
B
R

IC
S

R
S

-01-18
H

angos
etal.:

S
om

e
C

om
plexity

P
roblem

s
on

S
ingle

InputD
ouble

O
utputC

ontrollers

BRICS
Basic Research in Computer Science

Some Complexity Problems on
Single Input Double Output Controllers

Katalin M. Hangos
Zsolt Tuza
Anders Yeo

BRICS Report Series RS-01-18

ISSN 0909-0878 2001

Copyright c© 2001, Katalin M. Hangos & Zsolt Tuza & Anders Yeo.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/18/

Some Complexity Problems on Single Input
Double Output Controllers

K. M. Hangos Zs. Tuza
Computer and Automation Research Institute, Hungarian Academy of

Sciences, H–1111 Budapest, Kende u. 13–17, Hungary

and

Department of Computer Science, University of Veszprém

H–8200 Veszprém, Egyetem u. 10, Hungary

A. Yeo
BRICS∗, Department of Computer Science, University of Århus

Ny Munkegade, bldg. 540, DK–8000 Århus C, Denmark

Version of 2001–5–18

Abstract
We investigate the time complexity of constructing single input

double output state feedback controller structures, given the di-
rected structure graph G of a system. Such a controller structure
defines a restricted type of P3-partition of the graph G. A neces-
sary condition (∗) has been found and two classes of graphs have
been identified where the search problem of finding a feasible P3-
partition is polynomially solvable and, in addition, (∗) is not only
necessary but also sufficient for the existence of a P3-partition. It
is shown further that the decision problem on two particular graph
classes — defined in terms of forbidden subgraphs — remains NP -
complete, but is polynomially solvable on the intersection of those
two classes. Moreover, for every natural number m, a stabilizing
structure with Single Input m-Output controllers can be found in
polynomial time for the system in question, if it admits one.

∗Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

1

1 Introduction

The problems investigated in this paper originate from a well known and
difficult engineering problem on designing a distributed control system of
a complex plant. The source of the complexity problems lies in the fact
that we aim at designing an optimal distributed control system structure,
that is an optimal partitioning of the system variables.

Graph-theoretic description of process and control system structures
is proposed in the earlier papers [3], [4]. With these definitions, the
algorithmic problem statements of finding a distributed, stabilizing or
disturbance rejective control structure — based on a given process struc-
ture — are introduced, both for the weighted and unweighted cases. For
single input single output stabilizing and disturbance rejective controllers
we proved that the existence of a control structure can be tested in poly-
nomial time via constructing a matching that covers the set of state
variables. Moreover, in this case the formulated optimal (weighted) con-
troller structure selection problem has also been shown to be solvable in
polynomial time.

We have also shown that already the single input triple output control
structure selection problems are computationally hard for both of the
stabilizing and disturbance rejective cases [3], [5].

The main subject of this paper is to investigate the problem of the
single input double output control structure selection case. The problem
will be handled in the form of restricted P3-partitions of graphs. In
addition, some results on single input multiple output controllers are
presented, too.

The paper is organized as follows. The engineering problem and the
corresponding combinatorial / algorithmic problems are introduced in
Sections 2 and 3, respectively. A necessary condition for the existence of
a solution is presented in Section 3.1 (completed with some more general
ones in Section 3.2), and its sufficiency is proved in Section 4 for two
particular classes of instances. The condition is not sufficient in general,
however, as demonstrated by two simple examples called E and E’ .
Algorithmically, the corresponding graph partition problem is NP -com-
plete, and it remains so even if we exclude all instances containing E —
or, alternatively, E’ — as a subgraph (Section 6). On the other hand, if
both subgraphs E and E’ are excluded, then the restricted graph class
admits polynomial-time decision and search algorithms (Section 5). The
last two sections deal with bipartite graphs. Some of the problems still
remain algorithmically intractable (Section 7), but notably the existence

2

problem for Single Input m-Output controllers admits a polynomial-time
solution (both for decision and search), as proved in Section 8.

2 Engineering problem statement

The engineering problem statement below explains the specialities of our
combinatorial problem. The dynamics of a concentrated parameter non-
linear dynamic system (with or without controllers) can be described
using the following state equation [7]

dy

dt
= f(y, x) , y(0) = y0 (S)

dim x(t) = r , dim y(t) = p

where y(t) is the state vector and x(t) is the manipulable input vector
at any time t. Note that both x and y depend on time, moreover x is
assumed to be manipulable and acts as a cause for the state variations.

The variable structure of the above set of equations is described by a
directed graph G = (V, E), with a vertex partition V = X ∪ Y into two
classes, as follows. The vertex set V consists of vertices associated to
each of the state and input variables. There is a directed edge yjyi ∈ E
or xjyi ∈ E present if the variable yj or xj appears in the argument
of the right-hand side function fi for dyi

dt
. It is important to note that

the in-degree of a vertex xj corresponding to an input variable is always
equal to zero.

In order to modify the system behavior to satisfy a prescribed aim,
say to stabilize the system, static state feedback controllers are most
often applied. This is done by computing the value of the input variables
xj , j = 1, . . . , r using a given — possibly nonlinear — function gj of
some (or all) of the state variables

xj = gj(yj1, . . . , yjpj
) (C)

pj ≤ p , j = 1, . . . , r

characterized by the index set

Ij = { j1, . . . , jpj
} , |Ij | = pj .

The controllers (C) use pj different state variables to compute the
feedback : such a feedback controller is called single input pj output con-
troller.

3

3 Notions and problem statements

In this section we introduce some algorithmic problems, whose time com-
plexity will be studied later on. We formulate them as decision problems ;
on the other hand, the corresponding search problems are of even greater
practical importance. Therefore, for the instances proved to be polyno-
mially decidable, we shall also desing polynomial-time algorithms that
find feasible solutions if they exist.

The original engineering problem is equivalent to one on directed
graphs. Nevertheless, we formulate two variants, one for digraphs and one
for undirected graphs. As a matter of fact, in most cases, the “ undirected
version ” can be reduced to the directed one by replacing each undirected
edge yiyj with two oppositely oriented arcs yiyj and yjyi, and orienting
each edge xiyj from xi to yj . (Then, in this “ double-orientation,” all
undirected paths P3 give rise to directed paths of length two, i.e. none
of them gets lost. Therefore, a method finding a solution in the digraph
obtained, yields a solution for the original undirected graph, too, in a
natural way.) This convention will be applied in parts of the paper where
we treat graphs and digraphs together.

We consider (di)graphs G = (V, E), where V is the vertex set and E
is the edge set, with the following structural assumptions :

• There is a given vertex partition X ∪ Y = V , X ∩ Y = ∅.
• The set X is independent in G.

• The “ size condition ” |Y | = 2 |X| holds.

• In the directed case, all X–Y edges are oriented from X to Y (but
inside Y two vertices may be adjacent in both directions simulta-
neously).

We wish to decide whether there exists a vertex partition of G into |X|
disjoint paths of length 2, each of them containing precisely one vertex of
X. Such paths will be called feasible, and it will be assumed throughout
without loss of generality that each vertex is contained in at least one
feasible path in G. The feasible paths need not be induced subgraphs,
i.e. they may as well induce triangles in the graph (with possibly two
oppositely oriented arcs inside Y). In digraphs, however, there is some
restriction : if a path has its starting vertex in X, then its two edges have
to be oriented consecutively, i.e. it must be a directed path. (A path with

4

its middle vertex in X has, of course, an alternating orientation.) If such
a partition exists, we say that G is P3-partitionable.

In this way, one can formalize an algorithmic problem, too, in the
standard way. For short, we shall refer to this problem as 1X-2Y.

P3-Partitioning for Single Input Double Output Controllers
(1X-2Y) :

Instance : A graph or digraph G = (V, E), with vertex bipartition X ∪
Y = V , where X is an independent set and |Y | = 2 |X|.

Question : Is G P3-partitionable ?

The corresponding search problem takes the same instances, and asks for
a feasible P3-partition of G as solution.

For later use, we introduce here two further algorithmic problems
arising in this context. They concern multiple-output controllers ; in
both definitions, m denotes any natural number (greater than 1 ; the
case of m = 1 has been thoroughly studied in [3] and [5]).

Stabilizing Single Input m-Output Controller Existence
(SSmE) :

Instance : A graph or digraph G = (V, E), with vertex bipartition X ∪
Y = V , |Y | ≤ m |X|.

Question : Does G have a vertex partition V = V0 ∪ V1 ∪ · · · ∪ Vk (for
some non-specified k), such that V0 ⊂ X and, for all 1 ≤ i ≤ k,
|Vi ∩ X| = 1, |Vi ∩ Y | ≤ m, and there exists a directed path inside
Vi from the vertex of Vi ∩ X to each y ∈ Vi ∩ Y ?

Stabilizing Single Input m-Output Controller Optimization
(SSmO) :

Instance : A graph or digraph G = (V, E), with vertex bipartition X ∪
Y = V , |Y | ≤ m |X|.

Question : In the vertex partitions feasible in the sense of the SSmE
problem, what is the smallest possible total number of edges joining
the pairs Vi, Vj, counted for all 1 ≤ i < j ≤ k ?

As 1X-2Y is just a particular case of SSmE for m = 2 and |Y | = m |X|,
and SSmO already assumes an answer to SSmE as well, all the three
problems above turn out to be NP -complete by the results of Section 6

5

below. In fact, the optimization problem SSmO remains NP -complete
when restricted to bipartite graphs, for all m ≥ 3, as it has been observed
in [3, 5]. On the other hand, we shall prove in Section 8 that the existence
problem SSmE on bipartite graphs admits a polynomial-time solution for
every m.

The problems SSmE and SSmO model the situation that the system
may be stabilized by just a subset of the input variables. In addition,
SSmO takes into account that if an xi has been chosen to stabilize some
state yi while it is also adjacent to some yj stabilized by another input
variable, then xi acts on yj as a disturbance. (Similarly, disturbances may
act along edges joining two states, too, which are stabilized by distinct
controllers.) The elements of V0 ⊂ X, however, which do not occur in
the edges covering Y , need not be counted as disturbances.

Tuning the model further, in a linear system (or, in a system linearized
around a steady state) the disturbances can be represented by weighted
edges, and the overall goal would be to find a feasible distributed stabi-
lizing structure in which the total weight of disturbances is minimized.
We do not consider this weighted version here, however, because already
the unweighted one is NP -complete.

3.1 The Neighborhood-Matching Condition

A necessary condition — which is not sufficient in general — for P3-
partitionability can be obtained as follows. For any A ⊆ V , let us denote
by N(A) the set of vertices in V \ A joined to at least one element
of A, and let n(A) := |N(A)|. Consider now a subset A ⊆ X. (Then
N(A) ⊆ Y , since X is independent.) Let m(A) denote the largest number
of mutually vertex-disjoint edges starting in N(A) and having the other
endpoint in Y \ N(A).

Proposition 1 If G admits a P3-partition, then

n(A) + m(A) ≥ 2 |A| ∀ A ⊆ X (∗)
Proof. The |A| paths covering the vertices of A have precisely 2 |A|
vertices in Y , at most m(A) of which can belong to Y \ N(X), and all
the others must be located inside N(A). •

We shall call (∗) the Neighborhood-Matching Condition.
As observed by Kotlov [8], the following graph on six vertices shows

that the condition (∗) alone is not sufficient for P3-partitionability.

6

YX

x1

x2

y1

y4

y2

y3

Figure 1: The graph E

Example 1 Set X = {x1, x2} and Y = {y1, y2, y3, y4}, and let the edge
set consist of the five edges x1y1, x2y2, and x1y3, x2y3, y3y4. We denote
this graph by E as it is seen in Fig. 1.

Obviously, (∗) is satisfied in E . Moreover, it is easy to see that E
does not admit any P3-partition. For instance, one can observe that y1

and y2 are contained in unique paths of length 2, which share the vertex
y3. •

Historically, the first example of a non-P3-partitionable graph sat-
isfying (∗) — found by Holzman [6] — had nine vertices, but actually
it turned out to be not minimal, in the sense that it contains E as an
induced subgraph. On the other hand, Enomoto [1] has observed that,
interchanging the roles of x1 and y1 and reversing the orientation of the
edge joining them, we obtain another drawing of the graph, in which (∗)
is again satisfied but not sufficient for the existence of a P3-partition.
This second example is exhibited in Fig. 2.

It is important to note that, though the underlying undirected graphs
of the two examples above are isomorphic, they are essentially different
instances of the current problem because their vertex partitions are not
the same. In notation, we shall write E’ for the latter.

In the context of Single Input Double Output controllers, the main
question is

Problem 1 In which classes of graphs and digraphs can the existence
of a P3-partition be decided — and the corersponding search problem be
solved — in polynomial time ?

7

YX

x1

x2

y1

y4

y2

y3

Figure 2: The other vertex partition of E satisfying the Neighborhood-
Matching Condition, denoted E’

Later we shall prove that the Neighborhood-Matching Condition can
be tested in polynomial time in the class of all (di)graphs ; i.e., restricting
our attention to (di)graphs satisfying (∗) does not help with respect to
polynomial-time solvability. On the other hand, the following related
question may lead to interesting graph classes.

Problem 2 What kind of structural properties make the Neighborhood-
Matching Condition sufficient ?

A partial answer will be presented in Section 4.

3.2 More general conditions

It is a challenging problem to find further necessary conditions for the
existence of a P3-partition. Instead of restricting our attention to the sets
A ⊆ X, one may consider any subset A ⊂ V and require that a collection
of vertex-disjoint feasible paths P3 should exist, which cover all vertices
of A. This condition in its generality, however, is already equivalent to
the original problem, by choosing A = V .

In order to find a more effective approach, one may restrict the se-
lection of the sets A and/or study some parameters weaker than the
“P3-packing number.” For the former, a relevant property is as follows :

• We call a set A ⊂ V strongly P3-independent if no two of its vertices
are contained in the same feasible P3 of G.

8

For instance, the sets involved in the Neighborhood-Matching Condition
are of this type, since each feasible path in the P3-partition is supposed
to contain precisely one vertex of X.

For A ⊂ V , let P(A) denote the set of vertices v ∈ V for which there
exists some w ∈ A and a feasible P3 in G containing both v and w. Then
A ⊆ P(A), by the choice w = v for each v ∈ A. Further, we denote by
τ = τ(A) the minimum cardinality of a vertex set meeting all feasible
paths incident to at least one vertex of A.

Proposition 2 If G is P3-partitionable, then each of the following con-
ditions is satisfied for all strongly P3-independent sets A ⊂ V .

(i) |P(A)| ≥ 3 |A|.
(ii) In particular, |A| ≤ |V |/3.

(iii) τ(A) ≥ |A|.
(iv) More generally, for every T ⊆ V \ A, there exist at least |A| − |T |

mutually vertex-disjoint feasible paths of length 2 inside P(A) \ T .
•

These simple necessary conditions are strong enough to rule out both
E and E’ . Indeed, the set {y1, y2, y4} is P3-independent in both graphs
(violating (ii)) and the vertex y3 is contained in all feasible paths, hence
yielding an obstruction for any pair of strongly P3-independent vertices.
What is more, the condition (i) is violated by any two of y1, y2, y4, and
in E’ by the sets {x1, y2} and {x1, y4}, too. Observe further that if the
Neighborhood-Matching Condition does not hold for some A ⊆ X, then
a suitable set T violating (iv) can be found.

Though we do not know the time complexity of testing (i) in general,
we can prove the following related assertion.

Proposition 3 It can be tested in polynomial time whether the condition
(i) of Proposition 2 holds for all subsets A ⊆ X. •

We do not include the proof here because on the subsets of X, (i) is
weaker than (∗), and we shall show that also the latter can be tested in
polynomial time. Hence, in the context of Single Input Double Output
controllers, checking (i) inside X is not terribly exciting.

9

4 On the sufficiency of the Neighborhood-

Matching Condition

In this section we first present some classes of graphs where the Neighbor-
hood-Matching Condition is sufficient for the existence of a P3-partition,
and moreover a feasible partition can be found in polynomial time if it
exists. Then, in a separate subsection, we show how (∗) can be tested in
polynomial time in every graph and digraph.

Proposition 4 If Y is an independent set (i.e., G is bipartite), then
the condition (∗) is necessary and sufficient for the existence of a P3-
partition. Moreover, if (∗) is satisfied, then a P3-partition can be found
in polynomial time.

Proof. Observe first that if Y induces no edge in G, then (∗) reduces
to

|N(A)| ≥ 2 |A| ∀ A ⊆ X .

Now, double the size of X by taking a copy x′ for each x ∈ X and joining
it to the neighbors of x. In this larger bipartite graph, the vertex class
containing X satisfies the Hall condition, thus has a perfect matching,
say M . As is well known, such an M can be found in polynomial time.
Identifying x′ with x, M turns to a P3-partition of G. •

Under the conditions of Proposition 4, N(X) is the entire set Y . We
next consider the other extreme, where N(X) is as small as possible.

Proposition 5 If |N(X)| = |X|, then the condition (∗) is necessary
and sufficient for the existence of a P3-partition. Moreover, if (∗) holds
in G, then a P3-partition can be found in polynomial time.

Proof. We first show that the search problem is polynomial-time solv-
able. Note that the assumption above means |X| = |N(X)| = |Z| where
Z := Y \N(X). Thus, G admits a P3-partition if and only if there exist
X vertex-disjoint X–Z paths. This holds precisely when both X ∪N(X)
and N(X) ∪ Z have perfect matchings, and hence the search problem is
solvable in polynomial time by standard bipartite matching algorithms.

In order to prove the sufficiency of (∗), suppose for a contradiction
that one or both X∪N(X) and N(X)∪Z do not have a perfect matching.
If X ∪N(X) has none, then, by Hall’s theorem, there is a subset A ⊆ X
with |N(A)| < |A|. Since m(A) ≤ n(A) holds for every A, we obtain

10

the contradiction n(A) + m(A) < 2 |A|. On the other hand, if N(X) is
not matchable with Z, then we have m(X) < |X|, thus the contradiction
n(X) + m(X) < 2 |X| is obtained. •

4.1 Testing the Neighborhood-Matching Condition

in polynomial time

The goal of this subsection is to prove that the condition (∗) can be
checked efficiently. Along these lines, alternative proofs of the previous
two propositions can also be obtained ; nevertheless, the preceding argu-
ments are definitely simpler than the next one, and, as a more important
point, also the search algorithms given there are faster than what could
be derived from the construction below.

Theorem 1 The Neighborhood-Matching Condition can be tested in
polynomial time.

Proof. For each graph or digraph G = (V, E) with V = X ∪ Y , |Y | =
2 |X| and X independent, we construct a bipartite graph G′ = (V ′, E′)
(in linear time) such that the validity of the Neighborhood-Matching
Condition in G is equivalent to the existence of a perfect matching in G′.
Since the latter can be tested in polynomial time, this construction will
prove the theorem.

We define V ′ = X1∪X2∪Y1∪Y2∪Y3, where the Xi and Yj are mutually
disjoint copies of X and Y , respectively, with their vertices labelled in the
same way as in X and Y . The independent vertex classes of G′ will be
X1∪X2∪Y3 and Y1∪Y2, each of size 4 |X| . For all the four combinations
of 1 ≤ i, j ≤ 2, the edge set joining Xi to Yj is the copy of the one joining
X to Y . Between Y1 and Y3 there is a perfect matching, corresponding
to the identity mapping. Finally, the neighborhood of a vertex of Y3 in
Y2 represents the closed out-neighborhood of the corresponding vertex in
Y ; i.e.,

y3,i y2,j ∈ E′ ⇐⇒ i = j ∨ yi yj ∈ E .

We need to prove that the Neighborhood-Matching Condition in G is
equivalent to the Hall condition for the vertex class X1 ∪ X2 ∪ Y3 in G′ ;
i.e., to the assumption that each set Z1 ∪ Z2 ∪ W is adjacent to at least
|Z1| + |Z2| + |W | vertices of Y1 ∪ Y2, where Zi ⊆ Xi for i = 1, 2 and
W ⊆ Y3.

We begin with the observation that satisfying the Hall condition in
G′ for all sets is equivalent to satisfying it for those restricted sets where

11

• Z1 and Z2 are copies of the same Z ⊆ X, and

• W is a subset of the copy of the neighborhood N(Z) of Z in G.

Indeed, if, say, x1,i ∈ X1 but x2,i /∈ X2, then inserting x2,i into X2 doesn’t
increase the neighborhood ; i.e., if we had any set violating the Hall
condition, we can ensure that there is such a set with the first restriction
above, too. Moreover, if W contains some k vertices (k ≥ 1) which do
not belong to the copy of the neighborhood of Z, then removing them
from W decreases the neighborhood with k vertices already inside Y1,
hence producing a violating set for the Hall condition with the second
restriction as well, if there was any.

Hence, let Z and W be as above. Suppose first that the Neighborhood-
Matching Condition is valid for the set Z ⊆ X. It means that there exists
a matching M from N(Z) to Y \N(Z), with |M | = 2 |Z|− |N(Z)| edges.
We consider the copy of M as represented by the Y3 −Y2 edges, and now
we may even forget about all the other edges incident to W . If W coin-
cides with the entire copy of N(Z), then Z1∪W has |N(Z)|+ |M | = 2 |Z|
neighbors in Y2, and further |N(Z)| ones in Y1, that is |Z1| + |Z2| + |W |
neighbors altogether, as needed. Moreover, the removal of any k vertices
from W can destroy at most k neighbors in Y2 along the copy of M (and
no neighbor gets destroyed in Y1). Thus, the Hall condition holds for all
W and Z.

Suppose next that the Neighborhood-Matching Condition is violated
by some set Z ⊆ X in G. It means that the size of the largest matching
from N(Z) to Y \N(Z) is smaller than 2 |Z|−|N(Z)|. In this situation we
are going to apply the following “ deficiency version ” of Hall’s theorem :

If the largest matching from a vertex set A to a vertex set B
has fewer than m edges, then some subset W ⊆ A has fewer
than |W | + m − |A| neighbors in B.

On applying this to A = N(Z) and B = Y \ N(Z) with m = 2 |Z| −
|N(Z)|, and moving then to the graph G′, we obtain that some subset
W of the copy of N(Z) in Y3 has fewer than

|W | + (2 |Z| − |N(Z)|) − |N(Z)| = |W | + 2 |Z| − 2 |N(Z)|
neighbors in Y2 outside N(Zi). Thus, together with the neighbors of
the N(Zi) in the Yi, the set Z1 ∪ Z2 ∪ W has fewer than 2 |Z| + |W |
neighbors, hence violating the Hall condition. This completes the proof
of the theorem. •

12

5 Polynomial algorithms for graphs with-

out E and E’

In this section we prove the following result.

Theorem 2 There exists a polynomial-time algorithm that decides, for
each digraph D containing no subgraphs isomorphic to E and E’, whether
D admits a P3-partition. Moreover, if D is P3-partitionable, then the
algorithm also finds a feasible partition.

Based on the transformation described at the very beginning of Sec-
tion 3, such an algorithm can be applied to solve the undirected version
of the problem as well (both decision and search), on every input graph
G without E and E’ as a subgraph. The following standard notation
will be used.

Notation and terminology. Oriented edges will be called arcs, and
the set of arcs in digraph D will be denoted A(D). For two vertex subsets
S and T , an (S, T)-arc is an arc having its starting vertex in S and its
endpoint in T . The induced subgraph D[U] has vertex set U , and its
edges are all the (U, U)-arcs. Finally, the out-neighborhood of vertex v,
i.e. the set of vertices w such that vw is an arc, is denoted N+(v) ; and
we write d+(v) for the out-degree |N+(v)| of v.

The validity of Theorem 2 will be proved via the following algorithm.

Algorithm A:

Input: A digraph D with the properties described in Section 3, and
containing neither E nor E’ as a subdigraph.

Step 1: We delete arcs according to the following scheme:

1a: If there are two distinct vertices x1, x2 ∈ X and two distinct
vertices y1, y2 ∈ Y , such that N+(x1) = N+(x2) = {y1, y2},
then delete x1y2 and x2y1.

1b: Otherwise, if there is a vertex x1 ∈ X, such that N+(x1) =
{y}, then delete all arcs into y except x1y.

1c: Otherwise, if there are two distinct vertices x1, x2 ∈ X and
two distinct vertices y1, y2 ∈ Y , such that {x1y1, x2y1, y1y2} ⊆
A(D), then delete y1y2.

13

1d: Otherwise, if there is a vertex x ∈ X and two distinct vertices
y1, y2 ∈ Y , such that {xy1, xy2, y1y2} ⊆ A(D), then delete
y1y2.

1e: Otherwise, if x1y ∈ A(D) is an arc from X to Y , and there is
no directed path of length at most 2 from X \ {x1} to y, then
delete all arcs into y except x1y.

1f: Otherwise, if y ∈ Y has no arc from X to y, then delete all arcs
out of y.

Note that we check the above steps in the given order. So, for exam-
ple, if we delete an arc in 1e, then it is because we could not do so in
1a, 1b, 1c, or 1d. Let D′ denote the digraph obtained when we cannot
delete any further arcs by the above scheme.

This D′ satisfies the following structural properties, which we shall
prove after the completed description (Step 3) of Algorithm A.

Claim A: The digraph D′ has a P3-partition if and only if D does.

Claim B: There is no simple directed path of length 2 in the induced
subgraph D′[Y].

Step 2: If xy1 ∈ A(D′) is an arc from X to Y , and y1y2 is an arc inside
Y , then delete y1y2 and add the arc xy2.

Let D′′ be the digraph obtained, when we cannot perform the above
reduction any more. This D′′ will be shown to have the following prop-
erties.

Claim C: D′′ is bipartite, with independent vertex classes X and Y .

Claim D: D′′ has a P3-partition if and only if D′ does.

Step 3: Apply the polynomial-time algorithm described in the proof of
Proposition 4, in order to decide if D′′ has a P3-partition — and to
find one if it exists — and return the result.

In order to prove that the above algorithm works correctly, we need
to prove Claims A, B, C, and D.

Proof of Claim A: Clearly, if D′ has a P3-partition, then the same P3-
partition can be used for D, as D′ is a subgraph of D. So assume that D

14

has a P3-partition, and let P be the arc set of such a partition, containing
the maximum number of arcs in D′ (i.e., containing the minimum number
of arcs that have been deleted from D in order to obtain D′).

First of all, observe that the reductions 1b, 1e, and 1f cannot destroy
any directed P3 ; i.e., P3-partitionability is invariant under them. Indeed,
in 1b, the only way to cover x1 is to choose x1y1 as the starting arc of
a P3, and then to continue it with an out-going arc from y1. In 1e, the
unique X-vertex that can occur in a P3 covering y is x, and then the arc
xy cannot be continued with any arc oriented towards y. Finally, in 1f,
any P3 covering y must have y as its endpoint (and has to start in X).
It follows that P cannot contain any arcs deleted in 1b, 1e, and 1f.

Suppose that xy is a (X, Y)-arc that belongs to P but is not in D′.
Then xy must have been deleted in 1a, 1b, or 1e. We have already
handled the cases 1b and 1e ; hence, assume that xy was deleted in 1a.
Without loss of generality, let xy = x1y2, given the notation in 1a. As
some arc starts from x2 in P , we must have x2y1 ∈ P , but now deleting
x1y2 and x2y1 from P and adding x1y1 and x2y2 to P we obtain a P3-
partition containing more arcs from D′ then P , a contradiction.

If yy′ is a (Y, Y)-arc that belongs to P but is not in D′, then yy′ must
have been deleted in 1b, 1c, 1d, 1e, or 1f. Again, the cases of 1b, 1e,
and 1f have already been settled. Now, if yy′ was deleted in 1c, then
let x1, x2, y1 = y and y2 = y′ be defined as in 1c, and furthermore we
may assume that x1y1 ∈ P . As we did not delete x1y1 or x2y1 in 1b, we
must have d+(x1) ≥ 2 and d+(x2) ≥ 2. If x1y2 ∈ A(D), then we may
have used x1y2, instead of y1y2 in P , a contradiction. So there exists
y3 ∈ Y − {y1, y2}, such that x1y3 ∈ A(D). Now N+(x2) ⊆ {y1, y2, y3}
must hold, since otherwise we obtain E . Therefore, x2y3 ∈ P (as x2 needs
to be covered in P but not matched with y2), and therefore x2y3 ∈ A(D).
Now N+(x1) = {y1, y3}, since otherwise we obtain E . As we did not
delete any arcs in 1a, we must have N+(x2) = {y1, y2, y3}. Now delete
x1y1, y1y2 and x2y3 from P and add x2y1, x2y2 and x1y3 instead, in
order to obtain a P3-partition containing more arcs from D′ then P , a
contradiction.

If yy′ was deleted in 1d, then let x1, y1 = y and y2 = y′ be defined as
in 1d, and note that x1y1 is the only (X, Y)-arc into y1, as otherwise y1y2

would have been deleted in 1c. Therefore x1y1 ∈ P , and we may delete
y1y2 from P and add x1y2 instead, a contradiction.

Therefore P is contained in D′, and the proof of Claim A is done. •

15

Proof of Claim B: Let y1y2y3 be a simple directed path in D′[Y].
There exists a vertex x1 ∈ X, such that x1y1 ∈ A(D′), since otherwise
y1y2 would have been deleted in 1f at the latest. Analogously, there
exists a vertex x2 ∈ X, such that x2y2 ∈ A(D′). Furthermore x1 6= x2, as
otherwise y1y2 would have been deleted not later than in 1d. If N+(x2) 6⊆
{y1, y2, y3}, then we obtain E’ as a subgraph, a contradiction. However,
since we did not delete y1y2 or y2y3 in 1d, we must have N+(x2) =
{y2}. This implies, however, that y1y2 would have been deleted in 1b, a
contradiction. •
Proof of Claim C: The set X is independent, by assumption. If
y1y2 is an arc in D′, then there exists a vertex x ∈ X, such that xy1 ∈
A(D′), since otherwise y1y2 would have been deleted in 1f. However, this
implies that y1y2 is deleted in Step 2 of the algorithm, and therefore Y
is independent in D′′. •
Proof of Claim D: Let P be the arc set in a P3-partition of D′. For
every (Y, Y)-arc, yy′ in P , let xy ∈ P be the (X, Y)-arc into y in P
(which is unique in D′, by 1c), and substitute yy′ with xy′ in P , in order
to obtain a P3-partition of D′′.

Now let P be a P3-partition of D′′. We will show that there exists a
P3-partition of D′. If xy ∈ P does not belong to D′, then there exists
a vertex y1 ∈ Y , such that xy1, y1y ∈ A(D′). If xy1 ∈ P , then we can
substitute xy with y1y, so assume that xy1 6∈ P . Since Y induces no arc
in D′′ by Claim C, there exists y2 ∈ Y −{y1, y}, such that xy2 ∈ P . Now
y1 must be covered in P and, again by Claim C, the only possibility is
an arc x1y1 ∈ P , where x1 ∈ X − x. As xy1, y1y ∈ A(D′), we must have
x1y1 6∈ A(D′), by 1c. However, since x1y1 ∈ A(D′′), there must have
been a path x1y

∗y1 in D′, where y∗ ∈ Y . By Claim B, we must have
y∗ = y. Now we may delete xy and x1y1 from P , however, and replace
them with xy1 and x1y.

Repeating the above transformation as many times as necessary, we
eventually obtain a P3-partition of D′. •
Proof of Theorem 2. The fact that Algorithm A works, follows di-
rectly from Claims A and C. Observe further that every step — including
the sub-algorithm applied at Step 3 as well — can be done in polynomial
time, and no step is done more then a polynomial number of times. More-
over, a solution found for D′′ can be transformed to one for D, again in
polynomial time. Thus, the running time of Algorithm A is polynomial.
•

16

6 NP-completeness results

In this section we prove for two restricted classes of (di)graphs — namely
those containing no subgraph isomorphic to E and E’ , respectively —
that the 1X-2Y problem is NP -complete on them. It is worth comparing
these results with the theorem of the previous section where we have just
proved that the problem is solvable in polynomial time on the intersection
of these two graph classes.

Let us note at the beginning that the P3-partitionability of an ar-
bitrary input graph or digraph clearly is decidable in non-deterministic
polynomial time ; i.e., 1X-2Y is in NP . Hence, in order to prove NP -
completeness, it will suffice to show that a general instance of some well-
known NP -hard problem can be reduced in polynomial time to some
instance of 1X-2Y which belongs to the particular graph class in ques-
tion. It will turn out that the directed and undirected graphs can be
handled simultaneously ; therefore, we shall formulate and prove the two
versions of the analogous results together.

As regards terminology, given a fixed digraph F , we shall call a di-
graph G F -free if it does not contain any subgraph isomorphic to F .
Moreover, an undirected graph G will be said to be F -free if none of its
subgraphs is isomorphic to the undirected underlying graph of F .

Theorem 3 The 1X-2Y problem is NP-complete on E -free graphs, and
on E -free digraphs, too.

Proof. We make a reduction from the 3-Dimensional Matchning
problem (3-DM for short), which is well-known to be NP -complete (see,
e.g., [2]). An instance of 3-DM is a 3-partite hypergraph H with a vertex
set V partitioned into three mutually disjoint parts V1, V2, V3 of the same
cardinality, say |V1| = |V2| = |V3| = n, and a collection of 3-element sets
H1, H2, . . . , Hm such that

|Hi ∩ Vj | = 1 ∀ 1 ≤ i ≤ m , ∀ 1 ≤ j ≤ 3 .

It is NP -complete to decide whether the vertex set can be partitioned
into n mutually disjoint edges ; i.e., whether there exists a partition

Hi1 ∪ · · · ∪ Hin = V .

For each instance H of 3-DM, we construct a (di)graph G in such a
way that the vertex set of H can be partitioned into edges if and only if G

17

1 2'' 0'' 0' 3

1' 2' 0 3'

1'' 2 3''

Figure 3: The gadget for reduction from 3-DM ; black nodes represent
x-vertices

admits a P3-partition. The construction will be carried out in O(m + n)
steps, i.e., linear with respect to input size.

For each i = 1, . . . , m, as exhibited in Fig. 3, consider the digraph F
with vertex set

V (Fi) = {xj
i , y

j′
i , yj′′

i | j = 0, 1, 2, 3}
and edge set

E(Fi) = {x0
i y

0′
i , x0

i y
0′′
i , x1

i y
1′
i , y1′

i y1′′
i , x2

i y
2′
i , y2′

i y2′′
i ,

x3
i y

3′
i , y3′

i y3′′
i , x1

i y
2′′
i , x3

i y
0′
i , y0′′

i y2′
i } .

Observe the following structural properties of Fi.

(A) Fi admits a P3-partition.

(B) If x0
i , y

2′′
i , y3′

i are covered with a collection of vertex-disjoint paths
P3, but y3′′ is not covered, then both x2

i and y1′′
i remain uncovered,

too.

Indeed, (A) is immediately obtained by the four pairs of edges listed in
the first two rows in the description of E(Fi) ; and (B) can be verified
taking y3′

i , x0
i , y

2′′
i in this order, observing that the path covering x0

i must
contain y2′

i , and therefore the only possibility for covering y2′′
i is to take

the P3 with center x1
i .

Now, for each edge Hi of the input hypergraph H, we make the fol-
lowing identifications :

y1′′
i = Hi ∩ V1 , x2

i = Hi ∩ V2 , y3′′
i = Hi ∩ V3 ,

18

while making sure that the other nine vertices of Fi remain outside V
and, furthermore, the 9-element sets

V (Fi) \ V

remain mutually disjoint for i = 1, . . . , m. Removing the 3-element edges
of H from this structure, we obtain a digraph, which we shall denote by
G = G(H). Note that any vertex of G with more than one x-neighbor
is non-adjacent to all y-vertices ; thus, both G and its underlying graph
are E -free.

We claim that G admits a feasible P3-partition if and only if 3-DM has
a solution on H. (As a matter of fact, it is also true that the solutions
for H and for both G(H) and its undirected underlying graph are in
one-to-one correspondence.)

Suppose first that Hi1 ∪ · · · ∪ Hin = V is a solution of 3-DM on H.
Then, as seen above, we can partition each Fi` (` = 1, . . . , n) into four
paths of length 2, and each of the other m − n subgraphs induced by
the sets V (Fi) \ V (n < i ≤ m) into three such paths, hence obtaining a
feasible P3-partition of the entire G(H). Note that any P3-partition of G
feasible in the oriented sense results in a feasible one of the undirected
unerlying graph of G as well.

Conversely, suppose that G(H) or its underlying graph is P3-partition-
able, and consider any one of its feasible partitions. Denote by v1, . . . , vn

the n vertices of V3. Note first that these vertices are at distance 2 from
the x-vertices of the Fi. For this reason, each of them is covered with a
P3 whose endpoint is an x-vertex ; moreover, this P3 must have its two
edges inside the same Fi. It follows that each vertex of V3 is covered in a
distinct Fi. We shall assume, without loss of generality, that vi is covered
in Fi, for all 1 ≤ i ≤ n.

Hence, there are m − n subgraphs, namely the Fi with n < i ≤ m,
where y3′′

i is not covered with a P3 inside Fi. On the other hand, y3′
i is

assumed to be covered. Consequently, by the property (B) above, the
covering paths inside these Fi do not cover any vertex of V1 ∪ V2. Thus,
also the vertices of V1∪V2 are covered with paths inside F1∪· · ·∪Fn (even
though V2 itself might as well be covered with paths P3 whose mid-pont
is in V2). Since |V1| = |V2| = n, and each Fi can cover just one vertex in
each of V1 and V2, it follows that

H1 ∪ · · · ∪ Hn = V ,

i.e., 3-DM has a solution on H. •

19

Theorem 4 The 1X-2Y problem is NP-complete on E’ -free graphs,
and on E’ -free digraphs, too.

Proof. We make a reduction from 3-SAT, one of the fundamental NP -
complete problems. An instance of 3-SAT is a Boolean formula

Φ = C1 ∧ · · · ∧ Cm

in conjunctive normal form, over some set of variables, say over the vari-
ables x1, . . . , xn ; and each clause Cj is a disjunction of precisely three
literals. (A literal is a variable xi or its negation ¬xi.)

For each instance Φ of 3-SAT, we construct a (di)graph G = G(Φ)
with the property that Φ is satisfiable if and only if G has a P3-partition.
First, choose an integer bi ≥ 2 for each i = 1, . . . , n, such that xi as well
as ¬xi occur in at most bi clauses of Φ. Denote

b = b1 + . . . + bn .

The graph G to be constructed will consist of 3m + 2b vertices in its set
X, 3m + 3b vertices in the neighborhood Y1 of X, and 3m + b vertices
at distance 2 from X, in the set denoted Y2. The property of G being
E’ -free will be ensured by making each pair of vertices in Y1 non-adjacent.

The first part of X consists of the 3m vertices xj
i for those combina-

tions of (i, j) where a literal of xi (positive or negative) occurs in clause
Cj. We shall sometimes refer to these xj

i as the “ literal vertices ” of X.
The further 2b vertices x1, . . . , x2b of X will be called “ non-literal.” They
will play an essential role in creating a P3-partition from any satisfying
truth assignment of Φ.

The neighborhood Y1 of X consists of three parts :

• a set Y ′
1 of 2m “ clause ” vertices, two vertices per clause, such that

each of the two taken for Cj is adjacent to the three vertices xj
i

belonging to Cj (but is non-adjacent to all the other vertices of
X) ;

• a set Y ′′
1 of m+ b vertices, completely joined to the non-literal part

{x1, . . . , x2b} of X, but non-adjacent to all the xj
i ;

• and a set Y ′′′
1 of 2b “ cyclic ” vertices, whose adjacencies to X will

be described later.

20

Moreover, the (3m+b)-element sets Y2 and Y ′
1∪Y ′′

1 are joined by a perfect
matching between them.

In order to define the X–Y ′′′
1 adjacencies, it will be conveninent to

view Y ′′′
1 as the disjoint union of cyclic sequences

(yi
1, . . . , y

i
2bi

) ∀ 1 ≤ i ≤ n ,

of length 2bi each. By “ cyclic ” we mean that yi
2bi+1 is considered to be

identical to yi
1. The cyclic sequence indexed with i will belong to the pair

xi,¬xi of literals of the same subscript.
Let us call

yi
` yi

`+1

an odd pair if ` is odd, and an even pair if ` is even. The positive literals
xi will be represented with odd pairs, the negative literals ¬xi with even
pairs. There are bi (mutually disjoint) odd pairs on cycle i, and the
same number bi of even pairs (which are, again, mutually disjoint among
themselves). Hence, by the choice of the bi, we can assign to each xj

i a
distinct pair, odd or even, depending on whether xi appears in Cj as a
positive or negative literal. We join xj

i to the two vertices of its assigned
pair.

Finally, we define adjacencies between Y ′′′
i and the non-literal part

of X. Since |Y ′′′
i | = 2b, which is precisely the number of non-literal x-

vertices, we can make a bijection between those vertices and the (odd
and even) pairs yi

` yi
`+1, where i and ` run over all feasible values. Let

x(i, `) denote the vertex assigned under this bijection to the pair yi
` yi

`+1 ;
and make x(i, `) adjacent to both yi

` and yi
`+1 (but to no other vertex in

Y ′′′
1).

Now, Y1 is an independent vertex set, by definition. Thus, G is E’ -
free in the undirected sense, therefore all of its orientations will be E’ -free
as well. To define the digraph G properly, we orient all X–Y1 edges from
X to Y1, and all Y1–Y2 edges from Y1 to Y2.

It remains to prove that G admits a P3-partition if and only if Φ is
satisfiable.

Suppose first that G has a P3-partition, and consider any feasible
one. The 3m + b paths covering Y2 cover precisely 3m + b vertices in
each of Y1 and X. In Y1, they cover the entire Y ′

1 ∪ Y ′′
1 , but none of the

cyclic vertices. In the non-literal part of X they cover m + b vertices,
leaving b − m uncovered. Finally, among the literal vertices, they cover
precisely two of the three xj

i for each j = 1, . . . , m, leaving just m literals
uncovered — one for each clause Cj.

21

Deleting the vertices having been covered so far, we obtain an induced
subgraph on 3b vertices (m literals, b − m non-literals, 2b cyclic), such
that each x-vertex is adjacent to precisely two y-vertices, and the latter
are mutually non-adjacent. Hence, in the assumed P3-partition of G, it
must be the case that the neighborhoods of those remaining b vertices of
X partition Y ′′′

1 into disjoint pairs. Thus, the pairs partitioning the ith

cycle are either all odd or all even. If they are odd, we set xi = true ; and
if they are even, we set xi = false. Since each clause contains a literal
not covered with the paths covering Y2, the truth assignment just defined
satisfies all clauses of Φ, hence setting Φ to be true.

Conversely, assume that

f : {x1, . . . , xn} → {true, false}
is a satisfying truth assignment for Φ. For each clause Cj , we select one
xj

i , whose corresponding literal in Cj sets Cj = true under f . Note that
if some xi satisfies some Cj , then ¬xi cannot satisfy any clause ; and vice
versa. In other words, at most one of the two literals of xi can be selected
over the entire Φ. Now, a P3-partition of G can be obtained as follows.

• For each of the selected literals xj
i , we choose its two neighbors

in Y ′′′
1 to form a P3. Since a variable and its negation cannot be

selected for Φ at the same time, all the pairs covered this way in
any one of the cyclic sequences have the same parity.

• For the other two literals of each Cj we choose two vertex-disjoint
paths P3 with their other endponts in Y2. These paths cover the
entire Y ′

1 , and 2m vertices of Y2.

• In each cyclic sequence, each maximal subsequence of consecutive
uncovered vertices has even length. Therefore, the uncovered part
of Y ′′′

1 can be partitioned into b − m pairs. Cover each such pair
yi

`y
i
`+1 with the P3 centered at the vertex x(i, `). This completes

the cover of the cyclic part, and leaves m + b non-literal vertices
uncovered.

• The latter m + b vertices can be taken as starting points of m + b
paths P3, which pass through the m + b vertices of Y ′′

2 and cover
the remaining part of Y2 as well.

In this way, a P3-partition of G has been derived from the truth assign-
ment f of Φ. •

22

7 Hard related problems on bipartite graphs

The first problem considered in this section is a frequently occurring
variant of the original engineering problem 1X-2Y, while the second one
is an innocent-looking twist of Hall’s Marriage Problem. Both of them
— and also the former when restricted to bipartite graphs — prove to
be algorithmically hard.

We formulate the first problem in a similar way as 1X-2Y.

P3-Covering for Single Input Double Output Controllers
(SubX-2Y) :

Instance : A graph or digraph G = (V, E), with vertex bipartition X ∪
Y = V , such that |Y | ≤ 2 |X|, |Y | even.

Question : Does there exist a collection of paths P3, feasible in the sense
as in 1X-2Y, yielding a partition of Y ?

As one can see, the only difference between the formerly studied 1X-
2Y and the present SubX-2Y is that in the latter only a subset of X
has to be covered. (In this sense it is similar to SSmE with m = 2, but
the latter allows to use some edges P2 as well, beside the paths P3, for
covering Y .) In the original engineering problem it means that there are
more input variables available than needed, and we should select a subset
of them for stabilizing the system in question.

The following theorem, which is in sharp contrast with the results
of Section 5 (since every bipartite graph is both E -free and E’ -free),
is also a demonstrative example of how hard the concept of packing is,
compared to partitioning.

Theorem 5 The problem SubX-2Y is NP-complete already on bipar-
tite graphs, i.e. where every y ∈ Y has a neighbor in X, and Y is an
independent set.

Proof. We begin with the construction described in the proof of Theo-
rem 4, but make the following little modifications :

• delete the sets Y ′′
1 and Y2 ;

• make Y ′
1 twice as big, i.e., for each clause Cj take four vertices

(instead of two), completely adjacent to the three literals xj
i of Cj.

23

Now, if some paths of length 2 centered in X generate a partition of Y ,
the four y-vertices taken for Cj have to be covered with precisely two of
the xj

i . This requires exactly the same as deciding which single xj
i does

not take part in the covering of the clause vertices of Cj. Observe that
the latter formulation is just what had to be done in the P3-partitioning
of G(Φ). The only difference is that in the modified new graph, m + b
vertices of X remain uncovered (namely those which would be covered
with the m + b paths passing through Y ′′

1 in G(Φ)). Hence, the two
problems have the same algorithmic complexity. •

Before formulating the next theorem, let us list some polynomially
solvable partitioning problems on bipartite graphs. For this, assume that
G = (V, E) is a bipartite graph with vertex bipartition V = X ∪ Y . The
polynomiality of bipartite matching, and its “ doubled ” version which we
have applied also in Proposition 4, mean :

• If |Y | = |X|, then it can be decided in polynomial time whether
(the vertex set of) G can be partitioned into vertex-disjoint edges.

• If |Y | = 2 |X|, then it can be decided in polynomial time whether
(the vertex set of) G can be partitioned into vertex-disjoint paths
of length 2.

If |Y | is somewhere “ in between,” then in a partition of G, some vertices
of Y are covered with copies of P3, and some others just with edges.
The next result shows that in this situation the complexity depends very
much on whether we are free to choose the part covered with isolated
edges, or this part of Y is prescribed.

Theorem 6 Let G = (V, E) be a bipartite graph with vertex bipartition
V = X ∪ Y , |X| < |Y | < 2 |X|.

(i) It can be decided in polynomial time whether G admits a vertex
partition into paths of lengths 1 and 2, such that every P3 in the
partition has its endpoints in Y . Moreover, if a feasible partition
exists, it can be found in polynomial time.

(ii) If, in addition, a partition Y = Y ′ ∪ Y ′′ is also given, with |Y ′| =
2 |X|− |Y | and |Y ′′| = |Y | − |X|, then it is NP-complete to decide
whether there exists a vertex partition of G into 2 |X| − |Y | edges
and |Y | − |X| paths of length 2 in such a way that the vertices of
Y ′ belong to the isolated edges.

24

Proof.
(i) We are going to prove that this version of the problem can be re-
duced to finding a largest collection of mutually edge-disjoint paths be-
tween two specified vertices of a directed multigraph. The latter is well-
known to be solvable in polynomial time.

Given G above, construct a slightly larger graph G+, on the vertex
set V ∪ {x∗, y∗, z∗}. We make G+ a directed multigraph, as follows.

• The original edges of G remain edges of multiplicity one in G+ as
well, all of them oriented from X to Y .

• There are two parallel edges oriented from x∗ to each x ∈ X.

• From each x ∈ X, there is an oriented edge of multiplicity one to
z∗.

• From each y ∈ Y , there is an oriented edge of multiplicity one to
y∗.

• There are 2 |X| − |Y | parallel edges oriented from z∗ to y∗.

We claim that G admits a vertex partition with the properties described
in (i) if and only if there exist 2 |X| mutually edge-disjoint paths from x∗

to y∗ in G+. (More disjoint x∗–y∗ paths cannot exist, because no more
edges are incident to x∗.)

If a feasible partition of G exists, then we take the corresponding
edges in G+, moreover the 2 |X| edges incident to x∗ and also those to
y∗ ; and, finally, take the edge xz∗ for each x ∈ X covered with just a
single edge in the partition of G. It is easily verified that the subgraph
constructed this way is the edge-disjoint union of 2 |X| paths of length 3
from x∗ to y∗.

Conversely, suppose that there exist 2 |X| edge-disjoint paths from
x∗ to y∗ in G+, and choose one such set of paths. Denote by E ′ the set
of edges in the union of these paths. This E ′ contains all edges incident
to {x∗, y∗}, because the edge sets “ from x∗ to X ” and “ from Y ∪ {z∗}
to y∗ ” are edge cuts of size 2 |X|. Moreover, the in-degree of any vertex
distinct from x∗ and y∗ is equal to its out-degree ; therefore, E ′ contains
precisely 2 |X| − |Y | edges from X to z∗. The endponts of these edges
specify a subset X ′ ⊂ X of cardinality 2 |X| − |Y |. Hence, on applying
the equality of in- and out-degrees for all vertices of X ∪ Y , we obtain
that the edges of E ′ induced by X∪Y generate a partition on X∪Y , such

25

that the vertices of X ′ are covered with single edges, while the vertices
of X \ X ′ are covered with copies of P3.

Consequently, the problem described in (i) can be solved by any
polynomial-time algorithm deciding whether there exist 2 |X| edge-dis-
joint paths from x∗ to y∗ and finding a feasible collection of them if they
exist.

(ii) This part of the theorem follows from the construction given in the
proof of Theorem 4. Indeed, it suffices to delete the set Y2 from the
graph G(Φ). Then, we set Y ′ = Y ′

1 ∪ Y ′′
1 and Y ′′ = Y ′′′

1 . This smaller
graph has a partition feasible under the present conditions if and only if
G(Φ) is P3-partitionable. Since the latter has already been shown to be
NP -complete, the same complexity follows for the former, too. •

Finally, we observe that the construction in the proof of Theorem 4
also yields

Corollary 1 The 1X-2Y problem is NP-complete on the instances where
both sets Yi, consisting of the vertices of Y at distance i from X (i =
1, 2), are independent and, in addition, the neighborhood of Y2 contains
just |Y2| vertices.

8 Multiple Output Controllers

In this short concluding section we show that if the instances are re-
stricted to bipartite graphs, then the existence problem of stabilizing
structures with Single Input Multiple Output controllers is solvable in
polynomial time, for any fixed number m of outputs of the controllers.
Let us note that, for polynomial-time solvability, it is essential to allow
the controllers to stabilize fewer than m states. Indeed, if each of the
selected controllers is required to stabilize precisely m states, then the
problem is NP -complete on bipartite graphs for every fixed m ≥ 3.

Theorem 7 For every natural number m, the existence problem SSmE
can be solved in polynomial time on bipartite graphs.

Proof. We apply a simplified version of the construction described in
the proof of Theorem 6(i). Given any bipartite graph G = (V, E) with
vertex bipartition V = X ∪ Y , we adjoin two new vertices x∗, y∗. Orient
m newly inserted parallel edges from x∗ to each of the x ∈ X, orient the

26

edges of G from X to Y (each with multiplicity one), and orient one new
edge from each y ∈ Y to y∗.

It is immediately seen that feasible partitions of G into stars with
at most m edges each, centered at X, can be extended to collections of
|Y | edge-disjoint x∗–y∗ paths. Conversely, in any collection of |Y | edge-
disjoint x∗–y∗ paths, at most m paths pass through each x ∈ X, and
each y ∈ Y is contained in precisely one of the paths. Thus, the feasible
partitions of G are in one-to-one correspondence with the path collections
of size |Y |. If at least one of the latter exists, then one of them can also
be found in polynomial time. •

Acknowledgements. Research of the first two authors was supported in
part by the Hungarian Scientific Research Fund under grant OTKA T–026575.
Part of this work was carried out while the second author visited BRICS,
Århus, from where support is gratefully acknowledged, too.

References

[1] H. Enomoto : private communication, September 2000.

[2] M. R. Garey – D. S. Johnson : Computers and Intractability – A
Guide to the Theory of NP-completeness. Freeman, New York, 1979.

[3] K. M. Hangos – Zs. Tuza : Process Structure Driven Control Struc-
ture Selection. In: Prepr. 13th World Congress of IFAC, Vol. M
(1996), pp. 187–192.

[4] K. M. Hangos – Zs. Tuza : Computational Aspects of Graph Theo-
retic Methods in Control. In: Computer-Intensive Methods in Con-
trol and Signal Processing — Can We Beat the Curse of Dimen-
sionality? (L. Berec et al., eds.), 2nd European IEEE Workshop,
Prague, Czech Republic (1996), pp. 187–192.

[5] K. M. Hangos – Zs. Tuza : Optimal Control Structure Selection for
Process Systems. Computers and Chemical Engineering , to appear.

[6] R. Holzman : private communication, July 1999.

[7] T. Kailath : Linear Systems. Prentice Hall, New Yersey (1980).

[8] A. Kotlov : private communication, July 1999.

27

Recent BRICS Report Series Publications

RS-01-18 Katalin M. Hangos, Zsolt Tuza, and Anders Yeo.Some Com-
plexity Problems on Single Input Double Output Controllers.
2001. 27 pp.

RS-01-17 Claus Brabrand, Anders Møller, Steffan Olesen, and
Michael I. Schwartzbach. Language-Based Caching of Dynam-
ically Generated HTML. May 2001. 18 pp.

RS-01-16 Olivier Danvy, Morten Rhiger, and Kristoffer H. Rose. Nor-
malization by Evaluation with Typed Abstract Syntax. May 2001.
9 pp. To appear inJournal of Functional Programming.

RS-01-15 Luigi Santocanale.A Calculus of Circular Proofs and its Cate-
gorical Semantics. May 2001. 30 pp.

RS-01-14 Ulrich Kohlenbach and Paulo B. Oliva. Effective Bounds on
Strong Unicity inL1-Approximation. May 2001.

RS-01-13 Federico Crazzolara and Glynn Winskel. Events in Security
Protocols. April 2001.

RS-01-12 Torben Amtoft, Charles Consel, Olivier Danvy, and Karo-
line Malmkjær. The Abstraction and Instantiation of String-
Matching Programs. April 2001.

RS-01-11 Alexandre David and M. Oliver Möller. From HUPPAAL to
UPPAAL : A Translation from Hierarchical Timed Automata to
Flat Timed Automata. March 2001. 40 pp.

RS-01-10 Daniel Fridlender and Mia Indrika. Do we Need Dependent
Types? March 2001. 6 pp. Appears inJournal of Functional
Programming, 10(4):409–415, 2000. Superseeds BRICS Report
RS-98-38.

RS-01-9 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Static Validation of Dynamically Generated HTML. February
2001. 18 pp.

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

