induction �
��
��� A Simple Language and Its Semantics �
��

 LCF Examples �	�
��
 The LCF System �
��

��
�
 The Logic PP�
��
��
�� Extending Theories �
��
��
�
 Rewriting �
��

��� Natural Numbers �
��
����
 Theorems about Addition �
��
����� Theorems about Equality �
�

��
 A Recursive Function �
��
��� A Mapping Functional for Lazy Sequences � � � � � � � � � � � � � � � � � �
��
��� Conclusion �
��

� Verifying the Uni�cation Algorithm ���
��
 Terms �
��

��
�
 Occurrence Relation �
��
��
�� Variable Set �
��

��� Substitutions �
��
����
 Application �
��
����� Domain and Range �
��
����
 Agreement and Equality �
�

����� Composition �
��
����� Generality �
�

����� Idempotent Substitutions �
�

��
 Uni�ers �
��
��
�
 Most�general and Idempotent Uni�ers � � � � � � � � � � � � � � � � �
��
��
�� Best Uni�ers and their Existence � � � � � � � � � � � � � � � � � � �
��

��� The Uni�cation Algorithm �
��
����
 The Type of Attempts �
��
����� Domain Theory �
��
����
 De�ning the Algorithm ���

��� A HOL Uni�cation Function ���

��� Proof of Correctness ���
����
 The Well�founded Ordering ���
����� The Induction Proof ���

��� Discussion ���

� Conclusion ���
��
 Extension of HOL �
�
��� Embedding Semantics vs� Implementing Logic � � � � � � � � � � � � � � � � �
�
��
 Alternative Formalizations �
�
��� Limited Treatment of Recursive Domains �
�
��� Related Work �

��� Evaluation of HOL�CPO �
�
��� Future Work� �Real� Domain Theory �
�

A Well�founded Sets ��

Chapter �

Introduction

Writing computer programs is di�cult� Often� a malfunction is detected in programs
which have been tested extensively� Sometimes� this can be a source of major irritation�
for instance� if a text editor suddenly fails� At other times� the consequences of failure can
be extremely high�a threat to human life�for applications in areas like transportation
and health care� not to mention nuclear power generation�

The use of formal methods in developing safety�critical software can increase the con�
�dence� and probability� that the software will behave as desired in a certain application�
Formal methods are based on rigorous techniques� rooted in mathematics� Mathemati�
cal proofs of correctness are often suggested as a technique for ensuring reliability of a
software system	 a proof of correctness must establish that a formal mathematical under�
standing of a programs behavior meets a formal speci�cation of the intended behavior� As
pointed out by Cohn �Co���� the idea that software �and hardware� is proven �correct� is
appealing but very misleading� A proof of correctness with respect to a speci�cation does
not guarantee desired behavior or non�failure since the proof may very well be wrong�
and the speci�cation may not specify intended behavior	 even further� the compiler and
executing hardware may be wrong� etc� In general� proofs of correctness are di�cult to
conduct since they tend to be long and complicated� and full of tedious details� A machine
can help to keep track of the details� and to automate proofs of the most trivial details
as well� Hence� a machine proof of correctness can often further increase the probability�
but not guarantee� that programs behave as desired�

There are various ways of giving formal meaning� or formal semantics� to programming
languages� Operational semantics speci�es how a programming language executes on
an abstract machine and denotational semantics is concerned with giving mathematical
models for what programs mean	 a program is mapped directly to its meaning� called
its denotation� by a so�called semantic function from programming languages syntax to
semantic domains� The denotation of a program is usually a mathematical value� such
as a natural number or a function� The advantage of denotational �over operational�
semantics is that it is more abstract� ignoring unimportant execution behavior and using
mathematical concepts� The mathematical theory underlying denotational semantics is
provided by domain theory�the study of complete partial orders� continuous functions
and least �xed points�

This thesis presents a domain theoretic basis� called HOL�CPO� for reasoning about
�functional programs� in the HOL �Higher Order Logic� theorem proving system� Along
with a formalization of basic concepts of domain theory in higher order logic� HOL�CPO

provides a collection of proof functions and other tools to support reasoning about �func�
tional programs�� To be honest� we shall omit the extra level of complication due to having
an explicit programming language syntax and a semantic function from the syntax to se�
mantic domains� Reasoning is conducted directly in domain theory about mathematical
functions� which may be viewed as functional programs� We will see examples of function
de�nitions in functional programming languages like Standard ML �MTH��� Pa�
� and
Miranda �BW��� which are translated easily to domain theory� and vice versa�

��� Domain Theory

Denotational semantics was pioneered by Christopher Strachey in the early ���s �see e�g�
�Mo��� Sc����� In his work� Strachey used the untyped ��calculus as a way of writing deno�
tations� though� at the time� the untyped ��calculus did not have a formal model in which
��terms represented mathematical functions� It was a fundamental breakthrough when
Dana Scott discovered a model of the untyped ��calculus in the late ���s by constructing
a non�trivial solution D� of the recursive domain equation

D�
�� �D� � D���

Scott�s work underpined the area of denotational semantics with a rich mathematical
theory� called domain theory �see e�g� �GS��� Gu��� Wi�
��� In recent years� research in
domain theory has been conducted in category theory� where new important results have
contributed to a renewed interest in the theory of domains�

A central purpose of domain theory is to give an understanding of recursive de�nitions�
A function f may be recursively de�ned by an equation of the following form�

f�x� � � � � f�� � �x � � �� � � � �

where f appears on both sides of the equality� A well�known example is a recursive
speci�cation of the factorial function which takes a natural number n as an argument
and produces the factorial n � n � �n �
� � � � � �
 as a result�

fact�n� �

�

 if n � �
n � fact�n �
� if n � ��

In general� such an equation does not need to specify a unique function� or even any
function� Another question is whether it is possible to give a canonical value for a solution
of such an equation�

Domain theory is concerned with the existence and uniqueness of solutions of equations
as canonical least �xed points� The �xed points are taken of non�recursive functionals
determined by the recursive de�nitions� If a recursive de�nition determines a function
F � E � E on a �domain� E� which contains a least element �� read �bottom�� with
respect to an ordering relation v� then the term being de�ned is interpreted as the least
�xed point of F � A canonical value for this �xed point is speci�ed as the least upper
bound of the ��chain

� v F ��� v F ���� v � � � v F n��� v � � �

of partial approximations of the term� obtained by recursively unfolding the recursive
de�nition� Domains are ensured to always contain such least upper bound by requiring
that they are complete partial orders �cpos�� A cpo D may be viewed as a set with
structure� induced by a partial ordering relation vD �often the subscript is omitted��
In general� our domains are not required to possess bottom elements	 they are so�called
bottomless cpos� or predomains� However� we shall add bottom elements to take the least
�xed points of functions� which are required to be continuous to allow this�

Apart from giving an understanding of recursive functions� domain theory gives an un�
derstanding of nontermination and partial functions� via the bottom element of domains�
Further� it provides a range of techniques for reasoning about recursive de�nitions� e�g�
�xed point induction and well�founded induction �see �Wi�
���

Another major issue in domain theory is the construction of solutions to recursive
domains equations� Many programming languages allow the use of recursively de�ned
types� Even if they do not it may be that their semantics is most straightforwardly
de�ned through the use of recursively de�ned domains� A recursively de�ned domain is
constructed as a solution of a recursive domain equation of the form�

D �� F �D�

Here� F is an operator on domains de�ned using standard constructions on domains
like product and function space� If D� and D� are domains then their product D� �D��
consisting of pairs of elements in D� and D�� respectively� is a domain ordered component�
wise� The function space �D� � D��� consisting of continuous functions from D� to D�� is
a domain ordered pointwise� The three most prominent techniques for solving recursive
domain equations are�

� the categorical method using embedding project pairs� based on Scott�s original
inverse limit construction �SP��� Pa��� Pl�
��

� via universal domains like P� in which domains are encoded as retracts �Sc��� St���
Ba���� and

� information systems providing a representation of domains for which equations are
solved by the �xed point method �Sc��� LW�
� Wi�
��

None are considered in this thesis since they do not �t in well with other goals �see below��
Instead we apply a few ad hoc methods to introduce more restricted classes of recursive
domains�

��� The HOL System

The HOL system �Go��a� GM�
� is not a fully automated theorem prover but a mecha�
nized proof�assistant for proving theorems in higher order logic� It is a general�purpose
theorem prover since it is based on an expressive higher order logic �the HOL logic� and
built on top of a functional programming environment ML �which stands for Meta Lan�
guage�� The HOL logic is a typed logic with terms� types� and theorems represented
in the ML language� The logic is organized in theories each of which contains a set of
types� constants� de�nitions� axioms and theorems� The purpose of the HOL system is to
provide tools for constructing such theories�

Theories can be extended with new constants and types by giving de�nitions and ax�
ioms� De�nitional extension is safe� meaning it preserves consistency of the HOL logic�
because new constants and types are de�ned in terms of existing ones� Axiomatic exten�
sion is not safe and usually not accepted in the HOL community�

The representation of theorems in ML as an abstract type guarantees that theorems
can only be created by formal proof� A proof is a derivation using a number of inference
rules� pre�proved theorems and axioms� An inference rule is a function in ML which takes
a number of theorems �premises� as arguments and produces a theorem as a result� All
inference rules are derived from eight primitive rules� or other so�called derived inference
rules� Conversions are special cases of inference rules which take no theorem arguments
but instead a term argument�

Inference rules support forward proofs of theorems� However� a more natural goal�
directed �or backwards� proof style is also supported�by the subgoal package� This
allows proofs of theorems to be constructed by applying tactics interactively� in order to
reduce goal terms to truth� A tactic is an ML function which typically implements the
backwards use of one or more inference rules�

The HOL logic has a set theoretic semantics� All types denote sets and the function
type denote total functions of set theory� The HOL system supports extensions well�
through its expressive underlying logic and the meta language ML which can be used
to program special�purpose proof functions and other tools� In particular� it supports
reasoning about certain concrete recursive �nite�valued datatypes and primitive recursive
functions on these types well� due to the type de�nition package �Me���� It is di�cult
to introduce more general recursive types and functions since one must �rst prove their
existence in the logic� Finally� HOL has a large collection of built�in types� theorems and
proof tools to support all kinds of reasoning� This is important since it means that one
does not have to start from scratch when a new extension is considered�

��� Logic of Computable Functions

Scott�s Logic of Computable Function was implemented in the LCF theorem prover� a
system designed speci�cally for reasoning about the semantics of programming languages�
The originator of the LCF system was Robin Milner� who implemented the �rst version
of the system� a simple proof checker� at Stanford University �see the bibliography of
�GMW����� Out of the experiences with this system grew Edinburgh LCF� for which
the general�purpose programming language ML was designed and developed �GMW����
Later a version of the system called Cambridge LCF was developed by Paulson �Pa���
at Cambridge University� The LCF project is arguably one of the most signi�cant in
mechanical theorem proving� For instance� the tactical approach to proof was developed
as part of this project and the successor of ML� called Standard ML �MTH��� Pa�
�� has
become one of the most widely used functional programming languages� In fact� the HOL
system is a direct descendant of the LCF system and shares an implementation in ML
and many ideas on mechanical theorem proving with LCF�

Experiences with the LCF system� due to numerous applications �see the bibliography
of �GMW��� Pa����� are mixed� While� on the one hand� it seems to support reasoning
about in�nite�valued �lazy� types and non�strict functions �lazy evaluation� well� it seems
to be less suited for reasoning about �nite�valued �strict� types and strict functions �eager

evaluation�� due to the presence of bottom elements in all types �Pa��a� Pa��b� Pa����
The underlying logic of the LCF system is a �rst order logic of domain theory where
well�formed terms have types which all denote cpos with bottom elements�

Another problem with LCF is that it is an implementation of a logic of domain theory	
hence� there is no access to domain theory itself� For instance� there is no de�nition of
the �xed point operator in LCF� The �xed point operator is provided via axioms and a
primitive rule of inference� called �xed point induction� But using other techniques for
recursion� or reasoning directly about �xed points� allows more theorems to be proved
than with just �xed point induction� Further� the semantic notion of admissibility� or
inclusiveness� of predicates for �xed point induction is only available via an incomplete
syntactic check� performed by the rule of �xed point induction which is implemented in
ML� Thus� if a predicate is not accepted by the syntactic check� then it cannot be used
with �xed point induction in LCF� though it may be inclusive by the semantic de�nition
in domain theory� The main properties of the LCF system are described in more detail
in chapter ��

��� Goals

It is often argued that machine�assisted program veri�cation should be conducted in a
semantics�based extension of a safe and general�purpose theorem prover such as the HOL
system �see e�g� �Ag����� The program veri�ers for imperative programs described by
Gordon in �Go��b� and by the present author in �Ag�
� Ag��� satisfy this� Further�
Andersen �et al�� �An��� APP�
� employs this approach to develop a theorem prover
for the UNITY theory of concurrent programs� Another example is the CCL �Classical
Computational logic� extension of Isabelle �Pa��� by Coen �Co��� for reasoning about
functional programs�

The work presented here is based on the same idea� By embedding domain theory in
the HOL system� we hope to overcome some of the limitations of the LCF system� which
are due to the fact that it is a direct implementation of a logic� In a way� the work may be
viewed as an embedding of �the logic of� the LCF system within the HOL system� which is
performed in such a way that the bene�ts of both the domain theoretic LCF �world� and
the set theoretic HOL �world� are preserved� The last point is important� the bene�ts
of the HOL system should be available in the extension of HOL� It should be possible to
bene�t from the ease of set theoretic reasoning� compared with domain theoretic reasoning
which often involves bottom� It should be possible to mix the two di�erent kinds of
reasoning� Furthermore� the rich collection of types� theorems and tools provided with
the HOL system should be directly accessible when reasoning about recursive de�nitions
in domain theory� This thesis gives a thorough treatment of recursively de�ned functions
I believe that a thorough treatment would not �t in directly with preserving the bene�ts
of set theoretic reasoning in HOL �cf� the introduction to chapter � or chapter ���

Domain theory is a rich mathematical theory which is useful to reason about vari�
ous aspects of programming languages and individual programs� It should therefore be
available to the HOL user� The main results of this thesis are�

� A formalization of basic domain theoretic concepts in HOL with syntactic�based
proof functions and other tools to support reasoning about mathematical function

�the denotations of functional programs�� This extension of HOL is called HOL�
CPO�

� A good number of examples to demonstrate the use and usability of the HOL�
CPO system� A larger example shows the proof of correctness of a uni�cation
algorithm� It is demonstrated that domain and set theoretic reasoning can be mixed
to advantage� e�g� most reasoning in LCF involving the bottem element can be
eliminated� and a richer class of recursive functions is supported than in pure HOL�

� A thorough comparison of LCF and HOL�CPO�

� A method for introducing derived de�nitions of recursively de�ned well�founded
functions in HOL based on domain theory and well�founded induction�

� Ad hoc methods and ideas for de�ning recursive domains with �nite and in�nite
values�

Parts of the work have also been published in �Ag�
� Ag��a��

��� Outline

The contents of each chapter may be outlined as follows�

Chapter �
 Overview� The purpose of this chapter is to provide an overview of the
formalization and main points and results of the work� The presentation is relatively
non�technical and independent of HOL syntax� The chapter describes examples
which are and which are not presented later in the thesis� In particular� it treats the
well�founded recursive Ackermann function� co�induction for lazy sequences �lazy
lists without the empty list� and an example which combines several techniques of
domain theory for reasoning about recursive de�nitions�

Chapter �
 Basic Concepts of Domain Theory� A formalization of basic concepts
of domain theory such as complete partial orders� continuous functions and least
�xed points is described� A few constructions on domains are also presented� for
instance� the discrete construction �associates the discrete ordering with a subset
of a HOL type�� the lifting construction �adds a bottom element to a cpo� and the
function space construction�

Chapter �
 Recursive Domains� Some recursive domains with �nite values may be
introduced via recursive HOL types and the discrete construction� or as variants
of such cpos� Cpo constructions for recursively de�ned cpos of lazy sequences and
lazy lists� which contain in�nite values� are introduced but the method is not easily
generalized to more complicated domains� Ideas on more powerful techniques for
de�ning some recursive domains are presented�

Chapter �
 The HOL�CPO System� Syntactic notations for writing cpos� continu�
ous functions and inclusive predicates are presented� These are implemented by an
interface and a number of syntactic�based proof functions� The notations can be
extended interactively� Other tools such as a tactic for �xed point induction and
derived de�nition tools for introducing cpos and elements of cpos are also presented�

Chapter 	
 Some Simple Examples� Some �rst simple examples illustrate the use
of HOL�CPO� The examples illustrate how to introduce new cpos and recursive
continuous function easily� and how to extend the notations for writing cpos and
elements of cpos easily� Proof by �xed point induction is also illustrated�

Chapter

 LCF Examples� A few examples presented in chapter
� of Paulson�s book
on Cambridge LCF are conducted in HOL�CPO in order to allow a comparison of
the two systems� The examples illustrate reasoning about �nite�valued domains like
the natural numbers� arbitrary recursive functions and in�nite�valued domains like
lazy sequences�

Chapter �
 Verifying the Uni�cation Algorithm� As an extended example we pre�
sent a proof of correctness of the uni�cation algorithm which was veri�ed earlier by
Manna and Waldinger �MW�
� and by Paulson in LCF �Pa���� The proof involves
substantial theories of substitutions and uni�ers and is based on the use of well�
founded induction to prove termination of the algorithm�

Chapter �
 Conclusion� Conclusions are drawn and further work suggested�

The presentation is fairly technical and does require some knowledge of domain theory and
the HOL system� Chapter � should be more accessible than the other chapters �except
the conclusion��

Chapter �

Overview

The purpose of this chapter is to provide a more accessible presentation of HOL�CPO�
the extension of HOL with domain theory� than the following chapters provide	 these are
quite HOL technical and provide more details �i�e� discussions� explanations� de�nitions
and theorems�� It is hoped that a reader with some or little knowledge of domain theory
and the HOL system can read and understand this chapter well enough to obtain a brief
overview of the work�

The HOL�CPO system consists of various integrated parts� a formalization of basic
concepts of domain theory� an interface� a number of proof functions for syntactic nota�
tions and various other theorems and functions to support domain theoretic reasoning in
HOL� It has no built�in functions to support the de�nition of recursive domains� but a few
example domains of both �nite and in�nite nature have been formalized	 in particular�
recursive domains of lazy �in�nite� sequences and lazy lists have been formalized with the
proof principles of structural induction �Pa��a� and co�induction �Pi��� to reason about
in�nite values� in addition to �xed point induction�

Through these extensions� HOL�CPO provides the concepts and techniques of �xed
point theory to reason about in�nite data values� nontermination and arbitrary recursive
�continuous� functions� And� just as important� it allows set and domain theoretic rea�
soning to be mixed such that the bene�ts of both theories are available at the same time�
Set theory is� for instance� well�suited to reason about primitive recursive functions and
recursive datatypes with �nite values�

In this chapter� we survey the formalization of domain theory and the associated tools�
The range of new possibilities that HOL�CPO o�ers to the HOL user is demonstrated by
considering a number of illustrative examples�

Notation

A lighter presentation is obtained by introducing some standard notation rather than
HOL�s ASCII notation �cf� �GM�
�� chapter
���

� Types and constants in sans serif� e�g� bool�

� Use of subscript� e�g� FixE instead of FixE�

� Mathematical notation� 	 instead of �� x
� y instead of ��x�y�� and so on�

� Built�in constants� � for ��� � for IN�
 for SUBSET� etc�

�

The constants IN and SUBSET are de�ned in the predicate sets library of HOL �Me���� a
library which supports reasoning about sets written as predicates� e�g� fx� yg � �� bool�

��� A Formalization of Domain Theory

Domain theory is the study of complete partial orders �cpos� and continuous functions
between cpos� A complete partial order is a partial order �po� which contains least
upper bounds of all its chains� A continuous function is a certain kind of monotonic
function which preserves such least upper bounds� The concepts of domain theory can be
formalized by giving their semantic de�nitions in HOL� In this section we concentrate on
how this is done	 in particular� the section does not provide a thorough introduction on
domain theory�such can be found in the textbooks by Winskel �Wi�
�� Gunter �Gu���
and Schmidt �Sc����

A partial order �po� is a pair consisting of a set and a binary relation such that the
relation is re!exive� transitive and antisymmetric on the set� We could formalize such
pairs in various ways in HOL� The set component can be denoted by a HOL type � such
that a partial order is represented as a HOL function R � � � �� bool �corresponding
to the binary relation� where bool is the type of boolean truth values� The properties of
pos mentioned above should hold for all elements of the underlying type �� e�g� re!exivity
would be stated as 	x� Rxx�

One serious disadvantage of this approach is that we will not be able to talk about the
cpo of continuous functions� The HOL function type is denoted by the set of all functions
between two sets and therefore may include non�continuous functions� This would be a
serious drawback later since we shall use this cpo frequently� Instead� the set component
should correspond to a subset of a HOL type� The most direct way to accomplish this
is to represent a partial order as a pair �A�R� in HOL where the type of A is � � bool�
As before� the type of R is � � � � bool but here the conditions on R should hold
for elements of A only �see below�� Another equivalent approach would be to de�ne the
underlying set of a po to be precisely the subset of a type for which the relation is re!exive�
i�e� the subset fx j Rxxg�

In literature� a partial order is usually confused with the underlying set such that A

is written for �A�R�� Much the same confusion can be provided in the formalization by
introducing constants rel and ins where rel is used to obtain the relation component of a
pair and ins is used to state whether a term is in the set component of a pair� Hence� in
terms below the variable A �and later D and E� ranges over pairs of sets and relations�
that is� it has HOL type

A � ��� bool�� ��� �� bool��

The constant rel is simply de�ned to equal the projection function SND and the de�nition
of ins is straightforward too�

� 	aA� a insA � a � �FSTA�

using the projection function FST and the membership predicate � on sets �so� a � P

means P �a� equals true�� Hence� the constant ins simply extends � to po pairs� We can
introduce a similar extension of the subset inclusion predicate
 as follows�

� 	BA� B subsetA � B
 �FSTA�

So the de�nition of subset says that a set is a subset of a partial order when it is a subset
of the underlying set�

We shall introduce a few syntactic conveniences for use in this chapter only� Assuming
variables a and b in a partial order A� the statement a insA is written as a � A and the
statement relAa b is written as avAb� Besides we write B
 A instead of B subsetA

�assuming B is a set of appropriate type�� Note that by introducing this syntactic sugar
we in fact overload the symbols � and
 which are used for both sets and partial orders�
The context will tell the reader which versions of the real HOL constants are meant �ins
or IN� or subset or SUBSET�� In addition� the following rules apply� variables like B and
Z are always �and only� used for sets and variables like A� D and E are always �and only�
used for partial orders� Finally� it is convenient to introduce the following abbreviation
for universal quanti�cations� when we write a term like

	x� y� z � A� P �x� y� z�

what we really mean is the relatively long�winded term

	x� x � A� �	y� y � A� �	z� z � A� P �x� y� z����

Further� comma and �long space� are used to separate terms� 	f� x� y � A� � � �� This
means for all f and for all x and y in A and so on� A similar syntactic sugar is used for
��abstractions �but we return to that later��

The notion of partial order can now be introduced in HOL via a new constant po

which is a predicate on pairs�

� 	A� poA � re�A � transA � antisymA

The conditions on pos are de�ned by the theorems�

� 	A� re�A � 	x � A� xvAx

� 	A� transA � 	x� y� z � A� xvAy � yvAz � xvAz

� 	A� antisymA � 	x� y � A� xvAy � yvAx� x � y

These de�nitions are the usual ones�
In domain theory� the ordering relation of a partial order is usually interpreted as an

approximation ordering stating when one �partial� result of a computation approximates
another� The ordering is usually read as �approximates� or �is less de�ned than� �or
more precisely� �is at most as de�ned as��� This meaning is clearest for more complex
partial orders of continuous functions or lazy lists� as we shall see later�

A partial order A may have a least de�ned element� i�e� an elements which approxi�
mates all other elements of the po�

� 	aA� a is leastA � a � A � �	b � A� avAb�

From the antisymmetry condition on partial orders we can derive that least elements are
unique when they exist�

� 	A� poA� �	aa�� a is leastA � a� is leastA� a � a��

c c c

c c c

c

c

c

c

�
�

�

B
B
B

�
�
�

�
 � � � �
�
 � � � �

�

�

���

�

Figure ��
� Partial orderings on natural numbers�

The least element is usually called bottom so it is convenient to introduce a term for this
element �if it exists� using the choice operator�

� 	A� bottomA � ��a� a is leastA�

The choice operator �see �GM�
�� yields an arbitrary element of some type such that
a predicate is satis�ed �as in �x�P �x��� If this is not possible� i�e� if the predicate is
everywhere false� then it yields any element of the type �all types are non�empty��

The bottom element of a po A is usually denoted by the symbol �A so we shall
write this instead of bottomA� Bottom is a kind of unde�ned element which stands for
nontermination or �no value at all��

Many familiar sets become partial orders when they are equipped with appropriate
binary relations� As one example� consider the set of natural numbers corresponding to
the HOL type num �numerals� which is a po with the less�than�or�equals ordering ��

� po�fn j � � ng���

However� this is not the kind of relation on natural numbers we shall consider below
since there are important properties that it does not enjoy� First of all� we cannot really
interpret the less�than�or�equals ordering as an approximation ordering� Most readers
would agree that all natural numbers are equally de�ned� The approximation ordering
on natural numbers is therefore the equality relation which is called the discrete order�
ing� This means that any natural number is related to itself only� di�erent numbers are
incomparable by this relation�

The two di�erent orderings on natural numbers are shown as graphs in �gure ��
�
The discrete ordering corresponds to the �rst of the three graphs and the less�than�or�
equals ordering corresponds to the second graph� Each node represents a natural number
and each arc represents an ordering relationship� In the graphs� the lower elements are
less de�ned than the upper elements� Arcs on elements themselves� corresponding to
re!exivity� are not shown� Similarly� arcs which can be derived from transitivity are not
shown� Therefore� the discrete ordering is shown as nodes only �no arcs�� Also note that
� is a �bottom� or least �de�ned� element with the less�than�or�equals ordering� It is less
than all natural numbers above
 due to transitivity� In the third graph of �gure ��
 a new
element which is a �real� bottom element has been associated with the natural numbers�
This is done by extending the discrete ordering to a so�called !at ordering where the new
element is below all numbers�

Let us write Nat for the discrete partial order discrete fn j � � ng where the discrete
construction is de�ned by�

� 	Z� discreteZ � Z� ��d�� d� � Z� d� � d��

Introducing a construction for lifting a po by extending the underlying set with a new
bottom element�

� 	A�
liftA �
fBtg � fLft d j d � Ag�
��xy� x � Bt � �dd�� x � Lft d � x � Lft d � dvAd

��

where Bt and Lft are the constructors of a new concrete datatype of syntax in HOL�
we can write the !at �lifted�discrete� po of numbers as lift Nat� Hence� the symbol � of
�gure ��
 refers to �liftNat which is the bottom of this po� due to the way in which the
ordering is de�ned� and equals the constant Bt� It is easy to see that discrete and lift

de�ne constructions on partial orders�

� 	Z� po�discreteZ�
� 	A� poA� po�liftA�

That is� a set associated with the discrete ordering is always a po and lifting preserves
partial orders�

Another reason why the less�than�or�equals ordering is not a �good� ordering in domain
theory is that it is possible to choose a subset of natural numbers which is not bounded
from above with this relation� e�g� the set of all numbers itself or the set of even numbers
�see below�� This should not be possible since complete partial orders are partial orders
where certain sets �like this� are always bounded from above� This notion of boundedness
is an important concept which we de�ne next�

An upper bound of a subset B of some partial order A is an element a � A which
is approximated by all elements b � B� The following de�nition of the constant is ub

introduces this notion�

� 	aBA� a is ub �B�A� � a � A � poA �B
 A � �	b � B� bvAa�

If there are one or more upper bounds then there may be a least one� A least upper bound
�lub� is an upper bound which approximates all other upper bounds�

� 	aBA� a is lub �B�A� � a is least �fb j b is ub �B�A�g�vA�

From the uniqueness of least elements we can derive that lubs are unique if they exist�

Using the choice operator� an expression for the least upper bound can be introduced�
De�ning a constant lub as follows�

� 	BA� lub�B�A� � ��a� a is lub �B�A��

we can prove that if a lub exists then lub yields an upper bound and in fact the unique
least upper bound�

� 	aBA� a is lub �B�A� � �lub�B�A�� is ub �B�A� � �lub�B�A� � a�

{}

{1}{0} {2}

{0,1} {0,2} {1,2}

{0,1,2}

Figure ���� Power set of natural numbers ��
� and ��

as is stated by the second conjunct in this theorem�
A �nite subset of the natural numbers like f�� �� �� �g has many upper bounds with

the less�than�or�equals ordering� e�g� ��
� and ��� It also has a least upper bound which
is �� certainly this is an upper bound and less than both � and
�� If this �nite set is
extended to the in�nite set of all even numbers f�� �� �� � � �g �which must be written as
fn j EVEN ng in HOL� then an upper bound does not exist� For any natural number n
we can always �nd an even number which is larger than n�

On the other hand� the power set Pow�f��
� �g� of natural number ��
 and � which
is a partial order with the subset inclusion ordering
 has a least upper bound for any
subset of its elements� see �gure ���� This lub is obtained by taking the union of all sets
of the subset� e�g� the lub of ff�g� f
� �gg is the element f��
� �g�

Least upper bounds are important in domain theory since they support an interpre�
tation of in�nite values like functions or lazy lists as the lub of chains of �nite partial
approximations� The de�nition of complete partial order guarantees that such lubs al�
ways exist� Besides� the de�nition of continuity guarantees that continuous functionals
on cpos with bottom always have a least �xed point and that a canonical value exists for
this �xed point� The �xed point operator yields this value which is the lub of a chain of
partial approximations obtained by iterating the function a �nite number of times over
the bottom element� Furthermore� a recursive function is de�ned as a lub via the �xed
point operator� The precise de�nitions follow next�

A chain is a non�decreasing sequence X � num � � of elements of a partial order D�
Here� non�decreasing means that the n�th element of the sequence X�n� approximates
the next element in the sequence� which is X�n "
��

� 	XD� chain�X�D� � �	n� Xn � D� � �	n� XnvDX�n "
��

Such chains are sometimes called ��chain and the cpos we introduce below are called
�bottomless� ��cpos� or predomains�

Chains are used a lot below so it is convenient to introduce some syntactic sugar�
First� we shall write chainDX for chain�X�D�� Besides� the term lubDX is written for
lub�fXn j � � ng�D� and similarly� a is lubDX is written for a is lub �fXn j � � ng�D�
assuming a is an element of D �or has the right type��

A partial order is called a complete partial order when it contains all lubs of chains�
This central notion is introduced by the constant cpo� de�ned as follows in HOL�

� 	D� cpoD � poD � �	X� chainDX � �d� d is lubDX�

Hence� in cpos the constant lub always yields a least upper bound of chains�

� 	D� cpoD � 	X� chainDX � �lubDX� is lubDX

A cpo with a least element is called a cpo with bottom� or a pointed cpo�

� 	E� pcpoE � cpoE � ��e� e is leastE�

In a pointed cpo E the term�E is a bottom and therefore approximates all other elements
w�r�t� to the underlying ordering of the cpo�

� 	E� pcpoE � �	e � E� �E vE e�

In �gure ��
 above� the �rst and third graphs correspond to cpos whereas only the
third one corresponds to a pointed cpo� The graph of �gure ��� is a cpo and a pointed
cpo as well� This follows fairly easily since all chains in the examples are �nite� i�e� they
are constant from a certain point� The lub of a �nite chain is the largest element of the
chain �this element is repeated forever in an in�nite sequence representing a �nite chain��
A chain in a cpo with the discrete ordering as in the �rst graph of �gure ��
 is always a
�nite chain and in fact a constant chain since it contains exactly one element� Hence� the
discrete construction always yields a cpo�

� 	Z� cpo�discreteZ�

A chain in a cpo with a !at ordering as in the third graph of �gure ��
 may be bottom to
start with before it becomes a constant chain �it can also be constantly bottom�� It does
not follow from this argument� however� that the lifting construction always preserves
cpos since in general the cpo argument of lift needs not be discrete� However� lift can be
proved to be a cpo constructor� in fact a constructor for pointed cpos� by a similar �more
complicated� argument�

� 	D� cpoD � pcpo�liftD�

To conclude the examples observe that a chain in a �nite po as in �gure ��� is always
constant from a certain point� and hence� this is also a cpo�

The conditions on continuous functions must guarantee that a �xed point can be
obtained as the lub of a chain of partial approximations� First of all� a continuous function
from a cpo D� to a cpo D� must be a monotonic function which maps elements of D� to
elements of D�� and furthermore� it must be determined by this action on elements of its
domain D�� Monotonicity is de�ned as follows�

� 	fD�D��

mono f �D��D�� �
cpoD� � cpoD� �map f �D��D�� � determinedf D��
�	d� d� � D�� dvD�

d� � f�d�vD�
f�d���

where map and determined are de�ned by�

� 	fD�D�� map f �D��D�� � �	d � D�� f�d� � D��
� 	fD�D�� determinedf D� � �	d
� D�� f�d� � ARB�

The constant ARB is prede�ned in HOL and it chooses an arbitrary element of some
type� Since HOL functions written using standard ��notation ��x� f �x�� typically are
not determined we introduce a special kind of dependent lambda abstraction for writing
functions which are always determined as follows�

� 	Df� lambdaD f � ��x� �x � D � f�x� j ARB��

In particular� when lambda is applied to a ��abstraction as in �lambdaD ��x� f �x��� we
will write the shorter term ��x � D� f �x�� instead� As for universal quanti�cations we
write ��x� y � D� f �x�� for the longer term ��x � D� �y � D� f �x���

The determinedness condition is necessary because we work with partial function�
namely HOL functions between subsets of types� i�e� the subsets which are the underlying
sets of cpos� Without this condition� a monotonic �or continuous� function might be seen
as a representative for an equivalence class of HOL functions� The equivalence classes
are induced by a function equality which works on subsets of types �monotonic functions
are speci�ed as maps between subsets of types rather than on types� unlike the HOL
function equality which works on all elements of a type �extensional equality�� Since it is
very cumbersome to work with equivalence classes of functions we pick instead a certain
�xed representative in each equivalence class by requiring functions are determined� �This
problem is discussed further in chapter
� see section
�� in particular��

A continuous function is a monotonic function which preserves lubs of chains�

� 	fD�D��

cont f �D��D�� �
mono f �D��D�� � �	X� chainD�

X � f�lubD�
X� � lubD�

��n� f�Xn���

Note that if X is a chain in D� and f is a monotonic function from D� to D� then
monotonicity ensures the term ��n� f�Xn�� is a chain in D�� Otherwise the de�nition of
continuity would not make sense�

The notion of determinedness is necessary to ensure that continuous functions consti�
tute a cpo with the pointwise ordering on functions� This is called the cpo of continuous
functions or the continuous function space and de�ned by cf�

� 	D�D�� cfs�D��D�� � ff j cont f �D��D��g
� 	D�D�� cf�D��D�� � cfs�D��D��� ��f� g � cfs�D��D��� 	d � D�� f�d�vD�

g�d��

which is a cpo construction� as claimed�

� 	D�D�� cpoD� � cpoD� � cpo�cf�D��D���

The determinedness condition ensures that we can prove the antisymmetry condition on
partial orders �which involves HOL equality� see the discussion above�� Note that saying a
function f is continuous� cont f �D��D��� is the same thing as saying f is in the continuous
function space� f � cf�D��D��� Also note that this construction is a dependent subset of
the type of HOL functions between the underlying HOL types� Since the HOL logic does
not provide dependent types we must simulate these some way� e�g� using subsets of HOL
type as here �this approach is also used in �JM�
��� Hence� as explained in the beginning
of this section the set component of a partial order cannot be represented by a HOL type
if the continuous function space construction is needed�

Since the ordering relation on the continuous function space is de�ned pointwise we
can prove that chains� lubs and bottoms are all calculated pointwise�

� 	XD�D�� chaincf�D�� D��X � �	d � D�� chainD�
��n� X nd��

� 	XD�D�� chaincf�D�� D��X � �lubcf�D��D��X � ��d � D�� lubD�
��n� X nd���

� 	DE� cpoD � pcpoE � �cf�D�� D�� � ��d � D�� �D�
�

From the last theorem it follows that cf is also a constructor for pointed cpos �and not
just cpos��

� 	DE� cpoD � pcpoE � pcpo�cf�D�E��

Note that the domain cpo of the function space only need to be a cpo rather than a
pointed cpo� If it is a pointed cpo it makes sense to talk about strictness of functions� We
say that a function is strict if it maps bottom of the domain to bottom of the codomain�

Some functions are obviously continuous� some not� For instance� any determined
function which is a map from a discrete cpo to any cpo is continuous�

� 	fDZ�
cpoD � map f �discreteZ�D� � determinedf �discreteZ� � cont f �discreteZ�D�

In particular� if we instantiate the variable D in this theorem with a discrete universal
cpo as for example the natural numbers Nat and similarly instantiate Z with the universal
set of natural numbers UNIV � num � bool� where UNIV is the predicate which is always
true� then all antecedents hold trivially� and we conclude�

� 	f� cont f �Nat�Nat�

This can then be used to obtain that for instance HOL addition #" is a continuous
operation on the cpo of natural numbers #" � cf�Nat�Nat�� A similar fact holds for any
two universal sets� which may have di�erent types� not just the natural numbers�

� 	f � �� �� cont f �discreteUNIV� discreteUNIV�

This theorem is very useful to prove that HOL functions on �simple� cpos are continuous�
We can also derive the following result about !at �i�e� lifted discrete� cpos�

� 	f� cont f �discreteUNIV� lift �discreteUNIV��

which states that any function from a discrete universal to a !at universal cpo is contin�
uous�

There are two continuous operations directly associated with the lifting construction
on cpos� One is for lifting an element to a lifted cpo�

� 	D� LiftD � ��d � D� Lft d�
� 	D� cpoD � cont LiftD �D� liftD�

and the other is for extending a continuous function between any cpo and a pointed cpo
to a strict continuous function from the lifted cpo to the pointed cpo�

� 	DE� Ext�D�E� � ��f � cf�D�E�� x � liftD� �x � Bt� �E j f�unlift x���
� 	DE� cpoD � pcpoE � cont Ext�D�E� �cf�D�E�� cf�liftD�E��

where unlift is de�ned by�

� 	y� unlift�Lft y� � y

Note that both of these functions become parameterized by cpo variables in their domains	
Lift takes arguments in D� and is parameterized by D� and Ext takes arguments in cf�D�E�
and liftD� and is parameterized with D and E� This is due to the use of the dependent
lambda abstraction �rather than the ordinary HOL abstraction� which is necessary in order
to ensure that the functions are determined� The determinedness condition makes all
functions on domains with cpo variables parameterized by these cpo variables� Functions
therefore become di�cult to read and write� but a parser and a pretty�printer can hide
the parameters in most cases �see section �����

Finally� let us consider the main goal of this development� namely the de�nition of a
canonical value for the least �xed point of a continuous function on a pointed cpo� First
we de�ne the power of a function applied to bottom by primitive recursion on the natural
numbers �considered as a type in HOL� not as a cpo��

� �	E� powE � � ��f � cf�E�E�� �E���
�	En� powE �n "
� � ��f � cf�E�E�� f�powE nf���

It is straightforward to see that the values returned by pow constitute a chain for a
continuous function by the monotonicity condition�

� 	E� pcpoE � chaincf�cf�E�E��E��powE�

It therefore makes sense to take the least upper bound of pow�

� 	E� FixE � lubcf�cf�E�E�� E��powE�

which we call the least �xed point operator� Some readers might be more used to a
characterization of the �xed point operator like

� 	E� pcpoE � �	f � cf�E�E�� FixEf � lubE��n� powE nf��

which can be derived from the previous de�nition� Note that it follows directly from the
de�nition that Fix is a continuous function �the lub is in the continuous function space��

It still remains to be justi�ed that the �xed point operator yields a �xed point of a
continuous function on a pointed cpo and that this is the least �xed point� The �xed
point property of Fix is stated as follows�

� 	E� pcpoE � �	f � cf�E�E�� f�FixEf� � FixEf�

and the fact that it is a least �xed point follows from the following theorem�

� 	E� pcpoE � �	f � cf�E�E�� d � E� f�d�vEd� FixE�f�vEd�

which states that it is the least pre�xed point	 since it is a �xed point it is also a pre�xed
point� This theorem is sometimes called Park induction�

Another important induction principle of proof is called �xed point induction which
gives a method to prove properties of least �xed points by looking at their �nite partial
approximations� It is stated as follows�

� 	EP� f � cf�E�E��
pcpoE � inclusiveEP �
P ��E� � �	x� P �x� � P �f�x��� � P �FixEf�

where the constant inclusive is de�ned by�

� 	DP�
inclusiveDP �
�	X� chainDX � �	n� P �Xn�� � P �lubDX��

This notion of inclusiveness� sometimes called admissibility� ensures that chains of ele�
ments in some predicate have lubs in the predicate� From this and continuity the �xed
point induction theorem follows easily�

Monotonicity ensures the existence of the lub of �nite approximations of a �xed point�
The continuity condition is used to prove that this lub is indeed the least �xed point� In
fact� the existence of a least �xed point could be proved from monotonicity alone without
appealing to continuity �see e�g� exercise ���
 in Gunter�s book �Gu����� However� using
continuity the proof is simpler because it avoids the use of ordinals�

The goal of this entire development has now been achieved� the solutions of recursive
speci�cations of the form x � F �x� can be found within pointed cpos as the least �xed
point of the �continuous� functional F � In particular� x can be a function f � Hence�
we have a way to give semantics to recursive function de�nitions� Fixed point induction
provides a way to reason about recursive de�nitions using an inductive argument� But
Park induction� the �xed point property or the de�nition of the �xed point operator can
be used as well� just as any other techniques for recursion derivable in HOL�

Before we conclude this section we shall brie!y consider two more constructions on
cpos� in addition to the discrete� lifting and continuous function space constructions that
we considered above� The product construction yields a cpo which consists of all HOL
pairs of elements of two cpos� The underlying ordering relation is de�ned componentwise�

� 	D�D��

prod�D��D�� �
f�d�� d�� j d� � D� � d� � D�g�
���d�� d���d��� d

�

��� d�vD�
d�� � d�vD�

d���

The product of for instance three cpos is written as prod�D�� prod�D��D����
The sum construction� called sum� is similar but it is based on the HOL sum type

instead of the type of pairs� We don�t use this construction in this chapter so we shall
not show its de�nition� which is a bit ugly due to the use of injections and their inverses
�see chapter
��

Both the product and the sum constructions yield cpos if their arguments are cpos�

� 	D�D�� cpoD� � cpoD� � cpo�prod�D��D���
� 	D�D�� cpoD� � cpoD� � cpo�sum�D��D���

but only the product construction yields a pointed cpo� provided its arguments are pointed
cpos�

� 	E�E�� pcpoE� � pcpoE� � pcpo�prod�E�� E���

The bottom element is calculated componentwise�

� 	E�E�� pcpoE� � pcpoE� � �prod�E��E�� � ��E�
��E�

�

just as lubs and chains� in fact �the theorems are listed in section
������

A continuous function from a product can be curried such that it takes its arguments
one at a time� This construction called currying has been de�ned and proved to be
a continuous function� and hence� in particular� to preserve continuity� i�e� to yield a
continuous function if its function argument is continuous� Function application has
also been proved to be a continuous function and to preserve continuity� In addition�
the functions for projection� injection� tupling of functions and function sum have been
de�ned and proved to be continuous functions� among others� They are not used in this
chapter so we shall not bother the reader with the de�nitions here �see chapter
��

In the formalization of domain theory presented above we have not considered the
solution of recursive domain equations� This is the di�cult part of domain theory� If
one turns to representations of domains as retracts of P� �Sc��� Ba��� or information
systems �Sc��� LW�
� Wi�
� then solutions to recursive domain equations can be created
by the �xed point operator� Alternatively� solutions to recursive domain equations can be
obtained as inverse limits ���limits� in the category of domains with projections� In any
case� the formalizations of these methods would not match well with the formalization
presented here �see chapter ��� Instead we consider a few ad hoc methods in section ����

��� The HOL�CPO System

The formalization presented above supports the reasoning about domain theoretic con�
cepts in the HOL system� Thus� we can use built�in tools of HOL to prove that terms are
cpos� continuous functions and inclusive predicates� Such theorems can then be used in
recursive ��xed point� de�nitions or for �xed point induction� This way domain theory
looks like a separate block built on top of HOL� which it is in a way� However� a few ML
functions can �fairly� easily be implemented to support the view that domain theory is
an integrated part of the system	 the advantage is that the formalization would become
easier to use in practice� Special�purpose proof functions and other features such as a
simple interface have been implemented to support the use of the extension of HOL with
domain theory� The resulting system is called HOL�CPO� hereafter�

The most important proof functions of HOL�CPO are syntactic�based functions which
implement informal notations of cpos and cpo�typable terms �there is a notation for both
cpos and pointed cpos�� A term is called cpo�typable or just typable if it can be proved to
be an element of some cpo� Note in particular that we can treat the problem of showing
that a function is continuous as a special case of the problem of deducing which cpo a
term is an element of �i�e� the cpo of continuous functions�� The proof functions are fairly
simple and therefore exclude many cpos and typable terms� However� the notations can
be extended interactively by proving constants and other terms are cpos or elements of
cpos and then declaring these theorems to the system� Furthermore� derived de�nition
tools for introducing new constants to extend the notations have been based on the proof
functions and the declaration tools�

A better interface to the formalization constitutes another useful feature of HOL�CPO�
In the previous section� we noted on the inconvenience of the cpo parameters on function
constructions� such as Ext�D�E� �and FixE�� It is desirable to get rid of these parameters
some way� This can be handled by implementing a special�purpose parser and pretty�
printer and hooking these up with the built�in parser and pretty�printer of HOL� In this

way� the cpo parameters can be hidden in the sense that they do not appear in the terms
that we look at but do appear internally in the terms that are manipulated in proofs� The
current implementation of the parser is quite primitive so the parser does not always work�
�Further� the problem of constructing the parameters may be undecidable in general since
it seems to be similar to type checking in dependent type theory��

Below� we present the informal notations for cpos and typable terms and give a few
examples of terms which �t within the notations� Tools for �xed point induction and for
proving automatically that certain predicates are inclusive are also presented�

Note

We shall keep this chapter relatively non�technical	 in particular� algorithms are not con�
sidered in this chapter �cf� chapter ��� Details such as what the ML names of the functions
are and how the functions are used� are presented in later chapters �see chapter � and �
in particular��

����� Notations for Cpos and Pointed Cpos

The syntactic notations for cpos and pointed cpos are similar yet slightly di�erent since
certain constructions on cpos yield cpos which are not pointed� We shall therefore describe
the notations separately just as there are separate proof functions to prove such facts too�
called the cpo prover and the pcpo prover respectively�

The notation for cpos can be described informally as follows�

D ��� t j discreteZ j liftD j cf�D��D�� j prod�D��D�� j sum�D��D�� j C�D�� � � � �Dn�

where

� t is any HOL term for which a theorem is available stating it is a cpo�

� Z is some HOL set�

� C belongs to an extendable set of names of cpo constructors� and

� D� D�� � � � � Dn are cpos �� � n��

A cpo constructor is a constant� i�e� a nullary constructor� or a constant applied to a
tuple of cpo variables such that the it has been shown that the constructor yields a cpo�
provided its arguments are cpos� The constructions on cpos presented in section ��
 are
built�in as it appears but new constructions can be introduced� Note that the notation
allows any term as long as a theorem is available which states that the term is a cpo or
a pointed cpo� Such a theorem is called a cpo fact below�

A constructor for pointed cpos is similar to a constructor for cpos� It is a constant
which applied to a number of arguments yields a pointed cpo� provided the arguments
are cpos or pointed cpos� The notation for pointed cpos can be described informally as
follows�

D ��� tp j liftD j cf�D�E� j prod�E�� E�� j Cp�D�� � � � �Dn�

where

� tp is any HOL term for which a theorem is available stating it is a pointed cpo�

� Cp belongs to an extendable set of names of constructors for pointed cpos�

� D� D�� � � � � Dn are either cpos or pointed cpos� and

� E� E� and E� are pointed cpos�

Note that the discrete and sum constructions do not yield pointed cpos according to this
notation� The sum of two cpos is never a pointed cpo whereas the discrete construction
yields a pointed cpo if� and only if� the associated set is a singleton set�

The notations for cpos and pointed cpos can be extended by declaring de�nitions or
declaring constructors� If a constant is introduced to abbreviate a term which �ts within
one of the notations then the notation can be extended with that constant by declaring
the de�nition� For instance� we may de�ne a cpo of natural numbers using the discrete
construction on the universal set of all numerals in HOL� as in the previous section�

� Nat � discrete �UNIV � num� bool�

Declaring this de�nition allows us to write Nat as a cpo� We can also use a derived
de�nition tool which both de�nes the constant Nat and declares the de�nition� Once Nat

has been declared one way or the other� then the term cf�prod�Nat�Nat�� lift Nat� would �t
within both notations above� Hence� the cpo prover would automatically prove the �rst
and the pointed cpo prover the second theorem below�

� cpo�cf�prod�Nat�Nat�� lift Nat��
� pcpo�cf�prod�Nat�Nat�� lift Nat��

New constructors on cpos �or pointed cpos� are introduced by theorems stating that
provided their arguments are cpos or pointed cpos then they yield terms which are cpos
�or pointed cpos�� This way of extending the notations is used when a constructor is not
equal to a term which matches the notations already� Assume for instance we have proved

� 	D� cpoD � pcpo�seqD�

where seq is a constructor for pointed cpos of lazy sequences �see section ����� Declaring
this theorem extends the notation for pointed cpos with the constructor seq� Exploiting
that a pointed cpo is also a cpo� the notation for cpos can also be extended�

����� Notation for Cpo�typable Terms

The parser and a proof function called the type checker together implement a notation for
�cpo�� typable terms� It is illustrated in �gure ��
 how the parser� the type checker� and
the pretty�printer interact� The parser transforms a term which �ts within the notation
into an internal version of the term� The main purpose of the parser is to insert cpo
parameters on parameterized function constructors that have been omitted� The type
checker then proves which cpo the term is an element of	 more precisely� the type checker
could perhaps be called a type reconstructor since it automatically constructs the cpo�
The pretty�printer �nally inverts the transformation performed by the parser� hence� cpo
parameters are eliminated�

� � �

parse

t internal�t�

type check

� internal�t� � D

pretty�print

� t � D

Figure ��
� The interface and the type checker�

The �interface level� notation for typable terms can be described informally as follows�

e ��� t j x j c j �xs � D� e j �e� e��

where

� t belongs to an extendable set of basic typable terms�

� x is a variable of a �dependent� lambda abstraction�

� xs is a sequence �or tuple� of variables �x�� � � � � xn� and D is a product of cpos D��
� � � � Dn� where
 � n�

� c belongs to an extendable set of parameterized function constructors� here used
with or without the parameters �the parser will insert the missing ones�� and

� e� e� and e� are typable terms�

A basic typable term t can be any HOL term� typically a constant or a variable� such that
a fact is available which states which cpo it is an element of�

Let us illustrate by an example how the notation works and what job the parser and
pretty�pretty do� Assuming Nat has been declared as in the previous section� consider the
following term� which �ts the notation of typable terms�

Fix��f � cf�D� lift Nat�� �d � D� Ext f �Lift d���

Note that the parameterized constructors Fix� Ext� and Lift are used without their param�
eters in this term� The parser inserts the parameters and generates the following internal
syntax�

Fixcf�D� liftNat��lambda�cf�D� lift Nat����f� lambdaD��d� Ext�D� liftNat�f�LiftDd�����

If we had to write this term directly by hand� we would have to calculate all cpo parameters
very carefully� Besides� reading the function is di�cult due to the parameters� which are
in fact not necessary for our understanding of what the function does�

Assuming now that the variable D is a cpo� the type checker proves a theorem stating
which cpo the term is an element of� This theorem is pretty�printed as follows�

�cpoD� � Fix��f � cf�D� lift Nat�� d � D� Ext f �Lift d�� � cf�D� lift Nat�

Here� the interface level syntax is used again� So� the type checker reconstructs the domain
that a term belongs to�

The set of basic typable terms of the notation can be extended by a declaration tool�
If a term� e�g� a constant or a variable� does not �t the notation it must be declared before
it is used� A declaration is simply a theorem stating which cpo a term is an element of�
For instance� the theorem

� #" � cf�Nat� cf�Nat�Nat��

can be used to extend the notation with the built�in HOL addition� Afterwards� a strict
addition can be de�ned as follows�

� Add � Ext��n � Nat� Ext��m � Nat� Lift�n " m���

The right�hand side �ts within the notation �now that " is in the notation� so the type
checker proves automatically that Add is a continuous function� as stated by the theorem�

� Add � cf�lift Nat� cf�lift Nat� lift Nat��

Then this can be declared and used in other terms� and so on� A derived de�nition tool
does these steps behind the scenes� It de�nes a constant� deduces which cpo it is an
element of using the type checker� and �nally� declares the theorem returned by the type
checker� Note� by the way� that Add is not parameterized by any cpo variables since there
are no free variables in the domain Nat on which it works�

The set of parameterized function constructors includes Fix� Ext� Lift� and many more
�see chapter �� but there is also a declaration tool to extend the set of built�in construc�
tors� A declaration of a parameterized constructor is a theorem stating which cpo the
constructor is an element of� under the assumptions that the cpo variable parameters are
cpos or pointed cpos�

As an example� assume we have declared a discrete universal cpo of HOL boolean
truth values by

� Bool � discrete �UNIV � bool � bool�

and wish to introduce a conditional for this cpo� i�e� a continuous function which takes
a boolean b and two terms t� and t� in an arbitrary cpo D and yields either t� or t�
depending on whether b is true or false� The built�in conditional for booleans works well
but it is not determined� Using the dependent lambda abstraction� we obtain a determined
conditional as follows�

� 	D� CondID � ���b� t�� t�� � prod�Bool� prod�D�D��� �b� t� j t���

We can now prove that CondI is continuous but this must be done manually	 the type
checker cannot be used because the right�hand side of the de�nition does not match the
notation for typable terms�

� 	D� cpoD � CondID � cf�prod�Bool� prod�D�D���D�

It is not di�cult to prove this� but it requires deep knowledge of domain theory and of
the formalization in HOL �fortunately� we do not have to step outside the notation often��
Declaring CondI as a constructor� which is done by activating an ML function with this
continuity theorem as an argument� makes CondI part of the notation of typable terms�
just like Fix and Ext�

Again� there is a derived de�nition tool which can be used to de�ne and declare
function constructors when the right�hand sides of their de�nitions �t within the notation�
So� it would not work for the conditional above which we have to introduce manually�

����� Other Syntactic�based Proof Functions

In addition to the above syntactic�based proof functions� which implement the notations
for cpos and typable terms� there are two other important syntactic�based proof functions�
The �rst one attempts to transform a cpo to a discrete universal cpo �like Nat� and some
other kinds of trivial cpos which contain all elements of the underlying HOL type� Any
term of the underlying type is trivially an element of the cpo and hence the proof function
provides an alternative to the type checker in certain cases� The other proof function can
be used to prove that certain predicates are inclusive such that they allow �xed point
induction� This proof function exploits both the cpo provers and the type checker to
deduce inclusiveness�

The syntactic�based transformation function for proving membership of trivial cpos is
called the ins�prover since it can be used to prove that a term is in the underlying set of
a cpo �recall the HOL constant for stating this is called ins� though we use the symbol �
here�� Among others� it exploits theorems like

� cf�discreteUNIV� discreteUNIV� � discreteUNIV

which states that the cpo of continuous functions between discrete universal cpos is itself
a discrete universal cpo� To prove that any term is an element of a discrete universal cpo
it uses

� 	t� t � discreteUNIV�

It can also handle two cases which are universal cpos but not discrete universal cpos�

� 	t� t � lift �discreteUNIV�
� 	f� f � cf�discreteUNIV� lift �discreteUNIV��

and with a small programming e�ort it could be extended to handle even more cases� It
is a good alternative to the type checker� For instance� the type checker would not be
able to prove the built�in addition on natural numbers is continuous�

� #" � cf�Nat� cf�Nat�Nat��

The symbol �"� is a constant and its de�nition does not meet the notation of typable
terms� But continuity is proved immediately by the ins�prover since Nat is a discrete
universal cpo� The ins�prover can also be used to prove variables and any other terms are
in universal cpos�

The proof function for proving that predicates are inclusive is called the inclusive
prover� It implements syntactic checks which are similar to the ones performed by the
LCF system	 at least� they correspond to the syntactic checks described in the LCF
book �Pa��� �see page
�������� The inclusive prover does not check that predicates are
subsets of a certain cpo� which they must be in order to be inclusive� Therefore� it requires
predicates to be written using a constant mk pred de�ned by

� 	DP� mk predDP � fx j x � D � x � Pg

such that this is guaranteed� Applied to a term of the form

inclusiveD�mk predD��x� e�x���

the inclusive prover deduces this is a theorem if D has �nite chains �e�g� if it is a discrete
or a lifted discrete cpo� or if e�x� meets one of the following syntactic conditions�

e ��� b j t�vEt� j t� � t� j t
� �E j t
vEv j e� � e� j e� � e� j e� � e� j 	y � E� e�y�

where

� b is a term of type boolean�

� E is a cpo or a pointed cpo �it should be pointed in the �E case and non�empty in
the 	 case��

� v is a term in E�

� t� t� and t� are continuous in the variable x in the sense that the lambda abstracted
terms� e�g� ��x � D� t�x��� are continuous functions from D to E� and �nally

� e� e� and e� are inclusive predicates in the variable x in the sense that e�g� the
predicate mk predD��x� e�x�� is an inclusive subset of D� Overline e� means that
�e� must be inclusive�

Hence� the inclusive prover is recursive and it uses the cpo provers and the type checker
to prove the side conditions� �In its current prototype implementation� it does not allow
the notation to be extended interactively but this could be implemented��

����� Other Tools

Above we introduced the notations for cpos and typable terms and discussed some of the
proof functions that have been implemented to support the notations� We also presented
syntactic�based proof functions for inclusive predicates and for transforming cpo mem�
bership statements into trivial ones� There is almost no limit to which kinds of tools one
can build as long as they are based on proved theorems�

A tactic based on the �xed point induction theorem is an example of a useful tool
which combines the use of a theorem with proof functions such as the pcpo prover� the
type checker and the inclusive prover� In fact� the �xed point induction tactic is based on
a derived version of the �xed point induction theorem which is stated using mk pred �for
the inclusive prover��

A conversion for ��reducing dependent lambda abstractions is another example which
is also based on a theorem� namely on

� 	Df� x � D� lambdaD f x � f x�

or written using � notation

� 	Df� x � D� ��d � D� f d�x � f x

Futhermore� it is also based on the type checker as well to prove the antecedent x �
D� Actually� we have extended this conversion to support all parameterized function
constructors for which a similar reduction theorem is available� For instance� a reduction
theorem for Ext is �there could be others�

� 	DE� f � cf�D�E�� x � liftD� Ext�D�E�f x � �x � Bt� �E j f�unlift x��

which is built�in� The conversion attempts to reduce the right�hand side conditional
further by checking whether the argument of Ext in the lifted domain is equal to Bt or
not �an ad hoc check�� These additional manipulations make the reduction conversion
behave as follows for Ext�

� 	DE� f � cf�D�E�� Ext f Bt � �E

� 	DE� f � cf�D�E�� x � D� Ext f �Lift x� � f x

where we have used interface level syntax �i�e� cpo parameters do not appear�� Reduction
theorems for user�de�ned constructors can be supplied via a theorem list argument of the
reduction conversion�

It should be obvious why a proof function like the reduction conversion is useful�
Consider for instance the strict addition� which we introduced above using function ex�
tension� Assume that we wish to prove this behaves like the built�in addition on lifted
natural numbers�

	mn� Add �Liftm� �Lift n� � m " n

Before this can parse properly we must declare that n and m are in the cpo of natural
numbers� which is obtained easily using the ins�prover twice� Stripping o� the universally
quanti�ed variables� and expanding the de�nition of Add� we must prove

�Ext��n � Nat� Ext��m � Nat� Lift�n " m���� �Liftm� �Liftn� � m " n

Using the reduction conversion� this automatically reduces to

m" n � m " n

which is a fact by re!exivity� Hence� we have proved the desired theorem�

� 	nm� Add �Liftm� �Lift n� � m" n

With similar ease� we can prove for example that Add is commutative�

� 	mn� Addmn � Addnm

First we do a case split on both arguments of Add which are in lift Nat� If one of the
arguments is Bt then� due to strictness of Ext� both sides can be reduced to Bt as well�
Otherwise� the theorem just proved about lifted arguments is applied and the commuta�
tivity theorem about the built�in addition

� 	mn� m " n � n " m

can be used to �nish o� the proof� This is the typical way of working with discrete
universal and lifted discrete universal cpos� namely re�using theorems proved in the set
theoretic HOL world and thereby avoiding more complicated reasoning about bottom� e�g�
induction involving bottom as in LCF� The commutativity theorem about strict induction
is proved by two nested inductions with a bottom case in LCF �see chapter ���

In this chapter� we shall not go into further details concerning these and any of the
other proof functions� Instead the reader is referred to chapter �� Here� we move on and
consider some examples of recursive functions�

��� Recursive Functions

We will now consider a few examples which explain part of the reason why it is worthwhile
to develop a formalization of domain theory in HOL� To be more precise� we will consider
how to de�ne and reason about certain recursive �continuous� functions in HOL�CPO� In
section ��� and ��� we consider how to de�ne and reason about recursive domains with
in�nite values� which is another part of the reason why the development is worthwhile�

As mentioned above� domain theory supports an understanding of recursive speci�ca�
tions via least �xed points of continuous functionals on pointed cpos� It provides �xed
point induction for reasoning about recursive de�nitions� However� �xed point induction
is inadequate for certain kinds of reasoning� for instance� for reasoning about nontermina�
tion� Hence� it is important to have access to other techniques of recursion� for example
Park induction and other properties of �xed points derivable in domain theory� or struc�
tural induction and well�founded induction which is an extremely general principle of
induction �see e�g� �Wi�
� MW��� DS����� Well�founded induction in HOL was described
in �Ag�
� Ag��� �see appendix A�� The examples illustrate the use of various techniques
to reason about recursive functions�

We start out gently by considering the factorial function� To allow a �xed point
de�nition we consider a function which yields a result in the lifted cpo of natural numbers�
However� being primitive recursive� the factorial function is so simple in its recursion that
it is also possible to de�ne it in pure HOL� We investigate how the two de�nitions relate�

As a second example we consider Ackermann�s function� which is a classic example of a
well�founded recursive function that is not primitive recursive and therefore its de�nition
is not supported directly in HOL� Just as any other recursive �continuous� function�
Ackermann�s function can be de�ned as a least �xed point in domain theory� Once this
has been done in HOL�CPO� we can prove that Ackermann�s function terminates for all
inputs by well�founded induction� The example shows how a total recursive Ackermann
function in pure HOL can be derived from this termination theorem� A similar approach
has been used to obtain a uni�cation algorithm in HOL �see chapter �� and would work
for many well�founded recursive functions that can be de�ned via a �xed point de�nition
in HOL�CPO� Hence� the example shows in which sense HOL�CPO supports de�nitions
of recursive HOL functions by well�founded induction�

The third and last example of this section illustrates the use of domain theory to prove
the equivalence of two recursive nonterminating functions on �nite lists� The example
illustrates both the use of structural induction on �nite lists and the use of �xed point
induction on inclusive predicates� in addition to the use of other basic properties of �xed
points provided by the formalization of domain theory�

����� The Factorial Function

The factorial of a natural number n is the natural number n � which is calculated according
to the following recursive speci�cation�

n �

�

 if n � �
n � �n�
� if n � �

In Standard ML the factorial function can be computed by a function fac de�ned by

fun fac n � if n � � then � else n 	 fac�n
���

and in Miranda the factorial function can be de�ned as follows�

fac � � �

fac �n��� � �n��� 	 fac n

Both these versions of the factorial work on integers rather than natural numbers and will
not terminate when their input is a negative integer�

Below we describe how a recursive function to compute the factorial of a natural
number can be de�ned in the framework presented here� It will be de�ned as a recursive
function Fac in the function space cf�Nat� lift Nat� where Nat is the cpo of natural numbers
which was used as an example several times in the previous sections� Note that the
factorial is de�ned as a partial function though it is in fact total on the natural numbers�
This is necessary in order to obtain a pointed cpo for the �xed point operator�

Previously we considered addition as an example and we saw that the built�in addition
can be proved to be continuous on Nat by the ins�prover and then declared to extend the
notation of typable terms� For the de�nition of the factorial function we will make use of
the built�in �and continuous� operations for multiplying� subtracting and testing natural
numbers for equality� These operations can be declared to extend the notation by the
following three theorems�

� #� � cf�Nat� cf�Nat�Nat��
� #� � cf�Nat� cf�Nat�Nat��
� #� � cf�Nat� cf�Nat�Bool��

which are all proved automatically by the ins�prover �by transforming the continuous func�
tion space of discrete universal cpos into a term that syntactically is a discrete universal
cpo� and therefore contains all elements of the underlying HOL type��

Next� the �xed point de�nition of the factorial function can be stated as follows�

� Fac �
Fix

��f � cf�Nat� lift Nat�� n � Nat�

Cond��n � ��� Lift
�Ext��m � Nat� Lift�n �m���f�n �
����

The use of Fix makes sense because the functional argument of Fix is continuous on a
pointed cpo cf�Nat� lift Nat�� Note that we use function extension Ext because multipli�
cation is an operation on Nat and the term f�n �
�� which corresponds to the result
of applying the factorial recursively� is an element of the lifted cpo lift Nat� One derived
de�nition tool both de�nes the factorial this way and proves it is continuous�

� Fac � cf�Nat� lift Nat�

The tools uses the notation of typable terms� i�e� the type checker proves the continuity
theorem automatically� Along the way� this proof makes use of the fact that � and

are elements of Nat� These membership facts are proved �automatically� and declared to
extend the notation in exactly the same way as the continuity theorems above�

In order for the �xed point operator to work as desired� the cpo cf�Nat� lift Nat� must
be a pointed cpo� For instance� this is necessary for Fix to yield a �xed point�

� 	E� f � cf�E�E�� pcpoE � f�Fix f� � Fix f

The cpo is pointed due to the use of lift and the fact that cf yields a pointed cpo if
its codomain is a pointed cpo� From the �xed point property of Fix we can derive the
following theorem about Fac�

� 	n� Facn � Cond��n � ��� Lift
�Ext��m � Nat� Lift�n �m���Fac�n �
���

where the recursion of the factorial function appears explicitly� The theorem is a bit ugly
and it could be reduced further by a case analysis on whether n is zero or not� However�
we cannot simplify the second branch of the conditional easily� since we do not know
whether the result of the recursive call is de�ned or not and therefore cannot reduce the
Ext term�

However� the factorial function is clearly total� which we can state as follows

� 	n��m� Facn � Liftm

and prove by induction on natural numbers� Hence� de�ning a new HOL constant FAC

by

� 	n� FACn � ��m� Facn � Liftm�

we can derive the following less ugly equation from the two previous facts�

� 	n� FACn � �n � � �
 j n � FAC�n�
��

This speci�es the behavior of a total recursive factorial function in pure HOL �without
any domain theory�� which could equivalently have been de�ned by primitive recursion�

� �FAC � �
� � �	n� FAC�SUCn� � SUC�n� � FAC�n��

One would usually choose the approach using primitive recursion since de�nition by prim�
itive recursion is supported in pure HOL �as a derived principle of de�nition�� As a matter
of fact� domain theory only complicates the de�nition in this cases� However� when the
induction is less trivial this may suggest a useful way to derive total recursive HOL func�
tions� This point is discussed further in the next section�

����� Ackermann�s Function

The binary Ackermann function is a function A�x� y� on the natural numbers which meets
the following recursion equations�

A��� y� � y "

A�x"
� �� � A�x�
�

A�x "
� y "
� � A�x�A�x"
� y��

Ackermann�s function is interesting because its values grow extremely fast� for instance�

A��� �� �
� A��� �� � �� A�
�
� � �
� A�
� �� � ����

and then note that for instance A���
� � A�
� A��� ��� � A�
�

� which is a very large
number	 SML ran for several minutes without producing a result� The function can be
de�ned in Miranda by the recursion equations above�

ack � n � n��

ack �m��� � � ack m �

ack �m��� �n��� � ack m �ack �m��� n�

However� it cannot be de�ned automatically in a similar way using existing HOL tools
since it is not primitive recursive� Ackermann�s function is a classic example of a well�
founded recursive function� Its proof of termination is best conducted using well�founded
induction on a lexicographic combination of the natural numbers with the less�than or�
dering ��

Below� we show how Ackermann�s function can be de�ned as a recursive partial func�
tion ack in HOL�CPO� using the least �xed point operator� Afterwards� it is proved to
be total by well�founded induction �described in �Ag�
� Ag����� As above� this result
allows us to de�ne a recursive Ackermann function in pure HOL and derive the recursion
equations via the �xed point de�ned ack�

In addition to the operations on the natural number which were introduced above
we shall make use of the successor SUC and the predecessor PRE to de�ne Ackermann�s
function�

� SUC � cf�Nat�Nat�
� PRE � cf�Nat�Nat�

Note that PRE is a total function in HOL since � PRE��� � �� Using domain theory we
could de�ne a partial predecessor which is unde�ned on � but we will not do that here�

The Ackermann function ack is de�ned as a �xed point of a certain functional ack fun�

� ack fun �
��f � cf�Nat� cf�Nat� lift Nat��� m� n � Nat�

Cond��m � ��� Lift�SUC n��
Cond��n � ��� f�PREm�
�Ext��p � Nat� f�PREm�p��f m�PREn�����

� ack � Fix ack fun

By now the reader should be familiar with the use of function extension Ext to extend a
function to a lifted cpo in a strict way� Since ack fun is a continuous function on a pointed
cpo� stated by

� ack fun � cf�cf�Nat� cf�Nat� lift Nat��� cf�Nat� cf�Nat� lift Nat����

the de�nition of ack makes sense� This was obtained automatically by using the notation
of typable terms �the type checker� which was also used to prove�

� ack � cf�Nat� cf�Nat� lift Nat��

In fact� the derived tool for de�ning constants in cpos was used �as usual� for doing both
the de�nitions and the proofs�

From the �xed point property of Fix� we can prove quite easily that ack satis�es the
following recursion equations�

� �	n� ack �n � Lift�SUC n���
�	m� ack�SUCm�� � ackm
��
�	mn� ack�SUCm��SUC n� � Ext��p � Nat� ackmp��ack�SUCm�n��

From the de�nition of ack� it is not clear syntactically that ack is total� Therefore�
we cannot get rid of the function constructors Lift and Ext associated with the lifting
construction lift on cpos immediately� However� we can prove by well�founded induction
�see below� that ack always terminates� i�e� that it always yields a lifted natural number
as a result�

� 	mn��k� ackmn � Lift k

Given this it makes sense to de�ne a constant ACK by

� 	mn� ACKmn � ��k� ackmn � Lift k�

and then derive the desired equations for ACK from the previous theorems�

� �	n� ACK �n � SUC n��
�	m� ACK�SUCm�� � ACKm
��
�	mn� ACK�SUCm��SUC n� � ACKm�ACK�SUCm�n��

Hence� via domain theory and well�founded induction we have obtained a total recursive
Ackermann function in pure HOL which could not have been de�ned in HOL directly by
a primitive recursive de�nition� However� we should mention that another way to de�ne
Ackermann�s function in HOL is via a �hack� exploiting two primitive recursive de�nitions
and higher order functions �Go����

The approach to introducing recursive HOL functions by well�founded induction illus�
trated in this example would work for many well�founded recursive functions� Another
example is presented in chapter � where the proof of correctness of a well�founded recursive
uni�cation algorithm is considered�

Before we conclude this example let us say a few words about how the well�founded
induction mentioned above was conducted� By general induction on the natural numbers
it is easy to prove that the set of all natural numbers in HOL is a well�founded set with
the ordering �� This is stated in the theorem

� wfs�UNIV� #��

where wfs states the conditions for a set and an ordering to be a well�founded set �the
conditions are equivalent to saying that there are no in�nite decreasing chains� see ap�
pendix A�� The universal set has type UNIV � num � bool� Using the lexicographic
construction on well�founded sets� stated by

� 	BCPR� wfs�B�P � � wfs�C�R� � wfs�prod set�B�C�� lex rel�P�R��

where prod set and lex rel are de�ned as follows

� 	BC� prod set�B�C� � f�b� c� j b � B � c � Cg
� 	PRbc� lex rel�P�R��b� c��b�� c�� � P b b� � �b � b� �R c c���

we obtain the desired well�founded set for the induction proof of termination�

� wfs�prod set�UNIV�UNIV�� lex rel�#�� #���

A well�founded set supports induction in the following general sense�

� 	CR� wfs�C�R� � �	f� �	x � C� f x� � �	x � C� �	y � C� R y x� f y� � f x��

which is derived from the de�nition of wfs� Hence� in order to prove that ack is total by
well�founded induction we derive the following lemma from the previous two facts�

� �	mn��k� ackmn � Lift k� �
�	mn�

�	m�n�� m� � m � �m� � m � n� � n� � �k� ackm� n� � Lift k� �
��k� ackm� n� � Lift k��

Once this induction theorem has been applied in the proof of termination� the proof
proceeds by cases on the arguments of ack� Note that �xed point induction cannot be used
to prove termination since the termination predicate is not true of the bottom function�

����� Equality of Two Recursive Functions

Exercise
���� in section
��� of Winskel�s book �Wi�
� is a small but non�trivial exercise
using several of the techniques for recursion to show the equality of two recursive functions
on �nite lists� Below� we present a solution to this exercise developed in HOL�CPO�

Let List be a discrete cpo of �nite lists of natural numbers introduced by the following
de�nition�

� List � discrete �UNIV � �num�list� bool�

where list is the built�in type constructor for �nite lists� Hence� the elements of this cpo
are HOL terms like the empty list NIL� often written as ��� and the list of the �rst three
natural numbers CONS ��CONS
�CONS �NIL��� The list constructor CONS is continuous�
trivially� since it is an element of the function space cf�Nat� cf�List� List�� which is a discrete
universal cpo� Similarly� the in�built operation APPEND of appending two lists to form a
new list is continuous�it is an element of cf�List� cf�List� List��� Assume we have declared
the domains of ��� CONS and APPEND using the theorems

� �� � List

� CONS � cf�Nat� cf�List� List��
� APPEND � cf�List� cf�List� List��

which all hold trivially and are proved immediately by the ins�prover�
The exercise can now be stated as follows� Assume �continuous� functions on natural

numbers s � cf�prod�Nat�Nat��Nat� and r � cf�prod�Nat�Nat�� List�� Let f be the least
function in cf�prod�List�Nat�� lift Nat� satisfying

f���� y� � Lift y

f�CONS xxs� y� � f�APPEND�r�x� y��xs� s�x� y���

Let g be the least function in cf�prod�List�Nat�� lift Nat� satisfying

g���� y� � Lift y

g�CONS xxs� y� � Ext��v � Nat� g�xs� v���g�r�x� y�� s�x� y����

Prove f � g�
In HOL�CPO we �rst de�ne functions corresponding to f and g using the �xed point

operator� In order to simplify the syntax we let r and s be names of constants rather than
keeping them as variables �otherwise functions would be parameterized with variables r
and s�� For the de�nitions we declare the following theorems which all hold trivially�

� s � cf�prod�Nat�Nat��Nat�
� r � cf�prod�Nat�Nat�� List�
� NULL � cf�List�Bool�
� HD � cf�List�Nat�
� TL � cf�List� List�

The function f is now de�ned as the least �xed point of a functional f fun as follows�

� f fun �
��h � cf�prod�List�Nat�� lift Nat�� �l� y� � prod�List�Nat��
Cond�NULL l� Lift y� h�APPEND�r�HD l� y���TL l�� s�HD l� y����

� f � Fix f fun

and similarly g is de�ned as the least �xed point of a functional g fun�

� g fun �
��h � cf�prod�List�Nat�� lift Nat�� �l� y� � prod�List�Nat��
Cond�NULL l� Lift y�Ext��v � Nat� h�TL l� v���h�r�HD l� y�� s�HD l� y�����

� g � Fix g fun

We only use terms which �t within the notation of typable terms so all functions are
continuous� It now follows almost immediately from the �xed point property that f and
g meet the above conditions� Here are the theorems which have been proved�

� �	yh� f fun h ���� y� � Lift y��
�	xxsyh� f fun h �CONS xxs� y� � h�APPEND�r�x� y��xs� s�x� y���

� �	y� f���� y� � Lift y��
�	xxsy� f�CONSxxs� y� � f�APPEND�r�x� y��xs� s�x� y���

� �	yh� g funh ���� y� � Lift y��
�	xxsyh� g funh �CONS xxs� y� � Ext��v � Nat� h�xs� v���h�r�x� y�� s�x� y����

� �	y� g���� y� � Lift y��
�	xxsy� g�CONS xxs� y� � Ext��v � Nat� g�xs� v���g�r�x� y�� s�x� y����

The proofs are based mainly on reduction �see section ����
� and on built�in theorems
about the operations on lists� In particular� the reduction theorems

� 	D� x� y � D� Cond�T� x� y� � x

� 	D� x� y � D� Cond�F� x� y� � y

for the conditional Cond were useful�
We are now ready to consider the actual proof of f � g� By antisymmetry of the cpo

cf�prod�List�Nat�� lift Nat� it is enough to prove fvg and gvf� Here and below we often
omit the subscripts on v and �� The �rst relation follows by proving g is a �xed point
of f fun and exploiting f is de�ned as the least pre�xed point of f fun �due to Fix�� This
proof technique is called Park induction �introduced in section ��
��

� 	E� f � cf�E�E�� d � E� pcpoE � f�d�vEd� Fix�f�vEd

The second relation follows by Park induction on the �xed point de�nition of g�
We �rst prove that g is a �xed point of f fun� i�e� that the following statement holds�

� f fun g � g

By function equality of continuous functions� stated by

� 	D�D�� f� g � cf�D��D��� �f � g� � �	x � D�� f x � g x��

we must prove f fun g �l� n� � g �l� n� for all lists l � List and natural numbers n � Nat�
From the equations for g and f fun listed above it appears that the equality holds trivially
when l is the empty list �� and when l is a list CONS h t �for appropriate h and t� it reduces
to the goal

g�APPEND�r�h� n��t� s�h� n�� � Ext��v � Nat� g�t� v���g�r�h� n�� s�h� n����

We prove the slightly more general fact

� 	xsly� g�APPEND l xs� y� � Ext��v � Nat� g�xs� v���g�l� y��

by structural induction on the universally quanti�ed variable l� which has type list� By
de�nition of APPEND and by the equations for g we must prove the following two goals�

�step�
Ext��v � Nat� g�APPEND l xs� v���g�r�h� y�� s�h� y��� �
Ext��v � Nat� g�xs� v���Ext��v � Nat� g�l� v���g�r�h� y�� s�h� y����

�	y� g�APPEND l xs� y� � Ext��v � Nat� g�xs� v���g�l� y���
�base�

g�xs� y� � Ext��v � Nat� g�xs� v���Lifty�

The base case of the induction follows immediately by reduction and the induction step
is proved by doing a case split on whether or not g�r�h� y�� s�h� y�� is Bt� followed by
reduction�

Next� let us consider the second part of the proof� By Park induction we can derive
gvf from g fun�f�vf� The ordering on continuous functions is de�ned pointwise so for any
l � List and any y � Nat we must prove�

g fun f �l� y�vf�l� y�

Doing a case split on the list l and rewriting with the equations for f and g fun we obtain
the following two subgoals�

�non�empty�
�Ext��v � Nat f�t� v���f�r�h� y�� s�h� y����v �f�APPEND�r�h� y��t� s�h� y���

�empty�
Lift�y�vLift�y�

When l is the empty list the goal is �nished o� using re!exivity and when l is a non�empty
list CONS h t we choose to abstract over r and s by proving a slightly more general fact
as above�

� 	xsly� �Ext��u � Nat� f�xs� u���f�l� y���v �f�APPEND l xs� y��

The proof proceeds by �xed point induction exploiting that f is de�ned as a �xed point�
� f � Fix f fun� The statement must be changed slightly to �t within the notation of
inclusive predicates� An equivalent statement is�

	�xs� l� y� � prod�List� prod�List�Nat���
�Ext��u � Nat� f�xs� u���f�l� y���v �f�APPEND l xs� y��

Fixed point induction on the second occurrence of f gives the following two subgoals�

�step�
�Ext��u � Nat� f�xs� u���f funh�l� y���v �f�APPEND l xs� y��

�h � cf�prod�List�Nat�� lift Nat��
�	�xs� l� y� � � � � � �Ext��u � Nat� f�xs� u���h�l� y���v �f�APPEND l xs� y���

�base�
�Ext��u � Nat� f�xs� u�����l� y���v �f�APPEND l xs� y���

There is a conversion to calculate bottom in the continuous function space� Applied to
the �rst subgoal �base� it yields�

�Ext��u � Nat� f�xs� u�����x � prod�List�Nat�� Bt��l� y����f�APPEND l xs� y��

After reduction the goal is �nished o� using Bt is always the bottom of a lifted cpo�
The proof of the second subgoal �step� �rst does a case split on the list l and then uses
reduction and various theorems �e�g� the de�nition and associativity of APPEND� the
equations for f and f fun and the re!exivity property of cpos�� We shall not go into the
details of the proof here�

To sum up� we have proved the equality � f � g of recursively de�ned functions f and g

on �nite lists� Several techniques for recursion were applied� structural induction on lists�
the �xed point property of Fix� Park induction and �xed point induction on an inclusive
predicate� The initial goal was split up into two cases using the antisymmetry property
of cpos� Finally� all cpo� continuity� cpo membership� and inclusiveness facts that were
required� were proved behind the scenes automatically�

��� Recursive Domains

We have illustrated the use of HOL�CPO to de�ne and reason about recursive functions�
However� functions are not the only objects that may be recursively de�ned in functional
programming languages� Often types of data are speci�ed by recursive de�nitions too�
Consider a type speci�cation of the form

� list ��� Nil j Cons � � � list

which speci�es a recursive type operator listwith two constructor functions Nil and Cons

to build�up elements of list� With a slightly di�erent syntax this would be a recursive
datatype speci�cation in Standard ML for introducing the type of all �nite�length strict
lists of any type of elements� Similarly� this corresponds to a datatype speci�cation in
Miranda where the type would consist of both �nite and in�nite lists� called lazy lists�
�Strict� and �lazy� refer to whether the constructor functions �of at least one argument�
are strict or lazy�

Strict and lazy datatypes denote recursive domains� i�e� cpos �or pointed cpos� which
may be recursively de�ned� In fact� we already saw two such examples above which
were introduced using the discrete construction and the universal set of some recursively

de�ned HOL type� First we considered the cpo of natural numbers� which corresponds to
a datatype with constructors � and SUC� In the previous section we considered a cpo of
�nite lists of natural numbers which can be seen as a special case of the above speci�cation
interpreted in Standard ML�

More generally� recursive domains can be introduced as the solutions to recursive do�
main �isomorphism� equations of the form X �� F �X� �for some appropriate F �� There
are various standard techniques for this purpose� One method is the inverse limit con�
struction which is based on embedding�projection pairs� Another method is based on the
substructure relation between information systems and a third is based on retracts on
universal domains like P�� Chapter � presents more details on solving recursive domain
equations than this section does�

Our philosophy is that there should be a direct correspondence between elements of
HOL types and elements of cpos via the underlying set of cpos� i�e� cpos should share
elements with HOL types directly� This does not �t well with these methods of construc�
tions� In fact� formalizing any of them in HOL would yield new �worlds� di�erent from
the �HOL world�� For instance� the information system of natural numbers would not
share any elements with the type of natural numbers in HOL� Therefore� we have chosen
to study more ad hoc methods for solving recursive domain equations�

One approach for recursive domains with �nite values only is presented in section ����

below� This is based directly on the recursive types provided by the type de�nition
package of HOL �Me��� �the limitations of which are inherited�� The type de�nition
package cannot be used to produce in�nite values as elements of a recursive type� One
way to allow in�nite values in recursive domains is to add these in�nite elements �as well
as partial elements� to the type returned by the type de�nition package� An example of
this approach is presented in section ������ A third approach is based on a generalization
of the way in which the type de�nition package works� A set of �nite� partial and in�nite
labeled trees is constructed and shown to be a pointed cpo with a certain ordering� Trees
are represented as sets of nodes� New recursive cpos with in�nite values can then be
de�ned as subsets �sub�cpos� of this set �cpo� of in�nite trees� This approach is described
brie!y in section ����
� Note� however� that the approach has not been formalized in
HOL� We shall keep each of the following presentations short	 more details can be found
in chapter ��

����� Finite Values

As an example� we describe how a constructor listD for cpos of �nite lists of elements
of a cpo D can be de�ned in HOL�CPO� The underlying type of the list construction is
the recursive type of �nite lists in HOL and the underlying relation relates lists of the
same length if their elements are related pairwise by the ordering on D� Using primitive
recursive de�nitions we can de�ne the set of elements of a HOL list and the desired
ordering relation on list as follows�

� �list set�� � fg� � �	ht� list set�CONSh t� � fhg � �list set t��
� �	Dl� list relD �� l � �l � �����

�	Dhtl�
list relD �CONSh t� l � ��h�t�� l � CONSh� t� � hvDh

� � list relD t t��

The constructor list is now de�ned by�

� 	D� listD � fl j �list set l�
 Dg� list relD

However� it does not follow immediately that list yields a cpo provided its argument is a
cpo�

� 	D� cpoD � cpo�listD�

This fact must be proved in HOL� Hence� one must prove how� for instance� chains and
least upper bounds of chains are constructed in a cpo of lists� We shall leave out the
details here�

The list construction has the property that if its argument cpo is discrete then the
list cpo itself becomes discrete� Hence� the discrete universal cpo List of lists of natural
numbers introduced in the previous section is equivalent �by HOL equality� to the cpo
list Nat� However� a cpo like list�lift Nat� could not be de�ned as a discrete cpo since lift Nat
is not discrete �and hence� the list cpo of elements in this cpo is not discrete��

The constructor functions on list are NIL� the in�built constructor for the empty list�
and a determined version of the built�in list constructor CONS� which is de�ned using the
dependent lambda abstraction in the straightforward way�

One might wish other variants of list cpos� For instance� a cpo of semi�strict �or tail�
strict� lists could consist of a bottom list in addition to the �nite lists provided by list�
Hence� a constructor for semi�strict lists could be de�ned by�

� 	D� sslistD � lift �listD�

Strict lists correspond to semi�strict lists where the element cpo is a pointed cpo and all
lists have only de�ned elements� A constructor for strict lists can be de�ned as follows�

� 	E� slistE � fl j l � sslistE � �E
� �lift casefglist set l�g�vsslistE

where lift case is a cases construction on the lifted type de�ned by�

� �	af� lift casea f Bt � a� � �	afx� lift case a f�Lft x� � f x�

It is used to extend list set to lifted lists� This construction yields a pointed cpo provided
its argument cpo is pointed� Proper list constructor functions can be de�ned for these
constructions as well�

����� Lazy Sequences

Certain functional programming languages support lazy constructors for elements of re�
cursive datatypes� If for instance the list constructor Consx l is lazy then it does not
evaluate its arguments x and l until this is absolutely necessary� Hence� a function like

f�n� � Consn �f�n "
��

may be de�ned in such a language to generate an in�nite list of natural numbers� In a
language where Cons is strict the above function would never terminate on any argument�

Domain theory allows an understanding of both �nite and in�nite values� The in��
nite elements are understood as least upper bounds of partial approximations which are
�nitely�generated� Hence� a recursive domain containing in�nite elements must contain
partial elements as well�

In HOL� one way to represent in�nite values is as functions� For instance� an in�nite
list of elements of some type � can be represented by a function f � num� � such that the
list is �f���	 f�
�	 f���	 � � � 	 f�n�	 � � ��� This suggests an approach to de�ning the elements
of a recursive domain of lazy lists� represent the �nite and partial lists by the recursive
type of lists in HOL and represent the in�nite elements as HOL functions� �It would not
be simpler to represent all elements by functions alone since extra information is needed
to distinguish �nite� partial and in�nite elements�� The ordering on the recursive domain
should then make sure that the partial lists can be seen as the approximating partial
results of a computation of an in�nite list�

The usability of this approach of distinguishing the di�erent kinds of values in a
recursive domain is rather limited� For instance� it would be considerably more di�cult
to apply the approach to de�ning a cpo with in�nite binary trees� since a binary tree
may contain both �nite� partial and in�nite branches at the same time� Below� we shall
describe the approach anyway� since it was the only approach to de�ne recursive domains
with in�nite values which was actually tried out in HOL� We consider the construction of a
recursive domain corresponding to lazy sequences� which are equivalent to lazy lists except
that the �nite elements are ignored� It is easy to add these elements in the de�nitions
below to produce a construction on lazy lists as well� In fact� this has been done in HOL
such that constructions for pointed cpos of both lazy sequences and lazy lists are available
in HOL�CPO�

A lazy sequence is a partial sequence or an in�nite sequence� We can therefore de�ne
a type of sequences in HOL by taking the disjoint union of the type of �nite lists ���list
interpreted as partial sequences �pars� and the function type num � � interpreted as
in�nite sequences �infs��

���seq � pars ���list j infs num� �

The underlying set of the lazy sequence cpo construction seqD must consist of all se�
quences whose elements are elements of D�

� 	D� seqD � fs j �seq set s�
 Dg� seq relD

where seq set is de�ned as expected�

� �	l� seq set�pars l� � fx j MEMBER x lg��
�	f� seq set�infs f� � ff n j � � ng�

The more di�cult part of de�ning the cpo constructor for sequences is de�ning the un�
derlying ordering relation seq rel�

� 	Dss��
seq relD ss� �
��ll�� s � pars l � s� � pars l� � psrelD l l���
��lf� s � pars l � s� � infs f � pisrelD l f��
��ff �� s � infs f � s� � infs f � � �	n� f�n�vDf

��n���

Its de�nition exploits that there are di�erent kinds of sequences and that partial sequences
correspond to �nite lists� Hence� the sense in which a partial sequence approximates
another sequence can be de�ned by two primitive recursive de�nitions�

� �	Dl� psrelD �� l � T��
�	Dxl�l�� psrelD �CONS x l��l� � ��yl��� l� � CONS y l�� � xvDy � psrelD l� l

�

���
� �	Df� pisrelD �� f � T��

�	Dxlf� pisrelD �CONS x l� f � xvDf��� � pisrelD l ��n� f�n "
���

The de�nitions say that one lazy sequence s approximates another s� if� and only if�
they are both partial sequences such that s contains at most as many elements as s� and
such that their elements are related pairwise	 or if s is a partial sequence and s� is an
in�nite sequence such that their elements are related pairwise	 or if they are both in�nite
sequences such that their elements are related pairwise�

With these de�nition we can prove that seq is a constructor for pointed cpos� It yields
a pointed cpo� provided its argument is a cpo�

� 	D� cpoD � pcpo�seqD�

We can use this fact to extend the notations for cpos and pointed cpos by declaring seq

by the constructor theorem for both notations �see section ����� It is easy to see that the
bottom sequence� called Bt seq� is the empty partial sequence pars���

In order to de�ne the continuous constructor function Cons seq for lazy sequences we
�rst de�ne a function conss by primitive recursion as follows�

� �	xl� conssx �pars l� � pars�CONS x l���
�	xf� conssx �infs f� � infs��n� �n � � � x j f�n �
����

This is almost the constructor we wish but it is not determined� which a continuous
function must be� Hence� we de�ne Cons seq as a determined version of the constructor
using the dependent lambda abstraction�

� 	D� Cons seqID � ��x � D� s � seqD� conssx s�

This constructor is continuous�

� 	D� cpoD � Cons seqID � cf�D� cf�seqD� seqD��

and hence� it can be used to extend the notation of typable terms� which we assume
has hereby been done� Note that the continuity theorem itself does not follow from the
notation but must be proved manually in HOL�CPO�

In order to establish that Cons seq behaves like a constructor� we prove it is one�one�

� 	D� x� x� � D� s� s� � seqD� �Cons seqx s � Cons seqx� s�� � �x � x�� � �s � s��

it is distinct from the bottom sequence�

� 	D� x � D� s � seqD� Cons seqx s
� Bt seq

and it is exhaustive on the cpo of lazy sequences�

� 	Ds� s � seqD � �s � Bt seq� � ��x � D� s� � seqD� s � Cons seqx s��

These are standard conditions that a proper constructor function should satisfy� The also
standard structural induction theorem is presented in section ����

It is useful to de�ne an eliminator or cases functional for writing continuous functions
on lazy sequences� The eliminator for lazy sequences is called Seq when and de�ned by�

� 	DE�
Seq whenI�D�E� �
��h � cf�D� cf�seqD�E��� s � seqD� �s � Bt seq��Ej h�hds s��tls s���

where the constants hds and tls were de�ned such that the following theorems hold�

� 	xs� hds�conssx s� � x

� 	xs� tls�conssx s� � s

The eliminator is continuous�

� 	DE� cpoD � pcpoE � Seq whenI�D�E� � cf�cf�D� cf�seqD�E��� cf�seqD�E��

which justi�es that we drop the cpo parameters below	 we can declare the continuity
theorem to extend the notation of typable terms� The eliminator works as follows�

� 	DE� h � cf�D� cf�seqD�E��� Seq whenhBt seq � �E

� 	DE� h � cf�D� cf�seqD�E��� x � D� s � seqD� Seq whenh �Cons seqx s� � hx s

which are called the reduction theorems for the eliminator� Note that the second cpo
parameter must be a pointed cpo in order for the eliminator to be continuous but this is
not a condition in order to apply the reduction theorems� The reason for this di�erence
is that in the proof of the reduction theorems it is not necessary to check that bottom

really does return a least element of a cpo�
The development of lazy sequences in HOL�CPO was long� tedious and relatively

di�cult� Every single fact about lazy sequences must be proved in several versions since
the initial distinction between the di�erent kinds of elements is inherited throughout the
whole development� Hence� a more uniform treatment of the di�erent kinds of elements
would probably reduce the complexity of the development a lot� It was fairly easy to add
the extra cases to obtain a pointed cpo constructor for lazy lists�

����� In	nite Values

In the following� we investigate another method for constructing recursive domains� which
is based on an idea similar to the one employed in the type de�nition package� We did not
attempt to formalize the method in HOL since there might be variations of the method�
or other methods� which support more general domains without introducing complexity�
We shall only sketch the method here	 it is described in more detail in section ��
� Note
that we do not use the turnstyle � for de�nitions and theorems which have not been
formalized in HOL�

The idea is to derive a construction itreeD for pointed cpos of in�nite labeled trees�
or more precisely� for �nitely�branching labeled trees �like the trees in the type de�nition
package� with �nite� partial and in�nite values� The labels must be elements of the cpo
D� Certain recursive domains can then be de�ned as sub�cpos of the cpo itreeD for
appropriate labels D in the sense that the underlying set of the domain is a subset of
itreeD and the underlying ordering relation is inherited from itreeD� The labels are used
in exactly the same way as in the type de�nition package so this method supports the
same kind of recursive de�nitions� except that here the result is a recursive domain with
in�nite values�

The underlying type of the in�nite tree construction is sets of nodes� A node is a pair
consisting of a path and a label� A path is a list of numbers indicating which branches lead
to the node� starting at the root of the tree� A label can be some value or a !ag stating
that the node is a partial node� No value is associated with a partial node� Let ���node
abbreviate the type of nodes �num�list� ���label where ���label � NOLBL j LBL��

Sets of paths �not exactly nodes� are also used by Gunter �Gu�
� to represent �nite
�well�founded� but arbitrarily�branching trees �see section ����� and by Paulson �Pa�
� to
represent in�nite �nitely�branching trees� Their work di�ers from ours in various respects�
for instance� they construct types� not domains� so their trees do not include the partial
nodes� Paulson uses �nitely�branching but in�nite trees and takes greatest �xed points
to obtain the in�nite values	 in domain theory� we would use the �xed point operator�

An in�nite labeled tree can be described by some set of nodes t � ���node� bool but
this type contains elements which cannot be interpreted as trees� Hence� we shall choose
a certain subset of this type� called

Is in�nite tree � ����node� bool� � bool�

To de�ne this subset we �rst de�ne a subset corresponding to all �nitely� and in�nitely�
branching trees�

Is tree t �
��l� ���� l� � t��
�	pp�l� p�
� �� � �APPEND p p�� l� � t� �v� �p� LBL v� � t��
�	pll�� �p� l� � t � �p� l�� � t� l � l��

The conditions ensure that there is a root node� that all paths are pre�x closed �such that
there are no holes due to missing nodes� and that labels are unique� To exclude in�nitely�
branching trees� the additional conditions on in�nite labeled trees are as follows�

Is in�nite tree t �
Is tree t�
�	pl� �p� l� � t� �k� fn j �l�� �SNOCn p� l�� � tg � f�� � � � � kg��
��m�	npl� �CONS n p� l� � t� n � m�

The constant SNOC adds an element at the tail of a list� Note that in addition to requiring
that each node has �nitely many subtrees� we require that the subtrees are enumerated
by counting from zero up to some number� The last condition says that there must be
an upper limit on the number of subtrees of all nodes of a tree� If we did not have this
condition then a tree might be of in�nite width �even though it is �nitely�branching at
each node��

The construction for pointed cpos of in�nite labeled trees is de�ned as follows�

itreeD � ft j Is in�nite tree t � �label set t�
 Dg� itree relD

where the set of labels of a tree is de�ned by

label set t � fv j �p� �p� LBL v� � tg

and the de�nition of the ordering is�

itree relD t t� �
�	p� �p�NOLBL� � t� �l�� �p� l�� � t���
�	pv� �p� LBL v� � t� �v�� vvDv

� � �p� LBL v�� � t��
�	pl�

�p� l�
� t � �p� l� � t� �
��p�p��� p � APPEND p� p�� � ��p��NOLBL� � t � �v� �p� LBL v� � t���

The de�nition supports the intuition that a partial node can approximate any node� So�
if some path ends at a partial node of one tree then we obtain a more de�ned tree by
replacing that node with an arbitrary tree� A node with a label l may also approximate a
node with the same path but a di�erent label l� if l approximates l� w�r�t� the underlying
ordering of the cpo of labels�

The constant itree is a pointed cpo constructor�

	D� cpoD� pcpo�itreeD�

Here pointed cpo is essential since it allows us to write recursive functions on in�nite trees
using the �xed point operator� The bottom node is the singleton set f����NOLBL�g�

Finally� let us see how lazy sequences could be de�ned as a sub�cpo of in�nite trees�

Is seq s � Is in�nite tree s � �	pl� �p� l� � s� 	x� MEMBER x p� x � ��

Hence� a sequence is a tree in which there are at most one branch out of each node� This
is not the most general way to de�ne the desired subset of in�nite trees� Instead one can
de�ne predicates to identify which nodes correspond to trees constructed using one of the
constructor functions of a recursive domain �or type� speci�cation� The reader is referred
to section ��� for further information�

��� Reasoning about In�nite Values

We have now shown methods of deriving recursive domains with in�nite values in HOL�
CPO� Next� we provide two proof principles of induction for reasoning about their ele�
ments� Structural induction �in the sense of Paulson �Pa��a�� is derived from �xed point
induction and can be used to prove that inclusive properties hold of all elements of re�
cursive domains� in particular the in�nite ones� Co�induction� described for instance in
�Pi���� can be used to prove the equality of two in�nite values by inventing a bisimu�
lation� The well�known technique of �xed point induction can sometimes be useful to
reason about in�nite values of recursive domains too�

��
�� Structural Induction

Structural induction for lazy sequences can be stated as the following theorem�

� 	DP�
cpoD � inclusiveDP �
P Bt seq � �	s� x � D� P s� P �Cons seqx s�� � �	s � seqD� P s�

The theorem is derived from �xed point induction by de�ning a recursive copying function
and prove that it behaves as identity on all sequences�

� 	D� s � seqD� Copy s � s

Using this on the consequent of the previous theorem and expanding the �xed point def�
inition �see below� of the copying function� the consequent reduces to a property which
is proved by �xed point induction below� The antecedents of the structural induction
theorem are essentially the antecedents of the �xed point induction theorem �see sec�
tion ��
�� The copying functional is de�ned using the �when� eliminator functional for
lazy sequences�

� 	D�
CopyID �
Fix��f � cf�seqD� seqD�� Seq when��x � D� s � seqD� Cons seqx �f s���

The de�nition �ts within the notation of typable terms so Copy is a continuous function
and we are justi�ed in dropping the cpo parameter �by declaring the continuity theorem
and using interface level syntax��

Let us consider an example on the use of structural induction� De�ne a recursive
mapping functional by the following �xed point de�nition�

� 	D�D��

MapsI�D�� D�� �
Fix

��g � cf�cf�D��D��� cf�seqD�� seqD���� f � cf�D��D���
Seq when��x � D�� s � seqD�� Cons seq�f x��g f s���

By the notation of typable terms it is continuous�

� 	D�D�� cpoD� � cpoD� � MapsI�D�� D�� � cf�cf�D��D��� cf�seqD�� seqD���

and we can therefore declare it as a new constructor to extend the notation� It may not
be obvious from the de�nition that Maps really behaves as a mapping functional but the
following recursion equations state this clearly�

� 	D�D�� f � cf�D��D��� Maps f Bt seq � Bt seq

� 	D�D�� f � cf�D��D��� x � D�� s � seqD��

Maps f �Cons seqx s� � Cons seq�f x��Maps f s�

Now� we can prove that the mapping functional preserves functional composition by
structural induction�

� 	D�D�D�� f � cf�D��D��� g � cf�D��D���
Maps�Comp�f� g�� � Comp�Maps f�Maps g�

where Comp is de�ned by�

� 	D�D�D��

CompI�D� �D��D�� �
���f� g� � prod�cf�D��D��� cf�D��D���� x � D�� f�g x��

Functional composition is continuous�

� 	D�D�D��

cpoD� � cpoD� � cpoD� �
CompI�D�� D�� D�� � cf�prod�cf�D��D��� cf�D��D���� cf�D��D���

and can therefore be considered to be part of the notation of typable terms as a construc�
tion on continuous functions� �The proof of continuity is presented in section
�
���

The goal does not allow structural induction immediately but recall that two contin�
uous functions �with common domains� are equal if� and only if� they are equal for each
element of their domain cpo�

� 	D�D�� f� g � cf�D��D��� �f � g� � �	x � D�� f x � g x�

Hence� to prove the statement above it is enough to prove

	s � seqD�� Maps�Comp�f� g��s � Comp�Maps f�Maps g�s�

which allows structural induction� assuming that f and g are continuous� A tactic for
structural induction is easily based on the structural induction theorem� This tactic uses
the notations for cpos and inclusive predicates to prove the �rst two antecedents of the
theorem� Hence� using the structural induction tactic the previous statement reduces to
the following two cases of the induction�

�step�
Maps�Comp�f� g���Cons seqx s� � Comp�Maps f�Maps g��Cons seqx s�

�x � D��
�s � seqD��
�Maps�Comp�f� g��s � Comp�Maps f�Maps g�s�

�base�
Maps�Comp�f� g��Bt seq � Comp�Maps f�Maps g�Bt seq

The details of the proof are not that interesting so we skip them here�

��
�� Fixed Point Induction

Continuing the example above� we may now de�ne a recursive functional Seq of f x for
generating the in�nite sequence

�x	 f�x�	 f��x�	 � � � 	 fn�x�	 � � ���

which stands for Cons seqx�Cons seq�f�x���Cons seq�f�f�x��� � � ���� and prove the follow�
ing result about the generator and the mapping functionals by �xed point induction�

� 	D� f � cf�D�D�� cpoD� �	x � D� Seq of f �f x� � Maps f �Seq of f x��

The generator functional is de�ned as follows�

� 	D�
Seq ofID �
Fix

��g � cf�cf�D�D�� cf�D� seqD��� f � cf�D�D�� x � D� Cons seqx �g f �f x���

and it is continuous by the notation of typable terms �which it can then be used to extend��
Intuitively� the equality holds because both sequences are equal to

�f�x�	 f��x�	 � � � 	 fn�x�	 � � ���

But this is no proof� Assuming f � cf�D�D� and cpoD� we wish to prove�

	x � D� Seq of f �f x� � Maps f �Seq of f x�

The statement holds trivially if D is empty so we assume D is not empty� The proof
proceeds by �xed point induction on both occurrences of Seq of� The �xed point induction
tactic� which uses the notations to prove the conditions on �xed point induction� yields
the following two statements to prove�

�step�
Cons seq �f x��h f �f�f x��� � Maps f �Cons seqx �h f �f x���

�	x � D� h f �f x� � Maps f �h f x��
�base�
� f �f x� � Maps f �� f x�

We will skip the details of the proofs of these�

��
�� Co�induction

Co�induction for lazy sequences can be stated as the following theorem�

� 	DR� cpoD � bisim seqDR� �	s� s� � seqD� R s s� � s � s��

It says that in order to prove the equality of two sequences� it su�ces to �nd a bisimulation
which relates the two sequences� The notion of bisimulation is de�ned as follows�

� 	DR�
bisim seqDR �
�	xs� xs� � seqD�

Rxsxs� �
�xs � Bt seq� � �xs� � Bt seq��
��x � D� s� s� � seqD� xs � Cons seqx s � xs� � Cons seqx s� �Rs s���

Hence� two sequences are in bisimulation with one another if they are both equal to the
bottom sequence� or if they are equal to two sequences with the same head such that the
two tails are in bisimulation with one another� The proof of co�induction is based on the
take lemma �e�g� �BW���� and a �taker� for sequences is de�ned using pow �see section ��
�
and the same functional as was used to de�ne the copying function �see section ����
��
This is certainly not the most general way to derive co�induction but it works well for
lazy sequences and lazy lists� �The derivation of co�induction was inspired by looking at
the Isabelle code of �Re�����

We illustrate the use of co�induction by proving the equality of two in�nite sequences
of natural numbers nats � from� de�ned as follows �Pi����

� nats � Fix��s � seqNat� Cons seq � �Maps SUC s��
� from � Fix��h � cf�Nat� seqNat�� n � Nat� Cons seqn �h�SUC n���

where Maps is the mapping functional de�ned in section ����
 above� From the �xed point
property we derive the following recursion equations�

� nats � Cons seq � �Maps SUC nats�
� 	n� fromn � Cons seqn �from�SUC n��

Hence� it does not seem unreasonable to attempt to prove the equality� nats � from��
The proof is by co�induction with the bisimulation

� bisim seqseqNat��ss���n� s � Maps itern nats � s� � fromn�

where Maps itern s iterates the mapping functional n times over a sequence s of natural
numbers�

� �Maps iter � � ��x � seqNat� x���
�	n� Maps iter�SUC n� � ��x � seqNat� Maps itern �Maps SUC x���

To prove the suggested relation is a bisimulation� the second disjunct of the de�nition
of bisimulation is established by choosing x to be n� s to be Maps iter�SUC n�nats and
s� to be from�SUC n�� Note that the continuity of Maps iter does not follow from the
notation of typable terms immediately since it takes its �rst argument without the use of
the dependent lambda abstraction� However� the continuity is easily established since Nat
is a discrete universal cpo� Another consequence of using a primitive recursive de�nition
of Maps iter is that we must use structural induction to derive the recursion equations�

� �	x� Maps iter �x � x��
�	nx� Maps iter�SUC n�x � Maps SUC �Maps iternx��

With a �xed point de�nition these could be derived by appealing to the �xed point
property� Note that the cpo of sequences of elements in a universal cpo is itself a universal
cpo �i�e� it contains all elements of the underlying type��

Once the bisimulation has been invented the proof is straightforward� The two se�
quences are trivially related by the bisimulation since their �rst elements are the same�

��	 Conclusion

This chapter has provided an overview of various aspects of HOL�CPO� The formalization
of domain theory has been presented with some illustrative examples� The extension of
HOL�CPO with new recursive domains has also been discussed� though no implemented
methods for deriving recursive domains have been presented� except for an example illus�
trating the derivation of a pointed cpo constructor for lazy sequences� The weight has
been put on showing the variety of proof techniques for recursion available with HOL�
CPO� Hence� the methods of Park induction� �xed point induction� structural induction
and well�founded induction have been demonstrated in use� and in addition� the princi�
ples of structural induction and co�induction were employed to reason about the recursive
domain of lazy sequences which contains partial and in�nite sequences� The example
of section ��
�
 brought several of these techniques into use to show the equality of two
partial �non�primitive� recursive functions on �nite lists�

It should be clear to the reader that HOL�CPO extends HOL with a number of useful
concepts and techniques� In HOL�CPO one may reason about partial functions and
nontermination and more general recursive �computable� functions may be de�ned� using
the �xed point operator� Fixed point de�ned recursive functions must in general be
�potentially� partial functions in order to allow taking the least �xed point� But some
recursive functions can be proved to be total� for instance� by well�founded induction� and
this allows the derivation of recursion equations for pure HOL recursive functions� In this
way� HOL�CPO supports recursive function de�nitions by well�founded induction� This
point was illustrated by the example on Ackermann�s function �see section ��
����

One of the weaknesses of the formalization is the need for the dependent lambda ab�
straction and cpo parameters on certain function constructions� This makes the syntax of
functions inconvenient� though an interface can hide much of this inconvenience� Further�
it complicates proofs since arguments of functions must be type checked before dependent
lambda abstractions can be reduced� Again� this has been automated to some degree�

In the following chapters the formalization and the associated tools are presented
in more details than here� We shall switch to real HOL syntax and show real HOL
sessions to illustrate the use of HOL�CPO� Chapter � and chapter � provide fairly small
and simple examples� some of which have been presented here too �some examples are
only presented in this chapter�� A larger example showing the proof of correctness of a
uni�cation algorithm is presented in chapter �� For a more full discussion on HOL�CPO�
the reader should consult the conclusion chapter ��

Chapter �

Basic Concepts of Domain Theory

Most computer scientists are familiar with the basic concepts of domain theory� such as
complete partial orders �cpos�� continuous functions and least �xed points� In denota�
tional semantics� types of data are modeled as cpos and programs as continuous functions
between cpos� Recursion is handled by taking least �xed points of continuous functionals�
nontermination using a so�called bottom or unde�ned element of cpos� Good introduc�
tions on domain theory are provided in the textbooks by Winskel �Wi�
�� Schmidt �Sc���
and Gunter �Gu����

In this chapter we provide an overview of a formalization of basic concepts of domain
theory in HOL� based mainly on the book by Winskel� The notions of cpos and continuous
functions are introduced as semantic constants in HOL stating a number of conditions
that terms must satisfy in order to be cpos and continuous functions� Cpos are represented
by HOL pairs of sets and ordering relations and continuous functions are represented as
HOL functions�

It is important to note that there is a direct correspondence between elements of cpos
and elements of HOL types� the underlying set of a cpo is a subset of a HOL type� As
discussed in the examples �see chapter ����� this allows us to exploit the rich collection
of theories and tools provided with the HOL system and we become able to mix domain
and set theoretic reasoning in HOL� Thereby� the often quite painful reasoning involving
bottom �as in LCF� can be almost eliminated and deferred until the late stages of a proof�

The semantic conditions on cpos and continuous functions can be proved to hold of
terms manually in the HOL system� However� such ad hoc proofs quickly become tedious
and complicated so it is desirable to have standard ways of writing terms which guarantee
that they satisfy the semantic conditions� We therefore de�ne a number of constructions
on cpos and continuous functions below� which provide syntactic notations for writing
cpos and continuous functions� Proof functions have been implemented in ML to support
these notations in the sense that they automatically prove the desired properties of terms
which �t within the notations �see chapter ��� As one example of a construction on cpos�
we can mention that the continuous functions between two cpo D� and D� constitute
a cpo with the pointwise ordering� usually written �D� � D��� This cpo is called the
continuous function space or the cpo of continuous functions�

Some might think that the set part of a cpo set and relation pair could be avoided by
representing it directly as a HOL type instead of as a subset of a HOL type� This is not
the case� The need for the set component arises since we wish to de�ne the continuous
function space construction on cpos� The underlying set of continuous functions cannot

��

be the HOL type of functions itself� because in general this type may contain functions
which are not continuous� Furthermore� the desired type cannot be de�ned in HOL since
it is a dependent subtype of the HOL function type� dependent on free term variables
corresponding to cpos �see section
�

�� Hence� the set component of the set relation pair
approach described here is used to represent this dependent type� This complicates the
formalization somewhat� since many problems from dependent type theory are introduced�
E�g� terms must be �type checked� manually� i�e� we must prove manually which cpos terms
belong to� This is not handled by HOL type checking alone� Furthermore� extra conditions
must be introduced to ensure that functions map subsets of types to subsets of types and
behave properly outside cpo subsets�this last condition is called determinedness�

In order to ensure the functions we write are determined� a kind of dependent lambda
abstraction is introduced� Thus we cannot use the built�in lambda abstraction and ��
conversion� A consequence is that all function constructors become parameterized by
the domains on which they work	 more precisely� they become parameterized by the cpo
variables of their domain cpos� In addition� arguments of functions must be type checked
in order to ensure they belong to the right domains� Fortunately� the disadvantages of
this can be minimized by an interface consisting of a parser and a pretty�printer� which
hides the cpo parameters when they are not �necessary�� and by a proof function called
the type checker which can prove in certain cases which cpo a term belongs to from the
way in which it is constructed syntactically� The interface and type checker are described
in chapter ��

Note

The presentation below is quite detailed� listing a lot of de�nitions and theorems of do�
main theory �without proofs�� After reading the overview in section ��
 of the previous
chapter� it may be enough to skim this chapter� However� the discussion of section
�

is recommended�

��� Representation

A complete partial order �cpo� is a pair consisting of a set and a binary relation such
that a number of conditions are satis�ed� In the literature a cpo is usually thought of as
a set which has an associated ordering relation �Wi�
� Pa���� Thus� it is common to say
that something is an element of a cpo when one should really say it is an element of the
underlying set� and so on� We can provide much the same useful confusion in HOL by
introducing the following constants

rel��	�cpo
� �	
� 	
� bool�

ins�	
� �	�cpo
� bool

where we use
��	�cpo
 to abbreviate the type representing cpos
��	
� bool���	
�

	
� bool�
�� We say
�	
 is the underlying type of a cpo of type
��	�cpo
� Applying
rel to a cpo yields the underlying ordering relation of the cpo and using the in�x ins

we can express whether some term is an element of the underlying set of a cpo� The
constant rel is de�ned by

�Experts wil know that this is not a valid HOL type abbreviation�

�
 rel � SND

and ins is de�ned by

�
 �a A� a ins A � a IN �FST A�

We use the set library of HOL which provides set notation and constants like IN and
SUBSET �see the pred sets library �Me�����

Assume A has type
��	�cpo
 and assume x and y have type
�	
 such that
rel
A x y
 is well�typed� Then the following sentences are used as informal ways of saying

rel A x y
�
rel A
 relates x to y � x is related to y by
rel A
� x is less than
y with respect to
rel A
�

��� Partial Order

Assume A is a set and relation pair� Then
rel A
 is called re!exive if it is relates
all elements of A to themselves� Re!exivity is introduced into the HOL system by the
following de�ning theorem

�
 �A� refl A � ��x� x ins A ��� rel A x x�

The relation is called transitive if for all elements x � y and z of A such that x is
related to y and y is related to z it relates x to z � Transitivity is de�ned as follows

�
 �A�

trans A �

��x�

x ins A ���

��y�

y ins A ���

��z�

z ins A ���

rel A x y �� rel A y z ��� rel A x z���

And the relation is called antisymmetric if for all elements x and y of A if x is related
to y and conversely y is related to x then they are equal� Antisymmetry is de�ned by

�
 �A�

antisym A �

��x�

x ins A ���

��y�

y ins A ���

rel A x y �� rel A y x ��� �x � y���

Note that the conditions only say how the relation should behave on elements of the set�
The relation can be anything on elements outside the set�

A set and relation pair is called a partial order �po� if the relation is re!exive� transitive
and antisymmetric on all elements of the set�

�
 �A� po A � refl A �� trans A �� antisym A

Assume A is a partial order and B is a subset of A � An element a of A is called
an upper bound �ub� of B if all elements of B are related to a � The constant is ub

introduces this notion

�
 �a B A�

a is�ub �B�A� �

a ins A �� po A �� B subset A �� ��b� b IN B ��� rel A b a�

where subset is de�ned as follows

�
 �B A� B subset A � B SUBSET �FST A�

So the de�nition of subset just says that a set is a subset of a po when it is a subset of
the underlying set�

A po may have a least element� i�e� an element which is related to all other elements�

�
 �a A� a is�least A � a ins A �� ��b� b ins A ��� rel A a b�

If a least element exists then it is unique�

�
 �A�

po A ���

��a� a is�least A ��� ��a�� a� is�least A ��� �a� � a���

due to the antisymmetry condition for partial orders�

A least upper bound �lub� is an upper bound which is related to all other upper
bounds� This notion is de�ned as follows in HOL

�
 �a B A� a is�lub �B�A� � a is�least ��b � b is�ub �B�A���rel A�

Due to the previous uniqueness of least elements� lubs of subsets of pos are unique if they
exist�

The constant lub gives an expression for a least upper bound if a lub exists� It is
de�ned using the choice operator �see �GM�
�� as follows

�
 �B A� lub�B�A� � ��a� a is�lub �B�A��

The fact that lub gives an upper bound and in fact the unique least upper bound is
stated by the following theorem

�
 �a B A�

a is�lub �B�A� ��� �lub�B�A�� is�ub �B�A� �� �lub�B�A� � a�

��� Complete Partial Order

A chain� in a po A is a sequence of elements of A in non�decreasing order�

�
 �X A� chain�X�A� � ��n� �X n� ins A� �� ��n� rel A�X n��X�n � ����

Sequences are represented as functions from numerals to elements so in the de�nition
above the variable X has type
�num
� 	
� All chains are in�nite but an in�nite chain
which is constant from a certain point can be viewed as a �nite chain�

The set of elements of a chain is calculated by the constant cset �

�
 �X� cset X � �X n � � �� n�

This is used to convert a chain into a subset of a cpo�

�
 �X D� chain�X�D� ��� �cset X� subset D

Using cset we can talk about for instance the least upper bound of a chain�
A partial order D is called a complete partial order when all chains in D have a least

upper bound in D �

�
 �D� cpo D � po D �� ��X� chain�X�D� ��� ��d� d is�lub �cset X�D���

It is therefore obvious that for chains in cpos the constant lub always calculate the least
upper bound�

�
 �D�

cpo D ���

��X� chain�X�D� ��� �lub�cset X�D�� is�lub �cset X�D��

This fact is used again and again when working with cpos�
Note that a cpo is not required to have a least element� A cpo which has one is called

a pointed cpo�

�
 �E� pcpo E � cpo E �� ��e� e is�least E�

A least element is unique if it exists�
Least elements are usually called bottom elements� Using the choice operator we can

give an expression for the bottom �if it exists��

�
 �E� bottom E � ��e� e is�least E�

The fact that bottom yields a least element when applied to a pointed cpo is stated by

�
 �E� pcpo E ��� ��e� e ins E ��� rel E�bottom E�e�

If one must prove a fact about the least upper bound of a chain it is sometimes easier
instead to reason about the lub of a �nal segment of the chain� also called a su�x of the
chain�

�
 �X n� csuffix�X�n� � ��m� X�n � m��

The fact that this does not change the lub is stated by the following theorem

�
 �D�

cpo D ���

��X�

chain�X�D� ��� ��n� lub�cset�csuffix�X�n���D� � lub�cset X�D���

�The chains we consider are often called ��chains and the cpos are often called ��cpos or predomains
because they may lack a bottom element�

��� Continuous Functions

We shall consider functions between cpos and in particular continuous functions which are
monotonic functions that preserve lubs of chains� A function from a cpo
D���	��cpo

to a cpo
D���	��cpo
 is represented directly as a HOL function between the underlying
types
f�	�
� 	�
 such that a number of conditions are satis�ed�

A HOL function is called a map between cpos� or just a function between cpos� when
the image of its domain is a subset of the codomain� This notion is formalized by the
constant map which is de�ned as follows

�
 �f D� D��

map f�D��D�� � ��d� d ins D� ��� �f d� ins D��

A function is said to be determined by its action on elements of a cpo D when it is
equal to a �xed arbitrary value ARB �a prede�ned constant in HOL� on elements outside
D �

�
 �f D� determined f D � ��x� �x ins D ��� �f x � ARB��

The notion of determined function is needed because the map condition above makes the
functions we consider only partially speci�ed on the underlying HOL types� Functions
may be di�erent HOL functions but equal functions on cpos� Function equality in HOL
is extensional equality which means it works on all elements of a type unlike equality of
functions between cpos which works on subsets of types� This equality induces equivalence
classes of HOL functions and requiring functions are determined corresponds to picking
a certain �xed representative in each equivalence class �see section
�

����

A function is called order preserving when the image of elements of the domain are
related if the elements themselves are �in the same order� of course��

�
 �f D� D��

order�pres f�D��D�� �

��d�

d ins D� ���

��d��

d� ins D� ��� rel D� d d� ��� rel D��f d��f d����

A monotonic function is a determined map between cpos that preserves the ordering
on elements�

�
 �f D� D��

mono f�D��D�� �

cpo D� �� cpo D� ��

map f�D��D�� �� determined f D� �� order�pres f�D��D��

A monotonic function is called continuous if it preserves lubs of chains�

�
 �f D� D��

cont f�D��D�� �

mono f�D��D�� ��

��X�

chain�X�D�� ���

�f�lub�cset X�D��� � lub�cset��n� f�X n���D����

The continuous functions between two cpos constitute a cpo with the pointwise or�
dering relation on functions� see section
���
 below� This is called the cpo of continuous
functions� or the continuous function space�

��� Dependent Lambda Abstraction

In order to ensure functions are determined by their actions we write functions using a
dependent lambda abstraction�

�
 �D f� determined�lambda D f�D�

de�ned as follows�

�
 �D f� lambda D f � ��x� �x ins D �� f x � ARB���

This is used to de�ne all function constructors �see the following sections� which therefore
become a kind of dependent constructors that depend on the domains on which they
work�

For all function constructions we present the so�called reduction theorems� In these the
lambda abstractions have been reduced away and they therefore state how the construc�
tions work in a more readable way than the de�nitions� Besides the theorems simplify
proofs because the lambda abstractions are removed once and for all and do not have to
be reduced each time a construction is applied to its arguments� The reduction theorems
are obtained from the reduction theorem for the lambda abstraction�

�
 ��D x� x ins D ��� ��f� lambda D f x � f x�� ��

��D x� �x ins D ��� ��f� lambda D f x � ARB���

This states precisely how the lambda abstraction works� If it is applied to an element
of the domain then it returns the function applied to the element� otherwise it returns
an arbitrary value called ARB � For brevity� we shall often only list the theorems derived
from the �rst conjunct above� These are the most used ones� since functions are usually
applied to arguments in the right domains�

��	 Constructions

In the previous sections we have introduced a number of concepts of domain theory
by their semantic de�nitions� The notions of complete partial orders and continuous
functions were de�ned by constants stating a number of semantic conditions on terms�
Many facts of domain theory can be proved directly from these de�nitions� However�
due to the complex nature of the semantic conditions� it is desirable to have standard
ways of writing cpos and continuous functions� This is obtained by de�ning a number
of constructions on cpos and continuous functions which are proved once and for all
to yield cpos and continuous functions provided their arguments are� By appealing to
these theorems about the constructors� the semantic conditions for cpos and continuous
functions can be proved for terms without using the complicated de�nitions� Furthermore�
proof functions can be implemented to prove the desired facts automatically using these

theorems� as described in chapter �� Hence� a lot of tedious work proving terms are cpos
and continuous functions can be avoided in certain cases�

The lambda abstraction is used to de�ne all function constructors which therefore
become a kind of dependent constructors that depend on the �free term variables of the�
domains on which they work� The dependent constructors are parameterized by the cpo
variables of their domain cpos� In order to get rid of these cpo parameters� an interface
has been implemented which supports two levels of syntax� called the internal and the
external level respectively �see chapter ��� At the external or interface level a version of
each constructor is used which does not take cpo parameters and at the internal level the
�real� constructor de�ned below is used� The interface provides a parser and a pretty�
printer to translate terms from one level to the other� The last letter of each internal
constructor must be the capital letter I in order to allow this �just a convention�� The
external name of the constructor is obtained by omitting this letter�

In this section we introduce �ve constructions on cpos� namely discrete� product�
continuous function space� lifting and sum� along with the associated constructions on
continuous functions� A subsection is devoted to each cpo constructor� In the following
sections �see section
���
��� additional constructions on functions are introduced which
are not associated with any particular cpo construction�

����� Discrete

The discrete construction associates the discrete �identity� ordering with a set� Its de��
nition is

�
 �Z�

discrete Z �

Z���d� d�� d� IN Z �� d� IN Z �� �d� � d���

and it is easy to prove that discrete yields a cpo for any set

�
 �Z� cpo�discrete Z�

The discrete construction is useful for making HOL sets into cpos� e�g� the sets of nu�
merals and booleans� and it is used extensively in the examples� Note that the underlying
relation is restricted to elements of the associated set� Even without this restriction it
would be a cpo constructor but then a useful theorem relating the discrete and continu�
ous function space constructions could not be proved� This point is discussed further in
section
���
� where the continuous function space is introduced�

All chains in discrete cpos are constant chains�

�
 �X Z� chain�X�discrete Z� ��� ��n m� X n � X m�

Thus� the least upper bound of a chain is simply some element of the chain� for instance
the �rst element �they are all the same��

�
 �X Z� chain�X�discrete Z� ��� �lub�cset X�discrete Z� � X ��

Unless the set argument of discrete is a singleton set� the discrete construction does
not yield a pointed cpo�

�
 �x� pcpo�discrete�x��

�
 �Z�

�Z � ��� �� ��x y� x IN Z �� y IN Z �� ��x � y�� ���

�pcpo�discrete Z�

Of course� the bottom element of a singleton discrete cpo is the one and only element of
the cpo� due to re!exivity�

There are no function constructions associated with the discrete cpo construction�
However� all determined functions from a discrete cpo to some cpo are continuous�

�
 �D�

cpo D ���

��f Z�

map f�discrete Z�D� �� determined f�discrete Z� ���

cont f�discrete Z�D��

This fact� and instances of this fact� are useful for extending HOL functions to continuous
functions� If for example we instantiate the variable D with a discrete universal cpo

discrete�UNIV�	
�bool�
 and instantiate Z with a universal set
UNIV�		
�bool

�consisting of all elements of the underlying HOL type
�		
� then the antecedents all
hold trivially and we obtain

�
 �f� cont f�discrete UNIV�discrete UNIV�

Other similar simpli�cations of the previous fact can be derived�

����� Product

The product construction is de�ned as follows

�
 �D� D��

prod�D��D�� �

��d��d�� � d� ins D� �� d� ins D���

��x y� rel D��FST x��FST y� �� rel D��SND x��SND y��

and the fact that prod is a cpo constructor is stated by

�
 �D�� cpo D� ��� ��D�� cpo D� ��� cpo�prod�D��D����

Given two cpos D� and D� it de�nes a product cpo
prod�D��D��
 whose underlying
set is the set of all pairs of elements such that the �rst component is in D� and the
second component is in D� � The underlying relation is de�ned componentwise using
the relations on D� and D� � The product of� for instance� three cpos is written as

prod�D��prod�D��D���
�

A chain in a product cpo can be split into a chain for each of the components of the
product as follows

�
 �X D� D��

chain�X�prod�D��D��� �

chain�fst�chain X�D�� �� chain�snd�chain X�D��

where fst chain and snd chain are de�ned by

�
 �X� fst�chain X � ��n� FST�X n��

�
 �X� snd�chain X � ��n� SND�X n��

Since the product relation works componentwise� the least upper bound of a chain in a
product cpo is calculated by taking the pair of the lubs of each individual chain�

�
 �D��

cpo D� ���

��D��

cpo D� ���

��X�

chain�X�prod�D��D��� ���

�lub�cset X�prod�D��D��� �

lub�cset�fst�chain X��D���lub�cset�snd�chain X��D�����

The product construction can also be used to construct pointed cpos

�
 �D�� pcpo D� ��� ��D�� pcpo D� ��� pcpo�prod�D��D����

where the bottom element is calculated componentwise just as the lub�

�
 �D��

pcpo D� ���

��D�� pcpo D� ��� �bottom�prod�D��D��� � bottom D��bottom D���

Four function constructions are associated with the product construction� Of course
we have the two projection functions

�
 �D� D�� Proj�I�D��D�� � lambda�prod�D��D���FST

�
 �D� D�� Proj�I�D��D�� � lambda�prod�D��D���SND

which are obtained as determined versions of the built�in projections FST and SND �
Besides� the tupling of elements can be extended to tupling of functions and we have a
function product construction�

�
 �D� D� D��

TuplingI�D��D��D�� �

lambda

�prod�cf�D��D���cf�D��D����

���f�g�� lambda D���x� �f x�g x���

�
 �D� D� D� D��

ProdI�D��D��D��D�� �

lambda

�prod�cf�D��D���cf�D��D����

���f�g�� lambda�prod�D��D������x�y�� �f x�g y���

The constant cf is the constructor for the continuous functions space which is introduced
in section
���
 below� The term
f ins cf�D��D��
 is equivalent to
cont f�D��D��
�
The following reduction theorems state in a more readable way how the constructions
work and they are also useful to simplify proofs

�
 �D� x�

x ins D� ���

��D� y�

y ins D� ��� �Proj�I�D��D���x�y� � x��

�
 �D� x�

x ins D� ���

��D� y�

y ins D� ��� �Proj�I�D��D���x�y� � y��

�
 �D� x�

x ins D� ���

��D� f�

f ins �cf�D��D��� ���

��D� g�

g ins �cf�D��D��� ���

�TuplingI�D��D��D���f�g� x � f x�g x���

�
 �D� x�

x ins D� ���

��D� y�

y ins D� ���

��D� f�

f ins �cf�D��D��� ���

��D� g�

g ins �cf�D��D��� ���

�ProdI�D��D��D��D���f�g��x�y� � f x�g y����

If just one of the conditions �antecedents� of each theorem is false then the constructions
yield the arbitrary value ARB � These facts have also been proved in HOL though they
are not stated above�

All constructors are continuous as stated by the following theorems

�
 �D��

cpo D� ���

��D�� cpo D� ��� cont�Proj�I�D��D����prod�D��D���D���

�
 �D��

cpo D� ���

��D�� cpo D� ��� cont�Proj�I�D��D����prod�D��D���D���

�
 �D��

cpo D� ���

��D��

cpo D� ���

��D��

cpo D� ���

cont

�TuplingI�D��D��D���

�prod�cf�D��D���cf�D��D����cf�D��prod�D��D������

�
 �D��

cpo D� ���

��D��

cpo D� ���

��D��

cpo D� ���

��D��

cpo D� ���

cont

�ProdI�D��D��D��D���

�prod�cf�D��D���cf�D��D����cf�prod�D��D���prod�D��D�������

As a special case it can therefore easily be derived that tupling and function prod�
uct preserve continuity� For instance� if tupling is applied to the pair of functions

�f�g�
 where
cont f�D��D��
 and
cont g�D��D��
 then since tupling is a contin�
uous function we obtain by the map property that
cont�TuplingI�D��D��D���f�g��

�D��prod�D��D���
� Hence� tupling preserves continuity�
In addition we have proved the fact that a function is continuous in a product if and

only if it is determined in the product and continuous in each individual argument�

�
 �D��

cpo D� ���

��D��

cpo D� ���

��D��

cpo D� ���

��f�

cont f�prod�D��D���D�� �

determined f�prod�D��D��� ��

��d��

d� ins D� ��� cont�lambda D���d�� f�d��d�����D��D��� ��

��d��

d� ins D� ��� cont�lambda D���d�� f�d��d�����D��D������

It is sometimes easier to prove the right�hand side of this theorem than to prove the
left�hand side directly�

����� Continuous Function Space

The continuous function space construction is de�ned as follows

�
 �D� D��

cf�D��D�� �

�f � cont f�D��D����

��f g�

cont f�D��D�� �� cont g�D��D�� ��

��d� d ins D� ��� rel D��f d��g d���

and cf is indeed a cpo constructor

�
 �D�� cpo D� ��� ��D�� cpo D� ��� cpo�cf�D��D����

Given two cpos D� and D� it constructs the cpo
cf�D��D��
 of all continuous functions
from D� to D� such that the relation on functions is de�ned pointwise for elements of
D� only� using the underlying relation of D� �

Note that the cf relation only relates continuous functions just as the discrete or�
dering is restricted to elements of the underlying set of the discrete construction� We
could omit the continuity conditions in the relation and still obtain a cpo construction�
However� we would not be able to prove one important theorem� namely

�
 �D Z�

cf�D�discrete Z� � discrete�f � cont f�D�discrete Z���

which states that the ordering on continuous functions from any cpo to a discrete cpo is
discrete� If we did not restrict the discrete and cf relations to the associated sets
then the proof of this fact would fail because the following does not hold

��x� x ins D ��� �f x � g x�� � �f � g�

Adding the restrictions we must prove instead

cont f�D�discrete Z� ��

cont g�D�discrete Z� �� ��x� x ins D ��� �f x � g x�� �

cont f�D�discrete Z� ��

cont g�D�discrete Z� �� �f � g�

which does hold� It is surprising that it is necessary to add the restrictions since the cpo
conditions on set and relation pairs are concerned with elements and chains of elements
of the set component only� The problem is related to the equality problem for partial
functions discussed in section
�� where we require continuous functions are determined
in order to choose �xed representatives of equivalence classes of functions induced by a
function equality which works on domains �subsets of types� rather than types �see also
section
�

����

Least upper bounds of chains of continuous functions are calculated pointwise since
the underlying relation of the continuous function space is the pointwise ordering relation�

�
 �D� D� X�

chain�X�cf�D��D��� ���

�lub�cset X�cf�D��D��� �

lambda D���d� lub�cset��n� X n d��D����

Here the lub inside the lambda abstraction is justi�ed by the following fact

�
 �X D� D��

chain�X�cf�D��D��� �

��n� �X n� ins �cf�D��D���� ��

��d� d ins D� ��� chain���n� X n d��D���

which states that a sequence of continuous functions is a chain if and only if the functions
constitute a chain at each point�

In order for the continuous function space to construct a pointed cpo� only the
codomain of the functions need to be a pointed cpo�

�
 �D� cpo D ��� ��E� pcpo E ��� pcpo�cf�D�E���

The bottom element is then the constant function which always returns the bottom of
the codomain�

�
 �D�

cpo D ���

��E� pcpo E ��� �bottom�cf�D�E�� � lambda D��x� bottom E���

Two well�known constructions are associated with the continuous function space�
namely application and currying�

�
 �D� D��

ApplyI�D��D�� � lambda�prod�cf�D��D���D������f�x�� f x�

�
 �D� D� D��

CurryI�D��D��D�� �

lambda

�cf�prod�D��D���D���

��g� lambda D���x� lambda D���y� g�x�y����

It is not necessary to use ApplyI to apply a function to an argument� HOL application
by juxtaposition can also be used �see chapter ��� The constant ApplyI provides us with
function application

�
 �D� x�

x ins D� ���

��D� f�

f ins �cf�D��D��� ���

�ApplyI�D��D���f�x� � f x��

and CurryI can be used to curry a function

�
 �D� x�

x ins D� ���

��D� y�

y ins D� ���

��D� g�

g ins �cf�prod�D��D���D��� ���

�CurryI�D��D��D��g x y � g�x�y����

We have proved the following continuity theorems about these constructions

�
 �D��

cpo D� ���

��D��

cpo D� ���

cont�ApplyI�D��D����prod�cf�D��D���D���D���

�
 �D��

cpo D� ���

��D��

cpo D� ���

��D��

cpo D� ���

cont

�CurryI�D��D��D���

�cf�prod�D��D���D���cf�D��cf�D��D������

So in particular they preserve continuity�

����� Lifting

Using the lifting construction we can add a bottom element to a cpo� The lifting con�
struction is de�ned as follows

�
 �D�

lift D �

�Bt� UNION �Lft d � d ins D��

��x y�

�x � Bt� ��

��d d�� �x � Lft d� �� �y � Lft d�� �� rel D d d���

where Bt and Lft are the constructors of an abstract datatype called lty which can
be used to extend any type with an element Bt � It is de�ned by �	�lty � Bt � Lft 	�
As postulated� lift is indeed a cpo constructor

�
 �D� cpo D ��� cpo�lift D�

and it extends the underlying set of a cpo with an element which is a bottom�

�
 �D� cpo D ��� �bottom�lift D� � Bt�

�
 �D� cpo D ��� pcpo�lift D�

This is ensured by the de�nition of the underlying relation since Bt is less than all other
elements� On non�bottom elements of the lifted cpo
lift D
 the underlying relation of
D is preserved�

The least upper bound of a chain in the lifted cpo is constructed by lifting the chain
of unlifted elements�

�
 �D�

cpo D ���

��X�

chain�X�lift D� ���

��n d�

�X n � Lft d� ���

d ins D ���

�lub�cset X�lift D� �

Lft�lub�cset�cunlift�csuffix�X�n����D�����

where

�
 �d� unlift�Lft d� � d

�
 �X� cunlift X � ��n� unlift�X n��

The constant csuffix was de�ned in section
�
� We have proved the fact that if a chain
in a lifted cpo contains a lifted element then the unlifted su�x of the chain is a chain�

�
 �D�

cpo D ���

��X�

chain�X�lift D� ���

��n� ��d� X n � Lft d� ��� chain�cunlift�csuffix�X�n���D���

This ensures that the lub term which is lifted in the theorem above is a least upper
bound� Note that due to the way the underlying relation of the lifting construction is
de�ned we have that if one element of a chain is a lifted element then the succeeding
elements are lifted too�

Of course� this strategy only works if there is an index of the chain which is equal
to a lifted element� Otherwise the chain is the constant chain which is always Bt and
therefore the lub will also be Bt �

�
 �D�

cpo D ���

��X�

chain�X�lift D� ���

��n� X n � Bt� ���

�lub�cset X�lift D� � Bt��

There are two function constructions associated with lifting

�
 �D� LiftI D � lambda D Lft

�
 �D� D��

ExtI�D��D�� �

lambda

�cf�D��D���

��f�

lambda

�lift D����x� ��x � Bt� �� bottom D� � f�unlift x����

where the codomain of the function argument of ExtI must be a pointed cpo since
bottom otherwise returns an arbitrary value� The constant LiftI lifts an element of
some cpo to the lifted cpo

�
 �D x� x ins D ��� �LiftI D x � Lft x�

and the constant ExtI extends a function between some cpo and a pointed cpo to a
function from the lifted cpo�

�
 �D� D� f�

f ins �cf�D��D��� ���

�ExtI�D��D��f Bt � bottom D�� ��

��x�

x ins D� ��� �ExtI�D��D��f�Lft x� � f x��

So� ExtI yields a strict function when applied to a function argument�
We have proved the desired continuity theorems about these constructions as well

�
 �D� cpo D ��� cont�LiftI D��D�lift D�

�
 �D��

cpo D� ���

��D��

pcpo D� ���

cont�ExtI�D��D����cf�D��D���cf�lift D��D����

����
 Sum

Finally� we have the sum construction which is de�ned as follows

�
 �D� D��

sum�D��D�� �

�INL d � d ins D�� UNION �INR d � d ins D���

��d d��

��ISL d �� ISL d�� ��

rel D��OUTL d��OUTL d�� �

��ISR d �� ISR d�� �� rel D��OUTR d��OUTR d�� � F���

and sum is a cpo constructor

�
 �D�� cpo D� ��� ��D�� cpo D� ��� cpo�sum�D��D����

The sum construction is similar to the product construction but it is based on the HOL
sum type� Given two cpos D� and D� it de�nes the underlying set of their sum

sum�D��D��
 to be the subset of the HOL sum type such that elements of D� are
injected to the left component and elements of D� are injected to the right component�
The underlying relation relates left components that
rel D�
 relates and right compo�
nents that
rel D�
 relates�

Since the relation never relates elements of the left components to elements of the right
components of a sum� and vice versa� a chain in the sum cpo either consists of elements
of the left component only� or of elements of the right component only� A sequence is
therefore a chain in the sum of two cpos if and only if it consists of elements of the left
component that form a chain� or of elements of the right component that form a chain�
This fact is stated by

�
 �D� D� X�

chain�X�sum�D��D��� �

isl�chain X �� chain�outl�chain X�D�� ��

isr�chain X �� chain�outr�chain X�D��

where

�
 �X� isl�chain X � ��n� ISL�X n��

�
 �X� isr�chain X � ��n� ISR�X n��

�
 �X� outl�chain X � ��n� OUTL�X n��

�
 �X� outr�chain X � ��n� OUTR�X n��

Of course each of the two cases excludes the other�

�
 �X� ��isl�chain X �� isr�chain X�

The least upper bound of a chain is calculated by injecting the lub of the left chain to
the left component and the lub of the right chain to the right component�

�
 �D��

cpo D� ���

��D��

cpo D� ���

��X�

chain�X�sum�D��D��� ���

�lub�cset X�sum�D��D��� �

�isl�chain X ��

INL�lub�cset�outl�chain X��D��� �

INR�lub�cset�outr�chain X��D�������

The sum construction cannot be used to construct pointed cpos� The sum cpo does
not have a least element since elements of the left and right components respectively are
never related�

The function constructions associated with the sum construction have been de�ned as
follows

�
 �D� InlI D � lambda D INL

�
 �D� InrI D � lambda D INR

�
 �D� D� D��

SumI�D��D��D�� �

lambda

�prod�cf�D��D���cf�D��D����

���f��f���

lambda�sum�D��D�����d� �ISL d �� f��OUTL d� � f��OUTR d����

The constants InlI and InrI are used to inject elements to the left and right compo�
nents of a sum� respectively�

�
 �D� x� x ins D� ��� �InlI D� x � INL x�

�
 �D� x� x ins D� ��� �InrI D� x � INR x�

The constant SumI applies one of two functions to an element depending on which
component of a sum the element belongs to�

�
 �D� D� f�

f ins �cf�D��D��� ���

��D� g�

g ins �cf�D��D��� ���

��x�

x ins �sum�D��D��� ���

�SumI�D��D��D���f�g�x � �ISL x �� f x � g x����

The desired continuity theorems about these constructions are stated as follows

�
 �D��

cpo D� ���

��D�� cpo D� ��� cont�InlI D���D��sum�D��D����

�
 �D��

cpo D� ���

��D�� cpo D� ��� cont�InrI D���D��sum�D��D����

�
 �D��

cpo D� ���

��D��

cpo D� ���

��D��

cpo D� ���

cont

�SumI�D��D��D���

�prod�cf�D��D���cf�D��D����cf�sum�D��D���D�����

We can de�ne a continous conditional using the SumI constructor �see section ��
��
It would also be possible to de�ne a more general cases construction and then derive the
conditional from that� However� the conditional which we use most often in the examples
is obtained from the built�in conditional using the discrete cpo of booleans�

��
 Identity and Composition

We can de�ne continuous function constructions for the identity function and composition
of functions as follows

�
 �D� IdI D � lambda D I

�
 �D� D� D��

CompI�D��D��D�� �

lambda�prod�cf�D��D���cf�D��D�������f�g�� lambda D��f o g��

where the constants I and o are the built�in identity and composition operators� respec�
tively� Thus� we just restrict these to determined functions using the lambda abstraction�
The last letter is an I in order to distinguish names in the internal and external level
syntax of the interface �as in the previous section��

The de�nitions do not give us directly that identity and composition are continuous
functions� Such facts must be proved in HOL�

�
 �D� cpo D ��� cont�IdI D��D�D�

�
 �D��

cpo D� ���

��D��

cpo D� ���

��D��

cpo D� ���

cont�CompI�D��D��D����prod�cf�D��D���cf�D��D����cf�D��D�����

Since composition is a continuous function it also preserves continuity of continuous func�
tions�

�
 �D� D� f�

cont f�D��D�� ���

��D� g�

cont g�D��D�� ��� cont�CompI�D��D��D���f�g���D��D���

Actually� this fact is proved �rst and then used in the proof of continuity of composition
which is described in section
�
��

Due to the lambda abstractions it may be a bit di�cult to see how the constructions
actually work� We have therefore proved a number of reduction theorems which also serve
to simplify proofs� Among others the following reduction theorems show how identity and
composition behave when applied to their arguments�

�
 �D x� x ins D ��� �IdI D x � x�

�
 �D� D� f�

f ins �cf�D��D��� ���

��D� g�

g ins �cf�D��D��� ���

�CompI�D��D��D���f�g� � lambda D��f o g���

�
 �D� D� f�

f ins �cf�D��D��� ���

��D� g�

g ins �cf�D��D��� ���

��x� x ins D� ��� �CompI�D��D��D���f�g�x � f�g x����

If one of the arguments of the constructions does not belong to the right cpo then the
constructions return the constant ARB � Though these facts are not stated above they
have been proved in HOL�

��� Fixed Point Operator

The least �xed point operator is used to give semantics to recursion� It constructs a �xed
point of a function by iterating the function over the bottom element and then taking the
least upper bound� It only works for pointed cpos�

The constant pow which is de�ned by primitive recursion is used to name the in�nite
number of �nite iterations of a continuous function�

�
 ��E� pow E � � lambda�cf�E�E����f� bottom E�� ��

��E n� pow E�SUC n� � lambda�cf�E�E����f� f�pow E n f���

It constructs a chain of continuous functions�

�
 �E� pcpo E ��� chain�pow E�cf�cf�E�E��E��

Note that for pow to behave in the desired way it must be applied to a pointed cpo�
Otherwise the use of bottom in the de�nition will yield an arbitrary element �of the
appropriate type� since this constant is de�ned using the choice operator�

The �xed point operator is de�ned as follows

�
 �E� FixI E � lub�cset�pow E��cf�cf�E�E��E��

where we use an I as the last letter in order to be able to distinguish the internal and
the external version of the �xed point operator� The latter is called Fix � Since pow

yields a chain for pointed cpos and cf constructs a cpo when applied to cpos� lub does
indeed yield a least upper bound for pointed cpos �by the lub condition on cpos�� Some
readers might be used to the following characterization of the �xed point operator

�
 �E�

pcpo E ���

��f�

f ins �cf�E�E�� ��� �FixI E f � lub�cset��n� pow E n f��E���

This has been derived from the previous one using that lubs in the continuous function
space are calculated pointwise �see section
���
��

The function for taking the least �xed point of a continuous function is itself a con�
tinuous function�

�
 �E� pcpo E ��� cont�FixI E��cf�E�E��E�

This follows quite easily from the fact that pow constructs a chain�
The fact that Fix indeed is a �xed point operator� i�e� that it yields a �xed point if

it is applied to a continuous function on a pointed cpo� has been proved in HOL�

�
 �E� pcpo E ��� ��f� f ins �cf�E�E�� ��� �f�FixI E f� � FixI E f��

This theorem is called the �xed point property of Fix � We have also proved that it
yields a pre�xed point

�
 �E�

pcpo E ���

��f� f ins �cf�E�E�� ��� rel E�f�FixI E f���FixI E f��

and in fact the least pre�xed point�

�
 �E�

pcpo E ���

��f�

f ins �cf�E�E�� ���

��d� d ins E ��� rel E�f d�d ��� rel E�FixI E f�d��

This theorem states a principle of induction which is sometimes called Park induction�

��� Fixed Point Induction

There are various ways to reason about recursive de�nitions de�ned as �xed points� One
way is to reason about �xed points directly by their de�nitions� or by Park induction�
Another is to use an induction on the construction of �xed points�

Based on the de�nition of the �xed point operator we can derive the following theorem

�
 �E�

pcpo E ���

��f�

f ins �cf�E�E�� ���

��P�

inclusive�P�E� ���

�bottom E� IN P �� ��x� x IN P ��� �f x� IN P� ���

�FixI E f� IN P��

called the �xed point induction theorem� This gives a method for proving properties of
�xed points by looking at their �nite approximations using an inductive argument� A
subset P of a cpo is called inclusive when it admits induction in the sense that all chains
in P must have a least upper bound in P �

�
 �P D�

inclusive�P�D� �

P subset D ��

��X�

chain�X�D� �� ��n� �X n� IN P� ���

�lub�cset X�D�� IN P�

From this the �xed point induction theorem follows easily� There is no di�erence between
sets and predicates in HOL� both are represented as functions of type
�	
� bool
� We
can therefore use �inclusive subset� and �inclusive predicate� interchangeable�

Since inclusive predicates must be subsets of cpos it is convenient to introduce the
following constant

�
 �D P� mk�pred�D�P� � �x � x ins D �� x IN P�

for writing inclusive predicates� It just restricts a predicate to a cpo by taking the inter�
section�

���
 Proof of Continuity of Composition

Proofs were not included above since the more interesting ones tend to get quite long�
This is both due to the fact that many concepts have quite big and complicated de�nitions
when de�nitions are expanded� and due to the fact that we must check manually that
terms belong to the right cpos� Furthermore� HOL proof are long since all statements
and all cases must be treated� no steps can be left out because they are obvious�

In order to illustrate how a proof of continuity is conducted in HOL we prove below
that composition is a continuous function �see section
���� First we prove composition
preserves continuity then we prove it is itself a continuous function�

������ Composition Preserves Continuity

A continuous function is a monotonic function which preserves lubs of chains� So let us
�rst prove that composition preserves monotonicity�

Assume f is a monotonic function from D� to D� and assume g is a monotonic
function from D� to D� � We must prove the following statement

mono�CompI�D��D��D���f�g���D��D��

Using a reduction theorem for composition we obtain

mono�lambda D��f o g���D��D��

By de�nition of monotonicity we must prove �ve properties� We must prove that D� is
a cpo and that D� is a cpo� Such statements are �nished o� immediately by special
theorems like

�
 �f D� D�� mono f�D��D�� ��� cpo D�

�
 �f D� D�� mono f�D��D�� ��� cpo D�

which are convenient in proofs and easy to prove� since they can be proved directly from
de�nitions� There are similar theorems for continuous functions and the other properties
of both monotonic and continuous functions� e�g�

�
 �f D� D�� cont f�D��D�� ��� ��d� d ins D� ��� �f d� ins D��

�
 �f D� D��

cont f�D��D�� ���

��X�

chain�X�D�� ���

�f�lub�cset X�D��� � lub�cset��n� f�X n���D����

Informally� we refer to such theorems by saying things like �by continuity f is a map�
or �since f is continuous it preserves lubs��

The third property we must prove is that composition is a map� I�e�� by de�nition�

�lambda D��f o g�d� ins D�

assuming the variable d is an element of D� � By the reduction theorem for lambda

and the theorem

�
 �f g x� �f o g�x � f�g x�

about the built�in composition o we must prove

�f�g d�� ins D�

under the assumption that
d ins D�
� Using g is map� since it is monotonic� we obtain

�g d� ins D�
� Next� we use f is a map obtaining the desired statement
�f�g d��

ins D�
�
The fourth property we must prove is that the composite of f and g is determined�

determined�lambda D��f o g��D�

But all lambda abstractions are determined by a fact of section
�� so this statement is
proved immediately�

Finally� we must prove the composite preserves the ordering on D� �

�d�

d ins D� ���

��d��

d� ins D� ���

rel D� d d� ��� rel D��lambda D��f o g�d��lambda D��f o g�d���

Reducing the lambda abstractions and the built�in composition �by de�nition�� we must
prove

rel D��f�g d���f�g d���

where we have assumed that the variables d and d� satisfy
d ins D�
�
d� ins

D�
 and
rel D� d d�
� We �rst use that g preserves the ordering and then that f

preserves the ordering� But in order to do the latter we must provide
�g d� ins D�

and
�g d�� ins D�
� These follows because g is a map�
We have now proved that composition preserves monotonicity� So let us return to

the original goal of this section� namely� proving that composition preserves continuity�
Assuming f is a continuous function from D� to D� and g is a continuous function
from D� to D� � we must prove

cont�CompI�D��D��D���f�g���D��D��

Using a reduction theorem for composition we obtain

cont�lambda D��f o g���D��D��

which further reduces to the following two statements� from which the previous one follows�
by the de�nition of continuity�

mono�lambda D��f o g���D��D��

and �lubs are preserved�

lambda D��f o g��lub�cset X�D��� �

lub�cset��n� lambda D��f o g��X n���D��

for any chain X in D� � Since continuous functions are monotonic we prove monotonicity
using that composition preserves monotonicity�

Let us consider the proof of the second statement� Since X is a chain taking the lub

of X yields a least upper bound� And �least� upper bounds are elements of cpos �by
de�nition�

�
 �a B A� a is�lub �B�A� ��� a ins A

so we can assume

�
 �lub�cset X�D��� ins D�

Therefore the left�hand side of our statement reduces to

f�g�lub�cset X�D���� � lub�cset��n� lambda D��f o g��X n���D��

Since elements of chains are elements of cpos we can reduce the lambda abstraction inside
the lub on the right�hand side

f�g�lub�cset X�D���� � lub�cset��n� f�g�X n����D��

First we use g preserves the lub of the chain X � obtaining

f�lub�cset��n� g�X n���D��� � lub�cset��n� f�g�X n����D��

and then we use f preserves the lub of the chain
�n� g�X n�
 in D� � This concludes
the proof� We should justify the sequence
�n� g�X n�
 really is a chain in D� � This is
obtained from the following fact

�
 �f D� D��

mono f�D��D�� ��� ��X� chain�X�D�� ��� chain���n� f�X n���D���

since g is continuous� and therefore monotonic�

������ Composition is Continuous

Assume the variables D� � D� and D� are cpos� Again we must prove monotonicity
�rst� Let us just sketch the proof why composition is monotonic�

mono�CompI�D��D��D����prod�cf�D��D���cf�D��D����cf�D��D���

Of course the domain and the codomain are cpos since they involve only variables that
are cpos and constructions on cpos� Composition is a map between cpos since it preserves
continuity �proved above� and it is determined because it equals a lambda term� Finally�
composition preserves the ordering� mainly due to transitivity� But before transitivity
can be applied we must prove terms belong to the right cpos and make the right set up
carefully using that elements of each component of the product of cpos of continuous
functions preserve the ordering�

Next� we must prove that composition preserves lubs of chains in the product of cpos
of continuous functions�

�X�

chain�X�prod�cf�D��D���cf�D��D���� ���

�CompI�D��D��D���lub�cset X�prod�cf�D��D���cf�D��D����� �

lub�cset��n� CompI�D��D��D���X n���cf�D��D����

So� let us assume the variable X is a chain in the cpo
prod�cf�D��D���cf�D��D���
�
We wish to prove

CompI�D��D��D���lub�cset X�prod�cf�D��D���cf�D��D����� �

lub�cset��n� CompI�D��D��D���X n���cf�D��D���

Since composition is monotonic and monotonic functions preserves chains we can as�
sume the following fact

�
 chain���n� CompI�D��D��D���X n���cf�D��D���

This and the fact that lubs in the continuous function space are calculated pointwise �see
section
���
� can then be used to reduce the lub on the right�hand side

CompI�D��D��D���lub�cset X�prod�cf�D��D���cf�D��D����� �

lambda D���d� lub�cset��n� CompI�D��D��D���X n�d��D���

Now we can use that HOL functions are equal if they are equal for all elements of a type�

�x�

CompI�D��D��D���lub�cset X�prod�cf�D��D���cf�D��D�����x �

lambda D���d� lub�cset��n� CompI�D��D��D���X n�d��D���x

If x is not an element of D� then both sides of the equality reduces to ARB � Thus they
are equal� Otherwise� assume x is in D� and use the reduction theorem for composition�

FST

�lub�cset X�prod�cf�D��D���cf�D��D�����

�SND�lub�cset X�prod�cf�D��D���cf�D��D�����x� �

lub�cset��n� CompI�D��D��D���X n�x��D��

A reduction tactic �see sectin ������ for composition introduces FST and SND when
composition is not applied to a pair of functions� Since X is a chain the lub of X is a
lub and therefore an element of the product cpo� We can also get rid of the composition
on the right�hand side

FST

�lub�cset X�prod�cf�D��D���cf�D��D�����

�SND�lub�cset X�prod�cf�D��D���cf�D��D�����x� �

lub�cset��n� FST�X n��SND�X n�x���D��

Next we use the fact that lubs of chains in products are calculated component�wise�
obtaining

FST

�lub�cset�fst�chain X��cf�D��D����lub�cset�snd�chain X��cf�D��D����

�SND

�lub�cset�fst�chain X��cf�D��D����lub�cset�snd�chain X��cf�D��D����

x� �

lub�cset��n� FST�X n��SND�X n�x���D��

which can be simpli�ed further to

lub

�cset�fst�chain X��cf�D��D����lub�cset�snd�chain X��cf�D��D���x� �

lub�cset��n� FST�X n��SND�X n�x���D��

reducing away FST and SND on the left�hand side�
Our next steps are to calculate the �rst lub of continuous functions in the left�hand

side and reduce the lambda abstraction which it is equal to by results of section
���
�

lub�cset��n� fst�chain X n�lub�cset�snd�chain X��cf�D��D���x���D�� �

lub�cset��n� FST�X n��SND�X n�x���D��

Here� the lub of snd chain has been moved inside the lub of fst chain � In order
to do this� we also used that chains in products are calculated component�wise so that

fst chain X
 and
snd chain X
 are chains� This gave us that the lubs of these chains
make sense� Then the second lub is transformed in a similar way� yielding

lub

�cset��n� fst�chain X n�lub�cset��n� snd�chain X n x��D�����D�� �

lub�cset��n� FST�X n��SND�X n�x���D��

where x has been moved inside the lub�
We are now able to exploit that fst chain consists of continuous functions and

therefore each of its elements preserves lubs�

lub

�cset��n� lub�cset��n�� fst�chain X n�snd�chain X n� x���D����D�� �

lub�cset��n� FST�X n��SND�X n�x���D��

Folding the de�nitions of fst chain and snd chain the right�hand side becomes

lub

�cset��n� lub�cset��n�� fst�chain X n�snd�chain X n� x���D����D�� �

lub�cset��n� fst�chain X n�snd�chain X n x���D��

This equality can be proved by observing that it is a special case of the fact that taking
the lub in �rst one then another direction of a matrix is the same as taking the lub at the
diagonal�

�
 �D�

cpo D ���

��M�

matrix�M�D� ���

�lub�cset��n� lub�cset��m� M�n�m���D���D�� is�lub

�cset��n� lub�cset��m� M�n�m���D���D� ��

�lub�cset��n� lub�cset��m� M�n�m���D���D� �

lub�cset��n� M�n�n���D���

A matrix is just a kind of two dimensional chain de�ned as follows

�
 �M D�

matrix�M�D� �

��n m� �M�n�m�� ins D� ��

��n m� rel D�M�n�m���M�n � ��m��� ��

��n m� rel D�M�n�m���M�n�m � ���� ��

��n m� rel D�M�n�m���M�n � ��m � ����

So in a matrix an element is related to all three elements with higher indices� From this
de�nition we can prove the theorem

�
 �D�

cpo D ���

��M�

matrix�M�D� �

��n� chain���m� M�n�m���D�� �� ��m� chain���n� M�n�m���D���

which relates matrices and chains� Using this is often the easiest way to prove some term
is a matrix�

The proof of the diagonal fact and the lemmas which states that we can use this fact
in the proof above are not provided here� They would probably double the number of
pages used in this section�

���� Discussion

Other alternatives for a formalization than the one presented above were considered�
Below some of these are discussed and it is argued why we chose the approach described
in this and the following chapters�

������ Sets as Types

Perhaps the simplest approach to formalizing complete partial orders in HOL is to rep�
resent the set of a partial order by a HOL type and the relation by a HOL relation on
elements of that type� Thus� the set is only present implicitly� in the HOL type of the
relation� This approach was used by Camilieri in �Ca��� but it has one unfortunate limi�
tation� the cpo of continuous functions cannot be de�ned in HOL� Below we explain why
this is so�

In this �set as type� approach� the notion of partial order is introduced into HOL by
the constant
po���	
� 	
� bool�
� bool
 which is a predicate on binary relations
on the type
�	
� Assuming a relation
R�	
� 	
� bool
� the term
po� R
 states
that R is re!exive� transitive and antisymmetric on all elements of the underlying type

�	
� The actual de�nition of po� is not important here� As a re�nement of po� we
introduce a constant
cpo���	
� 	
� bool�
� bool
 to identify ordering relations
which are complete partial orders� Again� its de�nition is not important�

Monotonic functions between two cpos are introduced using the constant mono�

and continuous functions using the constant cont� � Given a function
f�	
� 		

and two relations
R��	
� 	
� bool
 and
R��		
� 		
� bool
 the term
mono�

f�R��R��
 is true when R� and R� are cpos and f preserves the ordering on elements
of type
�	
� The statement
cont� f�R��R��
 requires in addition that f preserves
least upper bounds of chains in R� � A chain X in R� is a HOL sequence
X�num
�

	
 such that
R��X n��X�n����
 for all n �
We wish to de�ne some standard ways of constructing cpos� First� let us de�ne the

product construction� We would like a HOL constant prod which takes two cpos as
arguments and returns a cpo which is their product as a result� The HOL product type
can be used to construct the product of the underlying types of the cpos� The relation is
de�ned componentwise�

�
 �R� R��

prod�R��R�� �

��x y� R��FST x��FST y� �� R��SND x��SND y��

We can prove that given cpos
R��	
� 	
� bool
 and
R��		
� 		
� bool
 their
product
prod�R��R��
 is a cpo on the type
�	 � 		
�

Next� let us consider the continuous function space� We would like to introduce a con�
stant cf such that the term
cf�R��R��
 represents the cpo of all continuous functions
from the cpo R� to the cpo R� � Thus we would have to de�ne
cf�R��R��
 to be equal
to the pointwise ordering on functions� i�e� to be equal to
��f g� �x� R��f x��g x��
�
But which type should these functions have$ Assuming R� and R� are cpos as above�
their underlying types are
�	
 and
�		
� respectively� Therefore the underlying type
of
cf�R��R��
 would be the type of all continuous functions from
�	
 to
�		
� We
cannot use the HOL function type
�	
� 		
 itself since it may contain non�continuous
functions �not all HOL functions are continuous�� The predicate needed to de�ne the
desired type can be written as the set
ff�	
� 		 � cont� f�R��R��g
� However� this
is not a valid predicate for de�ning a type in HOL� Predicates must be closed terms and
this predicate is not since it depends on free term variables R� and R� � In other words�
the type we are looking for is a dependent subtype of all functions of type
�	
� 		
�
The type system of HOL is not rich enough to support such types�

Note that we did not get the problem with the product construction because we can
use the product type of HOL as it is� We do not need to parametrize the type with cpos�

Unfortunately� there does not seem to be an easy way around the problem� The �rst
thing one could try is to de�ne cf such that it only relates continuous functions of the
type
�	
� 		
� i�e� such that

cf�R��R�� �

��f g�

cont� f�R��R�� �� cont� g�R��R�� �� ��x� R��f x��g x���

But this relation is not re!exive since not all functions of type
�	
� 		
 are continuous�

An alternative solution is to try to simulate dependent subtypes in HOL by de�ning
pos and cpos to be pairs consisting of a subtype predicate and an ordering relation�
Equivalently� we can let cpos be relations and de�ne the underlying sets to contain exactly
those elements on which the relations are re!exive��

We chose the set �subtype� and relation pair approach because it seemed to be a more
direct and intuitively simpler representation than the non�re!exive relation approach� in
particular when de�ning constructions on cpos� Unfortunately it turned out that it was
not always possible to separate the de�nition of the set and the relation of constructions
entirely �see section
�

�
 below��

������ Sets as Subtypes

In our �rst attempt to formalize complete partial orders as HOL pairs consisting of a
subtype predicate and an ordering relation� another unexpected problem arose due to
the cpo construction on continuous functions� We were able to de�ne a constant for the
construction but we could not prove the constant yielded a cpo when its arguments were
cpos� The reason for the problem was that we did not realize that with the introduction
of sets� functions became only partially speci�ed on HOL types� con!icting HOL equality
which works on all elements of a type� Hence� we could not prove the construction was
antisymmetric� Below we discuss this problem and various solutions in more details� Our
solution was to require functions are determined by their actions �see section
����

In this �rst attempt� we formalize partial orders� least upper bounds� chains and cpos
in the same way as described in section
�
�
�
� so we will not repeat the de�nitions
here� The di�erence resulting in the failure of the approach presented here appears in the
de�nition of monotonic and continuous functions�

So� assume the constant mono� formalize the notion of monotonicity in HOL� Given a
function
f�	�
� 	�
 and two terms
D���	��cpo
 and
D���	��cpo
 the term
mono�

f�D��D��
 states three things� D� and D� are cpos� f maps elements of D� to elements
of D� � and f preserves the ordering on elements of D� �

The constant cont� is intended to formalize the notion of continuous function� Given
HOL terms as above the term
cont� f�D��D��
 is true when f is a monotonic function
from D� to D� that preserves all lubs of chains in D� �

We might now think that the following de�nition would be right for introducing the
construction on continuous functions

�John Harrison used this non�re�exive relation approach to de�ne a theory of well�orderings �Ha��	�

�
 �D� D��

cf�D��D�� �

�f � cont� f�D��D����

��f g� �d� d ins D� ��� rel D��f d��g d��

where the underlying set consists of all continuous functions and the underlying relation
is the pointwise ordering relation on functions� We use the restricted quanti�er since it
is not relevant how functions relate on the elements which are outside the cpo subset of
a type� Unfortunately� the de�nition does not yield a cpo construction� We cannot prove

cf�D��D��
 is a cpo given cpos D� and D� since the construction fails to satisfy the
antisymmetry condition on cpos �and pos�� Knowing two functions are related both ways
on all elements of some subset of a type does not make them equal on all elements of
the type� This is required by antisymmetry because HOL equality of functions is de�ned
pointwise �extensional equality��

Let us be more precise� Given two cpos
D���	��cpo
 and
D���	��cpo
 we would
like to prove
cf�D��D����	�
�	��cpo
 is antisymmetric �see section
���� So� by de�ni�
tion we must prove that for all continuous functions f and g from D� to D� such that

rel�cf�D��D���f g
 and
rel�cf�D��D���g f
 we have
f � g
� By extensionality
we must prove
f x � g x
 for all
x�	�
� However� we can only conclude that
f x �

g x
 for all x in D� � using
rel�cf�D��D���f g
�
rel�cf�D��D���g f
 and the fact
that D� is a cpo �antisymmetric�� We do not know anything about f and g outside
D� �

The problem is that continuous functions are only partially speci�ed on HOL types�
Thus they are maps from subsets of types to subsets of types� and we can only prove
they are equal on subsets of types� In fact� a continuous function is a representative of an
equivalence class of HOL functions under this equality on subsets of types� The problem
arises because HOL equality relates total functions and therefore distinguishes functions
that di�er outside the subsets we are interested in� The equality on subsets does not
distinguish such functions�

Basically� there are two ways around this problem� Either we can replace the equality
used in the de�nition of antisymmetry by another� or we can de�ne continuous function in
another way �and keep the equality�� Let us consider the former of the two solutions �rst�
There are two things we must do� de�ne the equality and then prove it is an equivalence
and congruence relation on HOL terms such that we can use it for substitution� In
de�ning the equality we must be a bit careful� For instance it will not work to use the
same equality as in �JM�
�

Eq D � ��a b� a ins D �� b ins D �� �a � b��

which is a HOL formalization of the equality in dependent type theory� This approach
leaves us with exactly the same problem as above �due to the use of HOL equality��
Instead the obvious choice would be

Eq D � ��a b� rel D a b �� rel D b a�

Thus� antisymmetry is trivially true of any set and relation pair� in particular the con�
tinuous function space� Furthermore we are able to prove this satis�es the following
equivalence and congruence laws �for brevity we state all laws as rules�

 �cpo D� x ins D

Eq D x x

Eq D x y Eq D y z

 �cpo D� x ins D� y ins D� z ins D

Eq D x z

Eq D x y

 �cpo D� x ins D� y ins D

Eq D y x

Eq D� x y �cpo D�� cpo D��

 x ins D�� y ins D��

Eq D� �f x� �f y� f ins�cf�D��D���

Eq �cf�D��D��� f g �cpo D�� cpo D��

 x ins D��

Eq D� �f x� �g x� f ins�cf�D��D���� g ins�cf�D��D���

Eq D� �t��x � �t��x � �cpo D�� cpo D��

 x ins D�� t��x ins D��

Eq �cf�D��D��� ��x�t�� ��x�t�� t��x ins D�

The terms in square brackets ���� are the side conditions� Only two of the three congru�
ence laws can be stated within the HOL logic itself� The third one� which is the last rule
above� must be derived as a meta theorem� i�e� as an inference rule� Such a congruence
property for the HOL logic as the last one cannot be stated in the HOL logic itself� without
formalizing terms and substitution within the logic too� Finally� note that it would not be
possible to introduce an equality satisfying these rules as a new inductive de�nition using
Melham�s tool �CM��� since the speci�cation of Eq would not be a well�typed term� In
the speci�cation Eq would be a variable and it would be used on terms of di�erent types
�in the same term�� A variable can only have one type in a term�

Based on these �meta� theorems it is quite easy to obtain a substitution rule which
would be needed for instance whenever referring to the uniqueness of least upper bounds
and �xed points� However� this rule would only be of very limited use because of the
complex and ine�cient side conditions� Checking the side conditions would be a recursive
process� so subterms would be treated again and again� However� if we required in the
de�nition of pos that
rel A a b
 implies
a ins A
 and
b ins A
 then we could get
rid of some of the side conditions� But substitution would still be much more ine�cient
than the built�in substitution�

It is likely that other new equalities would introduce similar ine�ciency problems� For
instance� we cannot deduce
Eq D t�f t�g
 from
Eq �cf�D��D��� f g
 in general
since t could apply f and g to an element outside D� � We would therefore have
to check which cpos terms belong to� Thus� we prefer to keep the HOL equality in the
de�nition of antisymmetry�

Instead of changing equality such that HOL functions in the same equivalence class

are equal we can let continuous functions be equivalence classes �sets� of HOL functions�
HOL equality will then work since it is applied to sets of functions rather than functions
themselves �remember two sets are equal if they contain exactly the same elements��
However� though this is perhaps a theoretically appealing approach� it is quite awkward
and di�cult to work with functions as equivalence classes in practice �in particular when
de�ning the function constructions� and it provides us with no advantages over the much
simpler alternative of just working with one speci�c �xed function in each equivalence
class� Therefore this approach was chosen by requiring functions are determined by their
actions�

Partial functions can also be represented by relations but this approach su�ers from
the same disadvantage as representing functions as equivalence classes� We believe that
a useful formalization should exploit features of HOL to as wide an extent as possible�

������ Comments on the Formalization

The cpo constructors are constants which are functions that take cpos as arguments and
return a set and relation pair� The set speci�es the elements of the cpo and the relation
speci�es an ordering on the elements of the set� As mentioned in section
�� and
�
 the
po and cpo conditions on a set relation pair are concerned with elements and chains of
elements of the set only� Outside the set the behavior of the relation does not matter�
Therefore it seemed obvious that the relation of each construction should not be restricted
to elements of the set part of the constructions� However� in an attempt to prove a certain
equality between cpos we discovered it is necessary to restrict the underlying relations of
the discrete and continuous function space constructions to elements of the underlying
sets �see section
���
�� This restriction is not necessary in order for the constructions to
yield cpo constructions�

This problem was discovered at a quite late stage of the work and we therefore chose
the easy solution� namely to just add the extra conditions on the discrete and continuous
function space relations� A nicer solution would probably be to let partial orders be
represented by relations and de�ne the set to be the re!exive elements� Then relations
and all constructions would automatically be restricted to the underlying set� Actually�
this would probably not require too many changes too� due to the fact that each time we
use a relation or element of a cpo we use ins and rel � These could still be used after
they had been rede�ned�

Chapter �

Recursive Domains

Functional programming languages like Standard ML and Miranda allow the user to de�ne
new recursive datatypes� For instance� a type of lists which are sequences of elements of
the same type can be introduced by a speci�cation of the following form

� list ���Nil jCons� � � list

This speci�es a recursive type operator list with two constructor functions Nil and Cons

for creating elements of the type of lists� In Standard ML the type introduced will consist
of strict lists� i�e� �nite lists constructed using a strict version of the constructor Cons� In
Miranda the type will consist of lazy lists� i�e� �nite and in�nite lists constructed using a
lazy �non�strict� version of Cons�

Strict and lazy datatypes denote cpos� So given a speci�cation of the form above we
can introduce a cpo of strict lists and a cpo of lazy lists� or more precisely� constructors
for such cpos can be introduced which take the cpo of elements as an argument� There
are a number of standard techniques for this purpose which introduce the new cpos as
solutions of recursive domain �isomorphism� equations� Domain equations for strict and
lazy lists can be written as follows

� slist �� unit � ��� � slist�

� llist �� void " ��� � llist�

where unit is the cpo consisting of one element apart from the bottom element and void
is the cpo consisting of no other element than the bottom element� The cpo constructions
for sum and product used in the equation for strict lists are strict� The constructions in
the other equations are non�strict�

As mentioned in the introduction� the three most prominent techniques for solving
recursive domain equations are the categorical inverse limit construction� information
systems and via universal domains like P�� Formalizing the inverse limit construction in
HOL would require a complex encoding since it seems to need a �big� set �as large as the
reals� closed under ��sequences �to capture in�nite elements�� Hence� its formalization
in HOL would require a substantial amount of work� Information systems and P� would
be simpler to formalize since an encoding is built into their construction� Further� they
seem only to need a big set closed under pairing and �nite subsets�

However� due to the various encodings� formalizing these methods would extend HOL
with �new worlds� di�erent from the �HOL world�� For instance� the information system

�

of natural numbers would have nothing in common with the type of natural numbers in
HOL� Hence� it would become impossible to exploit HOL types and tools directly� To
achieve this indirectly� one would have to de�ne isomorphisms between the HOL world
and the other worlds �to the extent to which this is possible�� These would probably be
painful to work with�

Our philosophy is that formalizing domain theory in HOL should support the reuse of
HOL types and proof infrastructure to as large an extent as possible� In this chapter we
therefore investigate more ad hoc methods to de�ning recursive domains� Unfortunately�
this decision limits the applicability of the formalization somewhat� While on the one
hand these ad hoc methods enable us to reason about certain strict and lazy recursive
datatypes denoting domains� they are not strong enough to provide solutions to more �and
less� di�cult recursive domain equations like E �� A"�E � E�� As a further consequence�
we must accept not to be able to give denotational semantics of programming languages
with recursive types� though we may be able to reason about programs and types of the
languages directly by their denotations in domain theory�

In section ��
 we show how recursive domains with �nite values� i�e� cpos which cor�
respond to datatypes whose elements are obtained by a �nite number of applications of
constructor functions� can be de�ned by exploiting the type de�nition package �Me��� to
introduce concrete recursive datatypes in HOL� By associating an ordering relation with
a subset of a datatype we can obtain a cpo� In fact� from a recursive datatype in HOL
various kinds of �nite�valued recursive cpos can be obtained� including discrete cpos and
strict cpos�

This approach cannot be used to de�ne recursive domains with in�nite values� i�e� cpos
which correspond to datatypes whose elements are obtained by a �nite or in�nite number
of applications of constructor functions� The type de�nition tools cannot be used to de�ne
in�nite values of a datatype	 it only works for well�founded types with initial models� In
section ���� we present an approach to construct �a few� in�nite�valued recursive domains
which focuses on the di�erent kinds of elements of the domain in question� This approach
has been used to construct two cpos of in�nite sequences of data� a cpo of lazy sequences
which contains all partial and in�nite sequences and a cpo of lazy lists which contains in
addition all �nite sequences� This method works well for sequences but it becomes very
complicated if we attempt to construct� for instance� a cpo of binary trees�

The reason why the type de�nition package can only be used to de�ne �nite datatypes
is that each new datatype is de�ned as a subset of a type of labeled trees which are only
�nite trees� In section ��
 we present the corresponding type of �partial and� in�nite
labeled trees in HOL	 more precisely� we present a predicate for a set of �partial and�
in�nite labeled trees which could be de�ned as a type but we do not explicitly de�ne a
type� This type �or predicate� consists of all partial� �nite and in�nite labeled trees which
are �nitely�branching� Such trees can be represented as sets of nodes� Furthermore� with
an appropriate ordering relation �a subset of� this type is a pointed cpo�

It is important to note that the only purpose of the new type �predicate� of trees is
to serve as the underlying type of the new recursive cpos that we wish to introduce� The
type has no value at all in the set theoretic setting for de�ning new HOL types� e�g� the
partial elements do not make sense�

Using the labels of the labeled trees in the same way as in the type de�nition package�
we can de�ne new lazy recursive domains with in�nite �and partial and �nite� elements as
a sub�cpo of the cpo of labeled trees� i�e� the underlying set is a subset of in�nite labeled

trees and the ordering is inherited� In order to prove a sub�cpo really is a cpo it is enough
to prove it contains lubs of chains� This approach to de�ning cpos corresponding to lazy
datatypes is described in section ���� These ideas about �partial and� in�nite labeled trees
and lazy recursive domains have not been formalized in HOL� It requires more work to
investigate what the best way of solving recursive domain equations would be�

In section ��� we discuss a few ways �not formalized� of extending the class of cpos
which can be introduced by the other methods of the chapter� One approach is based
on extending Gunter�s work on well�founded arbitrarily�branching trees �Gu�
� in a way
which is similar to the way we extended Melham�s well�founded �nitely�branching trees�

Note

De�nitions of the last three sections of this chapter� more precisely section ��
����� have
not been formalized in HOL �as mentioned above�� In order to distinguish formalized and
unformalized parts� we omit the turnstile �
 when a de�nition or theorem has not been
formalized in HOL�

��� Finite�valued Recursive Domains

The standard example of a �nite recursive datatype is the Standard ML �SML� datatype
of strict lists� A list is simply a sequence of elements of the same type� The type of lists
is speci�ed as follows

datatype �a list � Nil � Cons �a 	 �a list

An SML list is either Nil or a list of the form Cons�x�l� where x is the head and l is
the tail of the list� All lists have �nite length since Cons is strict� If one of its arguments
is the result of an unde�ned �non�terminating� computation the result of applying Cons

is also unde�ned �SML uses eager evaluation��
In this section we discuss how such �nite�valued recursive datatypes can be represented

by cpos in HOL� Our approach is based on the type de�nition package for constructing
�nite concrete recursive datatypes in HOL �Me���� Datatypes which have been de�ned
using this package can be used as the underlying type of cpos in various ways� yielding
cpos with di�erent properties� This way of obtaining �nite�valued recursive domains in
HOL is illustrated on two examples below� We discuss various kinds of cpos of �nite lists
in section ��
�
 and in section ��
�� we look at �nite binary trees�

����� Lists

A list is simply a �nite sequence of elements of the same type� A type of �nite lists can
be de�ned in HOL using the following type speci�cation

list ��� NIL � CONS 	 list

This de�nes constructors NIL and CONS such that any term of type
��	�list
 is
either the empty list NIL or the �nite�length list
CONS x l
 with head
x�	
 and
tail
l��	�list
� The type de�nition package provides tools to prove that the two
constructors are distinct

�
 �h t� ��� � CONS h t�

and CONS is one�one �actually the theorem states a fact which is a bit stronger��

�
 �h t h� t�� �CONS h t � CONS h� t�� � �h � h�� �� �t � t��

The type de�nition package also allows us to de�ne functions on lists by primitive recur�
sion� For instance� the length of a list can be de�ned by

�
 �LENGTH� � �� �� ��h t� LENGTH�CONS h t� � SUC�LENGTH t��

Here the empty list NIL is written as � � Besides� the list of elements x� � x� � � � � �
xn is often written as
�x��x��� � ��xn
 instead of
CONS x��CONS x� �� � ��CONS xn

NIL�� � ���
� The list type is a built�in type in HOL and this syntactic sugar is provided
by the HOL parser and pretty�printer �GM�
��

We can use the type of lists as the underlying type of various kinds of cpos of lists�
The simplest one of these is the discrete cpo of lists� for instance

�
 nlist � discrete�UNIV��num�list
�bool�

which consists of all �nite lists of natural numbers� The constant UNIV speci�es the
universal set� i�e� the set of all elements of some type� and it is de�ned in the pred sets

library� So� two lists
CONS x l
 and
CONS x� l�
 of the cpo nlist are related i�
they are equal �by de�nition of the discrete construction� see section
���
�� Since CONS

is one�one this is the same as

�
 �x x� l l�� �CONS x l � CONS x� l�� � �x � x�� �� �l � l��

By induction we conclude that two lists in nlist are related i� they have the same
length and contain the same elements �in the same order��

This construction does not always work� Imagine� for instance� we wish the elements
of the lists to be in the lifted cpo of natural numbers� Then it would be too strong
to require elements are the same and more reasonably to allow one list to approximate
another of the same length if its elements approximates� or are related to� the elements
of the other list� Note that this also matches with nlist above� The elements of the
lists in nlist are natural numbers which constitute a discrete cpo� Thus� two natural
numbers are related i� they are the same� as in nlist � Using the discrete construction
on a �subset of a� recursive type imposes the discrete ordering not only on the type itself
but also on its argument types �which is the natural numbers above��

We can de�ne a relation for �nite lists of elements of some cpo using primitive recursion
as follows

�
 ��D l� list�rel D � l � �l � � �� ��

��D h t l�

list�rel D�CONS h t�l �

��h� t�� �l � CONS h� t�� �� rel D h h� �� list�rel D t t���

Then two lists are related i� one of the following equations holds

�
 �D� list�rel D � �

�
 �D h h� t t��

list�rel D�CONS h t��CONS h� t�� � rel D h h� �� list�rel D t t�

That is� two lists are related i� they have the same length and their elements are related�
just as we desired� Using this relation we can de�ne a constant list as follows

�
 �D� list D � �l � �list�set l� subset D��list�rel D

where list set is used to obtain the set of elements of a list

�
 �list�set� � ��� ��

��h t� list�set�CONS h t� � h INSERT�list�set t��

The constant INSERT extends a set with an element �if the element is not in the set
already�� Then list can be proved to be a cpo constructor just like the constructors
de�ned in section
���

�
 �D� cpo D ��� cpo�list D�

That is� if D is a cpo then
list D
 is also a cpo�
As mentioned above� the discrete cpo of lists of natural numbers called nlist is just

a special case of the list cpo� An equivalent de�nition to the one above is

�
 nlist � list Nat

assuming Nat is the discrete cpo of natural numbers� The cpo of lists of lifted natu�
ral numbers is the cpo
list�lift Nat�
� The elements of lists can be anything� for
instance� continuous functions as in
list�cf�Nat�lift Nat��
 or lists of continuous
functions as in
list�list�cf�Nat�lift Nat���
�

Elements of a cpo
list D
 can be constructed using NIL and CONS � We can prove
the empty list is in any list cpo

�
 �D� � ins �list D�

and similarly for CONS

�
 �D x l� x ins D ��� l ins �list D� ��� �CONS x l� ins �list D�

provided its arguments belong to the right cpos�
The constructor Cons preserves both the list ordering and lubs of chains of lists� But

since CONS is not determined we cannot prove it is a continuous function in

cf�D�cf�list D�list D��

assuming D is a cpo� However� it is easy to de�ne a determined and therefore continuous
version of CONS using the dependent lambda abstraction as follows

�
 �D� ConsI D � lambda D��x� lambda�list D���l� CONS x l��

We shall often use the lambda abstraction in this way to obtain continuous �determined�
constructors�

The cpos of lists constructed using list do not contain a bottom element� There�
fore list does not correspond to the SML type constructor for �nite lists above �recall
that Cons applied to an unde�ned element yields unde�ned�� In general� SML types
correspond to pointed cpos since computations may be non�terminating�

We can add a bottom element to a list cpo simply by lifting the cpo� In this way
we obtain a cpo constructor for semi�strict �or tail�strict� lists�

�
 �D� sslist D � lift�list D�

We call such lists for �semi�strict� because lists are either bottom or �nite lists� never
partial lists� The lists are not head�strict since the elements of a lifted list may be bottom
�if they are elements of a pointed cpo�� This is re!ected in the following de�nition of a
constructor for semi�strict lists

�
 �D�

ssConsI D �

lambda D

��x�

ExtI�list D�sslist D�

�lambda�list D���l� Lft�CONS x l����

It is strict in its second argument due to the use of ExtI � not in its �rst� It is continuous�
proved directly from the de�nition of continuity�

Strict lists correspond to semi�strict lists where the element cpo is a pointed cpo and
where all lists have only de�ned elements� Thus a cpo constructor for strict lists can be
de�ned from the constructor for semi�strict lists as follows �as a sub�cpo�

�
 �E�

slist E �

�l � l ins sslist E �� ��bottom E� IN �lift�case��list�set l���

rel�sslist E�

where lift case is a cases construction �or an eliminator functional� for the lifted type
de�ned by

�
 ��a f� lift�case a f Bt � a� ��

��a f x� lift�case a f �Lft x� � f x�

It is used to extend list set to lifted lists� We can prove that provided the argument
of slist is a pointed cpo it returns a pointed cpo�

A strict list is either the bottom list Bt � the empty list Lft � or a list of the form

sConsI E x l
 where x is a non�bottom element of E and l is a strict list but not
Bt � This means the strict list constructor sConsI must be strict in both its �rst and its
second argument�

�
 �E�

sConsI E �

lambda E

��x�

lambda�slist E���l� ��x � bottom E� �� Bt � ssConsI E x l���

Recall that ssConsI is strict in its second argument �corresponding to the list argument��
We can prove sConsI is a continuous constructor for strict lists�

�
 �E� pcpo E ��� �sConsI E� ins �cf�E�cf�slist E�slist E���

This is done using the de�nition of continuity �and a number of lemmas��

����� Trees

The method used above to construct cpos based on a recursive type de�nition does not
apply to lists only� As another example we consider binary trees in this section�

We can de�ne a type of binary labeled trees applying the type de�nition tools to the
following type speci�cation

btree ��� LEAF 	 � NODE 	 btree btree

The type we obtain contains all �nite trees where non�leaf and leaf nodes have the same
type of elements� Based on this type we can obtain the cpo of binary trees of natural
numbers and other discrete cpos� simply by using the discrete construction�

If we wish elements to belong to cpos with a non�trivial partial order we must de�ne
a cpo constructor for binary trees

�
 �D� btree D � �t � �btree�set t� subset D��btree�rel D

where btree set and btree rel are de�ned by primitive recursion as follows

�
 ��x� btree�set�LEAF x� � �x�� ��

��x t� t��

btree�set�NODE x t� t�� �

x INSERT��btree�set t�� UNION �btree�set t����

�
 ��D x�

btree�rel D�LEAF x�t � ��x�� �t � LEAF x�� �� rel D x x��� ��

��D x t� t��

btree�rel D�NODE x t� t��t �

��x� t�� t���

�t � NODE x� t�� t��� ��

rel D x x� �� btree�rel D t� t�� �� btree�rel D t� t����

The binary tree relation de�nes that two binary trees t� and t� of elements of some
cpo D are related i� the trees have the same size and shape and each label of a node
�or leaf� of t� is related to the label of the corresponding node �or leaf� of t� � If we
instead de�ned btree such that the type of labels at the nodes and the leafs was not
the same then btree would become a binary operator� taking two cpos as arguments�
We would de�ne two functions constructing a set for each di�erent kind of labels and the
relation would use the underlying relation of the two cpo arguments�

A semi�strict cpo of binary trees can be obtained by lifting the cpo of �nite trees �just
as above for lists�

�
 �D� ssbtree D � lift�btree D�

and continuous constructors can be obtained from the �non�determined� constructors for
�nite trees

�
 �D� ssLeafI D � lambda D��x� Lft�LEAF x��

�
 �D�

ssNodeI D �

lambda D

��x�

ExtI�btree D�cf�ssbtree D�ssbtree D��

�lambda�btree D�

��t��

ExtI�btree D�ssbtree D�

�lambda�btree D���t�� Lft�NODE x t� t�������

�Semi�strict� means here that �the constructors of� binary trees are only strict in their
recursive components such that there are no partial trees� Strictness of ssNodeI is
ensured by the use of ExtI �

A cpo of binary trees with strict constructors can now be obtained by de�ning an
appropriate subset �sub�cpo� of the semi�strict cpo of binary trees�

�
 �E�

sbtree E �

�t � t ins�ssbtree E� �� ��bottom E� IN�lift�case��btree�set t���

rel�ssbtree D�

The constant lift case was de�ned in the previous section� The semi�strict constructors
are used to de�ne the strict constructors as follows

�
 �E� sLeafI E � lambda E��x� ��x � bottom E� �� Bt � ssLeafI E x��

�
 �E�

sNodeI E �

lambda E

��x�

lambda�sbtree E�

��t��

lambda�sbtree E�

��t�� ��x � bottom E� �� Bt � ssNodeI E x t� t�����

Note we only check for strictness on the �rst argument of sNodeI since ssNodeI is
strict in its second and third arguments� not counting the cpo parameter� �And similarly
for sLeafI ��

��� In�nite Sequences

In the previous section we showed how strict datatypes can be represented as �nite�
valued recursive domains in HOL� In lazy functional languages like Miranda datatypes
may contain in�nite values� e�g� an in�nite�length sequence� The approach above does not
allow in�nite values since the type de�nition package only constructs �nite�size datatypes�
So a datatype speci�cation in Miranda cannot be represented by a �nite�valued recursive
domain�

In this section we show how we can obtain constructors for cpos of lazy sequences and
lazy lists in HOL by identifying what are the �nite and what are the in�nite values� We
then use the type de�nition package to obtain the �nite values and represent the in�nite
values by functions� We �rst present a constructor for cpos of lazy sequences which contain
partial and in�nite sequences of values �see section ����
�� Then a constructor for cpos

Q

of lazy lists is presented �see section ������� In addition to partial and in�nite sequences�
lazy lists may be �nite sequences� Partial sequences� and partial values in general� are
�nite values in the sense that they are �nitely�generated�

����� Lazy Sequences

A lazy sequence is a partial or in�nite sequence of elements of the same type� There is
only one constructor for sequences Cons seq which takes two arguments� an element of
some type and a sequence of elements of this type� There is no constructor for the empty
sequence and therefore no �nite sequences� Partial sequences arise by applying Cons seq

a �nite number of times to the bottom sequence� for instance

Cons�seq x��Cons�seq x������Cons�seq xn Bt�seq������

where x� � � � � � xn are elements of the same type� So Cons seq is non�strict in its
second argument and in fact also in its �rst argument�

We would like to introduce a constructor for pointed cpos of lazy sequences� The
elements of a sequence should all be elements of the same cpo� Thus� we wish to de�ne a
cpo constructor for lazy sequences which takes a cpo as an argument and returns a cpo
of lazy sequences of elements of that cpo� Once we have proved this constructor applied
to any cpo yields a pointed cpo we can write in�nite sequences by taking �xed points of
continuous functions which use the sequence constructor�

There are two kinds of sequences� there are partial sequences and in�nite sequences�
These are represented by di�erent HOL types� Partial sequences are �nite values and
can be represented by lists where the empty list is interpreted as the bottom sequence�
In�nite sequences are in�nite values which can be represented by HOL functions from
natural numbers to any type� We can introduce a type of sequences in HOL by taking
the disjoint sum of these types as follows

seq � pars �	�list � infs num
�	

where pars abbreviates �partial sequence� and infs abbreviates �in�nite sequence��
Such a type is most conveniently introduced using the type de�nition package even though
it is not recursive� The bottom sequence is de�ned by

�
 Bt�seq � pars�

Once we have de�ned the cpo of lazy sequences we can prove Bt seq is the bottom w�r�t�
the underlying ordering relation� The constructor for sequences is de�ned by cases on the
sequence type

�
 ��x l� conss x�pars l� � pars�CONS x l�� ��

��x f� conss x�infs f� � infs��n� ��n � �� �� x � f�n
 �����

Note that the �rst element of an in�nite sequence is at the index � � We can prove
conss and Bt seq are distinct �for any arguments of conss � and conss is one�one�
Lazy sequences are exhaustive� i�e� all elements of the sequence type can be written using
conss and Bt seq � The constructor Cons seq is de�ned as a determined version of
conss below and it therefore inherits these properties�

Before we can de�ne the cpo constructor for lazy sequences we must de�ne the un�
derlying relation� This is done by de�ning three relations which state when two partial
sequences are related� when a partial sequence is related to an in�nite sequence and
when two in�nite sequences are related� The relation for partial sequences is de�ned by
primitive recursion on lists as follows

�
 ��D l� psrel D� l � T� ��

��D x l� l��

psrel D�CONS x l��l� �

��y l��� �l� � CONS y l��� �� rel D x y �� psrel D l� l����

So a partial sequence approximates another when their elements are related and the latter
contains at least as many elements� The relation for partial and in�nite sequences is also
de�ned by primitive recursion

�
 ��D f� pisrel D� f � T� ��

��D x l f�

pisrel D�CONS x l�f � rel D x�f �� �� pisrel D l��n� f�n � ����

A partial sequence of length n is related to an in�nite sequence if its elements are related
to the �rst n elements of the in�nite sequence� Two in�nite sequences are related if their
elements are related

�
 �D f� f�� isrel D f� f� � ��n� rel D�f� n��f� n��

Finally� the relation for arbitrary sequences is de�ned by cases as follows

�
 �D s s��

seq�rel D s s� �

��l l�� �s � pars l� �� �s� � pars l�� �� psrel D l l�� ��

��l f� �s � pars l� �� �s� � infs f� �� pisrel D l f� ��

��f f�� �s � infs f� �� �s� � infs f�� �� isrel D f f��

and the cpo constructor for lazy sequences can be de�ned by the following theorem

�
 �D� seq D � �s � �seq�set s� subset D��seq�rel D

where seq set de�nes the set of elements of a sequence

�
 ��l� seq�set�pars l� � �x � MEMBER x l�� ��

��f� seq�set�infs f� � �f n � � �� n��

We have proved seq is a constructor for pointed cpos with bottom element Bt seq

�
 �D� cpo D ��� pcpo�seq D�

�
 �D� bottom�seq D� � Bt�seq

So for any cpo D the term
seq D
 is a pointed cpo�
Instead of giving the details of the proof of the fact that seq is a cpo constructor

we provide a short overview below� It is fairly straightforward to prove that
seq D
 is
a partial order provided D is� Then we show that a chain of sequences can have one of
three di�erent forms�

Q

�
 �D X�

po D ���

chain�X�seq D� ���

��n L�

�csuffix�X�n� � ��m� pars�L m��� ��

��m� LENGTH�L m� � LENGTH�L ���� ��

��n L�

�csuffix�X�n� � ��m� pars�L m��� ��

��m� �k� m � �LENGTH�L k���� ��

��n G� csuffix�X�n� � ��m� infs�G m���

Either it consists of partial sequences which have constant length from a certain point� or
it consists of partial sequences such that the length of the sequences is unbounded� or it
consists of in�nite sequences from a certain point� In the �rst case the least upper bound
of the chain is a partial sequence� In the second and the third case the lub is an in�nite
sequence� though it is constructed di�erently in each of the two cases� The second case is
interesting because the lub of a chain of partial sequences is not only an in�nite sequence
but any in�nite sequence is equal to the lub of such a chain� In other words� any in�nite
sequence can be approximated by partial sequences�

In all three cases the lub is constructed elementwise� i�e� the �rst element of the lub is
the lub of all �rst elements of the sequences� and so on� The lub constructor for the �rst
case is de�ned by primitive recursion on the natural numbers

�
 ��D L� pslub D L � � � � ��

��D L n�

pslub D L�SUC n� �

CONS�lub�cset��m� HD�L m���D���pslub D��m� TL�L m��n��

�
 �D X n L�

cpo D ���

chain�X�seq D� ���

�csuffix�X�n� � ��m� pars�L m��� ���

��m� LENGTH�L m� � LENGTH�L ��� ���

�pars�pslub D L�LENGTH�L ����� is�lub �cset X�seq D�

Here we exploit the length of the sequences is constant from a certain point and that the
lub of a chain is the same as the lub of any su�x of the chain� In the second case the n�th
element of the lub �which is an in�nite sequence� is de�ned as the lub of n�th elements of
those sequences which have at least n elements

�
 �L n�

min�index�L�n� �

��m� n � �LENGTH�L m�� �� ��k� n � �LENGTH�L k�� ��� m �� k��

�
 �D L�

pislub D L �

��n� lub�cset��m� EL n�L�m � �min�index�L�n������D��

�
 �D X n L�

cpo D ���

chain�X�seq D� ���

�csuffix�X�n� � ��m� pars�L m��� ���

��m� �k� m � �LENGTH�L k��� ���

�infs�pislub D L�� is�lub �cset X�seq D�

The constant min index is de�ned to choose the least index for which the length of a
sequence �i�e� of a list� is greater than some number� Finally� in the third case the n�th
element of the lub is simply the lub of the n�th indices of all functions

�
 �D G� islub D G � ��n� lub�cset��m� G m n��D��

�
 �D X n G�

cpo D ���

chain�X�seq D� ���

�csuffix�X�n� � ��m� infs�G m��� ���

�infs�islub D G�� is�lub �cset X�seq D�

The fact that
seq D
 is a cpo provided D is� follows immediately from these theorems
using the chain cases theorem above�

Next� we de�ne a lazy continuous constructor for sequences simply by turning the
constructor conss de�ned above into a determined function using the dependent lambda
abstraction

�
 �D� Cons�seqI D � lambda D��x� lambda�seq D���s� conss x s��

�
 �D� cpo D ��� �Cons�seqI D� ins �cf�D�cf�seq D�seq D���

This constructor behaves as desired� It is di�erent from the bottom sequence�

�
 �D x s� x ins D ��� s ins �seq D� ��� ��Cons�seqI D x s � Bt�seq�

it is one�one�

�
 �D x x� s s��

x ins D ���

x� ins D ���

s ins �seq D� ���

s� ins �seq D� ���

��Cons�seqI D x s � Cons�seqI D x� s�� � �x � x�� �� �s � s���

and it makes sequences satisfy the exhaustion �or cases� axiom�

�
 �D s�

s ins �seq D� �

�s � Bt�seq� ��

��x s�� x ins D �� s� ins �seq D� �� �s � Cons�seqI D x s���

Any sequence is either the bottom sequence or it can be constructed using Cons seq �
These facts are derived easily from the corresponding facts about conss� Note that just
as in names of the function constructors described in section
�� we use an I as the
last letter of the name of the sequence constructor� This indicates that Cons seqI is
the internal name of the sequence constructor which at the external� or interface� level is
called Cons seq �see chapter ���

We can derive the structural induction theorem �in the sense of Paulson �Pa���� for
lazy sequences from �xed point induction�

Q

�
 �D P�

cpo D ���

inclusive�P�seq D� ���

P Bt�seq ���

��x s�� x ins D ��� P s� ��� P�Cons�seqI D x s��� ���

��s� s ins �seq D� ��� P s�

Partial sequences are obtained by application of Bt seq and a �nite number of applica�
tions of Cons seq � Therefore� the conclusion holds for partial sequences by the Bt seq

and Cons seq premises� By the inclusiveness premise it also holds for in�nite sequences
since inclusiveness states it holds for lubs of chains of partial sequences� The proof is
conducted using the reachability theorem about lazy sequences

�
 �D� cpo D ��� ��s� s ins �seq D� ��� �CopyI D s � s��

and then using �xed point induction on the copying function of this theorem which is
de�ned as a �xed point as follows

�
 �D�

Copy�FUNI D �

lambda

�cf�seq D�seq D��

��f�

Seq�whenI

�D�seq D�

�lambda D��x� lambda�seq D���s� Cons�seqI D x�f s�����

�
 �D� CopyI D � FixI�cf�seq D�seq D���Copy�FUNI D�

The eliminator functional for sequences used in the de�nition of the copying functional
above was de�ned by

�
 �D E�

Seq�whenI�D�E� �

lambda

�cf�D�cf�seq D�E���

��h�

lambda�seq D�

��s� ��s � Bt�seq� �� bottom E � h�hds s��tls s����

where the constants hds and tls were de�ned such that the following theorems hold

�
 �x s� hds�conss x s� � x

�
 �x s� tls�conss x s� � s

The following theorems show in a more readable way how the eliminator works on se�
quences

�
 �D E h�

h ins �cf�D�cf�seq D�E��� ��� �Seq�whenI�D�E�h Bt�seq � bottom E�

�
 �D E h x s�

h ins �cf�D�cf�seq D�E��� ���

x ins D ���

s ins �seq D� ���

�Seq�whenI�D�E�h�Cons�seqI D x s� � h x s�

And then of course it is continuous

�
 �D E�

cpo D ���

pcpo E ���

�Seq�whenI�D�E�� ins �cf�cf�D�cf�seq D�E���cf�seq D�E���

which implies that the copying functional and the copying function itself are also contin�
uous�

To sum up� we have de�ned a constructor for pointed cpos of lazy sequences and
a continuous constructor function for lazy sequences� Further� a structural induction
theorem was derived from �xed point induction for proving inclusive properties of lazy
sequences� i�e� structural induction is used to prove the property holds of all �nite values�
The inclusiveness ensures the property holds also of all in�nite values�

����� Lazy Lists

Lazy lists are a kind of lazy sequences which in addition to partial and in�nite sequences
contain �nite sequences� Thus lazy lists have a constructor for the empty sequence and
lazy sequences do not� This makes lazy lists so similar to the lazy sequences de�ned in the
previous section that a constructor for cpos of lazy lists can be obtained simply by editing
the ��� pages each consisting of �
 lines� proof script for lazy sequences and adding a
new case for �nite lists here and there �the resulting proof script was �� pages long�� The
editing was only non�trivial in a few places�

In fact� editing was so simple not only due to the fact that lazy lists and lazy sequences
are so similar� It was also because �nite sequences can be represented in the same way
as partial sequences� by �nite HOL lists� Thus facts proved about lazy lists have similar
proofs for partial and �nite sequences �in most cases��

The �nite values of the type of lazy lists� which we shall use as the underlying type
of the cpo constructor� come from both the partial and the �nite sequences� These are
therefore represented by a HOL datatype� namely lists� In�nite lists are in�nite values
and these are represented by functions� The type of lazy lists is de�ned using the type
de�nition package as follows

llist � par �	�list � fin �	�list � inf num
�	

where par � fin and inf correspond to the three di�erent kinds of lazy lists� The
bottom lazy list is de�ned by

�
 Bt�llist � par�

and the constructors for empty and non�empty lazy lists are de�ned by

Q

�
 Nil�llist � fin�

�
 ��x l� ll�cons x�par l� � par�CONS x l�� ��

��x l� ll�cons x�fin l� � fin�CONS x l�� ��

��x f� ll�cons x�inf f� � inf��n� ��n � �� �� x � f�n
 �����

These de�nitions are similar to the de�nitions of the corresponding constants for lazy
sequences� A determined version of ll cons is introduced below�

We now proceed as for lazy sequences by de�ning a number of di�erent ordering
relations

�
 ��D l� prel D� l � T� ��

��D x l� l��

prel D�CONS x l��l� �

��y l��� �l� � CONS y l��� �� rel D x y �� prel D l� l����

�
 ��D l� frel D� l � �l � � �� ��

��D x l� l��

frel D�CONS x l��l� �

��y l��� �l� � CONS y l��� �� rel D x y �� frel D l� l����

�
 ��D f� pirel D� f � T� ��

��D x l f�

pirel D�CONS x l�f � rel D x�f �� �� pirel D l��n� f�n � ����

�
 �D f� f�� irel D f� f� � ��n� rel D�f� n��f� n��

Here we de�ne four relations which is perhaps one less than one might think� The reason is
that prel can be used to relate a partial sequence to both a partial and a �nite sequence
since they are represented in the same way� The constant frel is used to relate �nite
lists and the constant pirel is used to relate partial and in�nite lists� Finally� the
constant irel is used to relate in�nite lists� The relation for lazy lists is de�ned by
cases as follows

�
 �D ll ll��

llist�rel D ll ll� �

��l l��

�ll � par l� ��

��ll� � par l�� �� �ll� � fin l��� ��

prel D l l�� ��

��l f� �ll � par l� �� �ll� � inf f� �� pirel D l f� ��

��l l�� �ll � fin l� �� �ll� � fin l�� �� frel D l l�� ��

��f f�� �ll � inf f� �� �ll� � inf f�� �� irel D f f��

Note that �nite lists must have the same length in order to be related� Otherwise� this
relation for lazy lists behaves just like the relation for lazy sequences� De�ning the set of
elements of a lazy list by the following theorem

�
 ��l� llist�set�par l� � �x � MEMBER x l�� ��

��l� llist�set�fin l� � �x � MEMBER x l�� ��

��f� llist�set�inf f� � �f n � � �� n��

we can introduce a constructor for pointed cpos of lazy lists as follows

�
 �D� llist D � �ll � �llist�set ll� subset D��llist�rel D

If D is a cpo then
llist D
 is a cpo with bottom Bt llist �

�
 �D� cpo D ��� pcpo�llist D�

�
 �D� bottom�llist D� � Bt�llist

Thus it is a pointed cpo� The proof of this fact is similar to the proof of the cpo fact
about lazy sequences� The chain cases theorem has an extra case here corresponding to
the chain consisting of only �nite lists from a certain point�

A continuous constructor for non�empty lazy lists is de�ned using the lazy list con�
structor ll cons above and the dependent lambda abstraction

�
 �D�

Cons�llistI D � lambda D��x� lambda�llist D���ll� ll�cons x ll��

�
 �D� cpo D ��� �Cons�llistI D� ins �cf�D�cf�llist D�llist D���

Thus it is distinct from both the bottom list and the empty list �which are also distinct�
and it is one�one� Besides it makes lazy lists satisfy the exhaustion axiom� stated as
follows

�
 �D s�

s ins �llist D� �

�s � Bt�llist� ��

�s � Nil�llist� ��

��x s�� x ins D �� s� ins �llist D� �� �s � Cons�llistI D x s���

An eliminator functional similar to the eliminator for lazy sequences has been de�ned
and the following theorems stating how it works have been proved

�
 �D E z h�

z ins E ���

h ins �cf�D�cf�llist D�E��� ���

�LList�whenI�D�E�z h Bt�llist � bottom E�

�
 �D E z h�

z ins E ���

h ins �cf�D�cf�llist D�E��� ���

�LList�whenI�D�E�z h Nil�llist � z�

�
 �D E z h x s�

z ins E ���

h ins �cf�D�cf�llist D�E��� ���

x ins D ���

s ins �llist D� ���

�LList�whenI�D�E�z h�Cons�llistI D x s� � h x s�

Of course the eliminator is continuous too�

�
 �D E�

cpo D ���

pcpo E ���

�LList�whenI�D�E�� ins

�cf�E�cf�cf�D�cf�llist D�E���cf�llist D�E����

The structural induction theorem for lazy lists has also been proved�

�
 �D P�

cpo D ���

inclusive�P�llist D� ���

P Bt�llist ���

P Nil�llist ���

��x s�� x ins D ��� P s� ��� P�Cons�llistI D x s��� ���

��s� s ins �llist D� ��� P s�

In the same way as for lazy sequences it has been proved using a reachability result about
lazy lists

�
 �D� cpo D ��� ��s� s ins �llist D� ��� �Copy�llistI D s � s��

stating all lazy lists can be reached by a recursive copying function de�ned using the �xed
point operator�

��� In�nite Labeled Trees

Unfortunately� this way of taking the union of the various kinds of elements of lazy
datatypes works well only for fairly simple recursive types as lazy sequences
��	�seq
�
For instance� a type supporting cpos of lazy trees should allow one tree to contain both
partial� �nite and in�nite subtrees at the same time� So it is more di�cult to classify the
di�erent kind of elements�

In the following sections� we describe a more uniform approach than the previous
one� de�ning �type predicates� for lazy datatypes as subsets of a type predicate for in�nite
labeled trees� Note that we do not actually de�ne types for in�nite trees or new datatypes�
Instead we work directly with type predicates �close terms� which could be used to de�ne
the types� Also note the di�erence between a recursive datatype �predicate� and the
corresponding recursive domain� the underlying set of which is based on a subset of this
type �predicate�� The recursive datatype itself has no value in itself� since its partial
elements can only be interpreted in a domain theoretic setting� Therefore the in�nite
trees have no value for de�ning recursive types in pure HOL�

Tom Melham implemented the type de�nition package �Me��� for de�ning certain
concrete recursive datatypes in HOL� The type de�nition tool de�nes the user�speci�ed
datatype as a type in HOL by representing it as a subset of a type of labeled trees� The
result is an axiomatization of the new type as an initiality theorem stating how to de�ne
primitive recursive functions over the type�

Labeled trees are �nite trees� i�e� they are �nitely�branching and all branches are �nite�
Therefore� the type of labeled trees cannot be used to represent any in�nite values� For
instance� a type of in�nite sequences cannot be de�ned using the type de�nition package�
If we extend the type of labeled trees with in�nite trees it becomes possible to use labeled
trees to de�ne in�nite�valued datatypes as well as �nite�valued datatypes� However� we
loose the initiality �well�foundedness� property�

So� it is not possible to de�ne HOL functions over in�nite trees by a kind of primitive
recursion since the recursion might not terminate �remember all HOL functions must be
total�� This is where domain theory comes in useful� If we can prove some subset of a

type of in�nite labeled trees equipped with a certain ordering is a pointed cpo then we
can de�ne recursive functions on trees using the �xed point operator�

In order to be a pointed cpo� a domain� and hence the underlying type� of in�nite
trees should contain partial trees as well �nite and in�nite trees� Then an in�nite tree
can be computed by taking the �xed point of a continuous function� i�e� by taking the
lub of its �nite approximations which are the partial trees� Finite trees correspond to
Melham�s labeled trees and partial trees are a kind of �nite trees where one or more leaf
nodes are partial nodes� An in�nite tree is a ��nitely�branching� tree which contains an
in�nite branch�

����� A Type of In	nite Trees

Melham �rst constructs a type of unlabeled trees and then de�nes a type of labeled trees
as a subset of pairs of unlabeled trees and lists� The list associated with an unlabeled
tree contains the labels on the nodes� corresponding to a depth��rst �preorder� traversal
of the tree�

Below we de�ne labeled trees directly without constructing unlabeled trees �rst and
we do not actually de�ne a type of labeled trees� We �nd it is easier to have direct access
to the representing type since our trees are non�wellfounded� For the same reason we do
not de�ne unlabeled trees �rst� If we did we would have to use in�nite lists to represent
all labels �our trees may be in�nite�� Then a depth��rst traversal of trees is not possible
since a tree may contain an in�nite branch� Instead we could use a breath��rst traversal
which is more complicated�

In�nite ��nitely�branching� labeled trees containing partial� �nite and in�nite trees
can be represented as sets of nodes �similar yet di�erent approaches to represent �nite
and in�nite trees in set theoretic settings are presented in �Gu�
� Pa�
��� A node is a pair
consisting of a path and a label� A path is a list of numbers indicating which branches
lead to the node� starting at the root of the tree� A label can be a !ag� stating the node
is a partial node� or some value� Below we use the following syntactic sugar

�	�node �� �num�list � �	�label

The label type is de�ned as follows

label � NOLBL � LBL 	

using the type de�nition package� So the label type is really just the disjoint sum type
of
�one
 and
�	
� It is isomorphic to the lifting of a type �de�ned in section
�����
so this could have been used instead� We do not do this because we want to distinguish
the situations where we lift and where we label a type� Besides the ordering relations of
the cpo constructions which are based on the two types are di�erent since NOLBL is not
treated as a bottom �like Bt is��

label D �

�NOLBL� UNION �LBL a � a ins D��

�l l��

�l � NOLBL� �� �l� � NOLBL� ��

��a a�� �l � LBL a� �� �l� � LBL a�� �� rel D a a��

The ordering on the label construction on cpos re!ects that the label type is just a kind
of tagging� We will use LabelI as the continuous version of LBL de�ned by using the
dependent lambda abstraction to obtain a determined function �in the same way as we
have seen several times in this chapter�� It is a continuous function from any cpo to
the cpo of labels of that cpo and it is parameterized by that cpo �like other function
constructors�� It is used together with a continuous constructor for in�nite trees to de�ne
continuous constructors for new recursive domains�

If a node has the form
�p�LBL v�
 for a path p and some value v we say the node
is a labeled node� If a node has the form
�p�NOLBL�
 for a path p we say the node is
an unlabeled node� or a partial node�

So� our representing type of in�nite labeled trees is the type of sets of nodes
��	�node

� bool
� This type is very large� It contains all partial� �nite and in�nite labeled trees�
both �nitely� and in�nitely�branching� and it contains junk elements which cannot be
interpreted as trees at all� We construct a set of trees which contain the various kinds of
trees just mentioned �excluding the junk elements�� by de�ning a predicate Is tree on
the type above� So� the type of Is tree is
���	�node
� bool�
� bool
 and it can
be de�ned by

Is�tree tr �

��l� �� �l� IN tr� ��

��p p� l� ��p� � � � �� �p��p��l� IN tr ��� �v� �p�LBL v� IN tr� ��

��p l l�� �p�l� IN tr �� �p�l�� IN tr ��� �l � l���

where we use �� for appending lists �instead of the constant APPEND �� The �rst condition
says that a tree must have a root node� The second condition says that all paths must
be pre�x closed� i�e� for any node �di�erent from the root� which is in the tree there is a
labeled node for each branch on the path from the root to that node� The last condition
ensures labels are unique so there are exactly one root node and exactly one node� and
this is a labeled node� for each branch on a path to any node�

Since we wish to �nd a way of constructing in�nite versions of Melham�s concrete
recursive datatypes� we do not need the trees which are in�nitely�branching� Let us
therefore de�ne a type of in�nite �nitely�branching labeled trees as the following subset
of the type of in�nite labeled trees de�ned above

Is�infinite�tree tr �

Is�tree tr ��

��p l�

�p�l� IN tr ��� �k� �n � �l�� �SNOC n p�l�� IN tr� � �������k�� ��

��m� �n p l� �CONS n p�l� IN tr ��� n��m�

The constant SNOC does the opposite of CONS � it adds an element at the tail of a list�
Note that in addition to requiring that each node has �nitely many subtrees we require the
subtrees are enumerated by counting from zero up to some number� The last condition
says that there is an upper limit on the number of subtrees of all nodes of a tree� If we
did not have this condition then trees might be of in�nite width even though they are
�nitely�branching� It is necessary in order for in�nite trees to be a cpo �lubs of chains of
trees must be trees��

The predicate Is infinite tree can be used to de�ne a type of in�nite trees since it
speci�es a non�empty subset of an existing type� namely the type
���	�node
� bool�

� bool
� However� we shall not do so here since it is convenient to use the representing
type when we de�ne the constructors below� De�ning a type is just naming some subset
of an existing type� This is convenient in some situations� not in others�

����� A Pointed Cpo of In	nite Trees

It is essential that a subset of the �type� of in�nite trees with some ordering constitutes a
pointed cpo� This allows us to write recursive functions that compute in�nite trees� using
the �xed point operator� Moreover� we will prove that the new recursive datatypes we
de�ne as subsets of the type of in�nite trees become pointed cpos with the same ordering
relation and the same bottom	 they are so�called sub�cpos� Thus� we can also de�ne
recursive functions on new recursive domains using the �xed point operator�

The ordering should support the intuition that a partial node can approximate any
tree� So if some path ends at a partial node of a tree then we obtain a more de�ned tree
by replacing that node with an arbitrary tree� A node which is not a partial node� i�e�
it is a labeled node� cannot be made more de�ned as a tree� The de�nition of a partial
ordering trel for in�nite trees can therefore be de�ned as follows

trel tr tr� �

��p l�

�p�l� IN tr ���

�p�l� IN tr� �� ��l � NOLBL� �� ��v� �p�LBL v� IN tr���� ��

��p l�

�p�l� IN tr� �� ��p�l� IN tr ���

��p� p��� �p � p���p��� �� �p��NOLBL� IN tr��

This de�nition says that a tree tr approximates another tree tr� �recall trees are non�
empty sets� i� for all nodes of tr either they are also in tr� or they are partial nodes
that have been made more de�ned by some labeled node in tr� � �The second condition
above gives the �only if���

We can prove this ordering is a partial order and that there exists a least upper bound
for all chains of in�nite trees� calculated by

trel�union X � �node � �n� �m� node IN X�n�m��

Thus� the lub of a chain of in�nite trees is the set of nodes which are in all trees of the
chain from a certain point� Clearly� this is a tree� i�e� the set constructed satis�es the
predicate Is infinite tree �

The relation trel re!ects how one tree tr can approximate another tree tr� if tr

has a partial node� The tree tr� must contain the same nodes as tr except for those
nodes that appear in the subtree of tr� replacing the partial node in tr � In particular�
the labels of the nodes in tr� must be the same� This corresponds to requiring that
the cpo of labels is discrete� which is unfortunate of course if we wish the labels to be
elements of a cpo which is not� Then a node n� of tr should be able to approximate
a node n� of tr� if the label of n� approximates the label of n� � That is� we should
extend the relation trel above such that it allows a tree to approximate another if a
label of a node of the other is more de�ned than the corresponding node of the �rst tree�
This extension of trel is called itree rel and de�ned as follows

itree�rel D tr tr� �

��p� �p�NOLBL� IN tr ��� ��l�� �p�l�� IN tr��� ��

��p v� �p�LBL v� IN tr ��� ��v�� rel D v v� �� �p�LBL v�� IN tr��� ��

��p l�

�p�l� IN tr� �� ��p�l� IN tr ���

��p� p���

�p � p���p��� �� ��p��NOLBL� IN tr �� ��v� �p�LBL v� IN tr����

Assuming variables tr and tr� as above� note that if a node of tr� is not in tr

then this can be due to two situations� Either it is a node of a subtree of tr� which is
approximated by an unlabeled node of tr or the label of the node is approximated by
the label of the corresponding node in tr �

Now� let us de�ne a cpo of in�nite trees labeled by elements of some cpo� In other
words� we will de�ne a cpo constructor for in�nite trees just as we de�ned constructors
for continuous functions� products and lazy lists� We call this construction itree and
de�ne it as follows

itree D �

�tr � Is�infinite�tree tr �� �label�set tr� subset D��

itree�rel

where the set of labels of a tree is de�ned by

label�set tr � �v � �p� �p�LBL v� IN tr�

The least upper bound of the cpo of in�nite trees is now calculated�

itree�lub D X �

��p�NOLBL� � �m� �p�NOLBL� IN X m� UNION

��p�LBL�lub�cset vchain� D�� �

�n� ��v� �p�LBL v� IN X n� ��

�vchain � ��m� �v� �p�LBL v� IN �csuffix�X�n�m����

First we take the partial nodes that are in all trees of the chain� Then we add the least
upper bounds of all labeled nodes in all trees of the chain from a certain point� Note that
if a node is labeled in the n�th element of a chain of trees then it is labeled in all trees of
the n�th su�x of the chain� but the label may be increasing with respect to the ordering
on the cpo representing labels�

We can prove that itree is a cpo constructor and indeed yields a pointed cpo�

�D� cpo D ��� pcpo�itree D�

�D� bottom�itree D� � ��� �NOLBL��

Below we call the bottom element of the cpo of in�nite trees Bt node �

Bt�node � ��� �NOLBL��

Note that Bt node need not be parameterized by a cpo� It works for all cpos of labels�

node a �t��� t��� t�� �

�

root � a

� � �

number � � � �

� � �

subtree� t�� t�� t��

Figure ��
� The numbering of subtrees�

����� Constructors for In	nite Trees

We already de�ned one �constructor� for in�nite trees above� namely the bottom tree
Bt node � This is an element of the type of in�nite trees and of any cpo of in�nite trees as
well� Below we de�ne another constructor for in�nite trees which can be used to construct
both leaf and non�leaf nodes� but not partial nodes� From this constructor we obtain a
continuous constructor for the cpo of in�nite trees�

A node of an in�nite tree has a �nite number of subtrees� and these have numbers
counting from zero� We introduce the tree constructor node which takes a label for the
root node and a list of subtrees as arguments�

node a NIL � ��� �LBL a��

node a �CONS tr l� �

��CONS�LENGTH l�p�x� � �p�x� IN tr� UNION �node a l�

The branches �paths� out of a node constructed using node are numbered from zero
up to the number of subtrees minus one �see �gure ��
�� It does not matter that this is
actually in �reverse� order�

A node constructed using node and containing no subtrees is a labeled leaf node�
A partial node cannot be constructed using node so node and Bt node always yield
di�erent results�

�a trl� ��Bt�node � node a trl�

We can also prove that node is one�one �injective��

�a a� trl trl��

�node a trl � node a� trl�� ��� �a � a�� �� �trl � trl��

And �nally� in�nite trees satisfy the exhaustion axiom� i�e� any in�nite tree is equal to
Bt node or node for proper arguments to node �

�tr�

Is�infinite�tree tr �

�tr � Bt�node� ��

��a trl� EVERY Is�infinite�tree trl �� �tr � node a trl��

where EVERY is used to state that the predicate Is infinite tree holds for all elements
of a list of subtrees�

Assuming we have a cpo of labels we know in�nite tree with labels in that cpo is also
a cpo� We would like a continuous constructor NodeI for trees behaving like the node

constructor above� So� NodeI should be in the following continuous function space

NodeI D ins cf�D�cf�list�itree D��itree D��

and it can be de�ned as the lambda abstracted version of node �

NodeI D � lambda D��a� lambda�list�itree D����trl� node a trl��

Note that NodeI is parameterized by the domain D � The list cpo is simply a subset of
the HOL list type with the ordering that relates only lists of equal length whose elements
are related �see section ��
��

��� In�nite�valued Recursive Domains

Many recursive datatypes can be de�ned as subsets of the type of in�nite trees �as men�
tioned earlier� we do not actually de�ne the types� merely state the type predicate�� Below
we describe how lazy �in�nite� versions of the concrete recursive datatypes accepted by
Melham�s type de�nition package can be de�ned in HOL� Note however that these types
are not really useful as HOL types in themselves� e�g� the �partial� elements of the types
can only be interpreted in a domain theoretic setting� The only purpose of the types is
to serve as the underlying types of the recursive domains that we wish to de�ne� Once a
new datatype �predicate� has been de�ned� then the corresponding cpo constructor can
be de�ned too� This is done by de�ning the cpo as a sub�cpo �see page
��� of the cpo of
in�nite trees �the type is a subset of the type predicate for in�nite trees��

The motivation for de�ning the type �predicate� and the cpo of in�nite labeled trees
was that we can use these to de�ne new recursive lazy �in�nite� datatypes and cpos in
HOL� We can de�ne a type to represent lazy lists as a subset of the type of in�nite trees�
The cpo of lazy lists is de�ned as a sub�cpo of the cpo of in�nite trees� based on the type
of lazy lists	 using type predicates rather than real types ensures that lazy lists has the
same HOL type as in�nite trees� Any lazy version of a type speci�cation accepted by
the type de�nition package can be obtained in this way� These types can be described
informally by a type speci�cation of the following form �see Melham �Me����

rty ��� C� ty��� ��� ty��k� � � � � � Cm tym�� ��� tym�km

where each tyi�j is either an existing logical type �not containing rty � or is the type
expression rty itself� If the right�hand side contains n free type variables then rty is
an n�ary type operator�

We cannot use exactly the same approach as in �Me��� to represent the new recur�
sive datatypes since our trees may be �partial and� in�nite and the �niteness �well�
foundedness� of trees is exploited there� Below we �rst give an example showing how
we can introduce a type �predicate� and a cpo of lazy lists� Then we describe how the
method works in general for concrete recursive datatypes�

In de�ning subsets of in�nite trees which correspond to in�nite�valued datatypes we
shall use the notion of subtree� de�ned by

subtree tr tr� � �p� �p� l� �p��l� IN tr ��� �p��p��l� IN tr�

So a tree tr is a subtree of a tree tr� if the nodes of tr are present in tr� at the
same position �as in tr � relative to the root of tr �in tr� ��

����� Example
 Lazy Lists

Lazy lists can be described by the following type speci�cation

llist � nil � cons 	 llist

So apart from the bottom list� lazy lists have two constructors� one for the empty list and
one for adding an element to a list�

We can introduce a type predicate for lazy lists as a subset of the type predicate for
in�nite trees� More precisely� the representing �type� of lazy lists is

Is�infinite�tree� ��one � 	�node
� bool�
� bool

where the labels have type
�one � 	
� The label type is constructed from the type
speci�cation by taking the �rst component of the sum to be the type
�one
 because
nil takes no arguments and taking the second component to be
�	
 because the second
constructor takes elements of this existing type as arguments�

The bottom lazy list is simply the bottom node of in�nite trees� i�e� Bt node � We
can de�ne predicates to identify which trees correspond to the empty list nil and the
list constructor cons as follows

Is�nil v trl � �a� �v � LBL�INL a�� �� �LENGTH trl � ��

Is�cons v trl � �a� �v � LBL�INR a�� �� �LENGTH trl � ��

A node of the representing type of trees can be interpreted as the empty list if it has no
subtrees � nil takes no lists as arguments� and its label is in the left component of the
sum type� A node can be interpreted as a non�empty list if it has precisely one subtree
�since cons takes one lazy list as an argument� and its label is in the right component
of the sum type �corresponding to the �rst element of the resulting list��

The constructor predicates are used to de�ne precisely which subset of in�nite trees
corresponds to lazy list in the following way

Is�llist ll �

Is�infinite�tree ll ��

�ll � Bt�node� ��

��v trl� �node v trl� subtree ll ��� Is�nil v trl �� Is�cons v trl�

In order to interpret this de�nition recall that in�nite trees satisfy the exhaustion axiom
�constructors are onto�� That is� either a tree is equal to the bottom node or there exist
a label and a list of subtrees� each of which is an in�nite tree� such that it is equal to
the node with this label and list of subtrees� The second disjunct above states that for
any subtree of a tree the root node must be the empty list or a non�empty list� Thus all
nodes of a tree representing a lazy list is either a partial node� an empty list node with no
subtrees or a non�empty list node with precisely one subtree �the root of which is again
a node of the tree and so on��

Since we identify rather than actually de�ne types in HOL we avoid type abstraction
and representation functions in terms� If we wish we can introduce a type of lazy lists
without problems� It is less practical to de�ne a type of in�nite trees because we use the
set representation again and again�

We can now de�ne the cpo of lazy lists of elements of some cpo as a sub�cpo of a
certain cpo of in�nite trees

llist D �

�ll � Is�llist ll �� ll ins �itree�sum�One�D����

itree�rel �sum�One�D��

where One is the discrete universal cpo
discrete UNIV
 based on the type
�one
�
Note that the in�nite trees used here are labeled by elements of a sum cpo the underlying
type of which corresponds to the label type used above to identify the type of lazy lists�

The above de�nition of a type �and domain� of lazy lists guarantees that all nodes of
a non�bottom tree representing a non�bottom lazy list is a nil node or a cons node�
These constructors are de�ned by

nil � node�LBL�INL one���

cons h t � node�LBL�INR h���t

The constant cons is not determined but a determined and hence continuous version of
cons is obtained easily as follows

ConsI D �

lambda D

��a�

lambda�llist D�

��ll� NodeI�sum�One�D���LabelI�sum�One�D���InrI�One�D�a���ll ��

where we have exploited that NodeI has been proved once and forall to be a continuous
�determined� version of node used to de�ne cons �this saves proof commitments�� The
constant LabelI is a continuous version of the constant LBL �see page ����

We can prove the structural induction theorem for inclusive properties of lazy lists in
exactly the same way as for lazy lists in section ����
 using the copying function�

����� The Method in General

We will now describe how the denotations of lazy datatypes in general can be de�ned
using the type �predicate� and cpo of in�nite labeled trees� The method is exactly the
same as in the type de�nition package �Me���� i�e� we choose the labels and number of
subtrees of in�nite trees in the same way as the labels and number of subtrees of �nite
labeled trees are chosen there�

In general a type speci�cation takes the following form

rty ��� C� ty��� ��� ty��k� � � � � � Cm tym�� ��� tym�km

For the i�th constructor let pi stand for the number of existing types in the speci�cation
and let qi stand for the number of occurrences of rty � Thus� ki is equal to the sum of
pi and qi � The existing types may be polymorphic types or not� The type predicate and

the cpo constructor corresponding to the speci�cation will depend on the polymorphic
types�

The recursive type �predicate� corresponding to this type speci�cation can be intro�
duced as a subset of in�nite trees� The representing �type� has the following form

Is�infinite�tree� ���ty�����ty�������ty�����ty��node
� bool�
� bool

There are m elements of the sum� one for each constructor� The products of the sum
consist of p� � � � � � pm components� These components are the existing types in the
type speci�cation of each constructor� Thus� the name ty occuring in the label type is
used to indicate �some type� �in order to save indices�� Di�erent occurrence of ty may
correspond to di�erent types�

For each constructor we de�ne a predicate to specify which trees represent values
constructed by that constructor� The predicate for the i�th constructor is de�ned as
follows

Is�Ci v trl �

�x����xpi�

�v � LBL�INR�����INR�INL�x������xpi������ �� �LENGTH trl � qi�

There are i�
 occurrences of INR � If i is equal to m then the INL is omitted�
The recursive type corresponding to the speci�cation of rty can now be de�ned as

the following subset of in�nite trees

Is�rty tr �

Is�infinite�tree tr ��

�tr � Bt�node� ��

��v trl�

�node v trl� IN tr ��� Is�C� v trl �� � � � �� Is�Cm v trl�

Keep the restrictions imposed on trees by the predicate Is infinite tree in mind when
interpreting the second disjunct of this de�nition �see the example of section ����
�� It
states that all nodes of a tree must correspond to a node which has been constructed
using one of the constructors�

Some of the existing types of the type speci�cation may be polymorphic types� in�
volving say type variables ��� � � � � �n� For each type variable the cpo constructor for
the speci�cation becomes parameterized by a cpo variable with the type variable as the
underlying type� In order to de�ne the cpo constructor we must know the cpos corre�
sponding to the types of the speci�cation� The cpo of lazy elements of type Is rty can
be de�ned as follows

rty�D������Dn� �

ftr � Is�rty tr �� tr ins �itree�sum�prod������sum��������g�
itree�rel �sum�prod������sum�������

where the type of each variable Di is
���i�cpo
� which is a piece of syntactic sugar for
the type
���i
� bool� � ��i
� �i
� bool�
 �introduced in chapter
�� The sum
cpo of product cpos which is an argument of itree �and itree rel above is the cpo
of labels� The underlying type of this cpo was described above� Typically� sum types�
product types and function types in the type of labels are replaced by the corresponding

sum� product and function space constructions on cpos� respectively� The construction
introduced by this de�nition can be proved to be a construction on pointed cpos� by
proving that it yields a sub�cpo of the pointed cpo of in�nite trees for all arguments�

The constructors of the new recursive �type� are de�ned using the tree constructor
node and the injections INL and INR as follows

Ci xi�k� ��� xi�ki �

node�LBL�INR�����INR�INL�xi�yi�������xi�yi�pi�������xi�zi�������xi�zi�qi

where xi�yi�j corresponds to arguments which according to the type speci�cation have
an existing type� Conversely� xi�zi�j corresponds to arguments which according to the
type speci�cation are recursive� A continuous version of each constructor can be obtained
using the dependent lambda abstraction or by a de�nition corresponding to the one above
where continuous functions are used instead of the non�determined ones �see the example
of section ����
��

��� More General Domains

The type speci�cation accepted by the type de�nition package are limited in one way� If
we have a speci�cation of the form

rty ��� C� ty��� ��� ty��k� � � � � � Cm tym�� ��� tym�km

then the tyi�j must be an existing type or the type rty which is being speci�ed� Thus
rty must not occur within compound types like lists and function types� or even products�
However� this does not mean that it is not possible to de�ne such types �with certain
exceptions for the function space�� In a mail message to info
hol �Me�
� Melham
shows how to de�ne a recursive type data where the recursion is part of a compound
type of lists
��data�lists
 as a fairly simple generalization of the approach used in the
type de�nition package�

Gunter presents a di�erent approach based on a more general type of trees called

������bonzai
 �Gu�
� which consists of arbitrarily�branching but well�founded ��nite�
trees� represented as sets of nodes� Her approach allows mutual recursive de�nitions
and function types where the recursive type occurs on the right�hand side of outer�most
function arrows� The bonzai trees are a subset of the non�wellfounded broad trees�
Below� we extend broad trees to include partial trees and then obtain a cpo of broad
trees� We shall only sketch a few details below�

Before we turn to broad trees� note again that even though the methods of de�ning
lazy datatypes and cpos described above have certain limitations inherited from the type
de�nition package there are various ways to obtain more general types� A good place
to look before one starts to consider implementing any of the ideas presented here is in
Paulson�s paper �Pa�
� where he shows how to obtain datatypes with �nite and in�nite
values as least and greatest �xed points of monotone operators on sets� He also works
with trees represented as sets of nodes� Note however that he does not work with domains�
and therefore his trees does not contain partial nodes�

��
�� Broad Trees

First a type predicate for unlabeled trees is de�ned as a subset of sets of lists�

Is�unlabeled�tree tr � � IN tr �� ��p p�� �p��p�� IN tr ��� p IN tr�

So� an unlabeled tree is represented by a set of nodes of type
��	�list
� bool
 where
each node is a path from the root to that node� A path is a list of branch indices�

A labeling of an unlabeled tree assigns labels to the nodes of the tree� We let labelings
be partial functions of type
��	�list
� �		�upty
 where the type speci�cation of
upty is

upty � undef � up 	

such that the nodes for which they are de�ned �not equal to undef � correspond to
unlabeled trees�

Is�labeling l � Is�unlabeled�tree�part�fun�domain l�

It is straightforward to de�ne the constant part fun domain �

part�fun�domain l � �p � ��l p � undef��

Note that the type speci�cation of the upty is similar to the lty type operator de�ned
in section
���� and the label type operator de�ned in section ���� We prefer di�erent
names since they are used to do slightly di�erent things�

The predicate Is labeling de�nes the broad trees in the work by Gunter �Gu�
�� A
subset of the type of broad trees correspond to well�founded arbitrarily branching trees
called �bonsai� in �Gu�
� which are used to represent a generalization of Melham�s types�
However� we wish to be able to distinguish partial nodes from labeled nodes� Therefore
our broad trees will be a subset of an instance of labelings� de�ned as follows

Is�broad�tree �l��	�list
� ��		�label�upty� �

Is�labeling l ��

��p� �l p � up NOLBL� ��� �p�� ��p� � � � ��� �l�p��p�� � undef��

where the labels of trees have type
��		�label
� not
�		
 as in Gunter�s broad trees�
The second conjunct makes sure that partial nodes do not have subtrees� We will use the
following syntactic sugar for the �type� of broad trees

�	�		�brotr �� �	�list
� ��		�label�upty

The name brotr abbreviates �broad tree��
Next� we de�ne the ordering on broad trees which must enable us to de�ne a cpo

construction on broad trees�

brotr�rel D l l� �

��p� �l p � up NOLBL� ��� ��x� l p � up x�� ��

��p v�

�l p � up�LBL v�� ��� ��v�� rel D v v� �� �l� p � up�LBL v���� ��

��p�

p IN part�fun�domain l� �� �p IN part�fun�domain l ���

��p� p���

�p � p���p��� �� p� IN part�fun�domain l �� �l p� � NOLBL���

Hence� two broad trees l and l� are related if� and only if� a partial node of l is also
present as a node �partial or not� in l� � a labeled node of l is also a labeled node of
l� such that the labels are related� and a node in l� which is not a node in l belongs
to a subtree of l� replacing a partial node of l �

The construction on pointed cpos of broad trees is de�ned as follows

brotr D �

�l � Is�broad�tree l �� �brotr�label�set l� subset D�� brotr�rel D

where

brotr�label�set l � �v � �p� l p � up�LBL v��

Note that the cpo parameter of brotr corresponds to the cpo of labels whereas elements
of the branching type
�	
 are not required to be elements of a cpo� E�g� we will not
take least upper bounds over the way in which trees are branching� To justify that brotr

does yield a construction on cpos� here is the way that lubs of chains of broad trees are
constructed�

brotr�lub D X �

��p�

��n� �v� X n p � up�LBL v�� ��

let n � ��n� �v� X n p � up�LBL v�� in

up�LBL�lub�cset��m� �v� csuffix�X�n�m � up�LBL v���D��� �

��n� X n p � up NOLBL� �� up NOLBL � undef�

The de�nition constructs a broad tree� i�e� a function from paths to �up�lifted� labels� For
a �xed path argument of the construction� the �rst condition tests whether there is an
tree in the chain such that the path corresponds to a labeled node in that tree� If this
is the case then the rest of the trees in the chain also has a labeled node at the same
position� Hence� the lub construction at this position must be the lub of these labels�
Otherwise� there might be a point from which the node corresponding to the path is an
unlabeled node� In this case the lub construction must be an unlabeled node at this point�
Otherwise� the lub construction yields unde�ned because no trees of the chain has a node
at the position speci�ed by the path�

It is straightforward to de�ne constructors for broad trees�

Bt�brotr � �p� ��p � � � �� up NOLBL � undef�

node�brotr �a�		� �subtrees�	
���	�		�brotr�upty� �

�p�

�p � � � �� up�LBL a� �

�subtrees �HD p� � undef� �� undef � lower�subtrees�HD p���TL p�

where lower is de�ned by

lower�up a� � a

Note that subtrees of a node are represented as partial functions such that the number
of subtrees may vary at each node of a tree �due to undef �� Continuous versions of the
constructors can be de�ned as in the previous sections�

So� we have de�ned a type predicate for broad trees and an ordering relation which
makes �a subset of� broad trees into a cpo� The next step is to show how new recursive
datatypes can be de�ned as subsets of broad trees and how the corresponding cpo can be
de�ned as sub�cpos of the cpo of broad trees� Then the constructors for the new type�
and continuous constructors for the cpo� must be de�ned�

Here� we shall only comment on how to de�ne a type predicate for new recursive types�
given a type speci�cation of the following form

rty ��� C� ty��� ��� ty��k� � � � � � Cm tym�� ��� tym�km

where each tyi�j is either an existing logical type �not containing rty � or of the form

�ty
� rty
 for some existing type expression ty � The method described in the pre�
vious section corresponds to the case where ty is the type one � Further generalization
is discussed in �Gu�
��

A new type can be represented as a subset of broad tree with a certain branching type
and a certain labeling type� Both of these are a sum type with a component for each
constructor of the speci�cation� The contribution of the constructor case Ci tyi�� ���

tyi�ki to the branching type is �again� a sum of existing types etyi�j where tyi�j �
etyi�j
� rty � or one if none such exists� The contribution to the labeling type is the
product of each existing type and one if there are no existing types� This is exactly the
same approach to constructing the branching and labeling types as in �Gu�
� which can
be conferred for further details�

Chapter �

The HOL�CPO System

Up to this point we have considered the formalization of domain theoretic concepts in
HOL and not so much using this formalization� We have presented the basic de�nitions
as well as constructions on cpos and continuous functions which give ways of writing
terms that are guaranteed to be cpos and continuous functions� We have also shown how
certain recursive domains can be introduced� e�g� strict and lazy lists� However� it is not
practical to use the formalization as presented above directly� One must prove all the time
that terms are cpos �or pointed cpos�� continuous functions and inclusive predicates� e�g�
each time the �xed point property of Fix is used �see section
��� or each time the �xed
point induction theorem is used �see section
���� In particular� proofs of continuity may
require a substantial amount of work when function de�nitions involve nested lambda
abstractions and are longer than a couple of lines� Besides� function constructions are
tedious and di�cult to read and write since they are parameterized by the cpo variables
of the domains on which they work�

So� in order to make the formalization useful for reasoning about functional programs
in practice� there are at least two things we should do�

� develop an interface which supports a less tedious syntax for functions� and

� provide syntactic�based proof functions to prove automatically that certain terms
are cpos� continuous functions and inclusive predicates�

Actually� it is advantageous to treat proofs of continuity facts as a special case of the more
general problem of proving that a term belongs to some cpo� We can solve this problem in
many cases with a syntactic�based proof function for constructing the cpo of a term� This
function is called the type checker	 terms that are elements of a cpo are called cpo�typable
terms� or just typable terms� The syntactic�based proof functions for cpos and inclusive
predicates are called the cpo prover and the inclusive prover� respectively� The notations
supported by the interface and these syntactic�based proof tools are not �xed� they can be
extended by declaring new constructor terms� On top of the syntactic�based proof tools
and the declaration tools a number of derived de�nition tools have been implemented for
introducing cpos and arbitrary terms in cpos as abbreviations of terms which �t within
the syntactic notations�

The result of these developments is an integrated system� called HOL�CPO� where
domain theory seems almost built�in to the user� Basic proof tools are applied behind
the scenes so in most cases the user does not have to worry too much about proving

domain theoretic concepts in order to employ the formalization� �However� the tools are
prototypes and are therefore not as optimized and powerful as they could be��

��� Notations for Cpos and Pointed Cpos

The syntactic notations for cpos and pointed cpos are similar yet slightly di�erent since
certain constructions on cpos yield cpos which do not have a bottom element� We shall
therefore describe the notations separately just as there are separate proof functions to
prove such facts too� called the cpo prover and the pcpo prover respectively�

The notation for cpos can be described informally as follows

D ��� t � discrete Z � prod�D��D�� � cf�D��D��

� lift D � sum�D��D�� � C�D�� � � � � Dn�

where

� t is any HOL term for which a theorem is available stating it is a cpo�

� Z is some HOL set�

� C belongs to an extendable set of names of cpo constructors� and

� D� D�� � � � � Dn are cpos �� � n��

A cpo constructor is a constant� i�e� a nullary constructor� or a constant applied to a tuple
of cpo variables such that it has been shown that the constructor yields a cpo� provided
its arguments are cpos� The constructions on cpos presented in section
�� are built�in
as it appears� but new constructions can be introduced as described in section ���� Note
that the notation allows any term as long as a theorem is available which states that the
term is a cpo or a pointed cpo� Such a theorem is called a cpo fact �

A constructor for pointed cpos is similar to a constructor for cpos� It is a constant
which applied to a number of arguments yields a pointed cpo� provided the arguments
are cpos or pointed cpos� The notation for pointed cpos can be described informally as
follows

E ��� tp � prod�E��E�� � cf�D�E� � lift D � Cp�X�� � � �� Xn�

where

� tp is any HOL term for which a theorem is available stating it is a pointed cpo�

� Cp belongs to an extendable set of names of constructors for pointed cpos�

� D is a cpo�

� E� E� and E� are pointed cpos� and

� X�� � � � � Xn are either cpos or pointed cpos�

Note that the discrete and the sum constructions do not yield pointed cpos according to
this notation� The sum of two cpos is never a pointed cpo whereas the discrete construc�
tion yields a pointed cpo i� the associated set is a singleton set �see section
����

���� Algorithm for Proving Cpo Facts

The cpo prover takes a term t as input� which must �t within the syntactic notation for
cpos� It proves and returns the theorem �
 cpo t � The underlying algorithm is based
on theorems of the form

�
 cpo�D�� ��� ��� ��� cpo�Dn� ��� cpo�C�D������Dn��

where D� � � � � � Dn are variables� There must be one such theorem for each cpo con�
structor C � The algorithm is simple� match an input term
C�D���� � ��Dn��
 against the
conclusion of such a theorem and instantiate the variables� Prove each of the antecedents
�left�hand sides of the implications� using the algorithm recursively� obtaining �by modus
ponens� the theorem �
 cpo�C�D���� � ��Dn��� �

The algorithm for the pcpo prover is similar� However� it exploits the cpo prover to
prove antecedents of the form
cpo D
� It is applied recursively to prove antecedents of
the form
pcpo D
�

���� Proving Cpo Facts

A cpo fact is a theorem stating either some term is cpo or some term is a pointed cpo� Such
facts are proved automatically by two separate programs which implement the syntactic
notations for cpos and pointed cpos� respectively�

The program for automatically proving that terms are cpos is called the cpo prover
and it has the following ML type�

�CPO�PROVER��

 � �thm list
� conv�

It takes a theorem list of cpo facts and a term as arguments and proves a theorem
stating the term is a cpo using the cpo facts and the available cpo constructors� i�e� the
constructors which are part of the syntactic notation� The cpo facts may state terms are
pointed cpos since the prover knows that pointed cpos satisfying pcpo also satisfy cpo

�
Assuming Nat has been introduced as a constructor for the cpo of natural numbers

�see section ����� the cpo prover proves immediately that that the continuous functions
from natural numbers to the lifted natural numbers constitute a cpo�

�CPO�PROVER�
cf�Nat�lift Nat�
��

�
 cpo�cf�Nat�lift Nat��

In this case we need no additional cpo facts so the theorem list argument is the empty
list� If we wish to prove that the continuous functions from Nat to the lifting of any cpo
D constitute a cpo we must assume the cpo variable D is a cpo�

�cpo���

��	�
� bool� � �	�
� �	�
� bool��
 � type

�let cpo�D � ASSUME
cpo�D�!cpo��
��

cpo�D � � �
 cpo D

�CPO�PROVER�cpo�D
cf�Nat�lift�D�!cpo���
��

� �
 cpo�cf�Nat�lift D��

In this case� the theorem list contains the theorem stating D is a cpo and the assumption
of this theorem is also an assumption of the theorem returned by the cpo prover�

Both these examples are not only cpos they are also pointed cpos� Such facts are
proved by another program� called the pcpo prover�

�PCPO�PROVER��

 � �thm list
� conv�

which is used in the same way as the cpo prover so the examples are conducted as follows

�PCPO�PROVER�
cf�Nat�lift Nat�
��

�
 pcpo�cf�Nat�lift Nat��

�PCPO�PROVER�cpo�D
cf�Nat�lift�D�!cpo���
��

� �
 pcpo�cf�Nat�lift D��

The cpo fact in the theorem list argument could state D is a pointed cpo but in this
example it does not have to� The pcpo prover as well as the cpo prover knows pointed
cpos are also cpos�

��� Notation for Cpo�typable Terms

The parser transforms a notation for �cpo�� typable terms into an internal syntax of
terms which can be type checked by the type checker �see �gure ��
 on page �
�� i�e�
this program can automatically construct the domain of a typable term which �ts within
the notation� Hence� the two programs are quite similar� both construct domains� but
whereas the parser need only manipulate terms the type checker is based on proof�

The notation for typable terms can be described informally as follows

e ��� t � x � c � �xs �� Dom D� e � �e� e��

where

� t belongs to a set of basic typable terms� i�e� t can be any HOL term� typically a
constant or a variable� such that a fact is available which states which cpo it is an
element of�

� x is a variable of a dependent lambda abstraction�

� xs is a sequence �tuple� of variables �x��� � � �xn� and D is a product of cpos D��
� � � � Dn� where
 � n�

� c belongs to an extendable set of interface level names of parameterized function
constructors� and

� e� e� and e� are typable terms�

The set of basic typable terms can be extended by declaration tools �see section ����� If
a term� e�g� a constant or a variable� does not �t the notation it must be declared before
it is used� A parameterized function constructor is a function constructor similar to the

ones introduced in section
�� which is parameterized by the cpo variables �at least one�
of the domain on which it works� The last letter of such constructors must be an �I� �for
internal�� The external level names for constructors is obtained by omitting this letter�

These external names are constants in HOL which do not take cpo parameters as
arguments� The external constants are only present in interface level terms since the
parser replaces each interface constant by the corresponding constructor and inserts the
cpo parameters� if it is able to do so� The constants are not introduced by de�nition�
only by type �see �GM�
�� page ����� since we do not want them to abbreviate anything�
merely to ensure interface level terms type in a certain way� The in�built constructors
�i�e� interface constants� are

Proj� � Proj� � Tupling � Prod � Apply � Curry � Lift � Ext �
Inl � Inr � Sum � Fix � Id and Comp �

New constructors can be introduced as described in section ��� �see also section �����
In the following we �rst describe the algorithms for parsing and type checking and

then consider a few examples�

���� Algorithm for Parsing

The standard HOL parser and pretty�printer can be extended by hooking up a special
parser and pretty�printer with the built�in ones �exploiting preterms �GM�
��� Employing
this technique we become able to do transformations on terms after they are type checked
and parsed by the HOL system and before they are pretty�printed on the screen� Hence�
this allows us to implement two levels of syntax� a nice and simple one for the user to
work with at the external or interface level and a more detailed and complex one for
the system to work with at the internal level� At the external level it is not necessary
to write the cpo parameters on function constructors� The parser attempts to calculate
these parameters automatically� The pretty�printer is much simpler� it just throws away
all cpo parameters of function constructors�

A secondary purpose of the parser and pretty�printer is� respectively� to unfold and fold
derived de�nitions of cpos� i�e� de�nitions of constants abbreviating cpo� Such de�nitions
must be declared to the HOL�CPO system as described in section ���� It is sometimes
necessary to expand such abbreviations� e�g� if we de�ne NatFun to be
cf�Nat�Nat�

and there is a function
f ins Nat
� then we must know how natFun is de�ned to
conclude for instance
�f x� ins Nat
� for some
x ins Nat
� It is easy to implement
the folding and unfolding of such de�nitions using rewriting so I will not comment further
on this detail�

The parser inserts cpo parameters on parameterized function constructors� It takes
a term of the external syntax as input and produces a transformed term of the internal
syntax as output� The algorithm for constructing the cpo parameters� which is in the
body of the parser� takes a term as input and returns a pair consisting of the transformed
term and the domain that the term is an element of� The parser throws away the domain
component of the result� A rough sketch of the algorithm can be presented as follows� by
cases on the structure of the input term�

Constant�variable�any term
 Find the input term in a database of terms and their
domains �if possible�� and return both� E�g� the database could specify that "�

is in
cf�Nat�cf�Nat�Nat��
� where Nat is the discrete universal cpo of natural
numbers �see chapter � or chapter ��� In this case� the algorithm would return
�"��
cf�Nat�cf�Nat�Nat��
�� If the constant is a constructor� for example Fix �
then it would return the internal version with cpo parameters� for example �
FixI
E
�
cf�cf�E�E��E�
�� The parameters are instantiated in the combination case�

Pair
 The input term has the form
�t�u�
� Parse t and u recursively� obtaining the
results �t��D� and �u��E�� Return �
�t��u��
�
prod�D�E�
��

Combination The input term has the form
t u
� Apply the algorithm recursively to t

and u � obtaining �t��
cf�D�E�
� and �u��D��� The term D� must be an instance
of the term D � Calculate the corresponding instance E� of E and return �
t�
u�
�E��� �The instance is obtained after doing a one way matching of D and D� �
Generalizing the match to uni�cation would make the algorithm more powerful��

Abstraction
 The input term has the form
�x �� Dom D� e�x
 �x could be a pair��
Add �x�D� to the database while parsing e�x recursively� obtaining the result

�e��x �E�
� Return the pair �
lambda D��x� e��x �
�
cf�D�E�
�� Strictly
speaking� this is not a valid inference since a lambda abstraction need not be con�
tinuous just because it maps elements of its domain D to elements of its codomain
E �see how the type checker handles lambda abstractions�� However� when e�x

meets the syntactic notation� this is valid� Also note that the restricted abstraction
is transformed into the lambda abstraction� a secondary purpose of the parser�

If something goes wrong in a call to the algorithm� then it returns a certain dummy
domain to indicate this� The user will usually realize this when the type checker fails
�only sometimes the parser fails in such a situation��

���� Algorithm for Type Checking

The type checker takes a term t of the internal syntactic notation as input and recon�
structs the domain of the term in the sense that it constructs a cpo D and proves �
 t

ins D � A rough sketch of the algorithm can be presented as follows� by cases on the
structure of the input term�

Constant�variable�any term
 Find �if possible� and return a theorem in a database
of cpo membership facts stating that the input term is in some cpo� For instance�
the theorem could be �
 "� ins cf�Nat�cf�Nat�Nat��� or indeed �
 t ins D

for any term t and domain D �

Parameterized function constructor
 Input has the form
FunI�D���� � ��Dn��
 for
some function constructor FunI � Find FunI in a database of facts of the form

�
 cpo D� ��� ��� ��� cpo Dn ��� FunI�D������Dn� ins cf���������

where D� � � � � � Dn are variables� Instantiate these variables with D�� � � � � � Dn�

respectively� prove the cpo �or pointed cpo� assumptions using the cpo �or pcpo�
prover and return �
 FunI�D���� � ��Dn�� ins cf�� � ��� � �� �

Pair
 The input term has the form
�t�u�
� Apply the type checker recursively� obtain�
ing �
 t ins D and �
 u ins E � Then� use the theorem �employ modus ponens�

�
 �D� D� x y� x ins D� ��� y ins D� ��� �x�y� ins �prod�D��D���

to conclude and return �
 �t�u� ins prod�D�E� �

Combination The input term has the form
�t u�
� Apply the type checker recursively�
obtaining �
 t ins cf�D�E� and �
 u ins D � Then� use the theorem

�
 �D� D� e� e�� e� ins �cf�D��D��� ��� e� ins D� ��� �e� e�� ins D�

to conclude and return �
 �t u� ins E �

Lambda abstraction
 The input term has the form
lambda D��x� e�x �
 �which
is not considered to be a combination�� This is the di�cult case Ideally� we
would like a theorem stating
v ins D� ��� f�v� ins D� ��� �lambda D� f�

ins cf�D��D��
� but this does not hold	 the lambda abstraction is not necessarily
continuous �nor monotonic�� Instead we must proceed according to the term struc�
ture of the body of the abstraction� The local recursive algorithm for this pushes
the abstraction into the body in recursive calls and pulls back continuity� The local
algorithm can be described as follows� by cases on the structure of the body of the
abstraction�

Constant term
 The body e�x does not contain the variable x of the abstrac�
tion and the theorem �
 e ins E is in the database of cpo membership facts
�otherwise try to destruct e�x further�� Prove D and E are cpos �using
the cpo prover� and use the theorem �employ modus ponens�

�
 �D� D� e�

cpo D� ��� cpo D� ��� e ins D� ���

�lambda D���v� e�� ins �cf�D��D���

to conclude and return �
 �lambda D��x� e�x �� ins cf�D�E��

Variable
 The body e�x equals the variable of the abstraction x � Prove D is
a cpo and return �
 �lambda D��x� e�x �� ins cf�D�D�� using

�
 �D�� cpo D� ��� �lambda D���v� v�� ins �cf�D��D���

Pair
 The body is a pair of the form
�e��x �e��x �
� Apply the algorithm
recursively on each component of the pair� obtaining

�
 �lambda D��x� e��x �� ins cf�D�D��

�
 �lambda D��x� e��x �� ins cf�D�D���

Use the theorem

�
 �D� D� D� e� e��

�lambda D� e�� ins �cf�D��D��� ���

�lambda D� e�� ins �cf�D��D��� ���

�lambda D���x� �e� x�e� x��� ins �cf�D��prod�D��D����

by matching the assumptions �left�hand sides of the implications� with the
results� conclude and return

�
 �lambda D��x� �e��x �e��x ��� ins cf�D�prod�D��D����

Combination
 The body is a combination of the form
�e��x e��x �
� This
case is similar to the pair case� but uses instead the theorem

�
 �D� D� D� e� e��

�lambda D� e�� ins �cf�D��cf�D��D���� ���

�lambda D� e�� ins �cf�D��D��� ���

�lambda D���x� e� x�e� x��� ins �cf�D��D���

Abstraction
 The body is an abstraction of the form
lambda D���y� e��x�y �
�
This case is a bit complicated� and gives ine�ciency as well since the body
e��x�y is traversed twice� The algorithm is used recursively to conclude

�y ins D� �
 �lambda D��x� e��x�y �� ins cf�D�E��

assuming
y ins D�
� and to conclude

�x ins D �
 �lambda D���y� e��x�y �� ins cf�D��E��

assuming
x ins D
� The cpo prover is then used to prove that D � D� and
E are cpos �note that E is constructed by the algorithm�� Using the theorem

�
 �D� D� D� e�

��d� d ins D� ��� �lambda D���v� e v d�� ins �cf�D��D�������

��v� v ins D� ��� �lambda D��e v�� ins �cf�D��D���� ���

cpo D� ���

cpo D� ���

cpo D� ���

�lambda D���v� lambda D��e v��� ins �cf�D��cf�D��D����

the algorithm derives and returns the theorem

�
 �lambda D��x� lambda D���y� e��x�y ��� ins cf�D�cf�D��E���

This concludes the description of the local algorithm for type checking lambda
abstractions�

This concludes the description of the type checker� The algorithm will fail if the input
term does not �t within the syntactic notation�

Lambda abstractions over tuples of variables are handled by introducing projection
functions �see section
����� such that a variable can be used instead of a tuple� When
the algorithm has been applied recursively this transformation is reversed by eliminating
the projections and introducing the original tuple again�

���� Examples of Parsing

Let us illustrate by an example how the parser works� Consider the following term which
�ts within the notation above�

�f �� Dom�cf�Nat�lift Nat��� Ext�Tupling�f�f��

assuming Nat has been declared as the discrete cpo constructed from the set of all
elements of type
�num
 �see section ����� The restricted abstraction is transformed into
a dependent lambda abstraction as follows� a term like

�x �� Dom D� e�x

becomes

lambda D��x� e�x �

Furthermore� the parser works recursively on subterms so when it meets the abstraction
it parses the body recursively�

In the recursive call on the body of the above abstraction� the parser assumes that
the variable of the abstraction is in the cpo associated with the abstraction� i�e�
f ins

cf�Nat�lift Nat�
 is assumed� In the body term it meets Ext applied to the tupling
term and parses this argument recursively �rst� Similarly for the tupling term� the product
it is applied to is parsed recursively� and so on� The deepest it gets in the term is down to
the variable f � which it meets twice� Both times it simply returns f and the assumption
that f is in
cf�Nat�lift Nat�
� If f was not part of the notation then the parser
would still return f but it would return a dummy domain and the cpo parameters on
function constructors would be dummy ones too� The result of parsing the pair
�f�f�

is this term
�f�f�
 and the domain
prod�cf�Nat�lift Nat��cf�Nat�lift Nat��
�
This is used to construct the cpo parameters on the tupling construction� in turn used to
construct the cpo parameters on the extension construction� yielding the �nal result

lambda

�cf�Nat�lift Nat��

��f�

ExtI

�Nat�prod�lift Nat�lift Nat��

�TuplingI�Nat�lift Nat�lift Nat��f�f���

If we had to write this term directly by hand� we would have to calculate all cpo parameters
very carefully� Besides� reading the function is di�cult due to the cpo parameters on ExtI

and TuplingI which are in fact not necessary for our understanding of what the function
does�

In the following example� the parser deduces the wrong cpo parameter of Lift �
namely the dummy one which is D � and then fails to deduce the cpo parameters of
Comp �

�
Comp�Lift��"� ���
��

evaluation failed parse� non
matching domains of Comp

This problem could be solved by a better implementation which uni�es the domains of
arguments of constructors� The current implementation fails since the pair� which Comp is
applied to� consists of functions in non�matching domains �the dummy domain on LiftI

has not been instantiated�� Fortunately� one is not completely lost in this situtation since
it is always possible to insert the right domain on Lift manually� using the internal
version of the constant� Hence� the following works

�
Comp�LiftI Nat��"� ���
��

Comp�Lift��"� ���
 � term

Such situations where we must insert cpo information manually are very rare in the
examples we have looked at� When the parser fails to deduce the cpo parameters of some
constructor �and just uses the dummy variables� the problem often is that the constants
and variables used in a term have not been declared� All constants and terms must be
declared before they are used� in order to become part of the notation of typable terms�

���� Type Checking

The following ML proof function is called the type checker and it can be used to deduce
which cpo a typable term belongs to�

�TYPE�CHECK��

 � �thm list
� thm list
� conv�

It takes three arguments� a theorem list of cpo facts� a theorem list of ins facts and a
term� The �rst theorem list is used to extend the cpo and pcpo provers with additional
cpo facts about arbitrary HOL terms �e�g� variables� and the second is used to extend the
set of basic typable terms� This set can also be extended by a declaration as described
in section ��� and usually this strategy should be used since only this a�ects both the
parser and the type checker �see below�� If the term argument �ts the notation for typable
terms then the result of applying the type checker is a theorem stating which cpo the term
belongs to�

Let us consider a couple of examples� Assuming Nat has been declared as a cpo and
addition "� has been declared as a continuous function �see section ����� then the type
checker can deduce the type of a strict double function as follows

�TYPE�CHECK� �
Ext��n �� Dom Nat� Lift�n�n��
��

�
 �Ext��n �� Dom Nat� Lift�n � n��� ins �cf�lift Nat�lift Nat��

Here� we do not need any additional facts about cpos and other terms� hence the theorem
lists are empty� Note that it is not required that the construction for applying a function
to an argument is used	 HOL application by juxtaposition can be used instead�

In the following example we use both a cpo variable and a function variable which
have been assumed to be a pointed cpo and a continuous function� respectively�

�let pcpo�E � ASSUME
pcpo�E�!cpo��
��

pcpo�E � � �
 pcpo E

�let cf�f � ASSUME
f ins cf�E�!cpo��Nat�
��

cf�f � � �
 f ins �cf�E�Nat��

�TYPE�CHECK�pcpo�E �cf�f

�
�x �� Dom�E�!cpo��� �n �� Dom Nat� Lift��f x��n�
��

evaluation failed PCPO�PROVER� unknown variable D

The evaluation fails The reason for this is that the parser does not know the ins fact
about f �it does not know which cpo f belongs to� and therefore it cannot deduce the
right cpo parameter of Lift �which is Nat � the dummy wrong one is D �� Instead we
can declare this fact to the system and then we do not need to use it as an argument of
the type checker�

�declare cf�f��

� �
 f ins �cf�E�Nat��

�TYPE�CHECK�pcpo�E �

�
�x �� Dom�E�!cpo��� �n �� Dom Nat� Lift��f x��n�
��

�� �
 ��x �� Dom E� �n �� Dom Nat� Lift��f x� � n�� ins

�cf�E�cf�Nat�lift Nat���

So� in most cases such facts must be declared rather than supplied as an argument since
terms must be declared for the parser before they can be used� Had the parser and type
checker been implemented in a more intelligent way �using uni�cation in the combination
case� for instance� they might be able to deduce the type of f from the context in this
example� But in general this form of type reconstruction might be as di�cult as type
checking in dependent type theory� which is undecidable� I have not studied the problems
more careful since the present algorithm works �ne as a prototype�

After such facts have been declared they can be undeclared �as described in section ����

�undeclare����

� �
 f ins �cf�E�Nat��

so it is just a matter of convenience how the parser and type checker work� We could
also have inserted the right domain on Lift manually �see section ����
� but using
declarations are sometimes more convenient�

Finally� let us show a tactic version of the type checker�

�TYPE�CHECK�TAC��

 � �thm list
� thm list
� tactic�

It can be used to �nish o� goals stating a term is in some cpo� As an example we can
apply it to the term above� set as a goal�

�set�goal��
pcpo�E�!cpo��
�
f ins cf�E�!cpo��Nat�
 �

�
��x �� Dom�E�!cpo��� �n �� Dom Nat� Lift��f x��n�� ins

� �cf�E�cf�Nat�lift Nat���
���

��x �� Dom E� �n �� Dom Nat� Lift��f x� � n�� ins

�cf�E�cf�Nat�lift Nat���

�
f ins �cf�E�Nat��

�
pcpo E

�� � void

�e�TYPE�CHECK�TAC� � ���

OK��

goal proved

�� �
 �lambda

E

��x�

lambda

�discrete UNIV���n� LiftI�discrete UNIV���f x� � n���� ins

�cf�E�cf�discrete UNIV�lift�discrete UNIV����

Previous subproof�

goal proved

�� � void

The tactic uses the assumptions to obtain cpo and ins facts but additional facts can be
supplied via the theorem list arguments as well� Note the pretty�printer is not applied to
print the output from the subgoal package when a goal is proved �this is just a choice of
implementation�� Internally� terms look like that

���
 Switching the Interface On and O�

When something is wrong� for instance� when the parser calculates the wrong cpo argu�
ment of some constructor �see section ����
�� then it is useful to be able to switch o�
the interface� or just the parser or the pretty�printer� For this we provide the following
functions

set�parse � �void
� void�

unset�parse � �void
� void�

set�pp � �void
� void�

unset�pp � �void
� void�

unset�ppfold� �void
� void�

set�iface � �void
� void�

unset�iface � �void
� void�

The set functions are for switching transformations on and the unset functions are
for switching transformations o�� Note that the parser and the pretty�printer can be
switched on and o� independently and that we can switch o� pretty�printing but keep
the folding of cpo de�nitions� using unset ppfold � The function set iface does both
set parse and set pp � and unset iface is similar�

��� Proving Inclusiveness

The inclusive prover is a proof function for proving that predicates for �xed point induction
are inclusive� i�e� that they admit induction�

�INCLUSIVE�PROVER��

 � �thm list
� thm list
� thm list
� conv�

It takes three theorem lists as arguments which contain additional cpo facts� ins facts and
facts about whether domains used in universal quanti�cations are non�empty �in most

cases the latter kind of statements can be proved automatically�� The syntactic checks
performed by the inclusive prover resemble the syntactic checks performed in the LCF
theorem prover by the primitive rule of the �xed point induction	 at least� it is based on
the description of this check in �Pa��� �see page
�������� The inclusive prover is used
on predicates stated using mk pred which is de�ned by

�
 �D P� mk�pred�D�P� � �x � x ins D �� x IN P�

This just guarantees that a predicate is a subset of a cpo� Predicates of the form

mk�pred�D��x�e�x �
 can be proved to be inclusive predicates on the cpo D if all
chains in D are �nite� i�e� chains are constant from a certain point� or if e has the
following form

� b � any term of type boolean not containing x �

�
rel E f��x f��x
� f��x and f��x continuous in x �

�
f��x � f��x
� f��x and f��x continuous in x �

�
��f�x � bottom E�
� f�x continuous in x �

�
��rel E f�x v�
� v in E and f�x continuous in x �

�
e��x �� e��x
� e��x and e��x inclusive in x �

�
e��x �� e��x
� e��x and e��x inclusive in x �

�
e��x ��� e��x
� �e��x and e��x inclusive in x �

�
�a� a ins A ��� e�a�x
� e�a�x inclusive in x for all a in a cpo pair A

which must be non�empty�

This is called the notation for inclusive predicates� When we say something is continu�
ous in a variable we mean the lambda abstracted term over the variable is continuous�
Similarly when we say something is inclusive we mean the mk pred term is inclusive�
Examples of the use of the inclusive prover are presented in chapter ��

The notion of chain��niteness can be de�ned as follows�

�
 �D�

cfinite D �

cpo D �� ��X� chain�X�D� ��� ��n� �m� X n � X�n � m���

Hence� a cpo is chain��nite i� all chains are constant from a certain point�
The discrete� lift and product constructions on cpos yield chain��nite cpos when their

cpo arguments are chain��nite�

�
 �Z� cfinite�discrete Z�

�
 �D� cfinite D ��� cfinite�lift D�

�
 �D�� cfinite D� ��� ��D�� cfinite D� ��� cfinite�prod�D��D����

In addition� the function space construction yields a chain��nite cpo for a �nite domain
and chain��nite codomain� The sum construction yields a chain��nite cpo if just one of
the cpo components is chain��nite� These facts have not been proved�

Algorithm for inclusiveness

The algorithm for proving inclusivenes is based on theorems which correspond to each
of the cases in the above notation� These are used in a backwards way� just like the
theorems for type checking and proving cpo facts� Hence� each case of the above notation
corresponds to the conclusion �right�hand side of the right�most implication� of one of the
theorems�

inclusive�const � �
 �D v� cpo D ��� inclusive�mk�pred�D���x� v���D�

inclusive�rel �

�
 �D E e� e��

�lambda D e�� ins �cf�D�E�� ���

�lambda D e�� ins �cf�D�E�� ���

inclusive�mk�pred�D���x� rel E�e� x��e� x����D�

inclusive�eq �

�
 �D E e� e��

�lambda D e�� ins �cf�D�E�� ���

�lambda D e�� ins �cf�D�E�� ���

inclusive�mk�pred�D���x� e� x � e� x���D�

inclusive�not�bottom �

�
 �D E e�

pcpo E ���

�lambda D e� ins �cf�D�E�� ���

inclusive�mk�pred�D���x� ��e x � bottom E����D�

inclusive�not�rel �

�
 �D E e v�

�lambda D e� ins �cf�D�E�� ���

v ins E ���

inclusive�mk�pred�D���x� �rel E�e x�v���D�

inclusive�conj �

�
 �D P Q�

cpo D ���

inclusive�mk�pred�D�P��D� ���

inclusive�mk�pred�D�Q��D� ���

inclusive�mk�pred�D���x� P x �� Q x���D�

inclusive�disj �

�
 �D P Q�

cpo D ���

inclusive�mk�pred�D�P��D� ���

inclusive�mk�pred�D�Q��D� ���

inclusive�mk�pred�D���x� P x �� Q x���D�

inclusive�imp �

�
 �D P Q�

cpo D ���

inclusive�mk�pred�D���x� �P x���D� ���

inclusive�mk�pred�D�Q��D� ���

inclusive�mk�pred�D���x� P x ��� Q x���D�

inclusive�forall �

�
 �D P A�

�empty A ���

��a� a ins A ��� inclusive�mk�pred�D�P a��D�� ���

inclusive�mk�pred�D���x� �a� a ins A ��� P a x���D�

These theorems may be read as inference rules	 the left�hand sides of implications �an�
tecedents� correspond to premises and the rightmost term to the conclusion� The theo�
rems are used in a backwards fashion� by matching against the conclusion of the theorems
�inference rules�� The antecedents of each theorem are proved by the inclusive prover
recursively� by the cpo prover� by the type checker� or by using the following theorems to
prove cpos are non�empty �again matching against conclusions��

�
 �empty�discrete UNIV�

�
 �D� �empty�lift D�

�
 �D� D�� �empty D� ��� �empty D� ��� �empty�prod�D��D����

�
 �D� D�� �empty D� ��� �empty�sum�D��D���

�
 �D� D�� �empty D� ��� �empty�sum�D��D���

�
 �D� D�� cpo D� ��� cpo D� ��� �empty D� ��� �empty�cf�D��D����

�
 �D� pcpo D ��� �empty D

As mentioned above� the inclusive prover allows additional non�empty facts to be supplied
via a theorem list argument� The constant empty is de�ned

�
 �D� empty D � �set D � ���

The inclusive prover can also handle situations where predicates do not �t within the
above notation� Then the domain which the predicate is a subset of should be easy in the
sense that it is chain��nite� For chain��nite cpos all predicates are inclusive�

�
 �D� cfinite D ��� ��P� inclusive�mk�pred�D�P��D��

Above� we saw some rules for building chain��nite cpos� For instance� these yield the
following instances of the previous fact�

�
 �Z P� inclusive�mk�pred�discrete Z�P��discrete Z�

�
 �Z P� inclusive�mk�pred�lift�discrete Z��P��lift�discrete Z��

which state that in particular discrete and lifted discrete cpos are chain��nite�

In order to transform cpos into discrete cpos� a kind of simpli�er has been implemented
which is based on the following theorems�

�
 �X Y�

prod�discrete X�discrete Y� � discrete��x�y� � x IN X �� y IN Y�

�
 �X Y�

sum�discrete X�discrete Y� �

discrete��INL x � x IN X� UNION �INR y � y IN Y��

�
 �D X� cf�D�discrete X� � discrete�f � cont f�D�discrete X��

These transformations are also applied to the above arguments of lift �

��� Extending Notations

It is possible to extend the notations for cpos and typable terms presented in the previous
section with new constructions on cpos and continuous functions� Actually� it is useful
not only to be able to extend with functions but with arbitrary constants and other terms
in arbitrary cpos� We call an extension for a declaration� A constant must be declared
before it is used in terms� otherwise the system does not know which cpo constructor it
denotes or which cpo it is an element of� Similarly� if an arbitrary term does not �t within
the notation for typable terms it must be declared before it can be used in other terms�

The tools presented in this section are the basic tools for introducing new declarations
and thereby extending both the notation of cpos and the notation of typable terms�
Using the derived de�nition tools presented in section ���� new constants are declared
automatically when they are de�ned�

A cpo constructor is a constant applied to a number of cpo variables such that it has
been shown that the constructor yields a cpo� provided its arguments are cpos� There are
two ways of declaring a new cpo constructor� by a de�nition or by a constructor theorem�

�declare�cpo�definition��

 � �thm
� thm�

�declare�cpo�constructor��

 � �thm
� thm�

Both these programs return their theorem argument as a result� The �rst tool should be
used when the right�hand side of the HOL de�nition of the constructor belongs to the
notations for cpo or pointed cpos already� assuming all variables are cpos or pointed cpos
�yielding theorems of the form presented in section ��
���� For instance� this is the case
if the right�hand side is a discrete cpo as in this example

�Nat�DEF��

�
 Nat � discrete UNIV

�declare�cpo�definition Nat�DEF��

�
 Nat � discrete UNIV

where UNIV is the universal set of HOL numerals� Hence� this tool is used to introduce
abbreviations�

The second tool is used to introduce new cpo constructors which are not part of the
notations for cpos� It is applied to a theorem stating some constant is a cpo or pointed

cpo constructor� For instance� it can be used to introduce the cpo constructor of lazy
sequences as follows �see section ����

�SEQ�PCPO��

�
 �D� cpo D ��� pcpo�seq D�

�declare�cpo�constructor SEQ�PCPO��

�
 �D� cpo D ��� pcpo�seq D�

Note that declare cpo definition is applied to a HOL de�nition in contrast to the
program declare cpo constructor which is applied to a theorem as in this example�
The di�erence is that de�nitions are unfolded and folded by the parser and pretty�printer�
respectively� such that internally the right�hand sides of de�nitions are used �see the
comment in section ����
�� In some cases the basic proof tools need to know how such
derived cpos are constructed�

Any term can be declared to belong to some cpo once this has been proved as a
theorem� Such statements are called ins facts and they are introduced by the program
declare �

�declare��

 � �thm
� thm�

In particular� the term can be a function term in the cpo of continuous functions but not
necessarily� Assuming Nat has been introduced as the discrete cpo of natural numbers�
we may want to declare that zero is in the cpo�

�ZERO�NAT��

�
 � ins Nat

�declare ZERO�NAT��

�
 � ins Nat

or that addition is a continuous operation on the cpo�

�ADD�CF��

�
 "� ins �cf�Nat�cf�Nat�Nat���

�declare ADD�CF��

�
 "� ins �cf�Nat�cf�Nat�Nat���

Like the declaration tools above� declare also returns its theorem argument as a result�
If we wish to declare a continuous function parameterized by cpos then declare is not

always useful since theorems declared using declare are not instantiated by the system�
As an example� consider the when eliminator functional for sequences �see section ����

�Seq�when�CF��

�
 �D E�

cpo D ���

pcpo E ���

�Seq�whenI�D�E�� ins �cf�cf�D�cf�seq D�E���cf�seq D�E���

which is parameterized by two cpos� corresponding to the variables D and E in this
continuity theorem� If we use declare we must �x the parameters �rst� for instance� as
the variables D and E �

�declare�UNDISCH�ALL�SPEC�ALL Seq�when�CF����

�� �
 �Seq�whenI�D�E�� ins �cf�cf�D�cf�seq D�E���cf�seq D�E���

and it will then only be possible to use the eliminator in cases where it is exactly D and
E which are the appropriate parameters�

The following program called declare constructor is more useful to introduce such
constructors that are parameterized by the cpo variables of the domains on which they
work�

�declare�constructor Seq�when�CF��

�
 �D E�

cpo D ���

pcpo E ���

Seq�when ins �cf�cf�D�cf�seq D�E���cf�seq D�E���

This program introduces a certain new constant �or reuses an existing constant with
the right name if one exists� for the interface level of syntax automatically� in this case
this would be Seq when � and makes sure that the parser transforms this to the internal
constructor and inserts cpo parameters� The pretty�printer is also made aware of the
new constructor� Hence� if pretty�printing is switched on then the external version of the
constructor is printed as in the example above�

Often declare is used to make the parser work properly for some term contain�
ing �unspeci�ed� variables in the sense that it contains variables which are not bound
by dependent lambda abstractions� Such variables need only be declared temporarily so
it is advantageous to be able to get rid of declarations� The following program called
undeclare removes the last declaration introduced by declare and returns the corre�
sponding theorem�

�undeclare��

 � �void
� thm�

There has been no need for similar �undeclaration� programs for the other declaration
tools� only variables are introduced temporarily�

��� Derived De�nition Tools

In this section we present a few derived de�nition tools which combine the basic HOL
de�nition program� called new definition � with the declaration tools and the syntactic�
based proof functions presented above�

First we present a program which can be used to introduce new cpos �and pointed cpos�
by de�nition� using declare cpo definition and the cpo prover behind the scenes�

�new�cpo�definition��

 � �string
� string
� thm list
� term
� �thm � thm��

For example� the cpo of natural numbers can be introduced as follows

�let Nat�DEF� NAT�CPO � new�cpo�definition #Nat�DEF# #NAT�CPO# �

�
Nat � discrete�UNIV�num
�bool�
��

Nat�DEF � �
 Nat � Nat

NAT�CPO � �
 cpo Nat

Again the theorem list argument is used mainly when the de�nition contains cpo variables�
in order to provide assumed facts stating these variables are cpos� Note that Nat has
already been declared when the de�nition is pretty�printed since the de�nition which
internally corresponds to the term argument of new cpo definition has been folded�
The cpo fact is proved using the cpo prover� Since such cpos introduced by de�nition
are expanded internally this theorem is not used by the system� It is proved merely as a
check that the right�hand side indeed is a cpo� Therefore� even if the right�hand side had
been a pointed cpo it would still only be proved to be a cpo� but it could be used as a
pointed cpo�

It makes no sense to have a similar derived tool based on declare cpo constructor

since this is used in situations where the cpo fact about the new constant cannot be
proved automatically using the cpo prover� Hence� in such situations the HOL de�nition
tool and this declaration tool are applied manually�

If the domain of the right�hand side of a de�nition can be inferred automatically using
the type checker� i�e� if it �ts the notation of typable terms� then the following derived
de�nition tool can be used to introduce the corresponding constant�

�new�constant�definition��

 � �string
� string
� thm list
� term
� �thm � thm��

It applies the type checker� de�nes a new constant and declares the constant using
declare � The theorem list argument may contain assumptions about cpo variables of
the de�nition� It is unlikely that any ins facts are needed� because if they were then the
parser would fail �or produce dummy domains such that the type checker would fail�� For
instance� it can be used to introduce a strict addition as follows

�declare�ins�prover
"� ins cf�Nat�cf�Nat�Nat��
���

�
 "� ins �cf�Nat�cf�Nat�Nat���

�let Add�DEF� Add�CF � new�constant�definition #Add�DEF# #Add�CF# �

�
Add � Ext��n��Dom Nat� Ext��m��Dom Nat� Lift�n�m���
��

Add�DEF � �
 Add � Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���

Add�CF � �
 Add ins �cf�lift Nat�cf�lift Nat�lift Nat���

assuming Nat has been introduced as above� A similar tool based on ins prover

has not been implemented since ins prover is most often used with constants that
have already been de�ned and reasoned about in HOL and then using declare and
ins prover as above works �ne �see the examples in chapter � and chapter ��� However�
there is a similar tool to introduce new constructors�

�new�constructor�definition��

 � �string
� string
� thm list
� term
� �thm � thm��

This is based on declare constructor instead of declare and hence� it is more useful
when the right�hand side contains free cpo variables such that the constant becomes
parameterized by these domains� The last letter of the constant should be an I �for
internal� since the tool introduces a constant for both the internal and the external level
of syntax�

��	 Other Tools

Below we describe a few of the other tools that were used for the examples presented later
and developed on top of the formalization�

���� Universal Cpos

The type checker can only be used when the domain of some term can be calculated from
its subterms� This is not always the case	 for instance� we cannot deduce that addition
on the natural numbers is in the cpo of continuous functions from its subterms �it is a
constant so it does not have any subterms and its de�nition does not �t the above notation
for typable terms either�� However� in certain cases it is trivial to prove a term is in a cpo�
namely if the cpo is a universal cpo which contains all elements of the underlying HOL
type� Often new cpos are introduced as the discrete cpo of the universal set of elements of
some HOL type� Such cpos are particularly easy to work with since the cpo constructions
for products� sums and continuous functions all preserve the property of being a discrete
universal cpo� The lifting of a cpo is not discrete but it is universal if the argument cpo
is� These facts are exploited by the following proof function� called the ins�prover�

�ins�prover��

 � conv

The cpo of natural numbers is a discrete universal cpo so addition can be proved to be
continuous by this program automatically�

�ins�prover
"� ins cf�Nat�cf�Nat�Nat��
��

�
 "� ins �cf�Nat�cf�Nat�Nat���

This fact can then be declared to the system using declare � The following increment
function is also continuous�

�ins�prover
�"� �� ins cf�Nat�Nat�
��

�
 �"� �� ins �cf�Nat�Nat��

There is no need to use the type checker in this case� Note that the ins�prover is syntactic�
based like the type checker but in a di�erent way� The ins�prover looks at the way cpos
are constructed� unlike the type checker which looks at the way in which a term element
of a cpo is built�

As long as the speci�ed cpo of the argument of ins prover can be transformed into
a discrete universal cpo the speci�ed term can be anything� as stated by the following
theorem

�
 �x� x ins �discrete UNIV�

on which the implementation of ins prover is based� The input of the ins�prover is a
term of the form
t ins D
� By equality preserving transformations� it attempts to trans�
form D into a discrete universal cpo� If it succeeds� then it instantiates the universally
quanti�ed variable x of the above theorem to t � and returns �
 t ins D �otherwise
it fails�� Thus� unlike the type checker� it does not look at the structure of t at all� t

can be any term� It is therefore much more e�cient�
The transformation of cpos into discrete universal cpos is supported by the following

theorems

�
 prod�discrete UNIV�discrete UNIV� � discrete UNIV

�
 cf�discrete UNIV�discrete UNIV� � discrete UNIV

�
 sum�discrete UNIV�discrete UNIV� � discrete UNIV

In addition to the theorems listed above� the ins�prover exploits the following two
theorems�

�
 �t� t ins �lift�discrete UNIV��

�
 �f� f ins �cf�discrete UNIV�lift�discrete UNIV���

Hence� it automatically proves that terms are in lifted discrete universal cpos and in the
partial function space of two discrete universal cpos� Note� by the way� that di�erent
occurrences of constants like discrete and UNIV may have di�erent types in a term�

���� Reduction by De	nition

It is often necessary to expand the de�nitions of continuous functions and to use ��
reduction with respect to the dependent lambda abstraction afterwards� The reduction
theorems for the function constructions presented in section
�� are useful for doing this
in one blow but they require that arguments of function constructors are in the right
domains� This can be proved using the type checker but it is tedious to apply the type
checker and the reduction theorems manually� Hence� a constructor reduction conversion
has been implemented which reduces one constructor at a time� proving the necessary ins
facts automatically�

�CONS�REDUCE�CONV��

 � �thm list
� thm list
� thm list
� conv�

It takes three theorem list arguments� As usual the �rst two lists must contain additional
cpo and ins facts and in this case the third list supports extending the reduction conversion
with other reduction theorems than the built�in ones for the standard constructions on
functions� For instance� the reduction theorems for the sequence when eliminator could
be supplied here �see section �����

�SEQ�WHEN�BT�SEQ��

�
 �D E h� h ins �cf�D�cf�seq D�E��� ��� �Seq�when h Bt�seq � bottom E�

�SEQ�WHEN�CONS�SEQ��

�
 �D E h x s�

h ins �cf�D�cf�seq D�E��� ���

x ins D ���

s ins �seq D� ���

�Seq�when h�Cons�seq x s� � h x s�

�CONS�REDUCE�CONV� � �SEQ�WHEN�BT�SEQ�SEQ�WHEN�CONS�SEQ

�
Seq�when��n��Dom Nat��s��Dom�seq Nat�� Cons�seq n s�Bt�seq
��

�
 Seq�when��n �� Dom Nat� �s �� Dom�seq Nat�� Cons�seq n s�Bt�seq �

bottom�seq Nat�

�CONS�REDUCE�CONV� � �SEQ�WHEN�BT�SEQ�SEQ�WHEN�CONS�SEQ

�
Seq�when

� ��n��Dom Nat��s��Dom�seq Nat�� Cons�seq n s��Cons�seq � Bt�seq�
��

�
 Seq�when

��n �� Dom Nat� �s �� Dom�seq Nat�� Cons�seq n s��Cons�seq � Bt�seq� �

��n �� Dom Nat� �s �� Dom�seq Nat�� Cons�seq n s�� Bt�seq

Note that only one reduction is performed and only on the whole term� it does not attempt
to traverse terms to do a reduction� The usual conversion combining operators �see
�GM�
�� can be used to repeat the conversion and apply it in depth� There is also a similar
conversion for applying each individual constructor one by one and new such conversions
can be obtained by instantiating an ML function with the desired reduction theorem�
Tactic versions of the conversions have also been de�ned which use the assumptions to
obtain the cpo and ins facts argument lists� Most importantly�

�CONS�REDUCE�TAC��

 � �thm list
� thm list
� thm list
� tactic�

which reduces a goal as much as possible repeatedly using the cpo facts and the ins facts in
the assumptions of the goal and the �rst two theorem list arguments� The third argument
is a list of constructor reduction theorems�

���� Fixed Point Induction

Next� we present the �xed point induction tactic which is implemented on top of the �xed
point induction theorem presented in section
���

FPI�TAC � thm list
� thm list
� thm list
� term
� tactic

P�Fix f

����������������������� �pcpo E�

P�bottom E
 f ins cf�E�E�� inclusive�mk�pred�D�P��E�

�x� P�x ��� P�f x

The side conditions are checked automatically using the syntactic�based tools described
above �if these fail then the underlying theorem must be applied manually�� The theorem
list arguments are a list of cpo facts� ins facts and non�empty facts �for the inclusive
prover�� There is also a basic �xed point induction tactic

FPI�BASIC�TAC � term
� tactic

which generates the side conditions as subgoals� The term argument must be of the form

Fix f
 in both cases�

���� Cases on Lifted Cpos

It is often useful to do a case split on whether or not an element of a lifted cpo is bottom�
For this� the following theorem is provided�

�LIFT�CASES��

�
 �D d� d ins �lift D� ��� �d � Bt� �� ��d�� d� ins D �� �d � Lift d���

and based on this theorem� the following tactic�

� LIFT�CASES�TAC��

 � thm�tactic

The theorem argument corresponds to the antecedent of the theorem above and the tactic
generates two subgoals and substitutes the equalities of the cases theorem in the goals
and their assumptions�

���
 Calculating Bottom in the Function Space

Often it is necessary to make use of the fact that the bottom of a continuous function
space is the constant function which is always bottom�

�BOTTOM�CF��

�
 �D��

cpo D� ���

��D�� pcpo D� ��� �bottom�cf�D��D��� � ��x �� Dom D�� bottom D����

A conversion has therefore been implemented to apply this theorem and to prove the
antecedents automatically using the cpo and pcpo provers�

�BOTTOM�CF�CONV��

 � �thm list
� conv�

The theorem list argument is a list of additional cpo facts� The conversion is not recursive
and only works at the top level of terms� As a further simpli�cation� which many tools
do in fact� it uses the theorem

�BOTTOM�LIFT��

�
 �D� cpo D ��� �bottom�lift D� � Bt�

to yield the bottom of lifted cpos� Hence� this theorem is used to to reduce
bottom D�

in the previous theorem� when possible�

���� Function Equality

Finally� we present a conversion and a tactic for proving equality of continuous functions
between the same cpos�

�X�CONT�FUN�EQ�CONV��

 � �thm list
� thm list
� term
� conv�

�X�CONT�FUN�EQ�TAC��

 � �thm list
� thm list
� term
� tactic�

Continuous function equality is extensional equality so two continuous functions are equal
if they are equal for all elements of the domain cpo�

�
 �D� D� f g�

f ins �cf�D��D��� ���

g ins �cf�D��D��� ���

��f � g� � ��x� x ins D� ��� �f x � g x���

The conversion is based on this theorem and employs the type checker to get rid of the
antecedents� The theorems lists are the usual ones and the �rst term argument is the
desired name of the universally quanti�ed variable in the result�

Chapter �

Some Simple Examples

In this chapter we shall consider a number of simple examples to illustrate the use of
the HOL�CPO system described in chapter � and based on the formalization described in
chapter
 �and chapter � in part�� The examples illustrate what is proper use and what
is not� and include a lot of HOL code to make as explicit as possible how the system is
used and what the system does� It is shown both how new cpos and continuous functions
are introduced �and declared� and how theorems about the de�nitions can be proved�
In particular� the examples illustrate to what extent the system manages to hide the
underlying formalization of domain theory from the user� In one case only� it is necessary
to turn to the de�nition of continuity and use deep properties of the formalization� Hence�
the user does not need to know the precise de�nitions of domain theoretic concepts in
most cases	 only the consequences of having these concepts available are important to
know� e�g� that we can de�ne and reason about arbitrary recursive de�nitions and non�
termination� Hence� I claim that a HOL user �or someone familiar with HOL� who has
read the previous chapter can read this chapter without knowing the precise details of
chapter
 where the formalization is presented�

This chapter is the �rst one in a series of chapters containing examples so it will
provide more explanations and HOL�CPO details than the following chapters� A lot of
sessions are shown where constants are de�ned or declared or where theorems are proved�
The reader should be aware that one particular session may rely on earlier sessions�

	�� Booleans and Conditionals

In this section we present two di�erent ways of de�ning a cpo of booleans and the as�
sociated conditional� The cpo must contain two distinct elements for truth and falsity
respectively and the elements should only be related to themselves with respect to the
ordering relation on the cpo� One cpo is obtained using the sum construction and the
other is obtained using a discrete universal cpo of HOL booleans�

����� A Sum Cpo of Truth Values

A cpo of booleans can be de�ned as a sum cpo of two copies of a singleton cpo� interpreted
as the cpos of truth and falsity respectively �as described in section ��
�� of �Wi�
��� The
singleton cpo is obtained as the discrete cpo of just one element� hence the underlying

�

type is the HOL type
�one
� We can use new cpo definition to introduce this cpo
as follows

�let One�DEF�One�CPO � new�cpo�definition#One�DEF##One�CPO#�

�
One � discrete�UNIV�one
�bool�
��

One�DEF � �
 One � One

One�CPO � �
 cpo One

Executing this program de�nes a new constant One and declares this as a cpo constructor
by its de�nition� Hence� we can use this constant as a cpo in terms without stating each
time that it is a cpo� Recall this was implemented by the parser which expands the
de�nition of One such that internally the right�hand side of the above de�nition appears�
Similarly the pretty�printer folds the de�nition which is the reason why the de�nition
above is printed as �
 One � One � Thus� the cpo fact proved by the de�nition tool is
actually not used	 it is proved merely as a syntactic check that the right�hand side meets
the cpo notation presented in section ��
� Only de�nitions of cpos are unfolded and folded
in this way� not de�nitions of continuous functions or other terms� The string arguments
of the program are the names under which the de�nition and the cpo theorem are stored
and the �empty� theorem list argument is used in general to assume that cpo variables
which occur in the left�hand side of the de�nition are cpos� These assumptions will appear
in the cpo fact proved by the program�

The cpo of booleans can now be de�ned using the sum construction and the cpo
constructor One just de�ned� Again new cpo definition is used� in exactly the same
way as above�

�let bool�DEF�bool�CPO � new�cpo�definition#bool�DEF##bool�CPO#�

�
bool � sum�One�One�
��

bool�DEF � �
 bool � bool

bool�CPO � �
 cpo bool

This cpo has two elements� namely
INL one
 and
INR one
 respectively� The constant
one is the single inbuilt element of type
�one
 �constants and types may have the same
names in HOL�� We can now interpret this left element of the sum cpo as the truth value
true and the right element as the truth value false �

�let true�DEF � new�definition�#true�DEF#�
true � INL one�one�one
���

true�DEF � �
 true � INL one

�let false�DEF � new�definition�#false�DEF#�
false � INR one�one�one
���

false�DEF � �
 false � INR one

These new constants are introduced by the standard HOL de�nition tool and it is still left
to be proved that there is a connection between these new constants and elements of the
cpo bool � This connection is established by proving the constants are indeed elements
of bool and then declaring these facts to the system�

�declare�ins�prover
true ins bool
���

�
 true ins bool

�declare�ins�prover
false ins bool
���

�
 false ins bool

The ins�prover can be used to prove the constants are booleans since bool is a discrete
universal cpo which in turn is true because the sum of discrete universal cpos is a discrete
universal cpo �see section ����
�� The consequence of declaring the facts returned by
the ins�prover� and returned by the declaration program in turn� is that the notation for
typable terms is extended with the constants true and false �see section ����� Hence�
the parser and the type checker know these constants and we can use the constants in
terms like
Lift false
 �a lifted boolean for falsity�� If false was not declared this
would not parse correctly� as the following session shows� since the parser would not be
able to deduce the right cpo parameter of LiftI � the internal version of Lift �see
section �����

�
Lift false
��

Lift false
 � term

�unset�ppfold����

�� � void

�
Lift false
��

LiftI bool false
 � term

�undeclare����

�
 false ins bool

�
Lift false
��

LiftI D false
 � term

�set�pp����

�� � void

The program unset ppfold switches o� the pretty�printer but keeps the folding of cpo
de�nitions� The program set pp switches pretty�printing on again� The right cpo
parameter of LiftI is the constant bool or in fact� this constant expanded by its
de�nition� The wrong parameter is the �dummy� cpo variable D � In order to check
whether a term has been parsed correctly it is often easier to look at the free variables
of a term using the program frees than to unset pretty�printing and look at the entire
term� Hence� continuing the session above we can perform the frees check as follows�

�
Lift false
��

Lift false
 � term

�frees
Lift false
��

�
D
 � term list

�declare�ins�prover
false ins bool
���

�
 false ins bool

�frees
Lift false
��

� � term list

In the term list returned by frees one should look for any unexpected variables� typically
D � D� � D� � etc�� or E � E� � etc�

Next� we introduce a continuous conditional for this cpo of booleans� It takes three
arguments� one boolean and two terms in an arbitrary cpo D corresponding to each
branch of the conditional� This arbitrary cpo is present in the de�nition of the conditional
as a cpo variable by which the conditional is parameterized� Hence� it is a parameterized
constructor similar to the constructors presented in section
�� and we therefore best
introduce it using the program new constructor definition �see section �����

�cpo���

��	�
� bool� � �	�
� �	�
� bool��
 � type

�let cond�DEF�cond�CF � new�constructor�definition#cond�DEF##cond�CF#

� �ASSUME
cpo�D�!cpo��

�
condI D �

� ��b�t�t�� �� Dom�prod�bool�prod�D�!cpo��D����

� Sum���x �� Dom One� t����x �� Dom One� t���b
��

cond�DEF �

�
 �D�

cond �

���b�t�t�� �� Dom�prod�bool�prod�D�D����

Sum���x �� Dom One� t����x �� Dom One� t���b�

cond�CF � �
 �D� cpo D ��� cond ins �cf�prod�bool�prod�D�D���D��

This introduces a continuous conditional as a parameterized function constructor� This
means that the conditional is introduced in two versions� one called condI for the internal
level of syntax and another called cond for the external level of syntax� The di�erence
is that cond does not take cpo parameters whereas condI does� When we use cond

in terms it is transformed by the parser to the internal version and cpo parameters are
inserted automatically� The pretty�printer does the opposite� it removes the cpo param�
eters and prints cond instead of condI � Hence� cond appears in the pretty�printed
results above� The ML variable cpo� is bound to a polymorphic type of cpo pairs and
is used as the type of the cpo variable D which appears in the de�nition� The arguments
of new constructor definition is similar to the arguments of new cpo definition

used above� Note� we assume that the cpo variable D is a cpo� This is not necessary for
the de�nition but for the proof that the new constant introduced is a continuous function
�i�e� is in the cpo of continuous functions�� The assumption appears in this theorem�

The above de�nition is complicated by the fact that the Sum constructor function
takes two arguments which are functions from each component of the boolean sum cpo
to the arbitrary cpo D � This introduces the �unnecessary� lambda abstractions over the
variable x � The following reduction theorem is easier to understand and it states how
the conditional works on elements of the right cpos�

cond�REDUCE�THM �

�
 ��D t t�� cpo D ��� t ins D ��� t� ins D ��� �cond�true�t�t�� � t�� ��

��D t t�� cpo D ��� t ins D ��� t� ins D ��� �cond�false�t�t�� � t���

This theorem has a simple proof

REPEAT STRIP�TAC

THEN REWRITE�TAC�cond�DEF�true�DEF�false�DEF

THEN CONS�REDUCE�TAC� � �

THEN REFL�TAC

which breaks the statement down �assuming left�hand sides of implications�� expands
de�nitions� reduces away the constructors by the reduction theorems and �nishes o�
the proof using re!exivity	 both conjuncts of the statement are of the form
x � x

at this point� The assumption about the variable D is needed in order to prove the
function arguments of Sum are continuous before Sum is reduced� This cpo variable is
the codomain of these functions and hence it must be a cpo to allow the functions to be
continuous�

We shall not consider this cpo of booleans further� Instead we turn our attention
towards another one which is based on the HOL type of booleans�

����� A Discrete Universal Cpo of HOL Booleans

Above we de�ned a cpo of booleans using the sum construction on cpos� This was simple
and it works well too but we do not have any operations on this cpo of booleans� like
e�g� conjunction and negation� These must be introduced separately� If we choose instead
to introduce a cpo of booleans as the discrete universal cpo of HOL boolean values then
we inherit all operations on booleans from HOL and these are automatically continuous�
Besides� we can exploit all built�in theorems and tools for the HOL booleans� e�g� the
tautology checker �see the taut library of HOL �Bo�
��� The disadvantage of this approach
is that the conditional is much more di�cult to introduce than above	 but it is equally
easy to use�

The cpo of booleans is introduced in exactly the same way as we introduced the cpos
above� using the de�nition tool for introducing derived cpo de�nitions�

�let Bool�DEF�Bool�CPO � new�cpo�definition#Bool�DEF##Bool�CPO#�

�
Bool � discrete�UNIV�bool
�bool�
��

Bool�DEF � �
 Bool � Bool

Bool�CPO � �
 cpo Bool

The important advantage of using discrete universal cpos� in this example as well as in
general� is that we inherit all operations on the underlying types which become continuous
operations on the cpos� Thus� for instance� conjunction and negation are continuous
operations�

�declare�ins�prover
"�� ins cf�Bool�cf�Bool�Bool��
���

�
 "�� ins �cf�Bool�cf�Bool�Bool���

�declare�ins�prover
"� ins cf�Bool�Bool�
���

�
 "� ins �cf�Bool�Bool��

Besides of course the HOL boolean truth values T and F are in this cpo of booleans�

�declare�ins�prover
T ins Bool
���

�
 T ins Bool

�declare�ins�prover
F ins Bool
���

�
 F ins Bool

Since any element of this cpo is a term of type
�bool
 in HOL we can use the built�
in theorems� inference rules and other programs to reason about elements of the cpo of
booleans�

This is all very good� We have obtained many operations on booleans for free and
a lot of proof infrastructure is inherited as well� However� it is not as easy to introduce
the conditional for this cpo of booleans� It is easy enough to de�ne it� just let it be a
determined version of the built�in conditional COND

�
 �D�

CondI D � ���x�y�z� �� Dom�prod�Bool�prod�D�D���� �x �� y � z��

where
�x �� y � z�
 is HOL�s syntactic sugar for
COND x y z
� The problem is
instead to prove it is continuous	 this cannot be proved by the ins�prover due to the
use of the cpo variable D � Besides� continuity does not follow automatically as in the
previous section since the body of the lambda abstraction in the above de�nition does
not �t within the notation of typable terms� In the previous section the conditional was
introduced using the Sum construction on continuous functions and therefore continuity
could be proved automatically there�

Here� we must prove the conditional is continuous from the de�nition of continuity
manually� In fact� this is not really di�cult� but it requires that we use the formalization
of domain theory presented in chapter
 more extensively than we really want to� We must
use theorems stating� for instance� that lubs of chains in the product cpo are calculated
componentwise and that lubs of chains in discrete cpos are just the �rst elements of the
chains since these chains are all constant �contain one element only�� The theorem of
continuity of the conditional is stated as follows

Cond�CF � �
 �D� cpo D ��� �CondI D� ins �cf�prod�Bool�prod�D�D���D��

We can use this to declare the conditional as a constructor function�

�declare�constructor Cond�CF��

�
 �D� cpo D ��� Cond ins �cf�prod�Bool�prod�D�D���D��

The external version of the conditional called Cond is introduced automatically here �it is
just a �place holder� for CondI � i�e� an arbitrary element of the appropriate type without
a speci�c de�nition��

Finally� the obligatory reduction theorems�

Cond�REDUCE�THM �

�
 �D x y b� x ins D ��� y ins D ��� �Cond�b�x�y� � �b �� x � y��

Cond�T�REDUCE�THM �

�
 �D x y� x ins D ��� y ins D ��� �Cond�T�x�y� � x�

Cond�F�REDUCE�THM �

�
 �D x y� x ins D ��� y ins D ��� �Cond�F�x�y� � y�

We have chosen to provide three theorems of which the last two are obtained easily from
the �rst one� These last two theorems can be used instead of the �rst one to avoid
simplifying the HOL conditional after a reduction has been performed� Examples of
the use of the reduction theorems with the program CONS REDUCE TAC are provided in
section ��
�

	�� Natural Numbers

In the previous section we saw it was straightforward to introduce a cpo of HOL boolean
truth values using the discrete construction� The operations on HOL booleans were
inherited and proved to be continuous on the new cpo automatically� We can use exactly
the same approach to introduce a cpo of natural numbers and the associated continuous
operations for addition� subtraction� multiplication� predecessor� and so on�

The cpo of natural numbers is introduced as the discrete universal cpo of all elements
of the HOL type
�num
 of numerals �the same as natural numbers��

�let Nat�DEF�Nat�CPO � new�cpo�definition#Nat�DEF##Nat�CPO#�

�
Nat � discrete�UNIV�num
�bool�
��

Nat�DEF � �
 Nat � Nat

Nat�CPO � �
 cpo Nat

Hence� all terms of this type are in the cpo trivially� In particular� the constants � and
� � which we shall use below� are in Nat �

�declare�ins�prover
� ins Nat
���

�
 � ins Nat

�declare�ins�prover
� ins Nat
���

�
 � ins Nat

Similarly� the built�in addition� subtraction and multiplication operations on numerals
are continuous operations on the cpo of natural numbers�

�declare�ins�prover
"� ins �cf�Nat�cf�Nat�Nat���
���

�
 "� ins �cf�Nat�cf�Nat�Nat���

�declare�ins�prover
"
 ins �cf�Nat�cf�Nat�Nat���
���

�
 "
 ins �cf�Nat�cf�Nat�Nat���

�declare�ins�prover
"	 ins cf�Nat�cf�Nat�Nat��
���

�
 "	 ins �cf�Nat�cf�Nat�Nat���

The function ins prover proves its term argument is a theorem by transforming the
right�hand side of ins to a discrete universal cpo� Then the left�hand side is trivially
an element of the cpo� The transformation works above because the function space of
discrete universal cpos is itself a discrete universal cpo�

In an example below we de�ne a denotational semantics of a simple language for writing
recursive functions on natural numbers where addition� subtraction and multiplication are

strict operations on the lifted cpo of natural numbers �see section ����� Strict versions
of the above built�in constants are obtained easily using the construction� called function
extension� for extending a function to a lifted cpo in a strict way �see section
������

Add�DEF � �
 Add � Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���

Add�CF � �
 Add ins �cf�lift Nat�cf�lift Nat�lift Nat���

Sub�DEF � �
 Sub � Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n
 m���

Sub�CF � �
 Sub ins �cf�lift Nat�cf�lift Nat�lift Nat���

Mult�DEF � �
 Mult � Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n 	 m���

Mult�CF � �
 Mult ins �cf�lift Nat�cf�lift Nat�lift Nat���

All three continuous functions are introduced in the same way using the derived de�nition
program new constant definition � which proves continuity behind the scenes� This
program can be used since the right�hand sides of the de�nitions �t within the notation for
typable terms� The declarations above� of the built�in operations� extends this notation
and they are necessary both for the proofs of continuity and for the function de�nitions
to parse too� For instance� subtraction is introduced as follows�

�let Sub�DEF� Sub�CF � new�constant�definition#Sub�DEF##Sub�CF#�

�
Sub � Ext��n��Dom Nat� Ext��m��Dom Nat� Lift�n
m���
��

Sub�DEF � �
 Sub � Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n
 m���

Sub�CF � �
 Sub ins �cf�lift Nat�cf�lift Nat�lift Nat���

Recall from section ��� that this de�nition program de�nes a new constant and then
derives a fact stating which cpo it is an element of using the type checker� Finally� this
fact is declared to the system using declare behind the scenes�

In section ��� we shall also use a strict test for whether a term is zero� In order to
introduce this test we shall exploit the cpo of booleans introduced in section ��
�� above�
First we introduce a test by a standard HOL de�nition�

�
 iszero � ��n �� Dom Nat� Lft�n � ���

This can be declared to be a continuous function using declare and ins prover as
usual�

�declare�ins�prover
iszero ins cf�Nat�lift Bool�
���

�
 iszero ins �cf�Nat�lift Bool��

The ins�prover can be used since the cpo
cf�Nat�lift Bool�
 is a universal cpo�
even though it is not discrete� This is the only kind of universal non�discrete cpo
that the ins�prover can handle at the moment� Then a strict test is introduced using
new constant definition as above�

�let Iszero�DEF� Iszero�CF � new�constant�definition

� #Iszero�DEF##Iszero�CF#�

�
Iszero � Ext iszero
��

Iszero�DEF � �
 Iszero � Ext iszero

Iszero�CF � �
 Iszero ins �cf�lift Nat�lift Bool��

Note how simple the de�nition is� Since iszero already returns a lifted boolean it can
be extended to a strict function simply using Ext and nothing more�

The built�in predecessor PRE is also a continuous function on the cpo of natural
numbers� However� its de�nition in HOL may seem unsatisfactory to some people since
it de�nes the predecessor of � to be � �

�
 �PRE � � �� �� ��m� PRE�SUC m� � m�

In domain theory we have the choice of de�ning a predecessor which is unde�ned �bottom�
when it is applied to � �

pred�DEF � �
 pred � ��n �� Dom Nat� ��n � �� �� Bt � Lft�PRE n���

This is introduced by an ordinary HOL de�nition and then declared to be continuous
using declare and ins prover in the usual way�

�declare�ins�prover
pred ins cf�Nat�lift Nat�
���

�
 pred ins �cf�Nat�lift Nat��

A strict predecessor can be obtained as above using new constant definition �

����� Reduction Theorems

The main aim of a reduction theorem is to reduce away as many of the function construc�
tions �including lambda abstractions� in the right�hand side of the de�nition of a function
as possible� Using such derived theorems makes the reduction of functions by de�nitions
more e�cient since the simpli�cations just mentioned have been done once and for all�

Let us consider a few of the reduction theorems for the operations introduced above�
The theorems for addition� subtraction and multiplication are all similar� they have the
following form

Add�REDUCE�THM �

�
 ��n� Add Bt n � Bt� ��

��n� Add n Bt � Bt� ��

��nn mm� Add�Lift nn��Lift mm� � Lift�nn � mm��

Hence� they state the lifted operations are strict in both arguments and behave as the
built�in operations on lifted arguments� Note that it is not necessary to assume the
universally quanti�ed variables are in the cpo of natural numbers or in the lifted cpo of
natural numbers since these are both universal cpos� Thus� the reduction theorems can
be used with rewriting tactics instead of with the reduction tactic	 rewriting is of course
much faster�

The proof of such facts proceed by expanding de�nitions and reducing using the reduc�
tion tactic called CONS REDUCE TAC �see section ������� A case split on the lifted natural
number variable n using the tactic LIFT CASES TAC �see section ������ is necessary to
prove the second conjunct� in order to get rid of the Ext construction� In section ����

below we describe the proof in full detail�

The operation of testing whether a term is zero was introduced in two versions� The
�rst of these called iszero is a function from Nat to
lift Nat
 which behaves as
follows

iszero�REDUCE�THM �

�
 �iszero � � Lift T� �� ��nn� iszero�nn � �� � Lift F�

This theorem is stated more �precisely� than Add REDUCE THM above� in the sense that it
tells what the �nal result of a test is �as a ground%constant term�� since testing for zero is
so simple� It would complicate the above theorem considerably if we attempted to build
in how the addition "� works� The proof of the theorem about iszero uses rewriting
with built�in facts like

�REWRITE�RULE�ADD� PRE��

�
 �PRE � � �� �� ��m� PRE�m � �� � m�

�REWRITE�RULE�ADD� NOT�SUC��

�
 �n� ��n � � � ��

after the de�nition have been expanded and the function constructions have been reduced
away�

The reduction theorem for the strict test Iszero just states how it behaves on bottom
and lifted elements�

Iszero�REDUCE�THM �

�
 �Iszero Bt � Bt� �� ��nn� Iszero�Lift nn� � iszero nn�

From this and the previous reduction theorem the following derived equations can be
obtained easily �using rewriting�

Iszero�EQS �

�
 �Iszero Bt � Bt� ��

�Iszero�Lift �� � Lift T� ��

��nn� Iszero�Lift�nn � ��� � Lift F�

It depends on the situation which of the two theorems are the most useful one for rewriting�
Of course� if the latter can be applied� then this is the most useful one� since it is a special
case of the former�

����� The Factorial Function

In a typical functional programming language like ML� the factorial function might be
de�ned as follows

�letrec fac n � if n � � then � else n 	 �fac�n
�����

fac �
 � �int
� int�

Below we describe how this function �restricted to the natural numbers� can be de�ned
in the framework presented above�

Using the extensions of the notations of cpos and typable terms presented in the
previous sections we can de�ne a recursive factorial function as a �xed point of some
functional� Actually� we shall need one more extension to allow the use of equality on
natural numbers �we do not use iszero since it returns a lifted boolean��

�declare�ins�prover
"� ins cf�Nat�cf�Nat�Bool��
���

�
 "� ins �cf�Nat�cf�Nat�Bool���

The factorial we de�ne in domain theory is a function from the natural numbers to the
lifted natural numbers in order to allow to take the least �xed point� It is introduced
using the derived de�nition program new constant definition described above�

�let Fac�DEF� Fac�CF � new�constant�definition#Fac�DEF##Fac�CF#�

�
Fac �

� Fix

� ��f �� Dom�cf�Nat�lift Nat���

� �n �� Dom Nat�

� Cond��n � ���Lift ��Ext��m��Dom Nat� Lift�n	m���f�n
�����
��

Fac�DEF �

�
 Fac �

Fix

��f �� Dom�cf�Nat�lift Nat���

�n �� Dom Nat�

Cond��n � ���Lift ��Ext��m �� Dom Nat� Lift�n 	 m���f�n
 �����

Fac�CF � �
 Fac ins �cf�Nat�lift Nat��

Hence� introducing a recursive function is just as simple as introducing other functions
and arbitrary terms� We use Ext in the de�nition since the term
f�n
��
 corresponding
to the result of the recursive application of the factorial function is in the lifted cpo of
natural numbers and multiplication "	 works on natural numbers only� In order for the
�xed point operator to work as desired and yield a least �xed point�

�
 �E� pcpo E ��� ��f� f ins �cf�E�E�� ��� �f�Fix f� � Fix f��

the cpo cf�Nat�lift Nat� must be a pointed cpo� which it is� This is the reason why
we use lifted natural numbers�

The reduction theorem we have proved for the factorial was derived using this �xed
point property of Fix �

�
 �nn�

Fac nn �

Cond

��nn � ���Lift ��Ext��m �� Dom Nat� Lift�nn 	 m���Fac�nn
 ����

The theorem is a bit ugly and it could be reduced further by making a cases on whether
nn is zero or not� However� we cannot simplify the second branch of the conditional easily
because we do not know the result of the recursive call and therefore cannot reduce the
Ext term� However� on actual natural number arguments we would be able to calculate
the result of the factorial function� �rst as a sequence of multiplications and then as a
natural number by simplifying these multiplications�

A simple recursive total function like the factorial can also be de�ned in pure HOL
by a primitive recursive de�nition� Domain theory is not necessary and as a matter of
fact only complicates its de�nition� However� later we shall see examples of recursive
functions which are recursive in a non�trivial way� The de�nitions of such functions are
not supported in HOL but can be de�ned easily using domain theory�

����� Proof of a Reduction Theorem

We describe the simple proof of the reduction theorem about addition started by setting
the desired goal term as follows �cf� the subgoal package �GM�
���

�g
��n� Add Bt n � Bt� ��

� ��n� Add n Bt � Bt� ��

� ��nn mm� Add�Lift nn��Lift mm� � Lift�nn�mm��
��

��n� Add Bt n � Bt� ��

��n� Add n Bt � Bt� ��

��nn mm� Add�Lift nn��Lift mm� � Lift�nn � mm��

�� � void

�frees�snd�top�goal������

�
D
 � term list

The frees test on the goal term tells us that something is wrong� The parser have not
been able to deduce the cpo parameters of Lift since it does not know that the variables
nn and mm are elements of the cpo Nat � We declare this trivial fact and try setting the
goal again�

�declare�ins�prover
mm ins Nat
���

�
 mm ins Nat

�declare�ins�prover
nn ins Nat
���

�
 nn ins Nat

�g
��n� Add Bt n � Bt� ��

� ��n� Add n Bt � Bt� ��

� ��nn mm� Add�Lift nn��Lift mm� � Lift�nn�mm��
��

��n� Add Bt n � Bt� ��

��n� Add n Bt � Bt� ��

��nn mm� Add�Lift nn��Lift mm� � Lift�nn � mm��

�� � void

�frees�snd�top�goal������

� � term list

This time it worked� The proof is straightforward� We strip the goal apart and expand
the de�nition�

�e�REPEAT STRIP�TAC THEN REWRITE�TAC�Add�DEF ���

OK��

� subgoals

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m����Lift nn��Lift mm� �

Lift�nn � mm�

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���n Bt � Bt

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���Bt n � Bt

�� � void

The third of the three goals �enumerated from top to bottom� must be proved �rst� The
reduction tactic can be used to reduce the �rst Ext term since it is applied to Bt � This
should give us the bottom of the codomain of the function that Ext is applied to� This
codomain is the cpo
cf�lift Nat�lift Nat�
 which indeed is a pointed cpo �otherwise
the bottom would not exist��

�e�CONS�REDUCE�TAC� � � ���

OK��

��x �� Dom�lift Nat��

��x � Bt� ��

bottom�cf�lift Nat�lift Nat�� �

��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m����unlift x���

Bt

n �

Bt

�� � void

This looks terrible and is not what we expected We forgot to provide the fact that Bt

is in the cpo of lifted natural numbers� Back up and try again using this fact�

�b����

� subgoals

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m����Lift nn��Lift mm� �

Lift�nn � mm�

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���n Bt � Bt

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���Bt n � Bt

�� � void

�let Bt�Nat � ins�prover
Bt ins lift Nat
��

Bt�Nat � �
 Bt ins �lift Nat�

�e�CONS�REDUCE�TAC� �Bt�Nat � ���

OK��

bottom�cf�lift Nat�lift Nat��n � Bt

�� � void

Next we can calculate the bottom in this function space using BOTTOM CF CONV �see
section �������

�e�CONV�TAC�ONCE�DEPTH�CONV�BOTTOM�CF�CONV� �����

OK��

��x �� Dom�lift Nat�� Bt�n � Bt

�� � void

Reducing the lambda abstraction and using re!exivity solves the goal�

�e�CONS�REDUCE�TAC� �ins�prover
n ins lift Nat
 � THEN REFL�TAC���

OK��

goal proved

�
 lambda�lift�discrete UNIV����x� Bt�n � Bt

�
 bottom�cf�lift�discrete UNIV��lift�discrete UNIV���n � Bt

�
 ExtI

�discrete UNIV�cf�lift�discrete UNIV��lift�discrete UNIV���

�lambda

�discrete UNIV�

��n�

ExtI

�discrete UNIV�lift�discrete UNIV��

�lambda�discrete UNIV���m� LiftI�discrete UNIV��n � m�����

Bt

n �

Bt

Previous subproof�

� subgoals

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m����Lift nn��Lift mm� �

Lift�nn � mm�

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���n Bt � Bt

�� � void

Note that we have provided a fact for the reduction tactic stating n is in the cpo of
lifted natural numbers for this to work �it is not in the database%notation of typable
terms already�� Also note that our pretty�printer does not work on the output theorems
from the subgoal package �a choice of implementation� which therefore corresponds to the
internal syntax used�

The proof of the next goal is similar but requires a case split on n in order to get rid
of the �rst occurrence of Ext �

�e�LIFT�CASES�TAC�ins�prover
n ins lift Nat
����

OK��

� subgoals

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m����Lift d��Bt � Bt

�
d� ins Nat

�
n � Lift d�

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m���Bt Bt � Bt

�
n � Bt

�� � void

The cases tactic is based on the following theorem �see section ������

�LIFT�CASES��

�
 �D d� d ins �lift D� ��� �d � Bt� �� ��d�� d� ins D �� �d � Lift d���

The �rst of the two subgoals is similar to the previous goal proved and we can therefore
use the same tactic �except that the fact Bt Nat is used for the last reduction��

�e�CONS�REDUCE�TAC� �Bt�Nat �

� THEN CONV�TAC�ONCE�DEPTH�CONV�BOTTOM�CF�CONV� ��

� THEN CONS�REDUCE�TAC� �Bt�Nat � THEN REFL�TAC���

OK��

goal proved

�

�

�

Previous subproof�

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m����Lift d��Bt � Bt

�
d� ins Nat

�
n � Lift d�

�� � void

We have replaced the output theorems from the subgoal package by dots� Since the
assumptions say that d� is in Nat we can �nish o� this goal as follows

�e�CONS�REDUCE�TAC� �Bt�Nat � THEN REFL�TAC���

OK��

goal proved

�

�

�

Previous subproof�

Ext��n �� Dom Nat� Ext��m �� Dom Nat� Lift�n � m����Lift nn��Lift mm� �

Lift�nn � mm�

�� � void

This is the �nal subgoal� It is �nished o� in the same way as the previous subgoals by
the reduction tactic and re!exivity�

�e�CONS�REDUCE�TAC� � � THEN REFL�TAC���

OK��

goal proved

�
 ExtI

�discrete UNIV�cf�lift�discrete UNIV��lift�discrete UNIV���

�lambda

�discrete UNIV�

��n�

ExtI

�discrete UNIV�lift�discrete UNIV��

�lambda�discrete UNIV���m� LiftI�discrete UNIV��n � m�����

�LiftI�discrete UNIV�nn�

�LiftI�discrete UNIV�mm� �

LiftI�discrete UNIV��nn � mm�

�
 ��n� Add Bt n � Bt� ��

��n� Add n Bt � Bt� ��

��nn mm�

Add�LiftI�discrete UNIV�nn��LiftI�discrete UNIV�mm� �

LiftI�discrete UNIV��nn � mm��

Previous subproof�

goal proved

�� � void

We do not need any facts about mm and nn in the ins fact argument list of the reduction
tactic since these fact have been declared and therefore are part of the notation of typable
terms already� We have proved

�
 ��n� Add Bt n � Bt� ��

��n� Add n Bt � Bt� ��

��nn mm� Add�Lift nn��Lift mm� � Lift�nn � mm��

The reduction theorems for subtraction and multiplication have exactly the same form
and proofs�

	�� Using Fixed Point Induction

In this section we de�ne a double recursive function as a �xed point and prove a theorem
about the function by �xed point induction� This example is taken from �Sc��� �see sec�
tion ����
 and proposition ������ We assume the following sessions continues the previous
ones such that all declarations are still valid�

The double recursive function which is called gg is de�ned as the �xed point of the
following functional introduced by new constant definition �

gg�fun�DEF �

�
 gg�fun �

��g �� Dom�cf�Nat�lift Nat���

�n �� Dom Nat�

Cond

��n � ���Lift ��Ext��m �� Dom Nat� Lift��m � m�
 ����g�n
 �����

gg�fun�CF � �
 gg�fun ins �cf�cf�Nat�lift Nat��cf�Nat�lift Nat���

These two theorems were returned by this program which declares gg fun such that it
becomes part of the notation for typable terms� Hence� the function gg can be introduced
as follows

�let gg�DEF� gg�CF � new�constant�definition#gg�DEF##gg�CF#�

�
gg � Fix gg�fun
��

gg�DEF � �
 gg � Fix gg�fun

gg�CF � �
 gg ins �cf�Nat�lift Nat��

The constant gg is a recursive function which always returns one when it terminates�

�
 �nn� ��gg nn � Bt� ��� �gg nn � Lift ��

In fact� it always terminates but we shall not prove that here� The rest of this section
is devoted to describe the proof of this theorem using the subgoal package� The goal is
stated as follows�

�g
�nn� ��gg nn � Bt� ��� �gg nn � Lift ��
��

�nn� ��gg nn � Bt� ��� �gg nn � Lift ��

�� � void

In order to prove this goal using �xed point induction we must ensure it is an inclusive
predicate as a function of a variable replacing gg � The inclusive prover can prove this if
we add an antecedent stating nn is in the cpo of natural numbers�

�e�GEN�TAC THEN MP�TAC�ins�prover
nn ins Nat
�

� THEN SPEC�TAC�
nn�num
�
nn�num
����

OK��

�nn� nn ins Nat ��� ��gg nn � Bt� ��� �gg nn � Lift ��

�� � void

Expanding the de�nition of gg to yield a �xed point term and applying the basic �xed
point induction tactic generates �ve subgoals�

�e�REWRITE�TAC�gg�DEF THEN FPI�BASIC�TAC
Fix gg�fun
���

OK��

$ subgoals

�x�

x ins �cf�Nat�lift Nat�� ���

��nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��� ���

��nn� nn ins Nat ��� ��gg�fun x nn � Bt� ��� �gg�fun x nn � Lift ���

�nn�

nn ins Nat ���

��bottom�cf�Nat�lift Nat��nn � Bt� ���

�bottom�cf�Nat�lift Nat��nn � Lift ��

inclusive

�mk�pred

�cf�Nat�lift Nat��

��GEN%VAR%��&��

�nn�

nn ins Nat ���

��GEN%VAR%��&� nn � Bt� ���

�GEN%VAR%��&� nn � Lift �����cf�Nat�lift Nat��

gg�fun ins �cf�cf�Nat�lift Nat��cf�Nat�lift Nat���

pcpo�cf�Nat�lift Nat��

�� � void

The �rst three ones �counting from the bottom� can be proved automatically using the
pointed cpo prover� the tactic version of the type checker and the inclusive prover respec�
tively� These are applied behind the scenes by the �xed point induction tactic FPI TAC

so let us back up the goal and use this tactic instead�

�b����

�nn� nn ins Nat ��� ��gg nn � Bt� ��� �gg nn � Lift ��

�� � void

�e�REWRITE�TAC�gg�DEF THEN FPI�TAC� �Bt�Nat �
Fix gg�fun
���

OK��

� subgoals

�x�

x ins �cf�Nat�lift Nat�� ���

��nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��� ���

��nn� nn ins Nat ��� ��gg�fun x nn � Bt� ��� �gg�fun x nn � Lift ���

�nn�

nn ins Nat ���

��bottom�cf�Nat�lift Nat��nn � Bt� ���

�bottom�cf�Nat�lift Nat��nn � Lift ��

�� � void

Note that we must provide a theorem stating that Bt is in the cpo of lifted natural
numbers� This theorem is used by the inclusive prover� The theorem list arguments of
the �xed point induction tactic are used by the underlying proof tools� They consist of
a theorem list of additional cpo facts� ins facts and non�empty facts about cpos used in
universal quanti�cations for the inclusive prover �see section ��
��

The proof proceeds as follows� The �rst subgoal is proved easily by �rst calculating
the bottom in the cpo of continuous functions

�e�CONV�TAC�ONCE�DEPTH�CONV�BOTTOM�CF�CONV� �����

OK��

�nn�

nn ins Nat ���

����x �� Dom Nat� Bt�nn � Bt� ���

���x �� Dom Nat� Bt�nn � Lift ��

�� � void

and then reducing the lambda abstractions�

�declare�ins�prover
nn ins Nat
���

�
 nn ins Nat

�e�CONS�REDUCE�TAC� � � ���

OK��

�nn� nn ins Nat ��� ��Bt � Bt� ��� �Bt � Lft ��

�� � void

Actually� it is enough to reduce the �rst one but the reduction tactic reduces both� We
could instead use the reduction conversion and other conversions to make sure it is applied
at the right spot� The reduction tactic does not need to know via the theorem list
argument that nn is in Nat since this is declared to the system for later use too� The
resulting subgoal can be proved using rewriting�

�e�RT� ���

OK��

goal proved

�

�

�

Previous subproof�

�x�

x ins �cf�Nat�lift Nat�� ���

��nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��� ���

��nn� nn ins Nat ��� ��gg�fun x nn � Bt� ��� �gg�fun x nn � Lift ���

�� � void

Here� the theorem output from the subgoal package is replaced by dots� This �nishes the
basis step of the induction proof�

Next we consider the induction step� The induction hypothesis is the second �the
large� assumption� First we strip this subgoal apart and assume all antecedents except
the last one�

�e�REPEAT STRIP�TAC THEN POP�ASSUM MP�TAC���

OK��

��gg�fun x nn � Bt� ��� �gg�fun x nn � Lift ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
nn ins Nat

�� � void

Now it is time to expand the de�nition of gg fun and reduce the lambda abtractions�

�e�REWRITE�TAC�gg�fun�DEF THEN CONS�REDUCE�TAC� � � ���

OK��

��Cond

��nn � ���Lft ��Ext��m �� Dom Nat� Lift��m � m�
 ����x�nn
 ���� �

Bt� ���

�Cond

��nn � ���Lft ��Ext��m �� Dom Nat� Lift��m � m�
 ����x�nn
 ���� �

Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
nn ins Nat

�� � void

Note that the
Lift �
 terms have also been reduced� namely to
Lft �
� Next we do
a case split on nn using the theorem

�REWRITE�RULE�ADD� �ISPEC
nn�num
num�CASES���

�
 �nn � �� �� ��n� nn � n � ��

in order to be able to reduce the conditional�

�e�STRIP�SUBST��TAC�REWRITE�RULE�ADD� �ISPEC
nn�num
num�CASES�����

OK��

� subgoals

��Cond

��n � � � ���Lft ��

Ext��m �� Dom Nat� Lift��m � m�
 ����x��n � ��
 ���� �

Bt� ���

�Cond

��n � � � ���Lft ��

Ext��m �� Dom Nat� Lift��m � m�
 ����x��n � ��
 ���� �

Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

��Cond��� � ���Lft ��Ext��m �� Dom Nat� Lift��m � m�
 ����x��
 ���� �

Bt� ���

�Cond��� � ���Lft ��Ext��m �� Dom Nat� Lift��m � m�
 ����x��
 ���� �

Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
� ins Nat

�
nn � �

�� � void

The tactic STRIP SUBST� TAC is home�made	 it strips a theorem apart before assuming
it and substitutes equalities in both the goal and the assumptions� The �rst subgoal to
be proved is simpli�ed using rewriting to get rid of
� � �
�

�e�REWRITE�TAC�EQT�INTRO�REFL
�
� ���

OK��

��Cond

�T�Lft ��Ext��m �� Dom Nat� Lift��m � m�
 ����x��
 ���� � Bt� ���

�Cond

�T�Lft ��Ext��m �� Dom Nat� Lift��m � m�
 ����x��
 ���� � Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
� ins Nat

�
nn � �

�� � void

Here we note that the antecedent is not necessary to prove the goal� Therefore it is
discharged before the conditional is reduced�

�e�DISCH�THEN��th� ALL�TAC�

� THEN CONS�REDUCE�TAC�

� �ins�prover
Lft � ins lift Nat
 �Cond�T�REDUCE�THM ���

OK��

Lft � � Lft �

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
� ins Nat

�
nn � �

�� � void

Note we must provide the fact that
Lft �
 is a lifted natural number since the constant
Lft is not part of the notation for typable terms � Lift is�� This goal is �nished o�
using re!exivity�

�e�REFL�TAC���

OK��

goal proved

�

�

�

Previous subproof�

��Cond

��n � � � ���Lft ��

Ext��m �� Dom Nat� Lift��m � m�
 ����x��n � ��
 ���� �

Bt� ���

�Cond

��n � � � ���Lft ��

Ext��m �� Dom Nat� Lift��m � m�
 ����x��n � ��
 ���� �

Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�� � void

This concludes the case when nn is zero�
The next subgoal corresponds to the case when nn is
n � �
� First we observe that

adding one never yields zero�

�REWRITE�RULE�ADD� NOT�SUC��

�
 �n� ��n � � � ��

so we can simplify the conditionals as follows

�e�REWRITE�TAC�REWRITE�RULE�ADD� NOT�SUC

� THEN CONS�REDUCE�TAC�

� �ins�prover
Lft � ins lift Nat
 �Cond�F�REDUCE�THM

OK��

��Ext��m �� Dom Nat� Lift��m � m�
 ����x��n � ��
 ��� � Bt� ���

�Ext��m �� Dom Nat� Lift��m � m�
 ����x��n � ��
 ��� � Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�� � void

which is simpli�ed further using the fact that adding a number and then subtracting the
number is identity�

�ADD�SUB��

�
 �a c� �a � c�
 c � a

�e�REWRITE�TAC�ADD�SUB ���

OK��

��Ext��m �� Dom Nat� Lift��m � m�
 ����x n� � Bt� ���

�Ext��m �� Dom Nat� Lift��m � m�
 ����x n� � Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�� � void

In order to get rid of the construction Ext we must do a case split on
x n
�

�e�LIFT�CASES�TAC�ins�prover
x �n�num� ins lift Nat
����

OK��

� subgoals

��Ext��m �� Dom Nat� Lift��m � m�
 ����Lift d�� � Bt� ���

�Ext��m �� Dom Nat� Lift��m � m�
 ����Lift d�� � Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�
d� ins Nat

�
x n � Lift d�

��Ext��m �� Dom Nat� Lift��m � m�
 ���Bt � Bt� ���

�Ext��m �� Dom Nat� Lift��m � m�
 ���Bt � Lft ��

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�
x n � Bt

�� � void

The �rst subgoal is �nished o� by the reduction tactic �recall Ext is strict� and rewriting�
We can prove the second subgoal as follows� Clearly we should reduct the Ext terms
since Ext is applied to Lift terms which makes this possible� The antecedent is not
necessary so let us get rid of this before we reduce the goal�

�e�DISCH�THEN��th� ALL�TAC� THEN CONS�REDUCE�TAC� � � ���

OK��

Lft��d� � d��
 �� � Lft �

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�
d� ins Nat

�
x n � Lift d�

�� � void

To proceed we derive the fact that d� is equal to � from the assumptions� First recall
that Bt and Lift are distinct�

�BT�LIFT�DISTINCT��

�
 �D d� d ins D ��� ��Bt � Lift d�

Hence�
x n
 is not bottom�

�e�TOP�ASSUM��th� ASSUME�TAC�SUBS�SYM th

� �GSYM�MATCH�MP BT�LIFT�DISTINCT�ASSUME
d� ins Nat
��������

OK��

Lft��d� � d��
 �� � Lft �

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�
d� ins Nat

�
x n � Lift d�

�
��x n � Bt�

�� � void

We can use this and the induction hypothesis to conclude that
x n
 is equal to
Lift

�
�

�e�FIRST�ASSUM��th� IMP�RES�TAC�MATCH�MP th�ins�prover
n ins Nat
������

OK��

Lft��d� � d��
 �� � Lft �

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�
d� ins Nat

�
x n � Lift d�

�
��x n � Bt�

�
x n � Lift �

�� � void

Now we have that
x n
 is equal to both
Lift �
 and
Lift d�
 so since Lift is
injective �one�one�

�LIFT�ONE�ONE��

�
 �D x y� x ins D ��� y ins D ��� ��Lift x � Lift y� � �x � y��

we can deduce that d� is equal to one�

�e�POP�ASSUM��th�� POP�REMOVE THEN POP�ASSUM��th�� SUBST��TAC

� �SUBS��MATCH�MP�MATCH�MP LIFT�ONE�ONE�ASSUME
d� ins Nat
��

� �ins�prover
� ins Nat
�� �SUBS�th� th��������

OK��

Lft��� � ��
 �� � Lft �

�
x ins �cf�Nat�lift Nat��

�
�nn� nn ins Nat ��� ��x nn � Bt� ��� �x nn � Lift ��

�
�n � �� ins Nat

�
nn � n � �

�
d� ins Nat

�� � void

Now rewriting can prove the goal�

�e�RT�ADD�SUB ���

OK��

goal proved

�

�

�

Previous subproof�

goal proved

�� � void

Hence� we have prove the desired fact

GG�ONE � �
 �nn� ��gg nn � Bt� ��� �gg nn � Lift ��

stating gg is always equal to one �lifted� when it terminates�

	�� A Simple Language and Its Semantics

As another simple example we will show how the HOL�CPO system can be used to
give a denotational call�by�value semantics of a language called REC which supports the
recursive de�nition of functions on natural numbers� This example is taken from �Wi�
�
�see chapter �� where it is treated more thoroughly than here� The presentation below
assumes the extensions of the notations of cpos and typable terms which are presented in
section ��
 and section ��� above�

The language is represented by an abstract datatype of syntax in HOL� This type is
de�ned to meet the following type speci�cation�

rec � N num � V var

� ADD rec rec � SUB rec rec � MULT rec rec

� IF rec rec rec

� FUN� rec

� FUN� rec rec

The type
�var
 is introduced as an abbreviation of the type of strings
�string

�GM�
�� The conditional term
IF t� t� t�
 in REC tests whether it argument t�

is zero� If this is the case it returns t� otherwise it returns t� � The constants FUN�

and FUN� are the function variables of the language� These are given a meaning by a
declaration of the following form

FUN� �V#x#� � t�

FUN� �V#x#� �V#y#� � t�

where t� and t� must meet the above syntax and therefore may contain both FUN�

and FUN� � Hence� mutual recursion is allowed� The term t� should contain no other
variables than
V#x#
 and t� should contain no other variables than
V#x#
 and
V#y#
�
The functions are unary and binary operations respectively�

In fact� there could be any number of functions of di�erent arities in REC� The lan�
guage we consider here is just an example with two functions of the arities just mentioned�
If we were going to use this language we would write a declaration �rst and then introduce
the version of REC which had the right function variables� This could be automated by
an ML program�

The semantics of REC is stated using a function den which says which domain
theoretic function or value a term denotes� It is de�ned by primitive recursion on the
above datatype of syntax� The denotation of terms of REC is stated with respect to
environments for variables and function variables� De�ning the cpo of names of variables
as follows

�let Var�DEF�Var�CPO � new�cpo�definition#Var�DEF##Var�CPO#�

�
Var � discrete�UNIV�var
�bool�
��

Var�DEF � �
 Var � Var

Var�CPO � �
 cpo Var

we can de�ne the cpo of variable environments by

�let Env�DEF�Env�CPO � new�cpo�definition#Env�DEF##Env�CPO#�

�
Env � cf�Var�Nat�
��

Env�DEF � �
 Env � Env

Env�CPO � �
 cpo Env

and the cpo of function environments by

�let Fenv�DEF�Fenv�CPO � new�cpo�definition#Fenv�DEF##Fenv�CPO#�

�
Fenv � prod�cf�Nat�lift Nat��cf�Nat�cf�Nat�lift Nat���
��

Fenv�DEF � �
 Fenv � Fenv

Fenv�CPO � �
 cpo Fenv

This is a product of two function spaces of which the �rst component is determined by
the type of FUN� and the second component is determined by the type of FUN� � A
declaration determines a particular function environment� Finally� the primitive recursive
de�nition of den can be stated as follows

den�DEF �

�
 ��n� den�N n� � ��f �� Dom Fenv� �s �� Dom Env� Lift n�� ��

��v� den�V v� � ��f �� Dom Fenv� �s �� Dom Env� Lift�s v��� ��

��t� t��

den�ADD t� t�� �

��f �� Dom Fenv� �s �� Dom Env� Add�den t� f s��den t� f s��� ��

��t� t��

den�SUB t� t�� �

��f �� Dom Fenv� �s �� Dom Env� Sub�den t� f s��den t� f s��� ��

��t� t��

den�MULT t� t�� �

��f �� Dom Fenv� �s �� Dom Env� Mult�den t� f s��den t� f s��� ��

��t� t� t��

den�IF t� t� t�� �

��f �� Dom Fenv�

�s �� Dom Env�

Ext

��b �� Dom Bool� Cond�b�den t� f s�den t� f s��

�Iszero�den t� f s���� ��

��t�

den�FUN� t� �

���f��f�� �� Dom Fenv� �s �� Dom Env� Ext f��den t�f��f��s��� ��

��t� t��

den�FUN� t� t�� �

���f��f�� �� Dom Fenv�

�s �� Dom Env�

Ext

��v� �� Dom Nat� Ext��v� �� Dom Nat� f� v� v���

�den t��f��f��s�

�den t��f��f��s���

Note that we use the strict versions of addition� subtraction and multiplication presented
above� Besides� we use the strict test for zero and furthermore extends the conditional
Cond to a strict conditional using Ext � The above semantics corresponds to the one
presented on page
�� in �Wi�
��

We wish the denotation of a term to be a continuous function since this allows us
to de�ne the actual function environment determined by a declaration� Indeed it is
continuous as stated by the following theorem�

�
 �t� �den t� ins �cf�Fenv�cf�Env�lift Nat���

This is proved by structural induction on terms and the type checker� or more precisely�
the tactic version of the type checker� called TYPE CHECK TAC � Structural induction is
stated by a theorem rec INDUCT which can be proved automatically by a tool associated
with the type de�nition package �Me���� The proof of the above theorem is so simple that
we will list it here�

INDUCT�THEN rec�INDUCT STRIP�ASSUME�TAC

THEN REPEAT GEN�TAC

THEN REWRITE�TAC�den�DEF

THEN TYPE�CHECK�TAC� �ins�prover
n ins Nat
�ins�prover
s ins Var

Behind the scenes� the type checker tactic uses the induction hypotheses which are present
in the assumptions after induction has been applied�

We have also proved the following theorem about the semantics

�
 �s s� t�

��v� v IN �vars t� ��� �s v � s� v�� ���

��f� f ins Fenv ��� �den t f s � den t f s���

which states that the result of a denotation of a term in a function environment only
depends on variables in the term� In particular� the denotation
den t f s
 of a closed
term t is independent of the environment state variable s � The variables function is
de�ned straightforwardly by

�
 ��n� vars�N n� � ��� ��

��v� vars�V v� � �v�� ��

��t t�� vars�ADD t t�� � �vars t� UNION �vars t��� ��

��t t�� vars�SUB t t�� � �vars t� UNION �vars t��� ��

��t t�� vars�MULT t t�� � �vars t� UNION �vars t��� ��

��t t� t���

vars�IF t t� t��� �

�vars t� UNION ��vars t�� UNION �vars t����� ��

��t� vars�FUN� t� � vars t� ��

��t t�� vars�FUN� t t�� � �vars t� UNION �vars t���

Note� by the way� that although Fenv is in fact a universal cpo we include the antecedent
above stating
f ins Fenv
� We do this to ease the proof since such a term cannot be
proved using ins prover � However� ins prover could of course be extended to handle
such situations�

Finally� we shall see how a declaration determines a function environment by consid�
ering a simple example of the use of REC to de�ne the factorial function� The declaration
we consider is the following

�FUN��V #x#� �

IF�V #x#��N ���MULT�V #x#��FUN��SUB�V #x#��N ������ ��

�FUN��V #x#��V #y#� � FUN��V #x#��V #y#��

where FUN� is de�ned as the factorial function and FUN� is a recursive functions which
keeps on calling itself with the same arguments and therefore runs forever� A functional for
the function environment is introduced using new constant definition which returns
the following theorems

fenv�fun�DEF �

�
 fenv�fun �

��s �� Dom Env�

�f �� Dom Fenv�

���n �� Dom Nat�

den

�IF�V #x#��N ���MULT�V #x#��FUN��SUB�V #x#��N ������

f

�bind�n�#x#�s����

��n m �� Dom Nat�

den�FUN��V #x#��V #y#��f�bind�n�#x#�bind�m�#y#�s������

fenv�fun�CF � �
 fenv�fun ins �cf�Env�cf�Fenv�Fenv���

where the constant bind is used to associate a value with a variable in a state�

�
 bind �

���n�x�s� �� Dom�prod�Nat�prod�Var�Env����

�y �� Dom Var� ��x � y� �� n � s x��

�
 bind ins �cf�prod�Nat�prod�Var�Env���Env��

Now� the function environment determined by the above declaration can be introduced
by a �xed point de�nition as follows �using the same program as above�

fenv�DEF � �
 fenv � ��s �� Dom Env� Fix�fenv�fun s��

fenv�CF � �
 fenv ins �cf�Env�Fenv��

Hence� the denotation of the factorial function in a variable environment s corresponds
to the �rst component of
fenv s
 which is a pair �the tiring calculation of this is left
to the reader�� One must admit that this is not the most neat and convenient de�nition
of the factorial function that one can think of �compare for instance with the factorial of
section �������

Chapter 	

LCF Examples

In chapter
� of Paulson�s book on the Cambridge LCF system �Pa��� a number of exam�
ples are presented� These illustrate the use of LCF for reasoning about natural numbers�
recursive functions and in�nite sequences� In this chapter we describe how the examples
can be developed in HOL�CPO� the extension of HOL with domain theory�

The LCF system and the HOL system have many similarities since HOL is based on
the �LCF approach� to theorem proving �due to Robin Milner� the originator of LCF��
Both systems have a meta�language ML and their logics are implemented in ML� Inference
rules and tactics are ML functions� Extensions are organized in hierarchies of theories�
In fact� the central di�erence between HOL and LCF is in their logic parts� Where HOL
is based on a version of Church�s higher order logic the LCF system implements a version
of Scott�s Logic of Computable Functions� a �rst order logic of domain theory�

In a way� extending HOL with domain theory corresponds to embedding the logic
of the LCF system within HOL� Thus� any proof conducted in LCF can be conducted
in HOL�CPO as well� and axioms of LCF theories can be de�ned� or derived from def�
initions� provided of course they are consistent extensions of LCF� This correspondence
breaks down for di�cult recursive domains with in�nite values� It is not easy to de�ne
such domains in HOL�CPO and LCF could just axiomatize the domains	 this has been
automated in certain cases �Pa��a��

However� HOL�CPO is not just another LCF system� Ignoring the problems with
recursive domains� we claim it is more powerful and usable than LCF since �
� it inherits
the underlying logic and proof infrastructure of the HOL system� and ��� it provides direct
access to domain theory� These two points are the consequences of embedding semantics
rather than implementing logic�

Experience with LCF shows that the continual �ddling with bottom is very annoying�
Its presence in all types makes LCF less suited for proofs about strict ��nite�valued�
datatypes than for proofs about lazy datatypes �Pa��a� Pa��� Pa��b�� Paulson says the
ugliest reasoning in LCF involves !atness	 a !at type denotes a cpo with a bottom element
but no partial elements �strict datatypes are !at�� Further� the so�called de�nedness
assumptions stating arguments of functions are not bottom makes reasoning about strict
functions di�cult� e�g� constructor functions of strict datatypes are strict� However� LCF
seems to be well�suited to reason about lazy evaluation� for instance about constructor
functions of lazy datatypes� Here� such tests for de�nedness do not occur�

One historical advantage of �
� is that we can exploit the rich collection of built�in
theorems� tools and libraries provided with the HOL system� LCF has almost nothing

��

like that� but could have of course� The main advantage is that we become able to mix
domain and set theoretic reasoning in HOL� Hence� reasoning about bottom and strict
functions can often be �almost� eliminated from proofs� or deferred until the late stages
of a proof�

In contrast to ���� domain theory is only present in the logic of LCF through axioms
and primitive rules of inference� Therefore �xed point induction is the only way to reason
about recursive de�nitions and testing that a predicate admits induction can only be
performed in ML by an incomplete syntactic check� By exploiting the semantic de�nitions
of these concepts in domain theory� HOL�CPO does not impose such limitations� Fixed
point induction can be derived as a theorem and syntactic checks for admissibility� also
called inclusiveness� can be implemented� just as in LCF� But using other techniques for
recursion or reasoning directly about �xed points allow more theorems to be proved than
with just �xed point induction� Inclusive predicates not accepted by the syntactic checks
can be proved to be inclusive directly from the semantic de�nition�

The examples will show that we can de�ne and reason about arbitrary recursive
functions and non�termination in domain theory and about �nite�valued types and to�
tal ��strict�� functions in set theory �higher order logic� before turning to domain theory�
The natural number example illustrates how we can mix set and domain theoretic rea�
soning and thereby ease reasoning about strict LCF datatypes� The two other examples
about recursive de�nitions and in�nite sequences respectively illustrate that we can con�
duct LCF proofs by �xed point induction and structural induction on inclusive predicates
in HOL�CPO�

�� The LCF System

The LCF system is very similar to the HOL system� It has a meta�language ML �or
Standard ML� in which the logic and theorem proving tools are implemented� Theorems
are implemented by an abstract datatype for security and axioms and primitive inference
rules are constructors of this datatype� Derived inference rules are ML functions� The
subgoal package allows proofs in a backwards fashion using tactics� Constants� axioms�
theorems and so on are organized in hierarchies of theories� In fact� the HOL system is a
direct descendant of LCF� However� the two systems are quite di�erent on some points�
The main properties of LCF may be summarized as follows�

� LCF supports a �rst order logic of domain theory�

� The use of LCF to reason about recursive de�nitions ��xed points� is restricted� for
instance �xed point induction is part of the primitive basis of the underlying logic
�so there is no access to domain theory� and employs an incomplete syntactic check
for admissibility of a predicate for induction �performed in ML��

� Extending theories in LCF is done by an axiomatic approach and is therefore unsafe�
Checking whether an axiom is safe is di�cult since it must be done in domain theory
�outside LCF��

� Rewriting is relatively powerful in LCF� which makes �nal �and edited� proof in
LCF quite compact�

In the following sections these points and the most important di�erences between the two
systems are discussed further�

����� The Logic PP�

The central di�erence between LCF and HOL is in their logic parts� The logic of the HOL
system is an implementation of a version of Church�s higher order logic� The logic of the
LCF system is an implementation of a version of Scott�s Logic of Computable Functions�
usually abbreviated LCF� In order to be able to distinguish the logic and the system the
logic was renamed to PP�� an acronym of Polymorphic Predicate ��calculus�

PP� is a �rst order logic of domain theory	 it has a domain theoretic semantics� It
di�ers from higher order logic since it is a �rst order logic and since types denote cpos
with bottom� The function type denotes the continuous function space� Types of the
HOL logic just denote sets �cpos may be viewed as sets with structure� and functions are
total functions of set theory�

Because PP� is a �rst order logic there is a distinction between terms and formulae
and quanti�cation is only allowed for terms� Formulae are just the usual ones of predicate
calculus and terms are similar to HOL terms	 either an LCF term is a constant� a variable�
an abstraction or a combination �application�� Every such term has a type in LCF and
there are both formulae and terms of type boolean� Therefore� there are also two equality
tests� the computational one for terms and the logical one for formulae� written as ��

In HOL there is no distinction between terms and formulae� Roughly speaking� the
formulae of LCF correspond to HOL terms of type boolean� LCF terms and types can be
denoted by using the extension of HOL with domain theory� Therefore� HOL�CPO can
be seen as kind of shallow embedding of LCF in HOL�

Note that types of LCF correspond to pointed cpos in HOL�CPO� It is a real advantage
to allow cpos without bottom since this makes it easier to view �subsets of� HOL types
as cpos and eliminate reasoning about bottom� The presence of bottom in all types is
very annoying in LCF �as mentioned above and demonstrated by the natural number
example��

Since types of PP� denote pointed cpos and all functions are continuous� it is a fact
of domain theory that recursive functions can be de�ned by using a �xed point operator�
Reasoning about recursive de�nitions can be conducted using �xed point induction� The
�xed point theory of computation is provided in PP� through axioms and primitive rules
of inference� A constant denotes the �xed point operator of domain theory due to an
axiom which states it yields a �xed point and due to the primitive rule of �xed point
induction which states it yields the least �xed point� In the logic there is no domain
theoretic de�nition of the �xed point operator� Therefore� this axiom and primitive rule
of inference provide the only ways for reasoning about recursive de�nitions� Hence� proofs
that reason about recursive functions in other ways� e�g� by their �xed point de�nition�
cannot be mechanized in LCF� Besides� the concept of admissibility �inclusiveness� of
predicates for induction is only present as a syntactic check performed by the rule of
�xed point induction� This check is not complete and examples of inclusive predicates
exist that are not accepted for �xed point induction in LCF� Paulson gives an example in
�Pa��a��

Such limitations are not present in HOL�CPO� Domain theory is embedded in HOL
so we have direct access to all semantic de�nitions of concepts of �xed point theory� In

particular� the �xed point operator and inclusiveness are de�ned semantically and �xed
point induction is derived as a theorem from these de�nitions� Since the embedding
is shallow �BGH���� it allows mixing any set theoretic reasoning in HOL with domain
theoretic reasoning in HOL�CPO� There is no immediate di�erence between ordinary
HOL terms and terms that are cpos or continuous functions� We can therefore do proofs
about recursive functions by �xed point induction� by the de�nition of the �xed point
operator or by any induction technique that can be derived in HOL� e�g� well�founded
induction �see appendix A�� Besides inclusiveness can be checked syntactically by an
ML function which implements a syntactic check based on theorems derived from the
de�nition of inclusiveness �see section ��
�� This check is very similar to the LCF one �or
they are the same��

����� Extending Theories

There are quite di�erent traditions of extending theories in LCF and HOL� In HOL there
is a sharp distinction between purely de�nitional extensions and axiomatic extensions�
De�nitional extensions are conservative �or safe�� i�e� they always preserve consistency of
the logic� Stating a new axiom may not be a conservative extension� it might introduce
inconsistency �or not�� In LCF there is no such distinction between axioms and de�nitions�
The only way to extend theories with new concepts is by introducing new axioms� First
a new constant or type is given a name� Then a number of properties of the constant or
type are stated as axioms� It is not possible to state axioms about a type directly� they
must be stated about constants as e�g� constructor functions of a datatype or abstraction
and representation functions �see below��

It is not always easy to know whether an LCF axiom is safe or not since this must
be justi�ed in domain theory� In particular� an axiom should not violate the continuity
of a function� All functions are assumed to be continuous in PP� since the function
type denotes the continuous function space� Paulson shows how easy it is to go wrong in
example ��

 of his book �Pa���� Instead of de�ning recursive functions using the �xed
point operator an axiom can be introduced which is a recursion equation� i�e� an equation
where the function constant appears on both sides of the equality sign� Such axioms are
justi�ed in domain theory since the equation follows from a property stating that the
�xed point operator always yields a �xed point� Fixed point induction can only be used
if a function is de�ned using the �xed point operator�

As mentioned above� recursive types are also introduced by axioms� There is no
recursion operator for types corresponding to the �xed point operator for functions so new
types cannot be de�ned �since there is no access to domain theory�� Given a recursive
domain equation of the form 	 �� F �	 � where F is a continuous domain constructor the
most general approach is to state the existence of abstraction and representation functions
ABS � F �	 � � 	 and REP � 	 � F �	 � that are bijective� This approach is justi�ed in
domain theory since the isomorphism equation follows from a limit construction of the new
domain� which is said to be a solution to the recursive domain equation �see chapter ���

Another more direct approach works for certain recursive datatypes which can be
described by a set of constructor functions� each taking a number of arguments of speci�ed
types where the function type is not used in an essential way �Pa��a�� Provided such a
set as an argument an ML program can introduce constants and axioms to de�ne a new
recursive datatype in LCF� The program supports both strict� lazy and mixed �mutual�

recursive datatypes� Some of these types we can derive manually in HOL using the
methods described in chapter �� If we decided to axiomatize recursive domains as in
LCF� we could probably introduce recursive domains easier than with the methods of that
chapter� But axiomatizing theories does not �t in well with the HOL tradition� Hence�
HOL�CPO is weaker than LCF on this point concerning de�ning recursive domains�

In LCF� the axioms of the new datatype�s� state a number of properties about the
constructor functions which are de�ned as constants� For instance� there is an axiom which
states what the partial ordering on elements of the new type is and there is a exhaustion
�or cases� axiom which states that the constructors are exhaustive� i�e� any term of that
type is equal to one of the constructors for appropriate arguments of the constructor� From
the axioms it is derived that the constructors are distinct and that structural induction
with inclusive predicates is valid on the new type� Structural induction is derived from
�xed point induction�

����� Rewriting

Finally� there is a small di�erence in the implementation of rewriting in the two systems�
In addition to standard HOL rewriting LCF performs conditional rewriting where it tries
to simplify antecedents of conditional rewrite theorems to truth recursively� And it im�
plements rewriting with local assumptions where the antecedent are used to rewrite the
consequence of implicative formulae� It also does ��conversion whenever possible and it
employs various simpli�cations not used in HOL� e�g� DeMorgan�s Laws� Therefore proofs
can be written in a very compact way in LCF� But the price to pay for powerful rewriting
is of course e�ciency� Besides a proof which use rewriting too heavily is almost impossible
to read since it has no structure� If a proof is written to re!ect the way it was invented
it is more accessible for later inspection�

�� Natural Numbers

In this section we de�ne a cpo of natural numbers and consider a few properties about
the operations addition and equality�

We start up a new theory called lcf nat and de�ne a discrete universal cpo of natural
numbers using the function new cpo definition �

�new�theory#lcf�nat#��

���void

�new�cpo�definition#Nat�DEF##Nat�CPO#�

�
Nat � discrete�UNIV�num
�bool�
��

�
 Nat � Nat

�
 cpo Nat

The facts stating that the two built�in constants � and SUC construct elements in
Nat can be proved automatically and then added to the system using ins prover and
declare �

�declare�ins�prover
� ins Nat
���

�
 � ins Nat

�declare�ins�prover
SUC ins�cf�Nat�Nat��
���

�
 SUC ins �cf�Nat�Nat��

This cpo does not have a bottom but using the lifting construction we can obtain a pointed
cpo
lift Nat
 when we need it� A strict successor for the lifted cpo can be obtained
from SUC using the function construction called extension associated with the lifting
construction �see section
������

�new�constant�definition#Suc�DEF##Suc�CF#�

�
Suc � Ext��nn��Dom Nat� Lift�SUC nn��
��

�
 Suc � Ext��nn �� Dom Nat� Lift�SUC nn��

�
 Suc ins �cf�lift Nat�lift Nat��

So this makes Suc a strict continuous constructor for the lifted cpo of natural numbers

lift Nat
� The bottom of this cpo is� �
 Bt ins �lift Nat� � The zero element is�
�
 �Lift �� ins �lift Nat� � Both facts can be proved using the ins�prover �though
the latter would not need to be declared since � has already been declared��

The cpo
lift Nat
 corresponds to the LCF type of natural numbers and Suc cor�
responds to the strict constructor function for this type� In LCF natural numbers are
introduced as a recursive datatype axiomatically� Names of constants for the type and
constructor functions are declared and then axioms about the new constants are postu�
lated� The axioms specify the partial ordering on natural numbers and state strictness
and de�nedness of the constructors� The exhaustion �or cases� axiom is also postulated�
It states there are three possible values of a natural number� namely bottom� zero and
the successor of some natural number� Distinctness of the constructors and the structural
induction rule are then derived from these axioms and �xed point induction� This is
performed automatically by a few ML programs�

All such axioms� theorems and rules can be derived as theorems in HOL and in fact�
most are built�in theorems or they can be derived very easily� For instance� it is a built�in
fact that � and SUC are distinct for all arguments of SUC � Lifting natural numbers and
extending SUC to a strict function� these constructors yield elements which are distinct
from bottom �and still distinct from each other��

Addition on the cpo of natural numbers is simply the built�in addition of natural
numbers� This is so because Nat is discrete and the underlying set is the whole type of
natural numbers� Then the determinedness condition on continuous functions is satis�ed
trivially� which is exploited by the ins�prover� It was used to prove that the built�in
successor is continuous above and it can be used to prove the built�in addition is continuous
too�

�declare�ins�prover
"� ins �cf�Nat�cf�Nat�Nat���
���

�
 "� ins �cf�Nat�cf�Nat�Nat���

Again we make the system aware of this fact by declaring it�

Since addition is strict in LCF� let us introduce a strict version of addition by extending
the built�in addition to the lifted natural numbers�

�new�constant�definition#Add�DEF##Add�CF#�

�
Add � Ext��nn��Dom Nat� Ext��mm��Dom Nat� Lift�nn�mm���
��

�
 Add � Ext��nn �� Dom Nat� Ext��mm �� Dom Nat� Lift�nn�mm���

�
 Add ins �cf�lift Nat�cf�lift Nat�lift Nat���

The second fact returned by new constant definition states that the strict addition
Add is continuous� In order to provide this fact it uses the continuity prover which proves
the fact automatically from the subterms of the de�nition of Add �

An equality test for natural numbers is obtained in two versions in the same way as
the successor and addition functions� The strict equality is called Eq and de�ned by the
following theorem

�
 Eq � Ext��nn �� Dom Nat� Ext��mm �� Dom Nat� Lift�nn � mm���

The continuity theorems for the two equalities look as follows

�
 "� ins �cf�Nat�cf�Nat�Bool���

�
 Eq ins �cf�lift Nat�cf�lift Nat�lift Bool���

The constant Bool is the discrete universal cpo of booleans de�ned in section ��
� Note
that it is only one particular instance of the polymorphic HOL equality that we have
proved is continuous� namely the equality of type
�num
� num
� bool
�

The LCF functions for addition and equality corresponds to the functions Add and
Eq that we de�ned above� However� these operations are introduced quite di�erently
in LCF since there are no �meta�logical� operations they can be identi�ed with� They
must be de�ned by a recursive de�nition� This is done by �rst introducing axioms for an
eliminator functional called NAT WHEN

NAT WHEN x f � � �
NAT WHEN x f � � x

	m�m
� � � NAT WHEN x f �SUCC m� � f m

which can be used to de�ne continuous functions on natural numbers by cases� Then
axioms for addition and equality are postulated in terms of NAT WHEN� The axioms are
recursive de�nitions in the sense that the constant appearing on the left�hand side also
appears on the right�hand side� These axioms must not violate the continuity of addition
and equality� and they do not due to the use of NAT WHEN �but there is not guarantee
for this��

We could de�ne addition and equality in HOL by introducing an eliminator functional
but our approach is simpler� There is one major disadvantage of using when eliminator
functions for strict datatypes as natural numbers� Since constructors are strict it is neces�
sary to assume their arguments are de�ned� Otherwise there might be a con!ict between
the unde�ned case of an eliminator and a constructor case �see above�� A consequence of
this is that most theorems stated about functions de�ned in terms of a when eliminator
must assume some of their arguments are de�ned �not necessarily all�� This also makes
all theorems about addition and equality in LCF more complicated to state� prove� and
use than the corresponding theorems in HOL�CPO� In general� such de�nedness assump�
tions makes reasoning about total functions di�cult since computations �terms� must be
proved to terminate �to yield a value di�erent from bottom� and functions must be proved
to be total �to terminate for all arguments��

In HOL� functions are guaranteed to be total and using function extension we can
extend functions to lifted domains in a strict way� This way we eliminate a lot of reasoning
involving bottom� Furthermore� we also defer reasoning about bottom until as late as
possible in a proof�

Since addition and equality are de�ned by recursion in LCF� proofs must be conducted
using techniques as natural number induction� In HOL we can reuse built�in theorems
about addition and equality� For !at types as strict datatypes we can always do the set
theoretic developments in HOL before adding bottom� In general� LCF reasoning about
total functions is di�cult since functions must be proved to be total and computations
must be proved to terminate� In HOL functions are guaranteed to be total and using
lifting we can extend these to !at types�

In the next two sections we discuss a number of theorems about addition and equal�
ity� In general� the proofs in HOL are much simpler �in an intuitive sense� than the
corresponding ones in LCF� since the theorems can be proved by similar inductions as
in LCF� but without considering the bottom element as in LCF induction proofs� For
strict datatypes we can do the set theoretic developments in HOL before adding bottom�
It is very advantageous to eliminate and defer reasoning about bottom� e�g� de�nedness
assumptions tend to accumulate�

����� Theorems about Addition

In this section we present a few theorems about the strict addition called Add � Proofs
are always by cases on the lifted type of numbers due to the use of Ext in the de�nition
of addition �no induction�� The usual recursion equations for addition are stated �rst but
in fact they are of no use with this de�nition of addition� A certain reduction theorem
for di�erent kinds of arguments of addition �bottom or lifted� is more useful� In LCF�
the recursion equations are important since proofs use induction� Three perhaps more
interesting theorems about addition than the reduction theorem are provided� addition
is total� associative and commutative�

The recursion equations for the strict addition can be proved in HOL� However they are
not very interesting since we shall never do an induction proof about the strict addition�
Induction proofs are conducted about the built�in addition which is in fact de�ned by the
corresponding recursion equations on the HOL type of natural numbers� Anyway� the
equations are stated as follows

�
 ��n� Add Bt n � Bt� ��

��n� Add �Lift �� n � n� ��

��n m� Add�Suc n�m � Suc�Add n m��

In LCF the third equation would assume the variable n is not bottom �cf� the comment
on when eliminators above� the successor case must not collapse to bottom�� The proof
of this fact is longer but just as simple as the LCF proof� It is performed by cases on
the lifted type using that the functions Ext and Suc are strict in the bottom case and
using the corresponding clauses about "� in the lifted case� The proof is longer because
we did not use an eliminator to de�ne addition �and therefore do not have the equations
provided by this eliminator� and because LCF proofs are compact due to the fact that
many situations are handled by rewriting�

The more useful reduction theorem states that addition is strict in both arguments
and behaves as the built�in addition on lifted arguments�

�
 ��n� Add Bt n � Bt� ��

��n� Add n Bt � Bt� ��

��nn mm� Add�Lift nn��Lift mm� � Lift�nn�mm��

The proof was described in details in section ����
�
The next fact we consider states that strict addition is total� That is� provided the

arguments of Add are not bottom the result of applying Add will not be bottom� In
LCF this fact is stated by a theorem of the following form

�
 �n m� ��n�Bt� ��� ��m�Bt� ��� ��Add n m � Bt�

Since we use lifting this fact can be stated equivalently by the following theorem in HOL

�
 �nn mm� ��Add�Lift nn��Lift mm� � Bt�

This can be derived immediately from the third clause of the above cases theorem for
addition using the fact that Bt and Lift are distinct and exhaustive on the lifted type�

The proof of termination of strict addition requires much more thought in LCF though
it can be proved by a one�line LCF tactic� induction then rewriting� �However� in general
inventing such a proof probably results in a larger tactic which can then be edited to
become shorter�� Induction yields three subgoals which can all be solved by rewriting
with the assumptions� the recursion equations for addition and a termination �de�nedness�
property of the successor function�

Finally� let us consider two theorems stating that strict addition is associative and
commutative�

�
 �k m n� Add �Add k m� n � Add k�Add m n�

�
 �m n� Add m n � Add n m

Their proofs are almost exactly the same in HOL	 do a case split on the universally
quanti�ed variables �lifted numbers� one by one and reduce using the reduction theorem
for addition after each case split� We end up with goals stating that the properties we
wish to prove must hold for the built�in addition� So we �nish o� the proofs by using the
desired built�in HOL facts� Such proofs by cases could be automated easily� The LCF
proofs use induction �in fact two nested inductions for commutativity� and rewriting�
However� the main point is that these inductions have a bottom case� the corresponding
ones in HOL would not have this case�

����� Theorems about Equality

The strict equality was de�ned by extending the built�in equality on the numbers to a
strict function� Recall that we obtained a strict addition and a strict successor in the same
way� Proofs of properties about equality is therefore similar to the proofs about addition
discussed above� So a reduction theorem for di�erent cases of arguments of equality is
the basic component of proofs together with built�in properties about equality�

�
 ��n� Eq Bt n � Bt� ��

��n� Eq n Bt � Bt� ��

��nn mm� Eq�Lift nn��Lift mm� � Lift�nn�mm��

Again we have a quite di�erent situation than in LCF where equality is de�ned using
nested applications of the eliminator function� There� a number of in total six recursion
equations are important since proofs are done using induction� The recursion equations
have also been proved for our equality but we shall not show the theorem here �since it
is not useful��

From the reduction theorem it is easy to see that two lifted natural numbers are equal
precisely when they are the same numbers �in the HOL sense��

�
 �mm nn� �Eq�Lift mm��Lift nn� � Lift T� � �mm � nn�

This states the partial correctness of equality	 if it is applied to �lifted� numbers which
are not bottom it calculates the right result� The proof uses that Lift is one�one� The
corresponding theorem in LCF has antecedents which assume that the arguments of Eq

are not bottom� The proof uses a nested induction�

�� A Recursive Function

In this section we give an example of the use of �xed point induction� We de�ne a func�
tion which is recursive in a quite general way and show it is strict and idempotent� i�e�
composing the function with itself yields the function itself� The function is continuous on
any pointed cpo so we cannot exploit the discrete construction and lifting as in the pre�
vious section� Thus we cannot extend any built�in recursive HOL function to the desired
continuous function either� Further� the recursion of the function is too complicated� We
must de�ne the function in the domain theoretic way� as a �xed point� The de�nitions of
this section are very close to the de�nitions in LCF except that we prefer to keep certain
names as variables instead of de�ning them as constants� The proofs of the theorems
presented below are therefore the same as in LCF ignoring the few extra tactics we must
introduce in order to type check arguments of dependent functions�

We start a new session and a new theory �see �GM�
��� First we assume a variable D

is a pointed cpo� This assumption is used to prove that the functional G which is de�ned
next is a continuous function�

�new�theory#lcf�fpi#��

�� � void

�cpo���

��	�
� bool� � �	�
� 	�
� bool�
 � type

�let D�PCPO � ASSUME
pcpo�D�!cpo��
��

D�PCPO � � �
 pcpo D

�let G�DEF�G�CF � new�constant�definition

� #G�DEF##G�CF#�D�PCPO

�
G �D�!cpo�� �

� ��p�g���Dom�prod�cf�D�lift Bool��cf�D�D����

� �h��Dom�cf�D�D���

� �x��Dom D�

� Ext��b��Dom Bool� Cond�b�x�h�h�g x�����p x�
��

G�DEF �

�
 �D�

G D �

���p�g� �� Dom�prod�cf�D�lift Bool��cf�D�D����

�h �� Dom�cf�D�D���

�x �� Dom D� Ext��b �� Dom Bool� Cond�b�x�h�h�g x�����p x��

G�CF �

� �
 �G D� ins �cf�prod�cf�D�lift Bool��cf�D�D���cf�cf�D�D��cf�D�D����

Hence the single assumption in the G CF theorem says that D must be a pointed cpo�
Otherwise the theorem could not be proved due to the use of Ext �the codomain of its
function argument must be a pointed cpo�� The HOL de�nition� which as usual is just
an abbreviation� holds for any D � The conditional Cond is straightforward� if its �rst
argument is true it returns the second argument� if it is false it returns the third argument�
It was introduced together with the cpo of booleans Bool in section ��
� Note that the
boolean test above is made strict in its �rst argument due to the use of Ext �

After this de�nition our system considers
G D
 to be a �constant term�� though G is
the constant in HOL� This means that we must always use D as the cpo argument of
G � The system will fail for any other argument� Perhaps a better choice would be to
de�ne G as a constructor function since it would then be possible to give it any cpo as
an argument� But for the purpose of the example of this section the choice above works
�ne�

The functional G is used to de�ne the recursive function H and the continuity of G

is used behind the scenes to prove that H is continuous�

��let H�DEF�H�CF � new�constant�definition

� #H�DEF##H�CF#

� �D�PCPO

�
H�D�!cpo�� �

� ��p�g���Dom�prod�cf�D�lift Bool��cf�D�D���� Fix�G D�p�g��
��

H�DEF �

�
 �D�

H D � ���p�g� �� Dom�prod�cf�D�lift Bool��cf�D�D���� Fix�G D�p�g���

H�CF � � �
 �H D� ins �cf�prod�cf�D�lift Bool��cf�D�D���cf�D�D���

This is a straightforward �xed point de�nition of a recursive function� Note we again
assume that D is a pointed cpo and de�ne
H D
 to be seen as a constant term from the
viewpoint of our system�

Both G and H are parameterized by two functions� corresponding to the variables
p and q � Here we di�er from LCF where these functions are declared to be constants�
We could do the same and then it would not be necessary to parameterize G and H

by the functions� However� de�ning constants is the same as �xing the functions to be
these constants� We would like to leave the choice of the functions open �contradicting
ourselves a bit� since D is �xed�� The following theorem shows this parameterization
more explicitly than the de�nition above

�
 �D p g�

p ins �cf�D�lift Bool�� ���

g ins �cf�D�D�� ���

�H D�p�g� � Fix�G D�p�g���

Note that the antecedents only assume D is a cpo� It need not be a pointed cpo in order
for the equality to hold�

We saw in section
�� that the �xed point operator de�nes a �xed point of a continuous
function on a pointed cpo�

�
 �E� pcpo E ��� ��f� f ins �cf�E�E�� ��� �f�Fix f� � Fix f��

From this fact the following unfolding theorem about H follows immediately

�
 �D p g�

pcpo D ���

p ins �cf�D�lift Bool�� ���

g ins �cf�D�D�� ���

�H D�p�g� � G D�p�g��H D�p�g���

It states that H is equal to one unfolding of G applied to H � Remember that H is
de�ned as the �xed point of G so the left�hand side of this theorem corresponds to the
right�hand side of the previous theorem� and vice versa�

Assuming the p argument of H is strict we can prove that H is strict too�

�
 �D p g�

pcpo D ���

p ins �cf�D�lift Bool�� ���

�p�bottom D� � Bt� ���

g ins �cf�D�D�� ���

�H D�p�g��bottom D� � bottom D�

This follows easily by �rst unfolding H once and then reducing by de�nition of G � The
assumption about p is used to reduce the Ext of the de�nition of G to the bottom
element of D �

We can now prove the fact that H is idempotent using �xed point induction and the
theorems above�

�
 �D p g�

pcpo D ���

p ins �cf�D�lift Bool�� ���

�p�bottom D� � Bt� ���

g ins �cf�D�D�� ���

��x� x ins D ��� �H D�p�g��H D�p�g�x� � H D�p�g�x��

The overall idea is to use �xed point induction on the second and third occurrences of
H once we have stripped o� the �rst four antecedents �keeping the inner�most universal
quanti�cation��

�H�THM��

�
 �D p g�

p ins �cf�D�lift Bool�� ���

g ins �cf�D�D�� ���

�H D�p�g� � Fix�G D�p�g���

�e�REPEAT GEN�TAC THEN REPEAT DISCH�TAC

� THEN SUBST�OCCS�TAC������ �UNDISCH�ALL�SPEC�ALL H�THM� ����

OK��

�x� x ins D ��� �H D�p�g��Fix�G D�p�g��x� � Fix�G D�p�g��x�

�
pcpo D

�
p ins �cf�D�lift Bool��

�
p�bottom D� � Bt

�
g ins �cf�D�D��

�� � void

�e�FPI�TAC� � �
Fix�G�D�!cpo���p�g��
���

OK��

� subgoals

�x�

x ins �cf�D�D�� ���

��x� x ins D ��� �H D�p�g��x x� � x x�� ���

��x� x ins D ��� �H D�p�g��G D�p�g�x x� � G D�p�g�x x��

�
pcpo D

�
p ins �cf�D�lift Bool��

�
p�bottom D� � Bt

�
g ins �cf�D�D��

�x� x ins D ��� �H D�p�g��bottom�cf�D�D��x� � bottom�cf�D�D��x�

�
pcpo D

�
p ins �cf�D�lift Bool��

�
p�bottom D� � Bt

�
g ins �cf�D�D��

�� � void

The �xed point induction tactic proves inclusiveness behind the scenes� employing the
inclusive prover presented in section ��
� Note in particular that since D is a pointed cpo
it is non�empty� This is required and proved by the inclusive prover�

The base case of the induction proof holds because H is strict� The induction case is
�rst simpli�ed using the de�nition of G and reducing the dependent lambda abstractions�
Then we do a case split on the lifted booleans� Again the bottom case is solved using H is
strict� The true and false cases are proved by unfolding H � reducing function constructors
and conditionals and using the induction hypothesis�

Our proof is not as compact as the LCF proof though the tactics must do almost
exactly the same things to the goals� The di�erence is that LCF rewriting is quite powerful

�see section ��
� and at the same time we must use reduction tactics in order to type check
arguments of functions before reduction is conducted� Here LCF simply use rewriting
which does ��conversion behind the scenes�

�� A Mapping Functional for Lazy Sequences

In this section we de�ne a mapping functional Maps for lazy sequences which were
presented in section ���� It is introduced a bit di�erently than the other functions of
this chapter since it is declared as a constructor using new constructor definition �
We present a few theorems about the mapping functional� proved e�g� using structural
induction on sequences� An in�nite sequence constructor is de�ned by a �xed point
de�nition and a theorem is presented which relates this constructor and the mapping
functional� The proof is conducted by �xed point induction�

The main di�erence between our approach of introducing a cpo of sequences and
the approach used in LCF to de�ne a type of sequences is that we formalize the cpo
and its constructors from �rst principles� which is di�cult and time�consuming� whereas
LCF uses an axiomatic approach� Lazy sequences are introduced in LCF by declaring
constant names for the type and the constructor functions �corresponding to the ones
below� and postulating various axioms about the constructors and the partial ordering of
the cpo which the type denotes� Axioms for an eliminator functional are then stated and
structural induction and other theorems as distinctness of constructors are derived� The
same approach is used to introduce both natural numbers and lazy sequences� in fact all
recursive datatypes �satisfying certain syntactic restrictions��

Despite the di�erences in introducing lazy sequences� we work with sequences in the
same way as in LCF� This makes sense compared to the natural number example� where
we do not� since LCF is useful to reason about lazy types and less useful to reason about
strict �!at� datatypes� Using the same approach as for natural numbers would not be easy
since HOL has no support for de�ning recursive functions over non�wellfounded types�

Let us recall the cpo of sequences and its associated constructor and eliminator func�
tions introduced in section ���� The constructor for pointed cpos of sequences is called
seq � We can make seq available as a constructor by executing

�declare�cpo�constructor seq�PCPO��

�
 �D� cpo D ��� pcpo�seq D�

There are two constructors for sequences Bt seq and Cons seq which satisfy the fol�
lowing cases theorem

�
 �D s�

s ins �seq D� �

�s � Bt�seq� ��

��x s�� x ins D �� s� ins �seq D� �� �s � Cons�seq x s���

Hence� they are exhaustive on the cpo of sequences� The constructors are distinct too
and Cons seq is one�one� The eliminator satis�es the following theorems

�
 �D E h�

h ins �cf�D�cf�seq D�E��� ��� �Seq�when h Bt�seq � bottom E�

Q

�
 �D E h x s�

h ins �cf�D�cf�seq D�E��� ���

x ins D ���

s ins �seq D� ���

�Seq�when h�Cons�seq x s� � h x s�

which have been derived from its de�nition� The continuity theorems about Cons seq

and Seq when are used to declare these functions as constructors as follows

�declare�constructor Cons�seq�CF��

�
 �D� cpo D ��� Cons�seq ins �cf�D�cf�seq D�seq D���

�declare�constructor Seq�when�CF��

�
 �D E�

cpo D ���

pcpo E ���

Seq�when ins �cf�cf�D�cf�seq D�E���cf�seq D�E���

We also showed that we can do structural induction proofs on sequences�

�
 �D P�

cpo D ���

inclusive�P�seq D� ���

P Bt�seq ���

��x s�� x ins D ��� P s� ��� P�Cons�seq x s��� ���

��s� s ins �seq D� ��� P s�

A structural induction tactic has been implemented on top of this theorem which uses
the cpo prover and the inclusive prover behind the scenes�

Again we start up a new session and a new theory� assuming the above declarations�
Then we assume the variables D and E are cpos� binding these assumptions to ML
variables for later use�

�new�theory#lcf�seq#��

�� � void

�cpo���

��	�
� bool� � �	�
� 	�
� bool�
 � type

�cpo���

��	�
� bool� � �	�
� 	�
� bool�
 � type

�let D�CPO � ASSUME
cpo�D�!cpo��
��

D�CPO � � �
 cpo D

�let E�CPO � ASSUME
cpo�E�!cpo��
��

E�CPO � � �
 cpo E

We shall use the assumptions to de�ne the functional for the mapping function and the
mapping function Maps itself� or more precisely� to prove these functions are continuous�
The functional used to de�ne Maps is introduced as a constructor as follows

�new�constructor�definition#Maps�FUN�DEF##Maps�FUN�CF#�D�CPO�E�CPO

�
Maps�FUNI�D�!cpo��E�!cpo�� �

� ��g��Dom�cf�cf�D�E��cf�seq D�seq E����

� �f��Dom�cf�D�E���

� �s��Dom�seq D��

� Seq�when��x��Dom D��t��Dom�seq D�� Cons�seq�f x��g f t��s�
��

�
 �D E�

Maps�FUN �

��g �� Dom�cf�cf�D�E��cf�seq D�seq E����

�f �� Dom�cf�D�E���

�s �� Dom�seq D��

Seq�when��x �� Dom D� �t �� Dom�seq D�� Cons�seq�f x��g f t��s�

�
 �D E�

cpo D ���

cpo E ���

Maps�FUN ins

�cf�cf�cf�D�E��cf�seq D�seq E���cf�cf�D�E��cf�seq D�seq E����

The program new constructor definition de�nes two constants� one for the internal
level of syntax which is the one used in the term argument� and one for the external level
of syntax which is the one used in the pretty�printed de�nition and continuity theorem
output� The latter is not parameterized by cpos�

We can now use Maps FUN whenever the cpo arguments of the internal version can
be calculated from the context �i�e� from the arguments of Maps FUN � and it will always
occur in pretty�printed results� The mapping functional is de�ned as the �xed point of
this functional�

�new�constructor�definition#Maps�DEF##Maps�CF#�D�CPO�E�CPO

�
MapsI�D�!cpo��E�!cpo�� � Fix�Maps�FUNI�D�E��
��

�
 �D E� Maps � Fix Maps�FUN

�
 �D E�

cpo D ��� cpo E ��� Maps ins �cf�cf�D�E��cf�seq D�seq E���

In this de�nition we have a situation where we cannot determine the cpo arguments of
the internal version of Maps FUN from the context �it has no arguments� and we must
therefore write the cpos explicitly �hence we use Maps FUNI ��

It is not immediately obvious from the de�nition of Maps how it actually works on the
di�erent kinds of sequences� We have therefore proved two reduction theorems �recursion
equations��

�
 �D E f� f ins �cf�D�E�� ��� �Maps f Bt�seq � Bt�seq�

�
 �D E f x s�

f ins �cf�D�E�� ���

x ins D ���

s ins �seq D� ���

�Maps f�Cons�seq x s� � Cons�seq�f x��Maps f s��

These are proved easily by using that Maps is a �xed point of the functional Maps FUN �
We can now prove that the mapping functional preserves functional composition �de�

�ned in section
����

Q

�
 �D� D� D� f g�

f ins �cf�D��D��� ���

g ins �cf�D��D��� ���

�Maps�Comp�f�g�� � Comp�Maps f�Maps g��

Setting this statement as a goal in the subgoal package� we �rst strip the antecents and
then observe that the two continuous functions are equal i� they are equal for all sequences
of elements in D� � i�e� i� the following term holds

�s� s ins �seq D�� ��� �Maps�Comp�f�g��s � Comp�Maps f�Maps g�s�

This goal is obtained from a goal stating equality of the functions using the program
X CONT FUN EQ TAC � which was described in section ������

Next� we use a structural induction tactic for sequences based directly on the structural
induction theorem�

�e�SEQ�INDUCT�TAC� � � ���

OK��

� subgoals

�x s�

x ins D� ���

s ins �seq D�� ���

�Maps�Comp�f�g��s � Comp�Maps f�Maps g�s� ���

�Maps�Comp�f�g���Scons x s� � Comp�Maps f�Maps g��Scons x s��

�
cpo D�

�
cpo D�

�
cpo D�

�
f ins �cf�D��D���

�
g ins �cf�D��D���

Maps�Comp�f�g��Sbt � Comp�Maps f�Maps g�Sbt

�
cpo D�

�
cpo D�

�
cpo D�

�
f ins �cf�D��D���

�
g ins �cf�D��D���

�� � void

This uses the inclusive prover behind the scenes so we do not have to worry about proving
the above equation admits induction� Note that
seq D�
 is non�empty since it is a
pointed cpo� The proof is �nished o� using the reduction tactic with the reduction
theorems for Maps and Comp �

Finally� we can de�ne a functional Seq of which given a continuous function f and
any starting point value x generates an in�nite sequence of the form

Cons�seq x�Cons�seq�f x��Cons�seq�f�f x�������

or written in a more readable way �x� f�x�� f�f�x��� � � � � This function is the �xed
point of a functional called Seq of FUN �the external name��

�
 �D�

Seq�of�FUN �

��sf �� Dom�cf�cf�D�D��cf�D�seq D����

�f �� Dom�cf�D�D��� �x �� Dom D� Cons�seq x�sf f�f x���

�
 �D� Seq�of � Fix Seq�of�FUN

Both are de�ned using new constructor definition � The continuity theorems re�
turned by this program are stated as follows

�
 �D�

cpo D ���

Seq�of�FUN ins

�cf�cf�cf�D�D��cf�D�seq D���cf�cf�D�D��cf�D�seq D����

�
 �D� cpo D ��� Seq�of ins �cf�cf�D�D��cf�D�seq D���

It should be apparent from the �xed point de�nition of Seq of that it always computes
an in�nite sequence�

We can now prove the following statement about Seq of and Maps

�
 �D f�

cpo D ���

f ins �cf�D�D�� ���

��x� x ins D ��� �Seq�of f�f x� � Maps f�Seq�of f x���

Informally� the two sequences are equal since they are both equal to a term corresponding
to �f x� f�f x�� � � � � The proof of the theorem is conducted by �xed point induction
on both occurrences of Seq of � But �rst the two �rst antecedents are stripped o� and
a case split is performed on whether D is empty or not� If it is then an induction is not
necessary since
x ins D
 must be false� Otherwise� the remaining predicate is proved
to be inclusive �as a function of a variable replacing Seq of � and �xed point induction is
conducted� Examples of the use of �xed point induction has been given above� We shall
not consider the details of this induction proof here�

Again the proofs in our formalization and LCF are based on the same overall idea but
tend to be longer in HOL since we do the simpli�cations explicitly whereas LCF rewriting
handles many situations� As mentioned above this probably makes LCF rewriting ine��
cient at least compared to HOL rewriting but our simpli�cations are quite ine�cient too�
since they do more than just rewriting	 e�g� they also do type checking�

�� Conclusion

The LCF system provides a logic of �xed point theory and is useful for reasoning about
nontermination� arbitrary recursive de�nitions and in�nite�valued types as lazy lists� It is
unsuitable for reasoning about �nite�valued types and strict functions� On the other hand�
the HOL system provides set theory and supports reasoning about �nite�valued types and
total functions well� In this chapter a number of examples conducted in LCF in �Pa���
have been used to demonstrate that an extension of HOL with domain theory combines
the bene�ts of both systems� The examples illustrate reasoning about in�nite values and
non�terminating functions and show how mixing domain and set theoretic reasoning eases

reasoning about strict LCF datatypes and functions� The extension is more useful than
�pure� HOL for reasoning about in�nite�valued types and arbitrary recursive functions
and more useful than LCF for reasoning about �nite�valued types and strict functions�
In a way� HOL�CPO can be seen as an embedding of the LCF system in HOL which is
performed in such a way that the bene�ts of the HOL world are not lost�

The natural number example illustrates how we can mix set and domain theoretic rea�
soning and thereby ease reasoning about �nite�valued LCF types and strict functions� We
avoid de�nedness assumptions �complicating statements and proofs in LCF� and natural
number inductions involving bottom completely� Another example illustrating this point
is presented in chapter � �the uni�cation algorithm��

The example on a �xed point de�nition shows that we can de�ne an arbitrary recursive
function in HOL�CPO and reason about it using �xed point induction� This development
follows the development in LCF closely and would not be easy in pure HOL�

Finally� the example on lazy sequences gives a de�nition of an in�nite sequence con�
structor functional as a �xed point and illustrates that we can conduct LCF proofs by
�xed point induction and structural induction on lazy recursive domains in HOL�CPO�
Again we follow the LCF de�nitions and proofs closely since pure HOL does not support
this kind of reasoning directly�

Some disadvantages of the embedding of domain theory in HOL have also been men�
tioned� One main problem is that it is time�consuming and not at all straightforward
to introduce new recursive domains �see chapter ��� Another problem is that construc�
tors must be parameterized by the domains on which they work� This inconvenience is
handled by the interface in most cases but the problem also makes proofs inconvenient
since type checking must be performed quite often� LCF rewriting uses ��conversion after
function de�nitions have been expanded to handle this� Rewriting is fairly powerful in
LCF� providing conditional rewriting and rewriting with local assumptions� and it han�
dles many situations in a compact way� Therefore LCF �induction then rewriting� proofs
about in�nite�valued types and lazy evaluation tend to be longer but just as simple in
HOL where di�erent tactics are used for each speci�c task�

HOL�CPO is a semantic embedding of domain theory in a powerful theorem prover�
It was an important goal of this embedding that there should be a direct correspondence
between elements of domains and elements of HOL types� This allows us to exploit
the types and tools of HOL directly and hence� to bene�t from mixing domain and set
theoretic reasoning as discussed above� The fact that we use predomains� i�e� cpos which
do not necessarily have a bottom� also supports this�

A semantic embedding does not always have this property� The formalization of P� in
�Pe�
� builds a separate P� world inside HOL so there is no direct relationship between
for instance natural numbers in the P� model and in the HOL system� The same thing
would be true about a HOL formalization of information systems �Wi�
��

Chapter

Verifying the Uni�cation Algorithm

The problem of �nding a common instance of two expressions is called uni�cation� The
uni�cation algorithm generates a substitution to yield this instance� and returns a failure
if a common instance does not exist� The algorithm has played a central role in logic
programming and theorem proving after it was used by Robinson in
��� in his resolution
principle for automatic theorem proving �Ro����

Manna and Waldinger �MW� synthesized the uni�cation algorithm by hand using
their deductive tableau system �MW�
�� Their informal presentation of the proof was
unusually complete providing all lemmas �without proof� and the entire main body of the
proof which covered more than
� pages �the paper itself covered more than �� pages�� The
constructive proof from which they extract the algorithm relies on a substantial theory
of expressions and substitutions and employs the very general principle of well�founded
induction for the proof of correctness� They work in an ordinary untyped �rst�order logic
where variables range over sets and functions are total�

Paulson translated MW�s proof to a mechanical proof in LCF �Pa���� Paulson�s proof
follows their proof closely� However� he did not deduce the algorithm from the proof as
they did	 he stated the algorithm �rst and then proved it was correct� Mechanizing the
proof in LCF was rather di�cult� both due to the logic� the limited range of available
induction strategies and the lack of proper proof infrastructure�

Coen did yet another version of the proof in his implementation of CCL �Classical
Computational Logic� in the Isabelle theorem prover �Co���� His logic supports the proof
of correctness well� in particular� because it provides well�founded induction� which is
needed for the termination proof of the algorithm�

The underlying logic of the LCF system is entirely di�erent from the logic used by
MW since variables range over domains rather then sets and functions may be partial�
The consequence of this was that de�nedness assertions of the form t � � appeared
everywhere� complicating both statements and proofs considerably� and it was necessary
again and again to use and prove the totality of functions which were obviously total�
These problems arose since all datatypes and functions were strict �cf� section ��� on the
natural numbers��

Further� the well�founded induction used by MW was not used in the LCF proof	 it is
not clear whether or not it is possible to derive well�founded induction in LCF� Instead
this was inconveniently translated into two nested structural inductions on the natural
numbers and terms� respectively� The algorithm contains an unusual and non�trivial
recursion so a simple induction argument was not enough to prove termination�

��

Finally� the LCF system contained very little proof infrastructure when Paulson started
this project� The present tools to de�ne recursive datatypes and to perform proof by
structural induction �see section ��
� were developed by Paulson as part of the project�

In this chapter we describe an implementation of MW�s proof in HOL�CPO which
is based directly on Paulson�s proof in LCF�� The HOL system seemed to provide a
much more appropriate framework for implementing the proof� Its underlying logic is
based on set theory and total functions and well�founded induction is available due to the
development presented in �Ag�
� Ag���� It also provides substantial theories of sets and
lists� among others� which may be useful to formalize the various datatypes in the proof�
It supports the de�nition of new abstract recursive datatypes and primitive recursive
functions and it allows proof by structural induction� However� it is not easy to de�ne
the uni�cation algorithm directly in pure HOL� since it is not primitive recursive� The
unusual recursion in the algorithm makes a proof of termination non�trivial� Here� domain
theory appears useful� We can de�ne the recursive algorithm as a �xed point of an
appropriate functional and prove termination afterwards� using well�founded induction�
Hence� combining the theory of well�founded sets and the formalization of domain theory
in HOL� we become able to extend the methods for de�ning recursive functions in HOL
to allow de�ning functions by well�founded induction �see also the Ackermann example
of chapter ���

In the following sections we describe the implementation of the correctness proof of
the uni�cation algorithm in HOL�CPO� The �rst three sections do not use any domain
theory at all

��� Terms

The LCF type of expressions� also called terms� is a strict recursive datatype� just like the
type of natural numbers discussed in section ���� Hence� it denotes a cpo with bottom
and the constructor functions are strict� This is a major disadvantage of the LCF for�
malization	 de�nitions and theorems are infested with the bottom element� Furthermore�
all functions on terms except uni�cation itself are primitive recursive and obviously total�
Hence� for most parts of the proof the presence of bottom is not even necessary�

In HOL�CPO we can therefore reason in set theory until the point where the uni�cation
algorithm must be de�ned� Terms are introduced as a type in HOL and the theories of
substitution and uni�ers are developed in pure HOL� Later a cpo of terms is introduced
as the discrete universal cpo of elements of type term� This approach simpli�es the HOL
proof of correctness considerably compared with the LCF proof�

The type of terms is introduced using the type de�nition package� The type speci��
cation which is the argument of the define type program is

term � Const name � Var name � Comb term term

where name is a type abbreviation for num � Any type could be used for the type
of names� and further� names of constants and variables could even be di�erent� We
choose num for convenience	 if we used a polymorphic type we would have to type
terms explicitly� The type de�nition package provides the theorems and tools we need to

�Larry Paulson was so kind to send me the actual LCF proof� It was useful to have access to a version
of the proof which was already structured for a machine�

reason about terms� It supports de�nition by primitive recursion and proof by cases and
induction� Furthermore� it provides theorems stating the constructors are distinct and
one�one� Paulson had to implement the corresponding LCF tools for the LCF proof of
correctness�

����� Occurrence Relation

A notion of subterm is introduced by the occurs�in relation� This relation appears in both
an irre!exive version for proper subterm� de�ned as the in�x "�� � and a re!exive version
which allows terms to be equal� de�ned as the in�x "��� �

�
 �t u� t ��� u � �t � u� �� t �� u

�
 ��t c� t �� �Const c� � F� ��

��t v� t �� �Var v� � F� ��

��t t� t�� t �� �Comb t� t�� � t ��� t� �� t ��� t��

The second of these two theorems is not the actual de�nition of the occurs�in relation	
mutual recursive de�nitions are not supported in HOL� The relation is introduced by a
proper primitive recursive de�nition using "� and "�� instead of "��� � Below we
shall usually think of "�� as the occurs�in relation and not use "��� often�

The occurrence ordering is a partial ordering on terms� The following theorems state
it is irre!exive� transitive and anti�symmetric�

�
 �t� �t �� t

�
 �t u� t �� u ��� ��v� u �� v ��� t �� v�

�
 �t u� ��t �� u �� u �� t�

In fact� it is a well�founded ordering on terms similar to the less�than ordering � on natural
numbers �see section ����
�� Transitivity is useful to prove the irre!exivity together with
the following lemmas�

�
 ��t t�� ��Comb t t� � t�� �� ��t� t� ��Comb t t� � t���

�
 ��t t�� t �� �Comb t t��� �� ��t t�� t� �� �Comb t t���

The former states that the combination of two terms is always di�erent from either term�
a kind of idempotence fact� The latter follows immediately from the de�nition of the
occurrence relation�

In order to illustrate the mess that the presence of the bottom element makes of LCF
de�nitions and theorems� we show the LCF axiom for the occurrence relation

tOCCS � � ��
�	c� c
� � � tOCCS �CONST c� � FF ��
�	v� v
� � � tOCCS �VAR v� � FF ��
�	t�t�� t�
� � � t�
� � �
tOCCS �COMB t� t�� � �tOCCS EQ t��OR �tOCCS EQ t���

which is universally quanti�ed with the variable t� Compare this with the de�nition
above� All other concepts that we de�ne easily by primitive recursion or as simple HOL
de�nitions are similarly complicated in LCF� Besides� LCF proofs about functions over
terms might use that functions are strict and total all the time� We avoid this completely

����� Variable Set

Finite sets of variables play a central role in the proof� in particular to prove termination
by well�founded induction� The set of variables of a term is de�ned by primitive recursion
as follows

�
 ��c� vars�Const c� � ��� ��

��v� vars�Var v� � �v�� ��

��t� t�� vars�Comb t� t�� � �vars t�� UNION �vars t���

It follows immediately that a variable v is in the set of variables of
Var v
�

�
 �v� v IN �vars�Var v��

The set is just the singleton containing the variable itself� To reason about sets we use
the predicate sets library �Me��� of the HOL system� which provides a kind of typed sets
represented as subsets of HOL types� Again� this kind of set theory had to be developed
for the proof in LCF� This caused some trouble since sets had to allow proof by structural
induction� which was derived from �xed point induction� This was accomplished by
representing sets as equivalence classes of lists �Pa��a�� In particular� it seems strange
that there is a bottom set� namely the bottom element of the type of sets� In HOL� the
predicate set theory is less awkward and set induction is provided by the library�

The variables of a term are precisely the variables that occur in or are equal to the
term�

�
 �v t� v IN �vars t� � �Var v� ��� t

This fact is called variables below� As a corollary of the variables theorem we obtain the
following theorem

�
 �v t� ��Var v� �� t � �v IN �vars t� �� �Var v � t�

which states that if a variable does not occur in a term then it is equal to that term or it
is not in the set of variables of the term� and vice versa� Finally� the variables function is
monotonic with respect to the re!exive occurrence relation�

�
 �t t�� t ��� t� ��� �vars t� SUBSET �vars t��

Note that using "�� would not allow us to strengthen the statement to proper subsets�

��� Substitutions

In �MW�
�� a substitution is a set of replacement pairs fx� � t�� � � � � xn � tng where the
x�� � � � � xn are distinct variables and t�� � � � � tn are terms such that ti
� xi� Hence� trivial
substitutions such as fx � xg and ambiguous substitutions such as fx � t� x� t�g are
not allowed�

In HOL� a substitution can be represented by a list of pairs of names and terms�
This type is called rplist which stands for list of replacement pairs� A substitution

�v�t
 consisting of a single replacement pair is called a replacement� The list type
is built�in and HOL provides primitive recursive de�nitions� induction and many useful

theorems� In the formalization� trivial substitutions like
�v�Var v
 where v is a name
behave in the same way as the empty substitution � � and ambiguous substitutions
like
��v�t���v�t��
 where t and t� are terms behave like
�v�t
� Hence� HOL
equality of lists is not feasible for substitutions and we must de�ne another equality which
corresponds to the informal �behaves in the same way as��

Paulson says it is impractical to use lists of pairs for substitutions because� I think�
he insists on using the logical equality of LCF �denoted by �� instead of de�ning a new
equality� So he de�nes a new type� corresponding to lists of pairs but with additional
axioms to get rid of trivial and ambiguous substitutions� and states an axiom for equality
of substitutions which is di�erent from the axiom for equality of lists�

Below� we de�ne a number of concepts associated with substitutions� Equality of
substitutions is based on the notion of agreement which in turn is based on the notion of
applying a substitutions to a term� The domain and range of a substitution are the set
of variables a�ected and introduced by the substitution� respectively� A substitution can
be composed with another� an �ine�cient� operation used when unifying combinations in
the algorithm� and we can de�ne a notion of generality on substitutions� Finally� we will
de�ne idempotent substitutions� The uni�cation algorithm constructs most�general and
idempotent substitutions�

����� Application

A substitution is represented by a list of pairs of names and terms� The type of substitu�
tions is called rplist which abbreviates the type
��name�term�list
�

A substitution is applied to a term by simultaneously replacing every instance of
variables of the substitution by the corresponding terms�

�
 ��c s� �Const c� subst s � Const c� ��

��v s� �Var v� subst s � lookup v s� ��

��t� t� s� �Comb t� t�� subst s � Comb�t� subst s��t� subst s��

Hence� a constant is left unchanged and a combination becomes a combination where the
substitution is applied to each of the two subterms� The result of applying a substitution
to a variable is de�ned using an auxiliary function called lookup �

�
 ��v� lookup v� � Var v� ��

��v x t s� lookup v�CONS�x�t�s� � ��v � x� �� t � lookup v s��

The lookup function searches a substitution s for the term associated with the �rst
occurrence of a speci�ed variable v � If v is not found it returns
Var v
� making
application of a substitution to a variable behave as identity� Note that the de�nition of
lookup identi�es
��v�t���v�t��
 with
�v�t
 and
�v�Var v
 with � �

It follows directly by de�nitions and induction on terms that the empty substitution
behaves as identity when applied to a term�

�
 �t� t subst � � t

Another useful theorem is the following cases theorem for applying a substitution to a
variable�

�
 ��v t s� �Var v� subst �CONS�v�t�s� � t� ��

��v w t s�

��v � w� ��� ��Var v� subst �CONS�w�t�s� � �Var v� subst s��

Finally� we have proved that the application of a substitution is monotonic with respect
to the occurrence relation�

�
 �s t u� t �� u ��� �t subst s� �� �u subst s�

This follows by a simple induction proof on terms� The re!exive occurrence relation is
also preserved by application of a substitution�

����� Domain and Range

The domain of a substitution is the set of variables a�ected by the substitution�

�
 �domain� � ��� ��

��v t s�

domain�CONS �v�t� s� �

��t � Var v� �� �domain s� DELETE v � v INSERT �domain s���

This notion has a relatively complicated de�nition because substitutions may contain a
trivial replacement pair of the form
�v�Var v�
 as the �rst pair with v as a variable�
Such a pair has no a�ect on a term� The following theorem states that the informal
description of the domain above holds�

�
 �v s� v IN �domain s� � ���Var v� subst s � Var v�

namely that a variable is in the domain of a substitution i� the substitution does not
leave that variable unchanged� This fact is called domain characterization below�

The range of a substitution is the set of variables that a substitution may introduce�
Hence the range should consist of the variables of the terms associated with variables of
the domain�

�
 �s�

range s � SET�UNION�IMAGE��v� vars��Var v� subst s���domain s��

The constant SET UNION is a generalized version of the binary UNION �

�
 �X� SET�UNION X � �e � �x� e IN x �� x IN X�

Note that in this de�nition the variable X is a set of sets� The following characterization
of the range may be a bit easier to read than the de�nition�

�
 �v s�

v IN �range s� �

��w� w IN �domain s� �� v IN �vars��Var w� subst s���

That is� the range is the set of all variables that may be introduced by a substitution�
This theorem is called range characterization below�

Finally� a couple of properties that relate the variables of the domain and range of a
substitution with the variables of terms�

The �rst theorem is called variable elimination�

�
 �v s�

v IN �domain s� ���

�v IN �range s� ��� ��t� �v IN �vars�t subst s���

If a variable is in the domain but not in the range of a substitution then it is eliminated
from any term that substitution is applied to� The following lemma follows from variable
elimination and range characterization�

�
 �s�

DISJOINT�domain s��range s� �

��t� DISJOINT�domain s��vars�t subst s���

This statement is called the disjoint theorem for domain and range�
The second theorem is called variable introduction�

�
 �v s t� v IN �vars�t subst s�� ��� v IN �range s� �� v IN �vars t�

If a variable is in the result of applying a substitution to a term then it occurred in the
term originally or it was introduced by the substitution �i�e� it is in the range of the
substitution��

����� Agreement and Equality

Two substitutions are said to agree on a term if applying the substitutions to the term
yields the same result� The following proposition� called agreement� states that two sub�
stitutions agree on a term i� they agree on all variables of the term�

�
 �r s t�

�t subst r � t subst s� �

��v� v IN �vars t� ��� ��Var v� subst r � �Var v� subst s��

This theorem has many consequences� For instance� we can prove the invariance property

�
 �s t� �t subst s � t� � DISJOINT�vars t��domain s�

which states that a term is invariant under a substitution i� the set of variables of the
term and the domain of the substitution are disjoint� Another invariance property� called
replacement invariance� is

�
 �v t� �v IN �vars t� ��� ��u s� t subst �CONS�v�u�s� � t subst s�

which states that when applying a substitution to a term the replacement pairs where the
variable does not occur in the term can be disregarded�

Equality of two substitutions should state that the substitutions behave in the same
way� Hence� we de�ne two substitutions to be equal when they agree on all terms�

�
 �r s� r �� s � ��t� t subst r � t subst s�

Among the basic properties that this equality enjoys we have proved re!exivity� symmetry
and transitivity

�
 �s� s �� s

�
 �r s� r �� s � s �� r

�
 �s� s�� s� �� s� ��� ��s�� s� �� s� ��� s� �� s��

which follow immediately by de�nition using properties of HOL equality�
In order to prove two substitutions are equal it su�ces to prove they agree on all

variables�

�
 �r s� r �� s � ��v� �Var v� subst r � �Var v� subst s�

This is yet another consequence of the agreement proposition� In fact� it su�ces to prove
the substitutions agree on all variables in their domains�

�
 �r s�

r �� s �

��v�

v IN ��domain r� UNION �domain s�� ���

��Var v� subst r � �Var v� subst s��

This is a corollary of the previous fact� The two theorems are called the equality theorem
and corollary for substitutions� respectively�

The proof of the following decomposition theorem is based on the equality theorem for
substitutions�

�
 �v s� s �� �CONS�v��Var v� subst s�s�

In particular we have the theorem

�
 �v� �v�Var v �� �

which states that trivial substitutions are identi�ed with the empty substitution under
the equality of substitutions� We can also prove that the order in which replacement pairs
appear in substitutions does not matter provided the variables are di�erent�

�
 �v w t t� s�

��v � w� ��� CONS�v�t��CONS�w�t��s� �� CONS�w�t���CONS�v�t�s�

Another consequence of the equality theorem is the theorem

�
 �v t t� s� CONS�v�t��CONS�v�t��s� �� CONS�v�t�s

which states how ambiguous substitutions are interpreted�all replacement pairs with the
same variable component are disregarded� except the �rst one� These theorems justify
the choice of equality of substitutions�

����� Composition

Composition of substitutions is de�ned by primitive recursion on lists�

�
 ��s� � thens s � s� ��

��v t r s� �CONS�v�t�r� thens s � CONS�v�t subst s��r thens s��

A useful lemma in proofs is the following application�composition theorem

�
 �t r s� t subst �r thens s� � �t subst r� subst s

which relates application of a substitution to composition� It is proved by induction over
terms� Associativity of composition which is stated by the theorem

�
 �s� s� s�� �s� thens s�� thens s� � s� thens �s� thens s��

is proved using list induction� and the previous fact as well� Note that this theorem is
stated using HOL equality� It could be stated using substitution equality but this would
be a weaker statement� List induction also proves the second conjunct of the following
theorem

�
 ��s� � thens s � s� �� ��s� s thens � � s�

which states that the empty substitution is both a left and a right identity of composition�
The �rst conjunct follows immediately from the de�nition�

Finally� let us show the addition�composition theorem

�
 �v t s� ��v�t thens s� �� �CONS�v�t subst s�s�

which is just a special case of the second conjunct in the de�nition of composition�

����
 Generality

A substitution s� is more general than a substitution s� if s� can be obtained from
s� by composition with some substitution�

�
 �s� s�� more�gen�s��s�� � ��r� s� �� �s� thens r��

In this case� we also say that s� is an instance of s� � Clearly� generality is a re!exive
notion

�
 �s� more�gen�s�s�

and the empty substitution is more general than any substitution�

�
 �s� more�gen�� �s�

Roughly speaking� a more general substitution makes fewer changes to a term�

����� Idempotent Substitutions

A substitution is called idempotent if composing the substitution with itself yields the
substitution itself� This statement is equivalent to the statement that the domain and
range of the substitution are disjoint�

�
 �s� �s thens s� �� s � DISJOINT�domain s��range s�

This theorem is called idempotence� Its proof is based on the invariance theorem and the
disjoint theorem about domains and ranges� A consequence of idempotence and range
characterization states that replacements are idempotent provided the variable does not
occur in the term of the replacement pair�

�
 �v t� ��Var v� �� t ��� ��v�t thens �v�t � �� �v�t

This fact is called replacement idempotence below�

��� Uni�ers

In the previous section we presented a number of de�nitions and lemmas about substitu�
tions which are directly related to the proof of correctness of the uni�cation algorithm�
In this section we shall continue this development by considering certain substitutions
which can be used to produce a common instance of two terms by application� Such a
substitution is called a uni�er�

�
 �s t u� unifier�s�t�u� � �t subst s � u subst s�

A uni�er does not always exist �see below�� If it does we say the terms are uni�able� The
following properties of the unifier predicate follows immediately from the de�nition�
The theorem

�
 �s t� unifier�s�t�t�

states that any substitution uni�es a term with itself and the theorem

�
 �s t u� unifier�s�t�u� � unifier�s�u�t�

states that the unifier predicate is commutative� The following clauses state when a
substitution uni�es constants and combinations�

�
 ��s c� c�� unifier�s�Const c��Const c�� � �c� � c��� ��

��s t� t� u� u��

unifier�s�Comb t� u��Comb t� u�� �

unifier�s�t��t�� �� unifier�s�u��u���

Any substitution uni�es two constants i� they are equal and a substitution is a uni�er of
two combinations i� it uni�es the subterms pairwise� This follows from the de�nition of
application of substitutions� It also follows that a constant and a combination cannot be
uni�ed� stated by

�
 �c t u� cant�unify�Const c�Comb t u�

where the constant cant unify is de�ned as follows

�
 �t u� cant�unify�t�u� � ��s� �unifier�s�t�u��

From the uni�er clauses theorem above it follows immediately that di�erent constants
cannot be uni�ed�

�
 �c� c�� ��c� � c�� ��� cant�unify�Const c��Const c��

If names c� and c� are di�erent then so are
Const c�
 and
Const c�
 since Const

is one�one� The constant cant unify is commutative

�
 �t u� cant�unify�t�u� � cant�unify�u�t�

since unifier is commutative�

����� Most�general and Idempotent Uni	ers

A uni�er is a substitution so a uni�er may be more general than another uni�er� In fact�
we have that any substitution which is an instance of a uni�er is also a uni�er�

�
 �s t u� unifier�s�t�u� ��� ��r� more�gen�s�r� ��� unifier�r�t�u��

A most�general uni�er is a uni�er which is more general than all other uni�ers� de�ned
by

�
 �s t u�

most�gen�unifier�s�t�u� �

unifier�s�t�u� �� ��r� unifier�r�t�u� ��� more�gen�s�r��

The following characterization theorem about most�general uni�ers follows from the pre�
vious fact�

�
 �s t u�

most�gen�unifier�s�t�u� � ��r� unifier�r�t�u� � more�gen�s�r��

So a substitution s is a most�general uni�er i� any substitution is a uni�er precisely
when it is an instance of s � By commutativity properties presented above we have the
theorem

�
 �s t u� most�gen�unifier�s�t�u� � most�gen�unifier�s�u�t�

which states that also most�general uni�er is a commutative notion�
The following theorem� called variable uni�er� is important since it is the main lemma

of the proof that the uni�cation algorithm correctly uni�es a variable and a term�

�
 �v t� ��Var v� �� t ��� most�gen�unifier��v�t �Var v�t�

It states that if a variable v does not occur in a term t the replacement
�v�t
 is a
most�general uni�er� This is the �rst of the theorems listed above which does not have
a straightforward proof� After expanding de�nitions in the consequent of the implication
recursively down to a term which does not contain other constants than subst we
have two statements to prove �recall most gen unifier is a conjunction�� The �rst
branch of the proof uses the corollary of the variables theorem and the replacement
invariance theorem� The second branch uses the addition�composition theorem and the
decomposition theorem�

Most�general uni�ers are not unique since the more general property of substitutions
is not anti�symmetric	 two substitutions may be more general than each other without
being equal� We shall consider most�general uni�ers which are also idempotent since such
uni�ers have useful properties for the proof of correctness of the uni�cation algorithm� A
most�general� idempotent uni�er is called a best uni�er�

�
 �s t u�

best�unifier�s�t�u� � most�gen�unifier�s�t�u� �� �s thens s� �� s

The �rst useful property states that a uni�er s is a best uni�er i� composing it with any
uni�er makes the action of s disappear�

�
 �s t u�

unifier�s�t�u� ���

�best�unifier�s�t�u� � ��r� unifier�r�t�u� ��� �s thens r� �� r��

This fact is proved from de�nitions and application�composition� The theorem is also
useful in the following variant� called best uni�er characterization�

�
 �s t u�

best�unifier�s�t�u� �

unifier�s�t�u� �� ��r� unifier�r�t�u� ��� �s thens r� �� r�

Two important properties of best uni�ers which are not at all obvious are stated as
follows

�
 �s t u�

best�unifier�s�t�u� ���

�domain s� SUBSET ��vars t� UNION �vars u��

�
 �s t u�

best�unifier�s�t�u� ���

�range s� SUBSET ��vars t� UNION �vars u��

These state that a best uni�er may only contain variables that appear in the terms it
uni�es� This is used to prove termination of the uni�cation algorithm� i�e� to establish
the well�founded ordering holds in certain cases� The theorems are called the domain
and the range properties of best uni�ers� respectively� Their proofs are among the most
di�cult ones� relying on many theorems presented above as e�g� idempotence� invariance�
replacement invariance and the characterization theorems for domain and range�

����� Best Uni	ers and their Existence

Below we list a number of theorems concerned with the uni�cation problem stating prop�
erties of best uni�ers as well as which terms cannot be uni�ed� They bear directly on
the correctness proof of the uni�cation algorithm� That is� if terms cannot be uni�ed the
algorithm should fail and otherwise it should return a substitution which is a best uni�er
as stated by the theorems� A few of the theorems listed below have been presented above
but are mentioned again for completeness�

In the proof of the uni�cation algorithm we shall make a case split on whether the two
terms to be uni�ed are equal or not� If they are the same� then the empty substitution is
a best uni�er�

�
 �t� best�unifier�� �t�t�

So the algorithm should return the empty substitution� or some equivalent substitution
due to the following theorem

�
 �r s� r �� s ��� ��t u� best�unifier�r�t�u� � best�unifier�s�t�u��

If the terms are not equal we shall make a case split on both term arguments� Distinct
constants and constants and combinations cannot be uni�ed as we saw above�

�
 �c� c�� ��c� � c�� ��� cant�unify�Const c��Const c��

�
 �c t u� cant�unify�Const c�Comb t u�

As a corollary of the variable uni�er theorem we obtain the following theorem for unifying
a variable and a term

�
 �v t� ��Var v� �� t ��� best�unifier��v�t �Var v�t�

It states that if a variable v does not occur in a term t then the replacement
�v�t

is a best uni�er� For the opposite case� it has been proved that if a term occurs in another
term then the terms cannot be uni�ed�

�
 �t u� t �� u ��� cant�unify�t�u�

This follows from monotonicity of application of a substitution and the irre!exivity of the
occurrence relation�

We now only need to consider how two combinations are uni�ed because the notions
of best uni�er and �cannot be uni�ed� are commutative�

�
 �s t u� best�unifier�s�t�u� � best�unifier�s�u�t�

�
 �t u� cant�unify�t�u� � cant�unify�u�t�

Since a substitution is a uni�er of a combination i� it uni�es the subterms pairwise� stated
by the uni�er clauses theorem� it is obvious that if the operators of two combinations
cannot be uni�ed then the combinations cannot be uni�ed either�

�
 �t u�

cant�unify�t�u� ��� ��t� u�� cant�unify�Comb t t��Comb u u���

It is less obvious but still straightforward to prove the following theorem

�
 �s t� u��

best�unifier�s�t��u�� ���

��t� u��

cant�unify�t� subst s�u� subst s� ���

cant�unify�Comb t� t��Comb u� u���

which states that a combination cannot be uni�ed if the operands cannot be uni�ed after
a best uni�er of the operators have been applied to the operands� Finally� if we have
best uni�ers for the operators and the corresponding instances of the operands� then their
composition is a best uni�er of the combination�

�
 �s� t� u��

best�unifier�s��t��u�� ���

��s� t� u��

best�unifier�s��t� subst s��u� subst s�� ���

best�unifier�s� thens s��Comb t� t��Comb u� u���

These theorems directly re!ect the way in which the uni�cation algorithm works� First
it attempts to unify the operators and� if it succeeds� it applies the resulting substitution
to the operands and attempts to unify these instances�

��� The Uni�cation Algorithm

In this section we de�ne an algorithm to produce a uni�er of two terms� if a uni�er exists�
The algorithm tries to construct a best uni�er� If this attempt is successful it returns
the uni�er and otherwise it returns a failure� From the theorems listed above� we already
have a pretty good idea about how the algorithm should work� at least for variables and
constants� Unifying two combinations involves an unusual recursion so the uni�cation
algorithm cannot be de�ned by primitive recursion� Instead it is de�ned as a �xed point
in domain theory�

Below we �rst describe a type of attempts with two constructor functions for failure and
success� respectively� Then we introduce discrete universal cpos for terms� substitutions
and attempts� A number of continuous functions used to de�ne the uni�cation algorithm
are also introduced� Finally� the algorithm is de�ned and its most important properties
are presented�

����� The Type of Attempts

An attempt is either a failure or a success in the form of a substitution�

attempt � Failure � Success rplist

This type could be de�ned using the type de�nition package but it is also easy to de�ne
as an abbreviation for the sum type
�unit � rplist
 where unit is an abbreviation
for the type
�one
� The constructor for failure is then de�ned by

�
 Failure � INL one

and the constructor for success is de�ned by

�
 �s� Success s � INR s

Note that in the �rst de�nition one is an element of type
�unit
� From properties of
the injection functions we immediately obtain

�
 �s� ��Failure � Success s�

�
 �s s�� �Success s � Success s�� � �s � s��

which state the constructors are distinct and one�one�
The uni�cation algorithm is correct if an attempt to unify two terms satis�es the

predicate best unify try � de�ned as follows�

�
 �a t u�

best�unify�try�a�t�u� �

�a � Failure� �� cant�unify�t�u� ��

��s� �a � Success s� �� best�unifier�s�t�u��

Hence� if the algorithm fails it should not be possible to unify the term arguments and if
it succeeds it should return a best uni�er� From this de�nition and the properties of the
constructors for attempts we can easily prove the following clauses

�
 ��t u� best�unify�try�Failure�t�u� � cant�unify�t�u�� ��

��s t u� best�unify�try�Success s�t�u� � best�unifier�s�t�u��

Besides the predicate is commutative

�
 �a t u� best�unify�try�a�t�u� � best�unify�try�a�u�t�

since best unifier and cant unify are both commutative�

����� Domain Theory

All developments above have been conducted in pure HOL only� the need for domain
theory never arose� However� in order to de�ne the uni�cation algorithm as a �xed point
we shall now turn our attention towards domain theory� The algorithm will be a recursive
function taking two arguments in the cpo of terms and yielding a result in the lifted cpo
of attempts� Hence� the uni�cation algorithm is a partial function by de�nition but we
shall prove it always terminates� i�e� it is total�

We introduce a number of discrete universal cpos using the same approach as in the
previous chapter�

�
 cpo name

�
 cpo term

�
 cpo rplist

�
 cpo unit

In all cases the underlying types of the cpos are the types which have the same names as
the cpos� The cpo of attempts is de�ned a bit di�erently� as a sum of two cpos�

�
 attempt � sum�unit�rplist�

�
 cpo attempt

The cpo of attempts is in fact a discrete universal cpo too� since the sum of discrete
universal cpos is itself a discrete universal cpo� It is de�ned as a sum cpo because we
can then use the Sum function to construct continuous functions� The same program
new cpo definition is used to introduce all cpos�

Since the cpos above are discrete universal cpos and since the continuous function
space of discrete universal cpos is itself a discrete universal cpo� constants belong to such
cpos trivially� Hence� the constructor functions for terms are continuous

�
 Const ins �cf�name�term��

�
 Var ins �cf�name�term��

�
 Comb ins �cf�term�cf�term�term���

and application of a substitution and composition are continuous�

�
 "subst ins �cf�term�cf�rplist�term���

�
 "thens ins �cf�rplist�cf�rplist�rplist���

The constructor for failure is in the cpo of attempts�

�
 Failure ins attempt

and the constructor for success is a continuous function from the cpo of substitutions
�called rplist � to the cpo of attempts�

�
 Success ins �cf�rplist�attempt��

Such facts are proved automatically using the program ins prover and HOL�CPO is
made aware of the facts if we use the program declare �

In order to be able to de�ne the uni�cation of combinations conveniently� we de�ne
a kind of composition function for attempts� This function is introduced using the pro�
gram new constant definition which returns the following de�nition and continuity
theorem�

�
 athen �

��a �� Dom�lift attempt��

�s �� Dom�cf�rplist�lift attempt���

Ext

��a� �� Dom attempt�

Sum���x �� Dom unit� Lift Failure��s�a��a�

�
 athen ins

�cf�lift attempt�cf�cf�rplist�lift attempt��lift attempt���

The following clauses are proved automatically from the de�nition

�
 ��f� f ins �cf�rplist�lift attempt�� ��� �athen Bt f � Bt�� ��

��f�

f ins �cf�rplist�lift attempt�� ���

�athen�Lift Failure�f � Lift Failure�� ��

��f s�

f ins �cf�rplist�lift attempt�� ���

�athen�Lift�Success s��f � f s��

using the constructor reduction tactic� This tactic requires that the argument of the Sum

constructor function is in a sum cpo� Therefore� attempt was de�ned as a sum cpo
and not as a discrete universal cpo� The continuous function space of which athen is
an element is not a discrete universal cpo since the cpo for the second argument is not a
discrete universal cpo� or even a lifted discrete universal cpo� The reason for this is that
the result of unifying two terms is in a pointed cpo
lift attempt
 in order to allow
a �xed point de�nition of the uni�cation algorithm� This means that athen cannot be
de�ned as a strict extension of some simple primitive recursive HOL function�

Another function which is also a bit special is the �when� eliminator functional for
terms� The following clauses are derived from its de�nition�

�
 ��D f g h c�

f ins �cf�name�D�� ��

g ins �cf�name�D�� ��

h ins �cf�term�cf�term�D��� ���

�term�when f g h�Const c� � f c�� ��

��D f g h v�

f ins �cf�name�D�� ��

g ins �cf�name�D�� ��

h ins �cf�term�cf�term�D��� ���

�term�when f g h�Var v� � g v�� ��

��D f g h t u�

f ins �cf�name�D�� ��

g ins �cf�name�D�� ��

h ins �cf�term�cf�term�D��� ���

�term�when f g h�Comb t u� � h t u��

It is de�ned as a new constructor using new constructor definition which returns
the following theorems

�
 �D�

term�when �

��f g �� Dom�cf�name�D���

�h �� Dom�cf�term�cf�term�D����

�t �� Dom term� term�cases D t f g h�

�
 �D�

cpo D ���

term�when ins

�cf

�cf�name�D��cf�cf�name�D��cf�cf�term�cf�term�D���cf�term�D�����

where term cases is a primitive recursive HOL function de�ned by

�
 ��D c�

term�cases D�Const c� �

��f g �� Dom�cf�name�D���

�h �� Dom�cf�term�cf�term�D���� f c�� ��

��D v�

term�cases D�Var v� �

��f g �� Dom�cf�name�D���

�h �� Dom�cf�term�cf�term�D���� g v�� ��

��D t� t��

term�cases D�Comb t� t�� �

��f g �� Dom�cf�name�D���

�h �� Dom�cf�term�cf�term�D���� h t� t���

The point here is that the domain and range of term when are not discrete universal
cpos due to the use of the cpo variable� Hence� it is advantageous to de�ne the function
such that continuity can still be proved automatically� After a case split on terms the
continuity of term cases is proved automatically

�
 �D�

cpo D ���

�term�cases D� ins

�cf

�term�

cf�cf�name�D��cf�cf�name�D��cf�cf�term�cf�term�D���D�����

but it takes the arguments in the wrong order� The de�nition of term when solves this
problem�

����� De	ning the Algorithm

Finally� we are ready to de�ne the uni�cation algorithm which is a recursive function that
takes two terms as arguments and returns a �lifted� attempt as a result� It is de�ned as
the �xed point of a certain functional on a pointed cpo and it works by cases on both
term arguments using the when eliminator functional for terms�

It is convenient to have the following assignment function to unify variables with other
terms �and vice versa��

�
 �v t� v assign t � ��Var v� �� t �� Failure � Success�v�t �

�
 "assign ins �cf�name�cf�term�attempt���

Since a variable cannot be uni�ed with a term if it occurs in the term assignment returns
a failure in this case� Otherwise� it returns the replacement consisting of the variable and
the term which we saw above is a best uni�er� Assignment only involves discrete universal
cpos so it is continuous trivially�

It is also convenient to de�ne the constant case separately since it can be de�ned by
pimitive recursion on terms as follows

�
 ��c c�� unifyC c�Const c�� � ��c � c�� �� Success� � Failure�� ��

��c v� unifyC c�Var v� � v assign �Const c�� ��

��c t u� unifyC c�Comb t u� � Failure�

�
 unifyC ins �cf�name�cf�term�attempt���

Note� however� that it is not recursive� The constant unifyC is continuous trivially�
Using the program new constant definition the functional for de�ning the uni��

cation algorithm can now be introduced as follows

�
 unify�FUN �

��g �� Dom�cf�term�cf�term�lift attempt����

term�when

��c �� Dom name� �t �� Dom term� Lift�unifyC c t��

��v �� Dom name� �t �� Dom term� Lift�v assign t��

��t� t� �� Dom term�

term�when

��c �� Dom name� Lift Failure�

��v �� Dom name� Lift�v assign �Comb t� t����

��u� u� �� Dom term�

athen

�g t� u��

��s� �� Dom rplist�

athen

�g�t� subst s���u� subst s���

��s� �� Dom rplist� Lift�Success�s� thens s��������

�
 unify�FUN ins

�cf

�cf�term�cf�term�lift attempt���cf�term�cf�term�lift attempt����

It is a continuous function on a pointed cpo because if D� is a pointed cpo then so is

cf�D��D��
 for any cpo D� � Therefore we can take the �xed point of the functional�
This �xed point de�nes the recursive uni�cation algorithm� and it is called unify �

�
 unify � Fix unify�FUN

�
 unify ins �cf�term�cf�term�lift attempt���

Again the program new constant definition was used� From the �xed point property
of Fix we derive the following speci�cation of unify immediately�

�
 unify �

term�when

��c �� Dom name� �t �� Dom term� Lift�unifyC c t��

��v �� Dom name� �t �� Dom term� Lift�v assign t��

��t� t� �� Dom term�

term�when

��c �� Dom name� Lift Failure�

��v �� Dom name� Lift�v assign �Comb t� t����

��u� u� �� Dom term�

athen

�unify t� u��

��s� �� Dom rplist�

athen

�unify�t� subst s���u� subst s���

��s� �� Dom rplist� Lift�Success�s� thens s�������

Note the recursion here� unify appears inside the right�hand side term in two places
when unifying two combinations� The algorithm is not primitive recursive since the second
time unify is applied recursively the arguments are not subterms of the original two
combinations and may even be larger terms� Note how the recursion match the theorems
about uni�ers �or non�existence of uni�ers� listed in section ��
�� above�

In LCF� the uni�cation algorithm is introduced as a collection of axioms which corre�
spond to the clauses presented next� However� since the LCF types of names and terms
contain bottom de�nedness assertions occur everywhere and complicate the statements
unnecessarily� In HOL�CPO� the theorems were derived immediately from the speci�ca�
tion theorem above�

�
 ��c c��

unify�Const c��Const c�� �

��c � c�� �� Lift�Success� � � Lift Failure�� ��

��c v� unify�Const c��Var v� � Lift�v assign �Const c��� ��

��c t u� unify�Const c��Comb t u� � Lift Failure�

�
 �v t� unify�Var v�t � Lift�v assign t�

�
 ��t� t� c� unify�Comb t� t���Const c� � Lift Failure� ��

��t� t� v�

unify�Comb t� t���Var v� � Lift�v assign �Comb t� t���� ��

��t� t� u� u��

unify�Comb t� t���Comb u� u�� �

athen

�unify t� u��

��s� �� Dom rplist�

athen

�unify�t� subst s���u� subst s���

��s� �� Dom rplist� Lift�Success�s� thens s������

The proofs are quite slow since large terms are type checked again and again�
The case corresponding to unifying two combinations can be simpli�ed further using

the clauses for athen � The algorithm may fail to unify the operators

�
 �t� u��

�unify t� u� � Lift Failure� ���

��t� u�� unify�Comb t� t���Comb u� u�� � Lift Failure�

or it may be successful and fail to unify the instances of the operands obtained by applying
the successful substitution�

�
 �t� u� s�

�unify t� u� � Lift�Success s�� ���

��t� u��

�unify�t� subst s��u� subst s� � Lift Failure� ���

�unify�Comb t� t���Comb u� u�� � Lift Failure��

In case it uni�es both it also uni�es the combination and the successful substitution is
the composition of the two uni�ers�

�
 �t� u� s��

�unify t� u� � Lift�Success s��� ���

��t� u� s��

�unify�t� subst s���u� subst s�� � Lift�Success s��� ���

�unify�Comb t� t���Comb u� u�� � Lift�Success�s� thens s�����

Note that these theorems match the non�existence and best uni�er theorems of sec�
tion ��
�� very well�

Hence� it is obvious now that provided the uni�cation algorithm terminates it is cor�
rect� i�e� it returns a failure if the two term arguments are non�uni�able and returns a
best uni�er if a uni�er exists� Termination and correctness are proved as one statement�

�
 �t u� �a� �unify t u � Lift a� �� best�unify�try�a�t�u�

In order to prove that the algorithm always terminates� an inductive argument is needed
which is most conveniently conducted by well�founded induction� The algorithm termi�
nates because for every recursive call it either reduces the set of variables contained in its
arguments or the sets of variables are the same and its �rst term argument is reduced to
a proper subterm� The proof of correctness and termination is discussed in section ����

��� A HOL Uni�cation Function

Though the uni�cation algorithm is a total function as stated by the correctness theorem
above� it is not straightforward to de�ne it in �pure� HOL since it is not primitive recursive�
However� going via domain theory and well�founded induction to prove termination it is
possible to introduce a pure HOL uni�cation function� We can simply de�ne this function
using the choice operator as follows�

�
 �t u� Unify t u � ��a� unify t u � Lift a�

Furthermore� we can prove this function yields a best uni�er for terms of type
�term
�

�
 �t u� best�unify�try�Unify t u�t�u�

From its de�nition� the recursion equations stating how it behaves on various kinds of
arguments can be derived�

This approach to derive a pure HOL uni�cation function via domain theory and well�
founded induction may be seen as a recursive de�nition by well�founded induction�

��	 Proof of Correctness

The proof of correctness is both a proof of the fact that the uni�cation algorithm al�
ways terminates and of the fact that it always returns the right result� This correctness
statement has been formulated as follows

�
 �t u� �a� �unify t u � Lift a� �� best�unify�try�a�t�u�

Below we �rst describe the well�founded ordering we use for the proof of termination and
then describe the actual proof of correctness�

����� The Well�founded Ordering

A theory of well�founded sets in HOL was described in �Ag�
� Ag��� and is printed in
appendix A of this thesis� The notion of well�founded set is introduced as a HOL predicate
wfs � A well�founded set is a set and an ordering such that the ordering is well�founded
on all elements of the set� Well�foundedness can be de�ned in various ways but essentially
means that there can be no in�nite decreasing chain of elements in the set with respect
to the ordering� The theory provides a theorem stating that any well�founded set allows
proof by mathematical induction�

�
 �C R�

wfs�C�R� �

��f�

��x� x IN C ��� f x� �

��x� x IN C �� ��y� R y x �� y IN C ��� f y� ��� f x��

Once we have introduced a suitable well�founded ordering we shall use this theorem to
prove the uni�cation algorithm always terminates�

Fortunately� we do not have to de�ne an ordering and prove it is well�founded from
scratch� The theory of well�founded sets provides a number of constructions which can
be used to derive well�foundedness from simpler well�founded orderings very easily�

The well�founded ordering for the proof of the uni�cation algorithm is called un ord

and it is de�ned as follows �the actual de�nitions of inv rel and lex rel can be found
in appendix A��

�
 un�ord �

inv�rel

�lex�rel�"PSUBSET�"�������t�u�� ��vars t� UNION �vars u��t���

Let us immediately show how it works�

�
 �t t� u u��

un�ord�t�t���u�u�� �

��vars t� UNION �vars t��� PSUBSET ��vars u� UNION �vars u��� ��

��vars t� UNION �vars t�� � �vars u� UNION �vars u��� �� t �� u

So� two pairs of terms are related if the variables of the �rst pair are a proper subset
of the variables of the second pair� or if the sets of variables are the same and the �rst
component of the �rst pair is a proper subterm of the �rst component of the second pair�

The un ord ordering is well�founded on pairs of terms�

�
 wfs�prod�set�UNIV�UNIV��un�ord�

where the product set is de�ned as expected�

�
 �B C� prod�set�B�C� � ��b�c� � b IN B �� c IN C�

The proof can be reduced to proving

�
 wfs�FINITE�"PSUBSET�

�
 wfs�UNIV�"���

using the constructions for inverse images and lexicographic ordering relations� stated by

�
 �B C P R� wfs�B�P� �� wfs�C�R� ��� wfs�prod�set�B�C��lex�rel�P�R��

�
 �B C G R�

wfs�C�R� �� ��b� b IN B ��� �G b� IN C� ��� wfs�B�inv�rel�R�G��

One can prove that the proper subset relation on �nite sets is well�founded by reducing
this to the well�foundedness of the less�than ordering on the natural numbers

�
 wfs�UNIV�"��

using the mapping construction� stated by

�
 �B C G P R�

wfs�C�R� ��

��b� b IN B ��� �G b� IN C� ��

��b� b�� b� IN B �� b� IN B �� P b� b� ��� R�G b���G b��� ���

wfs�B�P�

and the monotonic cardinality function on �nite sets �provided by the pred sets library
�Me�����

�
 �s� FINITE s ��� ��t� t PSUBSET s ��� �CARD t� � �CARD s��

The mapping construction is also used to prove the occurrence relation is well�founded
on the set of all terms� using a monotonic size function on terms�

�
 ��c� size�Const c� � �� ��

��v� size�Var v� � �� ��

��t u� size�Comb t u� � � � ��size t� � �size u���

�
 �t u� t �� u ��� �size t� � �size u�

����� The Induction Proof

Below we give an overview of the well�founded induction� We wish to prove the following
statement

�t u� �a� �unify t u � Lift a� �� best�unify�try�a�t�u�

By well�founded induction this reduces to

�a� �unify t u � Lift a� �� best�unify�try�a�t�u�

�
�t� u��

un�ord�t��u���t�u� ���

��a� �unify t� u� � Lift a� �� best�unify�try�a�t��u���

The proof is now split into various cases� The induction hypothesis is not considered until
the case where two combinations are uni�ed� called the comb�comb case below� First we
do a case split on whether t and u are equal� If they are equal the correctness of unify

follows from the lemma

�
 �t� �s� �unify t t � Lift�Success s�� �� s �� �

which states that unify returns a substitution which is equivalent to the empty substi�
tution� This is proved easily by induction on terms and the properties of unify � The
algorithm does not generate the empty substitution in the variable case of the induc�
tion� Instead it generates a trivial replacement which we saw is equivalent to the empty
substitution by equality of substitution�

Assuming the variables are distinct terms we do a cases split on t �rst� Another case
split is done on u in case t is a constant and if t is a variable we do a case split on
whether it occurs in u or not� In case t is a combination we also do a case split on
u � All cases except the comb�comb case can be proved immediately using the theorems
of section ��
�� and section ����
 where the properties that a correct algorithm should
satisfy and the properties of unify are listed�

The theorems of those two sections are also required for the comb�comb case but this
in addition requires an appeal to the induction hypothesis� Assume t is
Comb t� t�

and u is
Comb t�� t��
� Then the following lemma

�
 un�ord�t��t����Comb t� t��Comb t�� t���

allows us to use the induction hypothesis on the �rst recursive call of unify � So unify

terminates in this case and returns a correct result� If this call returns a failure then
the combinations cannot be uni�ed and unify correctly fails to unify the combination�
Otherwise� we appeal to the induction hypothesis again using the lemma

�
 best�unifier�s�t��t��� ���

un�ord�t� subst s�t�� subst s��Comb t� t��Comb t�� t���

Hence� the second call also terminates with the correct result� If the result is a failure
then unify correctly fails to unify the combination and if it is a success then unify

correctly returns composition of the two uni�ers it has constructed in the recursive calls�
This concludes the proof�

��
 Discussion

In this chapter we have described a mechanization of the correctness proof of a uni�cation
algorithm based on the proof by Paulson in LCF �Pa���� which in turn is based on the proof
by Manna and Waldinger �MW�
�� The theories of expressions� substitutions and most�
general� idempotent uni�ers were developed in pure HOL and then �extended� to domain
theory automatically� using discrete universal cpos� Expressions� also called terms� were
introduced by a new abstract datatype and substitutions were represented using the built�
in type of �nite lists� Most functions and concepts were de�ned by primitive recursion�
or simply as HOL de�nitions �abbreviations�� The formalization of domain theory was
employed for de�ning the recursive uni�cation algorithm since in pure HOL there is no
support for de�ning the unusual recursion of the algorithm� It is not obvious that the
algorithm is total� this was proved using well�founded induction� The ordering for the
induction proof was de�ned using constructions on well�founded orderings and proved to
be well�founded almost automatically�

The two implementations of MW�s proof in LCF and HOL�CPO respectively are sim�
ilar and yet radically di�erent� Both proofs closely resembles MW�s proof though both
use di�erent representations of terms and substitutions than in their proof� However� the
presence of bottom in all types in LCF had such a big in!uence on statements and proofs
that it is tempting to conclude that the logic is inappropriate for the proof� Having the
LCF proof available� it was clear what a big di�erence the absence of bottom makes in
our proof where most of the development was done in the set theoretic HOL world �cf�
section ��
�� This was possible since all datatypes and functions are strict� Further� the
HOL�CPO proof shows that it is convenient to use well�founded induction as in MW�s
proof rather that the nested structural inductions on natural numbers and terms as in
the LCF proof�

Proofs in HOL and LCF look di�erent� In LCF most proofs use conditional rewriting
extensively� with long lists of theorems� Such proofs are split up into more tactics in
HOL� stripping goals apart and using resolution and �simple� rewriting� The result is
much more readable� The outcome of a conditional rewrite often depends on the order
in which the theorems are applied and often strange hacks appear to avoid loops and
unexpected behavior�

Chapter �

Conclusion

A HOL formalization of central concepts of domain theory has been presented with
syntactic�based proof functions and other tools to support reasoning about functional
programs� The formalization may be seen as a semantic embedding of the LCF system
in HOL which is conducted in such a way that it inherits and extends the advantages of
both systems� The extension of HOL is called HOL�CPO�

Our philosophy was that there should be a direct correspondence between elements of
complete partial orders and elements of HOL types� in order to allow the reuse of higher
order logic and proof infrastructure already available with the HOL system� Hence� we
were able to mix set and domain theoretic reasoning to advantage and exploit HOL types
and tools directly to reason about denotations of functional programs �as continuous
functions��

Examples illustrated the use of HOL�CPO and demonstrated many ways in which
HOL�CPO extends both the LCF and the HOL system �though� LCF supports the ax�
iomatization of more recursive domains than HOL�CPO��

The main results of the work are�

� HOL�CPO� a conservative extension of HOL to support reasoning about the deno�
tations of functional programs in domain theory�

� A comparison of LCF and HOL�CPO�

� A method for introducing derived de�nitions of recursive well�founded functions in
HOL via domain theory and well�founded induction�

� A larger example which shows the proof of correctness of a uni�cation algorithm�

� Methods and ideas for de�ning some recursive domains with �nite and in�nite val�
ues�

As part of HOL�CPO� informal extendable notations for cpos� typable terms and inclu�
sive predicates were implemented by an interface and a number of syntactic�based proof
functions� A term is called �cpo�� typable when it is an element of some cpo� The purpose
of the notations was in part to automate proofs of semantic properties� The work load
of the user of HOL�CPO was reduced considerably by the notations� Proof obligations
induced by the formalization could be proved automatically in most examples�

���

��� Extension of HOL

HOL�CPO extends the possibilities of the HOL user in various ways� In HOL� there
is no notion of non�termination and all functions are total functions of set theory� Only
primitive recursive functions on concrete datatypes of syntax can be de�ned directly using
tools available with the HOL system� In order to de�ne a more general recursive function�
one must �rst show its existence in higher order logic� or perform some trick�

Firstly� HOL�CPO supports the concepts and techniques of �xed point theory to reason
about non�termination� partial functions and arbitrary recursive �computable� functions�
Partial functions and non�termination are handled via the bottom element of pointed
cpos	 such cpos are built� for instance� using the lifting construction on cpos� The �xed
point operator allows the de�nition of recursive continuous functions on pointed cpos�
Fixed point induction� which is derived as a theorem� can be used to prove that inclusive
properties hold of recursive de�nitions� Other techniques for recursion derivable in HOL�
e�g� well�founded induction� can also be used and it is possible to reason about �xed points
directly from their de�nition in HOL�

Secondly� HOL�CPO supports reasoning about in�nite values of recursive domains like
lazy sequences and lazy lists� providing techniques like �xed point induction� structural
induction and co�induction based on the notion of bisimulation� Structural induction is
used to prove an inclusive property holds of �nite elements�the inclusiveness guarantees
that the property holds of in�nite elements too�

Thirdly� HOL�CPO supports a method for introducing total recursive functions in
HOL by well�founded induction� A recursive function is de�ned using the �xed point
operator in domain theory� Using well�founded induction the function is then proved to
terminate for all input� Hence� it allows a recursive HOL function to be de�ned�

��� Embedding Semantics vs� Implementing Logic

HOL�CPO may be seen as a semantic embedding of the LCF system in HOL� Domain
theoretic concepts like complete partial orders� continuous functions and inclusive pred�
icates were formalized as semantic constants in HOL� LCF� on the other hand� is an
implementation of a logic with a domain theoretic semantics� Hence� LCF only provides
access to domain theory via a few axioms and primitive inference rules�

HOL�CPO extends the LCF system in the following ways�

� It provides direct access to domain theory�

� It inherits the underlying higher order logic and proof infrastructure of the HOL
system�

These are the consequences of embedding semantics in a powerful theorem prover rather
than implementing logic�

The last point may be supported to various degrees in a semantic embedding� Our
goal has been to develop a formalization that provides a direct correspondence between
elements of domains and elements of HOL types in order to allow the many built�in
types and tools of the HOL system to be exploited� A formalization of �real� domain
theory based on information systems or universal domains like P� would not support this
directly� due to the encoding performed in these theories�

So� although the last point is a consequence of the present embedding rather than
semantic embeddings in general� it is a central advantage of HOL�CPO over LCF� Ex�
perience with LCF shows that the continual �ddling with bottom is very annoying� Its
presence in all types makes LCF unsuitable for reasoning about �nite�valued types and
strict functions� In HOL�CPO� we are able to mix domain and set theoretic reasoning�
This means that reasoning about bottom often can be eliminated or deferred until the
late stages of a proof� We can also exploit the rich collection of built�in theorems� tools
and libraries provided with the HOL system in applications� LCF has almost nothing like
that� though this is more a consequence of history than of di�erences in approaches�

A disadvantage of implementing logic as in LCF is that one is restricted to the rea�
soning provided by the axioms and primitive inference rules of the logic� Since domain
theoretic concepts are not present by their semantic de�nitions in LCF� it is not possible
to reason directly about �xed points� for instance� though this allows more theorems to
be proved than with just �xed point induction� Further� testing that a predicate admits
�xed point induction� i�e� testing that it is inclusive� can only be performed in ML by an
incomplete syntactic check�

These problems were solved in HOL�CPO where the semantic de�nitions are available�
For instance� �xed point induction was derived as a theorem from the semantic de�nition
of the �xed point operator� Further� syntactic checks for inclusiveness were implemented
as a syntactic�based proof function� Inclusive predicates not accepted by the syntactic
checks can be proved to be inclusive from the semantic de�nition of inclusiveness�

On the other hand� a disadvantage of embedding semantics and having direct access
to domain theory is that this introduces new proof obligations� In order to use theorems
of domain theory� one must prove all the time that terms are cpos� continuous functions
and inclusive predicates� The proof functions for the notations for cpos� typable terms
and inclusive predicates could prove these obligations in most cases�

In LCF� types denote �pointed� cpos and the function type denotes the cpo of continu�
ous functions� Hence� the proof obligations are not present� except for inclusiveness� �Not
all predicates of �rst order logic are inclusive so this condition on �xed point induction
cannot be avoided��

As a further disadvantage of the formalization presented here� it is necessary to prove
that terms are elements of the right cpos before functions are applied to terms� This
was called type checking� The problem arose due to the determinedness condition on
continuous functions which introduced the need for the dependent lambda abstraction�
This was used to write determined functions that became parameterized by free cpo
variables of the domains on which they worked� An interface could hide this annoying
extra information in most cases�

One may compare the problems in LCF due to bottom to the problems in HOL�
CPO due to the parameters on the dependent lambda abstraction and some function
constructions� An interface could also be implemented in LCF to hide bottom in many
cases� But it would always appear in proofs whereas we often avoid type checking in
HOL�CPO� For instance� in the uni�cation example where the bottom element was a
major nuisance in LCF we worked most of the time in the set theoretic HOL world where
the problem of dependent functions �or bottom� does not exists� Domain theory was only
used to de�ne the recursive uni�cation algorithm at a late stage of the proof� Further�
at that stage it was only present temporarily since we worked with universal cpos which
consisted of all elements of the underlying HOL types�

Finally� let us address the complex issue of constructing solutions to recursive domain
equations� HOL�CPO does not support this well� A recursion operator for recursive do�
mains similar to the �xed point operator for recursive functions has not been developed�
We have seen some examples on how certain recursive domains with �nite values can be
derived using recursive types in HOL� introduced by the type de�nition package� This
approach does not work for recursive domains with in�nite values since all types intro�
duced by the package are well�founded� Theories of lazy sequences and lazy lists were
provided with induction principles like structural induction and co�induction� Some ideas
were presented for introducing other more general recursive domains with in�nite values�

However� LCF does not provide a recursion operator for recursive domains either and
since it does not provide direct access to domain theory� it is impossible to derive solutions
to recursive domain equations� Instead� LCF just axiomatizes recursive domains� As
pointed out by Paulson �Pa��a� Pa���� an axiomatization is di�cult in even quite simple
cases	 it can be both arduous and tedious to develop a useful theory for a new recursive
type� This motivated a number of tools to axiomatize certain recursive types with �nite
and in�nite elements �denoting recursive domains� which can be described by a set of
constructor functions� each taking a number of arguments of speci�ed types where the
function type is not used in an essential way�

Axiomatizing even simple theories is against the traditions in HOL and it would be
di�cult to provide a derived tool which was similar in strength to the LCF tools�

��� Alternative Formalizations

In section
�

� a number of alternative formalizations were discussed� An approach where
the set component of cpos is represented directly as a HOL type does not work since the
continuous function space construction on cpos cannot be de�ned� This is a dependent
subtype of the type of HOL functions �depending on free term variables ranging over cpos��
Furthermore� the disadvantageous determinedness condition on continuous functions is
necessary to prove that the continuous function space satis�es the antisymmetry condition
on cpos�

For further discussion the reader should consult section
�

�

��� Limited Treatment of Recursive Domains

Our philosophy has been that formalizing domain theory in HOL should support the
reuse of HOL types and proof infrastructure to as large an extent as possible� Hence� a
formalization should provide a direct correspondence between elements of HOL types and
elements of cpos� We have seem some concrete advantages of this� Any recursive type in
HOL like natural numbers� �nite lists and terms �for uni�cation� can be reasoned about
in the set theoretic HOL world before turning to domain theory where reasoning may
involve bottom and complex notions as complete partial orders and continuous functions�
We can mix set and domain theoretic reasoning to advantage�

A direct consequence of this philosophy is that solutions of recursive domain equa�
tions are not easily de�ned in HOL�CPO� Some recursive domains have been considered�
Certain recursive domains with �nite values can be de�ned by exploiting recursive types

in HOL� introduced by the type de�nition package� However� this approach has not been
automated and requires tedious proofs about basic domain theoretic concepts�

Further� when recursive domains contain in�nite values we have no implemented meth�
ods or examples which work in more general cases� We have implemented constructions
for pointed cpos of lazy sequences and lazy lists but the method which was used for this
purpose is not easily generalized� Quite detailed ideas were presented on a method for in�
troducing more general recursive domains with in�nite values� based on �nitely�branching
labeled trees with �nite� partial and in�nite elements� This method borrows ideas from
the type de�nition package and are imposed by the same limitations� Hence� constructor
functions are only allowed to take arguments of simple types or the recursive type itself	
e�g� pairs� lists and functions are not allowed�

The advantage of methods based on trees is that they leave only a few proof obligations
to be proved when a new recursive domain is introduced� Roughly speaking� the only thing
to prove is that the new domain contains least upper bounds of chains	 we even know
what the least upper bounds look like since they have been proved to be in the cpos of
labeled trees� Further� de�ning constructor functions which �t within the notation of
typable terms� we can prove they are continuous automatically�

So� we have only considered how to de�ne recursive domains denoted by fairly simple
recursive type speci�cations� Attempts to solve real recursive domain equations which
involve the function space in an essential way� has not been considered at all	 Gunter�s
approach deals with recursive type speci�cations where the function type is permitted to
a limited extent� only at the right�hand sides of outermost function spaces�

Paulson has done some interesting work on constructing recursive types �not domains�
by taking least and greatest �xed points of monotone operators �Pa�
�� He provides co�
induction to reason about in�nite elements� However� this does not directly apply to a
domain theoretic setting�

One could put deep thought into the question of how to allow the solution of recursive
domain equations� The inverse limit construction is a well�known method for constructing
solutions to recursive domain equations as ��colimits of continuous functors on the cate�
gory of cpos with embedding projection pairs� A formalization in HOL would be rather
complex and probably not �t in well with our philosophy since it seems to need a �big�
set closed under ��sequences to capture in�nite elements� This would require some kind
of encoding�

��� Related Work

Other formalizations of domain theory exist� Petersen �Pe�
� has formalized the P�
model such that all recursive domain equations can be solved �this has not been fully
implemented�� However� domains live in P� only and it is not clear how to lift HOL types
and functions to P� and back� Therefore very few of HOL�s facilities can be exploited
directly�

Camilleri mechanized a theory of cpos and �xed points which he used to de�ne recur�
sive operators in CSP trace theory �Ca���� However� he did not consider constructions
on cpos and continuous functions but proved continuity in an ad hoc way in the HOL
system� A major problem with his approach is that it does not allow the continuous func�
tion space construction which is fundamental to our work� The problem is that the set

of continuous functions between two cpos is a dependent subset of all HOL functions� as
we mentioned above� We have solved this problem using dependent subtypes� also called
term parameterized types� Though these are not provided by the HOL logic itself they
can be simulated by predicates denoting subsets of types� The same approach is used in
�JM�
��

Franz Regensburger� is working on a very similar project in Isabelle HOL but the
formalizations seem to be quite di�erent� Pointed cpos are introduced using type classes
and continuous functions constitute a type� Type checking arguments of functions seems
not to be necessary but before ��reduction can be performed functions must be shown to
be continuous �unlike in our formalization�� Recursive domains can be axiomatized in a
similar way as in LCF� though this has not been automated as in LCF� He is currently
writing a Ph�D� thesis about the work �Re��� �in German unfortunately��

Bernhard Reus� works on synthetic domain theory �RS��� in the LEGO system which
implements a strong type theory �ECC� with dependent sums and products� Dependent
families can be exploited for the inverse limit construction� This is work in progress for a
Ph�D� and nothing has been published on the formalization yet�

��	 Evaluation of HOL�CPO

Developing the formalization of domain theory was extremely tedious� Introducing the
continuous function space as a �dependent subtype� of the HOL function type was the
main reason for this� since working with subsets of types introduced a lot of extra work
in proofs� All the time one must prove that terms are in the right subsets� For example�
before one can deduce that the result of applying a continuous function to an argument
is in a certain subset� one must prove that the argument is in the right subset� To take
the lub of chains� each elements of the chains must be in some subset �cpo� before we can
deduce that the lub is an element of this subset too� This type checking� which must be
done manually here in an ad hoc way� was also one of the reasons why it was so tough
to develop the cpos of lazy sequences and lazy lists� It will make any domain theoretic
extension of the formalization arduous�

Fortunately� it seemed to be less tedious to use the formalization because one does
not need to reason about the deeper properties of domain theory� The notations for cpos
and typable terms helped a lot� Further� most of the time we worked with universal cpos
which contained all elements of underlying HOL type	 the subsets were the whole types�
Therefore� type checking could be avoided in many cases�

The prototype proof functions and tools supports reasoning about denotations of func�
tional programs pretty well� The user does not have to worry about proving deep prop�
erties in domain theory� This is handled in most cases by the proof functions� It is only
necessary to turn to the formalization of domain theory itself when one wish to intro�
duce new recursive domains� Though� some recursive domains can be introduced via the
discrete construction and some recursive HOL type �e�g� see section ��
�
��

In a wider perspective� the limited possibilities of constructing solutions of recursive do�
main equations means that we cannot give semantics to realistic programming languages�

�Technical University
 Munich� Email� regensbu�informatik�tu�muenchen�de
�Ludwig�Maximilian University
 Munich� Email� reus�informatik�uni�muenchen�de

for instance� languages with recursive types� We can still reason about denotations of
some recursive types and functions directly in domain theory�

��
 Future Work� �Real� Domain Theory

Before we develop the prototype proof functions and tools further� we must consider how
to support solutions to recursive domain equations in a much better way than now� One
should make ones goals clear and try to investigate whether solving recursive domain
equations based on trees would be enough� or whether the additional power obtained
by turning to representations of domains� for instance as information systems� would be
required�

If we chose to formalize information systems� at least the following limitations of the
current approach could be eliminated� We would be able to

� solve recursive domain equations fairly easily�

� give semantics to realistic programming languages and

� prove adequacy results relating operational and denotational semantics�

using the concrete nature of information systems to advantage�
We could hope to solve all problems of the present formalization without introducing

new ones� Earlier we said that a formalization of information systems would introduce
a kind of new world di�erent from the HOL world	 for instance� the information system
of natural numbers would not share any elements with the HOL type of natural numbers
directly� Perhaps isomorphisms or suitable mappings between information systems and
HOL types� hidden by an interface� would allow us to reuse HOL types and tools as now�
and mix set and domain theoretic reasoning�

There would be bene�ts and drawbacks of a formalization of information systems�
Only deeper thought and trying out the ideas in practice would be able to answer whether
the bene�ts or the drawbacks would win�

Instead of insisting on working only in HOL� one could also try to employ more power�
ful theories� One approach would be to move to a system supporting a stronger dependent
type theory� But such theories are usually not easy to learn and there are quite a lot of
di�erent new systems to choose among� Set theory might provide a simple alternative to
type theories�

As an alternative to the many new theorem provers based on type theories� Mike
Gordon has implemented an experimental extension of the HOL system with a ZF�like set
theory �Go���� In this system� called HOL�ST� I have recently formalized the inverse limit
construction �which is not possible directly in pure HOL without a complex encoding�
and used this to derive a non�trivial solution D� of the equation

D�
�� �D� � D���

which provides a model of the untyped ��calculus �Ag��b�� Any recursive domain equation
could be solved in a similar way in HOL�ST� but it is still not clear whether this approach
is really useful or not�

Appendix A

Well�founded Sets

This is the theory of well�founded sets presented in �Ag�
� Ag����

�print�theory#wfs#��

The Theory wfs

Parents

 HOL pred�sets

Constants

decr�chain
��num
� 	�
� ��	
� bool� � �	
� �	
� bool��
� bool�

min�e
�	
� ��	
� bool� � �	
� �	
� bool��
� bool�

strict�ordering
��	
� �	
� bool�� � �	
� bool�
� bool

wfs
��	
� bool� � �	
� �	
� bool��
� bool

gen�seq
��	
� bool�
� ��	
� �	
� bool��
� �num
� 	��

prod�set
��	
� bool� � �		
� bool�
� �	 � 		
� bool�

prod�rel

��	
� �	
� bool�� � �		
� �		
� bool��
�

�	 � 		
� �	 � 		
� bool��

lex�rel

��	
� �	
� bool�� � �		
� �		
� bool��
�

�	 � 		
� �	 � 		
� bool��

inv�rel
��		
� �		
� bool�� � �	
� 		�
� �	
� �	
� bool��

pnum
�num
� bool

Infixes

decr�chain
��num
� 	�
� ��	
� bool� � �	
� �	
� bool��
� bool�

min�e
�	
� ��	
� bool� � �	
� �	
� bool��
� bool�

Definitions

decr�chain�DEF

�
 �X A R�

X decr�chain �A�R� � ��n� �X n� IN A� �� ��n� R�X�n � ����X n��

strict�ordering�DEF

�
 �R A� strict�ordering�R�A� � ��x� x IN A ��� �R x x�

min�e�DEF �
 �x A R� x min�e �A�R� � x IN A �� ���y� R y x �� y IN A�

wfs�DEF

�
 �C R�

wfs�C�R� � ��A� ��A � ��� �� A SUBSET C ��� ��x� x min�e �A�R���

gen�seq�DEF

�
 ��A R� gen�seq A R � � ��x� x IN A�� ��

�
�

��A R n� gen�seq A R�SUC n� � ��x� x IN A �� R x�gen�seq A R n���

prod�set�DEF �
 �B C� prod�set�B�C� � ��b�c� � b IN B �� c IN C�

prod�rel�DEF

�
 �P R x y� prod�rel�P�R�x y � P�FST x��FST y� �� R�SND x��SND y�

lex�rel�DEF

�
 �P R b c�

lex�rel�P�R�b c �

P�FST b��FST c� �� �FST b � FST c� �� R�SND b��SND c�

inv�rel�DEF �
 �R f b b�� inv�rel�R�f�b b� � R�f b��f b��

pnum�DEF �
 pnum � �x � � � x�

Theorems

WFS�DEFS�EQUIV

�
 �C R�

wfs�C�R� �

��A� ��x� x IN �C INTER A�� � ��x� x min�e �C INTER A�R���

DC

�
 �A R�

��A � ��� �� ��a� a IN A ��� ��b� b IN A �� R b a�� ���

��X� X decr�chain �A�R��

WFS�FIN�CHAINS �
 �C R� wfs�C�R� � ���X� X decr�chain �C�R��

WFS�STRICT�ORD �
 �C R� wfs�C�R� ��� strict�ordering�R�C�

WFS�MATH�INDUCT

�
 �C R�

wfs�C�R� ���

��f�

��x� x IN C ��� f x� �

��x� x IN C �� ��y� R y x �� y IN C ��� f y� ��� f x��

WFS�EQ�INDUCT

�
 �C R�

wfs�C�R� �

��f�

��x� x IN C ��� f x� �

��x� x IN C �� ��y� R y x �� y IN C ��� f y� ��� f x��

WFS�SUBSET �
 �B C R� B SUBSET C �� wfs�C�R� ��� wfs�B�R�

WFS�PROD

�
 �B C P R�

wfs�B�P� �� wfs�C�R� ��� wfs�prod�set�B�C��prod�rel�P�R��

WFS�LEX�PROD

�
 �B C P R�

wfs�B�P� �� wfs�C�R� ��� wfs�prod�set�B�C��lex�rel�P�R��

WFS�INV�IMAGE

�
 �B C G R�

wfs�C�R� �� ��b� b IN B ��� �G b� IN C� ��� wfs�B�inv�rel�R�G��

WFS�MAPPING

�
 �B C G P R�

wfs�C�R� ��

��b� b IN B ��� �G b� IN C� ��

��b� b�� b� IN B �� b� IN B �� P b� b� ��� R�G b���G b��� ���

wfs�B�P�

NUM�IS�WFS �
 wfs�UNIV�"��

PNUM�IS�WFS �
 wfs�pnum�"��

LEX�NUM�IS�WFS �
 wfs�prod�set�pnum�UNIV��lex�rel�"��"���

																				 wfs 																				

�� � void

Bibliography

�Ag�
� S� Agerholm� �Mechanizing Program Veri�cation in HOL�� In the Proceedings of
the ���� International Workshop on the HOL Theorem Proving System and Its Ap�
plications� Davis California� August ���
��
��
� IEEE Computer Society Press�

����

�Ag��� S� Agerholm� Mechanizing Program Veri�cation in HOL� M�Sc� Thesis� Aarhus
University� Computer Science Department� Report IR�

� April
����

�Ag�
� S� Agerholm� �Domain Theory in HOL�� In the Proceedings of the �th International
Workshop on Higher Order Logic Theorem Proving and its Applications� Je�rey J�
Joyce and Carl�Johan H� Seger �eds��� Vancouver� B�C�� Canada� August

�

��
�
LNCS ���� Springer�Verlag
����

�Ag��a� S� Agerholm� �LCF Examples in HOL�� In Proceedings of the �th International
Workshop on Higher Order Logic Theorem Proving and its Applications� Thomas F�
Melham and Juanito Camilleri �Eds��� Malta� September
���� LNCS ���� Springer�
Verlag
���� A revised version will appear in Computer Journal� May
��� �provi�
sionally��

�Ag��b� S� Agerholm� �Formalising a Model of the ��calculus in HOL�ST�� Technical Re�
port no�
��� University of Cambridge� Computer Laboratory� November
����

�An��� F� Andersen� A Theorem Prover for UNITY in Higher Order Logic� Ph�D� Thesis�
Technical University of Denmark�
���� Also published as TFL RT
����
�

�APP�
� F� Andersen� K�D� Petersen and J�S� Pettersson� �Program Veri�cation using
HOL�UNITY�� In the Proceedings of the �th International Workshop on Higher Order
Logic Theorem Proving and its Applications� Je�rey J� Joyce and Carl�Johan H� Seger
�eds��� Vancouver� B�C�� Canada� August

�

��
� LNCS ���� Springer�Verlag

����

�Ba��� H�P� Barendregt� The Lambda Calculus� Its Syntax and Semantics� North�Holland�

����

�BW��� R� Bird and P� Wadler� Introduction to Functional Programming� Prentice�Hall
International�
����

�Bo�
� R�J� Boulton� �The HOL taut Library�� University of Cambridge� Computer Lab�
oratory� July
��
� �Appears in �Un�����

��

�BGH��� R�J� Boulton� A�D� Gordon� J�R� Harrison� J�M�J� Herbert� and J� Van Tas�
sel� �Experience with Embedding Hardware Description Languages in HOL�� In V�
Stavridou� T�F� Melham� and R�T� Boute �Eds�� Theorem Provers in Circuit Design�
Theory	 Practice and Experience� Proceedings of the IFIP TC�
�WG �
�
 Interna�
tional Conference� IFIP Transactions A�
�� North�Holland� June
����

�Ca��� A�J� Camilleri� �Mechanizing CSP Trace Theory in Higher Order Logic�� IEEE
Transactions on Software Engineering� Vol�
�� No� �� September
����

�CM��� J� Camilleri and T�F� Melham� �Reasoning with Inductively De�ned Relations in
the HOL Theorem Prover�� University of Cambridge� Computer Laboratory� Techni�
cal Report No� ���� August
����

�Co��� A�J� Cohn� �The Notion of Proof in Hardware Veri�cation�� Journal of Automated
Reasoning� Vol� �� No� ��
����

�Co��� M�D� Coen� Interactive Program Derivation� Ph�D� Thesis� University of Cam�
bridge� Computer Laboratory� Technical Report No� ���� November
����

�DS��� E�W� Dijkstra and C� Scholten� Predicate Calculus and Program Semantics�
Springer�Verlag�
����

�Go��� A�D� Gordon� �Re� Ackermann�s Function�� Info�hol mail message� May
��
����

�Go��a� M�J�C� Gordon� �HOL� A Proof Generating System for Higher Order Logic�� In G�
Birtwistle and P�A� Subrahmanyam �eds��� Current Trends in Hardware Veri�cation
and Theorem Proving� Springer�Verlag�
����

�Go��b� M�J�C� Gordon� �Mechanizing Programming Logics in Higher Order Logic�� In G�
Birtwistle and P�A� Subrahmanyam �eds��� Current Trends in Hardware Veri�cation
and Theorem Proving� Springer�Verlag�
����

�Go��� M�J�C� Gordon� �Merging HOL with Set Theory� preliminary experiments�� Tech�
nical Report no�
�
� University of Cambridge� Computer Laboratory� November

����

�GM�
� M�J�C� Gordon and T�F� Melham �Eds��� Introduction to HOL� A Theorem Prov�
ing Environment for Higher Order Logic� Cambridge University Press�
��
�

�GMW��� M�J�C� Gordon� R� Milner and C�P� Wadsworth� Edinburgh LCF� A Mechanised
Logic of Computation� Springer�Verlag� LNCS ���
����

�Gu��� C�A� Gunter� Semantics of Programming Languages� Structures and Techniques�
The MIT Press�
����

�GS��� C�A� Gunter and D�S� Scott� �Semantic Domains�� In J� van Leeuwen �ed��� Hand�
book of Theoretical Computer Science	 Vol� B� North�Holland� Amsterdam�
����

�Gu�
� E� Gunter� �A Broader Class of Trees for Recursive Type De�nitions for HOL��
In the Proceedings of the �th International Workshop on Higher Order Logic Theo�
rem Proving and its Applications� Je�rey J� Joyce and Carl�Johan H� Seger �eds���
Vancouver� B�C�� Canada� August

�

��
� LNCS ���� Springer�Verlag
����

�Ha��� J�R� Harrison� �The HOL wellorder Library�� University of Cambridge� Computer
Laboratory� May
���� �Appears in �Un�����

�JM�
� B� Jacobs and T� Melham� �Translating Dependent Type Theory into Higher
Order Logic�� In the Proceedings of the International Conference on Typed Lambda
Calculi and Applications� Utrecht�
��
� March
��
� Springer�Verlag� LNCS ����

��
�

�LW�
� K�G� Larsen and G� Winskel� �Using Information Systems to Solve Recursive
Domain Equations�� Information and Computation� Vol� �
� No� �� April
��
�

�MW�
� Z� Manna and R� Waldinger� �Deductive Synthesis of the Uni�cation Algorithm��
Science of Computer Programming� Vol�
�
��
� pp� �����

�MW��� Z� Manna and R� Waldinger� The Logical Basis for Computer Programming�
Volume
� Deductive Systems� Addison�Wesley�
����

�Me��� T�F� Melham� �Automating Recursive Type De�nitions in Higher Order Logic��
In G� Birtwistle and P�A� Subrahmanyam �eds��� Current Trends in Hardware Veri�
�cation and Theorem Proving� Springer�Verlag�
����

�Me�
� T�F� Melham� �Recursive Data Types�� Info�hol mail message� November ��
��
�

�Me��� T�F� Melham� �The HOL pred sets Library�� University of Cambridge� Computer
Laboratory� February
���� �Appears in �Un�����

�MTH��� R� Milner� M� Tofte and R� Harper� The De�nition of Standard ML� MIT Press�

����

�Mo��� P�D� Mosses� �Denotational Semantics�� In J� van Leeuwen �ed��� Handbook of
Theoretical Computer Science	 Vol� B� North�Holland� Amsterdam�
����

�Pa��a� L�C� Paulson� �Structural Induction in LCF�� Springer�Verlag� LNCS
�
�
����
Also in Technical Report No� ��� University of Cambridge� Computer Laboratory�
February
����

�Pa��b� L�C� Paulson� �Lessons Learned from LCF�� Technical Report No� ��� University
of Cambridge� Computer Laboratory� August
����

�Pa��� L�C� Paulson� �Verifying the Uni�cation Algorithm in LCF�� Science of Computer
Programming� Vol� ��
���� pp�
�
�
��� Also in Technical Report No� ��� University
of Cambridge� Computer Laboratory� March
����

�Pa��� L�C� Paulson� Logic and Computation� Interactive Proof with Cambridge LCF�
Cambridge Tracts in Theoretical Computing �� Cambridge University Press�
����

�Pa��� L�C� Paulson� �Isabelle� The Next ��� Theorem Provers�� In P� Odifreddi �ed���
Logic and Computer Science� Academic Press�
����

�Pa�
� L�C� Paulson� ML for the Working Programmer� Cambridge University Press�
��
�

�Pa�
� L�C� Paulson� �Co�induction and Co�recursion in Higher�order Logic�� Technical
Report No�
��� University of Cambridge� Computer Laboratory�
��
�

�Pe�
� K�D� Petersen� �Graph Model of LAMBDA in Higher Order Logic�� In the Proceed�
ings of the �th International Workshop on Higher Order Logic Theorem Proving and
its Applications� Je�rey J� Joyce and Carl�Johan H� Seger �eds��� Vancouver� B�C��
Canada� August

�

��
� LNCS ���� Springer�Verlag
����

�Pi��� A�M� Pitts� �A Co�induction Principle for Recursively De�ned Domains�� Theoret�
ical Computer Science� Vol�
���
����

�Pl�
� G� Plotkin� Domains� Course notes� Department of Computer Science� University
of Edinburgh�
��
�

�Re��� F� Regensburger� HOLCF� A Conservative Extension of HOL with LCF� Ph�D�
Thesis �in German�� Technical University� Munich�
��� �to appear��

�RS��� B� Reus and T� Streicher� �Naive Synthetic Domain Theory�A Logical Approach��
Draft�
����

�Ro��� J�A� Robinson� �A Machine�oriented Logic Based on the Resolution Principle�� J�
ACM� Vol�
�� No�
�
����

�Sc��� D�A� Schmidt� Denotational Semantics� Allyn and Bacon�
����

�Sc��� D�S� Scott� �Data Types as Lattices�� SIAM J� Comput�� Vol� �� No�
� September

����

�Sc��� D�S� Scott� �Domains for Denotational Semantics�� In Proc� of ICALP��
� Springer�
Verlag� LNCS
���
����

�SP��� M� Smyth and G�D� Plotkin� �The Category�theoretic Solution of Recursive Do�
main Equations�� SIAM Journal of Computing� Vol�

�
����

�St��� J�E� Stoy� Denotational Semantics� The Scott�Strachey Approach to Programming
Language Theory� The MIT Press�
����

�Un��� University of Cambridge Computer Laboratory� The HOL System� Libraries� Ver�
sion � �for HOL��������� March
���� �This documentation is distributed with the
HOL system��

�Wi�
� G� Winskel� The Formal Semantics of Programming Languages� The MIT Press�

��
�

Recent Publications in the BRICS Report Series

RS-94-44 Sten Agerholm. A HOL Basis for Reasoning about Func-
tional Programs. December 1994. PhD thesis. 233 pp.

RS-94-43 Luca Aceto and Alan Jeffrey. A Complete Axiomatization
of Timed Bisimulation for a Class of Timed Regular Be-
haviours (Revised Version). December 1994. 18 pp. To
appear in Theoretical Computer Science.

RS-94-42 Dany Breslauer and Leszek Ga̧sieniec. Efficient String
Matching on Coded Texts. December 1994. 20 pp.

RS-94-41 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi
Wigderson. On Data Structures and Asymmetric Commu-
nication Complexity. December 1994. 17 pp.

RS-94-40 Luca Aceto and Anna Ingólfsdóttir. CPO Models for
GSOS Languages — Part I: Compact GSOS Languages.
December 1994. 70 pp. An extended abstract of the paper
will appear in: Proceedings of CAAP ’95, LNCS, 1995.

RS-94-39 Ivan Damgård, Oded Goldreich, and Avi Wigderson.
Hashing Functions can Simplify Zero-Knowledge Proto-
col Design (too). November 1994. 18 pp.

RS-94-38 Ivan B. Damgård and Lars Ramkilde Knudsen. Enhanc-
ing the Strength of Conventional Cryptosystems. Novem-
ber 1994. 12 pp.

RS-94-37 Jaap van Oosten. Fibrations and Calculi of Fractions.
November 1994. 21 pp.

RS-94-36 Alexander A. Razborov. On provably disjoint NP-pairs.
November 1994. 27 pp.

RS-94-35 Gerth Stølting Brodal. PartiallyPersistentData Structures
of Bounded Degree with Constant Update Time. November
1994. 24 pp.

RS-94-34 Henrik Reif Andersen, Colin Stirling, and Glynn
Winskel. A Compositional Proof System for the Modal
�-Calculus. October 1994. 18 pp. Appears in: Proceed-
ings of LICS ’94, IEEE Computer Society Press.

