
B
R

IC
S

R
S

-01-5
H

une
etal.:

Linear
P

aram
etric

M
odelC

hecking
ofT

im
ed

A
utom

ata

BRICS
Basic Research in Computer Science

Linear Parametric Model Checking of
Timed Automata

Thomas S. Hune
Judi Romijn
Mari ëlle Stoelinga
Frits W. Vaandrager

BRICS Report Series RS-01-5

ISSN 0909-0878 January 2001

Copyright c© 2001, Thomas S. Hune & Judi Romijn & Mari ëlle
Stoelinga & Frits W. Vaandrager.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/5/

Linear Parametric Model Checking

of Timed Automata?

Thomas Hune1, Judi Romijn2, Mariëlle Stoelinga2, and Frits
Vaandrager2

1 BRICS? ? ?, University of Århus, Denmark
baris@brics.dk

2 Computing Science Institute, University of Nijmegen
[judi,marielle,fvaan]@cs.kun.nl

Abstract. We present an extension of the model checker Uppaal ca-
pable of synthesize linear parameter constraints for the correctness of
parametric timed automata. The symbolic representation of the (para-
metric) state-space is shown to be correct. A second contribution of this
paper is the identification of a subclass of parametric timed automata
(L/U automata), for which the emptiness problem is decidable, contrary
to the full class where it is know to be undecidable. Also we present a
number of lemmas enabling the verification effort to be reduced for L/U
automata in some cases. We illustrate our approach by deriving linear
parameter constraints for a number of well-known case studies from the
literature (exhibiting a flaw in a published paper).

1 Introduction

During the last decade, there has been enormous progress in the area of
timed model checking. Tools such as Uppaal[14], Kronos [6], and PMC
[15] are now routinely used for industrial case studies. A disadvantage
of the traditional approaches is, however, that they can only be used
to verify concrete timing properties: one has to provide the values of all
timing parameters that occur in the system. For practical purposes, one is
often interested in deriving the (symbolic) constraints on the parameters
that ensure correctness. The process of manually finding and proving
such results is very time consuming and error prone (we have discovered
minor errors in the two examples we have been looking at). Therefore
tool support for deriving the constraints automatically is very important.
? Research supported by Esprit Project 26270, Verification of Hybrid Systems (VHS),

and by PROGRESS Project TES4199, Verification of Hard and Softly Timed Sys-
tems (HaaST). This work was initiated during a visit of the first author to the
University of Nijmegen.

? ? ? Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

In this paper, we study a parameterized extension of timed automata,
as well as a corresponding extension of the forward reachability algorithm
for timed automata. We show the theoretical correctness of our approach,
and its feasibility by application to non-trivial case studies. For this pur-
pose, we have implemented a prototype extension of Uppaal, an efficient
real-time model checking tool [14]. The algorithm we propose and have
implemented is a semi-decision algorithm which will not terminate in all
cases. In [3] the problem of synthesizing values for parameters such that
a property is satisfied, was shown to be undecidable, so this is the best
we can hope for.

A second contribution of this paper is the identification of a subclass
of parameterized timed automata, called lower bound/upper bound (L/U)
automata, which appears to be sufficiently expressive from a practical per-
spective, while it also has nice theoretical properties. Most importantly,
we show that the emptyness problem for parametric timed automata,
shown to be undecidable in [3], is decidable for L/U automata. We also
establish a number of lemmas which allow one to reduce the number of pa-
rameters when tackling specific verification questions for L/U automata.
The application of these lemmas has already reduced the verification ef-
fort drastically in some of our experiments.

Related work Our attempt at automatic verification of parameterized real-
time models is not the only one. Henzinger et al. aim at solving a more
general problem with HyTech [11], a tool for model checking hybrid
automata, exploring the state-space either by partition refinement, or
forward reachability. The tool has been applied successfully to relatively
small examples such as a railway gate controller. Experience so far has
shown that HyTech cannot cope with larger examples, such as the ones
considered in this paper.

Toetenel et al. [15] have made an extension of the PMC real-time
model checking tool [5] called LPMC. LPMC is restricted to linear pa-
rameter constraints as is our approach, and uses the partition refine-
ment method, like HyTech. Other differences with our approach are
that LPMC also allows for the comparison of non-clock variables to pa-
rameter constraints, and for more general specification properties (full
TCTL with fairness assumptions). Since LPMC is a quite recent tool,
not many applications have been presented yet. However, a model of the
IEEE 1394 root contention protocol inspired by [17] has been successfully
analyzed in [5].

2

A more general attempt than LPMC and our Uppaal extension has
been made by Annichini et al. [4]. They have constructed and imple-
mented a method which allows non-linear parameter constraints, and uses
heavier, third-party, machinery to solve the arising non-linear constraint
comparisons. Independently, we have used the same data-structure (a di-
rect extension of DBMs [9]) for the symbolic representation of the state
space, as in [4]. For speeding up the exploration, a method for guessing the
effect of control loops in the model is presented. It appears that this helps
termination of the method, but it is unclear under what circumstances
this technique can or cannot be used. The feasibility of this approach has
been shown on a few rather small case studies. One of these is Fischer’s
protocol with two processes, for which the state space is constructed in
about 3 minutes cpu time.

The remainder of this paper is organized as follows. Section 2 introduces
the notion of parametric timed automata. Section 3 gives the symbolic
semantics, which is the basis for our model checking algorithm, presented
in Section 3.5. Section 4 is an intermezzo that states some helpful lem-
mas and decidability results on an interesting subclass. Finally, Section 5
reports on experiments with our tool.

2 Parametric Timed Automata

2.1 Parameters and Constraints

Throughout this paper, we will be working with a fixed set of parameters
P = {p1, . . . , pn}.
Definition 1 (Constraints). A linear expression e is either an expres-
sion of the form t1p1+· · ·+tnpn+t0, where t0, . . . , tn ∈ Z, or ∞. We write
E to denote the set of all linear expressions. A constraint is an inequality
of the form e ∼ e′, with e, e′ linear expressions and ∼∈ {<,≤, >,≥}. The
negation of constraint c, notation ¬c, is obtained by replacing relation
signs <, ≤, >, ≥ by ≥, >, ≤, <, respectively. A (parameter) valuation
is a function v : P → R≥0 assigning a nonnegative real value to each
parameter. There is a one-to-one correspondence between valuations and
points in (R≥0)n. In fact we often identify a valuation v with the point
(v(p1), . . . , v(pn)) ∈ (R≥0)n.

If e is a linear expression and v is a valuation, then e[v] denotes
the expression obtained by replacing each parameter p in e with v(p).
Likewise, we define c[v] for c a constraint. Valuation v satisfies constraint

3

c, notation v |= c, if c[v] evaluates to true. The semantics of a constraint
c, notation [[c]], is the set of valuations (points in (R≥0)n) that satisfy c. A
finite set of constraints C is called a constraint set. A valuation satisfies
a constraint set if it satisfies each constraint in the set. The semantics of
a constraint set C is given by [[C]] :=

⋂
c∈C [[c]]. We write > to denote any

constraint set with [[>]] = (R≥0)n, for instance the empty set. We use ⊥
to denote any constraint set with [[⊥]] = ∅, for instance the constraint set
{c,¬c}, for some arbitrary c.

Constraint c covers constraint set C, notation C |= c, iff [[C]] ⊆ [[c]].
Constraint set C is split by constraint c iff neither C |= c nor C |= ¬c.

During the analysis questions arise of the kind: given a constraint
set C and a constraint c, does c hold, i.e., does constraint c cover C?
There are three possible answers to this, yes, no, and split. A split occurs
when c holds for some valuations in the semantics of C and ¬c holds
for some other valuations. We will not discuss methods for answering
such questions: in our implementation we use an oracle to compute the
following function.

Definition 2 (Oracle).

O(c, C) =




yes if C |= c

no if C |= ¬c
split otherwise

Observe that using the oracle, we can easily decide semantic inclusion
between constraint sets: [[C]] ⊆ [[C ′]] iff ∀c′ ∈ C ′ : O(c′, C) = yes. The
oracle that we use is a linear programming (LP) solver that was kindly
provided to us by the authors of [5], who built it for their LPMC model
checking tool. This LP solver is geared to perform well on small, simple
sets of constraints rather than large, complicated ones.

2.2 Parametric Timed Automata

Throughout this paper, we assume a fixed set of clocks X = {x0, . . . , xm}
and a fixed set of actions A = {a1, . . . , ak}. The special clock x0, which is
called the zero clock, always has the value 0 (and hence does not increase
with time).

A simple guard is an expression f of the form xi−xj ≺ e, where xi, xj

are clocks, ≺∈ {<,≤}, and e is a linear expression. We say that f is proper
if i 6= j. We define a guard to be a (finite) conjunction of simple guards.
We let g range over guards and write G to denote the set of guards. A

4

clock valuation is a function w : X → R≥0 assigning a nonnegative real
value to each clock, such that w(x0) = 0. We will identify a clock valuation
w with the point (w(x0), . . . , w(xm)) ∈ (R≥0)m+1. Let g be a guard, v a
parameter valuation, and w a clock valuation. Then g[v,w] denotes the
expression obtained by replacing each parameter p with v(p), and each
clock x with w(x). A pair (v,w) of a parameter valuation and a clock
valuation satisfies a guard g, notation (v,w) |= g, if g[v,w] evaluates to
true. The semantics of a guard g, notation [[g]], is the set of pairs (v,w)
such that (v,w) |= g.

A reset is an expression of the form, xi := b where i 6= 0 and b ∈ N.
A reset set is a set of resets containing at most one reset for each clock.
The set of reset sets is denoted by R.

We now define an extension of timed automata [2, 20] called paramet-
ric timed automata. Similar models have been presented in [3–5].

Definition 3 (PTA). A parametric timed automaton (PTA) over set
of clocks X, set of actions A, and set of parameters P , is a quadruple
A = (Q, q0,→, I), where Q is a finite set of locations, q0 ∈ Q is the
initial location, →⊆ Q×A×G×R×Q is a finite transition relation, and
function I : Q → G assigns an invariant to each location. We abbreviate
a (q, a, g, r, q′) ∈→ consisting of a source location, an action, a guard, a
reset set, and a target location as q

a,g,r−→ q′. For a simple guard xi−xj ≺ e
to be used in an invariant it must be the case that xj = x0, that is, the
simple guard represents an upper bound on a clock.

Example 1. A parametric timed automaton with clocks x, y and param-
eters p, q can be seen in Fig. 1. The initial state is S0 which has invariant
x ≤ p, and the transition from the initial location to S1 has guard y ≥ q
and reset set x := 0. There are no actions on the transitions. Initially the
transition from S0 to S1 is only enabled if p ≤ q, otherwise the system
will be deadlocked.

S0

x<=p

S1

y>=q

x:=0

x<=5

Fig. 1. A parametric timed automaton

5

To define the semantics of PTAs, we require two auxiliary operations
on clock valuations. For clock valuation w and nonnegative real number
d, w+d is the clock valuation that adds to each clock (except x0) a delay
d. For clock valuation w and reset set r, w[r] is the clock valuation that
resets clocks according to r.

(w + d)(x) =
{

0 if x = x0

w(x) + d otherwise
(w[r])(x) =

{
b if x := b ∈ r
w(x) otherwise.

Definition 4 (LTS). A labeled transition system (LTS) over a set of
symbols Σ is a triple L = (S, S0,→), with S a set of states, S0 ⊆ S a
set of initial states, and →⊆ S × Σ × S a transition relation. We write
s

a−→ s′ for (s, a, s′) ∈→. A run of L is a finite alternating sequence
s0a1s1a2 · · · sn of states si ∈ S and symbols ai ∈ Σ such that s0 ∈ S0 and,
for all i < n, si

ai+1−→ si+1. A state is reachable if it is the last state of
some run.

Definition 5 (Concrete semantics). Let A = (Q, q0,→, I) be a PTA
and v be a parameter valuation. The concrete semantics of A under v,
notation [[A]]v, is the labeled transition system (LTS) (S, S0,→) over A∪
R≥0 where

S = {(q, w) ∈ Q× (X → R≥0) | w(x0) = 0 ∧ (v,w) |= I(q)},
S0 = {(q, w) ∈ S | q = q0 ∧ w = λx.0},

and transition predicate → is specified by the following two rules, for all
(q, w), (q′, w′) ∈ S, d ≥ 0 and a ∈ A,

– (q, w) d−→ (q′, w′) if q = q′ and w′ = w + d.
– (q, w) a−→ (q′, w′) if ∃g, r : q

a,g,r−→ q′ ∧ (v,w) |= g ∧ w′ = w[r].

Note that the LTS [[A]]v has at most one initial state (at most, since we
require that all states satisfy the location invariants).

2.3 The Problem

In its current version, Uppaal is able to check for reachability properties,
in particular whether certain combinations of locations and constrains on
clock variables are reachable from the initial configuration. Our parame-
terized extension of Uppaal handles exactly the same properties. How-
ever, rather than just telling whether a property holds or not, our tool
looks for constraints on the parameters which ensure that the property
holds.

6

Definition 6 (Properties). The sets of system properties and state
formulas are defined by, respectively,

ψ ::= ∀2φ | ∃3φ φ ::= x− y ≺ b | q | ¬φ | φ ∧ φ | φ ∨ φ

where x, y ∈ X, b ∈ N and q ∈ Q. Let A be a PTA, v a parameter
valuation, s a state of [[A]]v, and φ a state formula. We write s |= φ if φ
holds in state s, we write [[A]]v |= ∀2φ if φ holds in all reachable states
of [[A]]v, and we write [[A]]v |= ∃3φ if φ holds for some reachable state of
[[A]]v.

The problem that we address in this paper can now be stated as follows:
Given a parametric timed automaton A and a system property ψ, compute
the set of parameter valuations v for which [[A]]v |= ψ.

Remark 1. Timed automata [2, 20] arise as a special case of PTAs for
which the set P of parameters is empty. If A is a PTA and v is a parameter
valuation, then the structure A[v] that is obtained by replacing all linear
expressions e that occur in A by e[v] is a timed automaton.1 It is easy to
see that in general [[A]]v = [[A[v]]]. Since the reachability problem for timed
automata is decidable [2], this implies that, for any A, integer valued v
and ψ, [[A]]v |= ψ is decidable.

2.4 Example: Fischer’s Mutual Exclusion Protocol

Figure 2 shows a PTA model of Fischer’s mutual exclusion protocol [13].
The purpose of this protocol is to guarantee mutually exclusive access
to a critical section among competing processes P1, P2, . . . Pn. In this
protocol, a shared variable lock is used for communication between the
processes, with each process Pi running the following algorithm.

lock := 0;
REPEAT

while lock 6= 0 do skip;
lock := i;
delay

UNTIL lock = i;
critical section;
lock := 0

1 Strictly speaking, A[v] is only a timed automaton if v assigns an integer to each
parameter.

7

The correctness of this algorithm crucially depends on the timing of
the operations. The key idea for the correctness is that any process Pi

that sets lock := i is made to wait long enough before checking lock = i
to ensure that any other process Pj that tested lock = 0, before Pi set
lock to its index, has already set lock to its index j, when Pi finally checks
lock = i.

Assume that read/write access to the global variable (in the operations
lock = i and lock := 0) takes between min rw and max rw time units
and assume that the delay operation (including the timed needed for the
the assignment lock := i) takes between min delay and max delay time
units. If we assume the basic constraints 0 ≤ min rw < max rw ∧ 0 ≤
min delay <max delay , then mutual exclusion is guaranteed if and only
if max rw ≤min delay .

start
x<=max_rw

set
x<=max_rw

try_enter
x<= max_delay

cs

lock==0,
x > min_rw

x:=0

x>min_rw

x:=0,
lock:=i

x>min_delay,
lock==i

x:=0, lock:=0

lock != 0,
x> min_rw

x:=0

lock != i,
x > min_delay

x:= 0

Fig. 2. A PTA model of Fischer’s mutual exclusion protocol

Now consider the PTA in Fig. 2. (Several different models of this
protocol exist [1, 3, 16, 19]; our model is closest to the one in [16].) It
consists of four locations start (which is initial), set , try enter and cs ;
four parameters, min rw , max rw , min delay and max delay ; one clock
x and a shared variable lock . By convention, x and lock are initially 0.
Note that the process can remain in the locations start and set for at least
min rw and strictly less than max rw time units. Similarly, the process
can remain in try enter for a time in the interval [min delay ,max delay).

The shared variable, which is not a part of the definition of PTAs, is
syntactic sugar which allows for an efficient encoding of the protocol as a
PTA. Also the notion of parallel composition for PTAs is standard. We
refer the reader to [14] for their definitions.

8

3 Symbolic State Exploration

Our aim is to use basically the same algorithm for parametric timed model
checking as for timed model checking. We represent sets of states symbol-
ically in a similar way and support the same operations used for timed
model checking. In the nonparametrized case, sets of states can be effi-
ciently represented using matrices [9]. Similarly, in this paper we represent
sets of states symbolically as (constrained) parametric difference-bound
matrices.

Basically the same approach was followed in [4], although not worked
out in detail. New in our presentation is the systematic use of structural
operational semantics to deal with the nondeterministic computation that
takes place in the parametrized case.

3.1 Parametric Difference-Bound Matrices

In the nonparametrized case, a difference-bound matrix is a (m + 1) ×
(m + 1) matrix whose entries are elements from (Z ∪ {∞}) × {0, 1}. An
entry (c, 1) for Dij denotes a nonstrict bound xi − xj ≤ c, whereas an
entry (c, 0) denotes a strict bound xi − xj < c. Here, instead of using
integers in the entries, we will use linear expressions over the parameters.
Also, we find it convenient to view the matrix slightly more abstractly as
a set of guards.

Definition 7 (PDBM). A parametric difference-bound matrix (PDBM)
is a set D which contains, for all 0 ≤ i, j ≤ m, a simple guard Dij of
the form xi − xj ≺ij eij . We require that, for all i, Dii is of the form
xi − xi ≤ 0. Given a parameter valuation v, the semantics of D is de-
fined by [[D]]v = [[

∧
i,j Dij]]v. We say that D is satisfiable for v if [[D]]v is

nonempty. If f is a proper guard of the form xi − xj ≺ e then we write
D[f] for the PDBM obtained from D by replacing Dij by f . If i, j are
indices then we write Dij for the pair (eij ,≺ij); we call Dij a bound of
D. Clearly, a PDBM is fully determined by its bounds.

Definition 8 (Constrained PDBM). A constrained PDBM is a pair
(C,D) where C is a constraint set and D is a PDBM. The semantics of a
constrained PDBM is defined by [[C,D]] = {(v,w) | v ∈ [[C]] ∧ w ∈ [[D]]v}.

PDBMs with the tightest possible bounds are called canonical. To for-
malize this notion, we define an addition operation on linear expressions

9

by

(t1p1 + · · · + tnpn + t0) + (t′1p1 + · · · + t′npn + t′0)
= (t1 + t′1)p1 + · · · + (tn + t′n)pn + (t0 + t′0).

Also, we view Boolean connectives as operations on relation symbols ≤
and < by identifying ≤ with 1 and < with 0. Thus we have, for instance,
(≤ ∧ ≤) =≤, (≤ ∧ <) =<, ¬ ≤=<, and (≤ =⇒ <) =<. Our definition
of a canonical form of a constrained PDBM is essentially equivalent to
the one for standard DBMs.

Definition 9 (Canonical Form). A constrained PDBM (C,D) is in
canonical form iff for all i, j, k, C |= eij (≺ij =⇒ ≺ik ∧ ≺kj) eik + ekj.

The proof of the following technical lemma is immediate from the
definitions.

Lemma 1.

1. If v |= e ≺ e′ and v |= e′ ≺ e′′ then v |= e (≺ ∧ ≺′) e′′.
2. If (v,w) |= x− y ≺ e and v |= e ≺′ e′ then (v,w) |= x− y (≺ ∧ ≺′) e′.
3. If v |= e (≺ ∧ ≺′) e′ then v |= e ≺ e′.
4. If (v,w) |= x− y (≺ ∧ ≺′) e then (v,w) |= x− y ≺ e.
5. If (v,w) |= x − y ≺ e and (v,w) |= y − z ≺′ e′ then (v,w) |=

x− z (≺ ∧ ≺′) e+ e′.
6. v |= ¬(e ≺ e′) iff v |= e′ (¬ ≺) e.

The next important lemma, which basically carries over from the un-
parametrized case, states that canonicity of a constrained PDBM guar-
antees satisfiability. We recall the proof, since we will need the same
argument later on in this section.

Lemma 2. Suppose (C,D) is a constrained PDBM in canonical form
and v ∈ [[C]]. Then D is satisfiable for v.

Proof. Inductively we will construct a valuation (t0, . . . , ti) for variables
(x0, . . . , xi) such that all constraints Djk for 0 ≤ j, k ≤ i are met.

To begin with, we set t0 = 0. Then, trivially, (v, x0 7→ t0) |= D00.
For the induction step, suppose that for some i < n we have a valua-

tion (t0, . . . , ti) for variables (x0, . . . , xi) such that all constraints Djk for
0 ≤ j, k ≤ i are met. In order to extend this valuation to xi+1, we have to

10

find a value ti+1 such that the following simple guards hold for valuation
(v, x0 7→ t0, . . . , xi+1 7→ ti+1):

Di+1,0 · · · Di+1,i D0,i+1 · · · Di,i+1 Di+1,i+1 (1)

Here the first i + 1 simple guards give upper bounds for ti+1, the sec-
ond i + 1 simple guards give lower bounds for ti+1, and the last simple
guard is trivially met by any choice for ti+1. We claim that each of the
upper bounds is larger than each of the lower bounds. In particular, the
minimum of the upper bounds is larger than the maximum of the lower
bounds. This gives us a nonempty interval of possible values for ti+1 to
choose from. Formally, we claim that, for all 0 ≤ j, k < i+1, the following
formula holds for valuation (v, x0 7→ t0, . . . , xi 7→ ti):

xj − ej,i+1 ≺j,i+1 ∧ ≺i+1,k xk + ei+1,k (2)

To see why (2) holds, observe that by induction hypothesis (v, x0 7→
t0, . . . , xi 7→ ti) |=

xj − xk ≺jk ejk (3)

Furthermore, since (C,D) is canonical,

ejk (≺jk =⇒ ≺j,i+1 ∧ ≺i+1,k) ej,i+1 + ei+1,k (4)

Combination of (3) and (4), using Lemma 1(1), gives (v, x0 7→ t0, . . . , xi 7→
ti) |=

xj − xk ≺j,i+1 ∧ ≺i+1,k ej,i+1 + ei+1,k

which is equivalent to (2). This means that we can choose ti+1 in ac-
cordance with all the guards of (1), which completes the proof of the
induction step and thereby of the lemma.

The following lemma essentially carries over from the unparametrized
case too, see for instance [9]. As a direct consequence, semantic inclusion
of constrained PDBMs is decidable for canonical PDBMs (using the oracle
function).

Lemma 3. Suppose (C,D), (C ′,D′) are constrained PDBMs and (C,D)
is canonical. Then [[C,D]] ⊆ [[C ′,D′]] ⇔ ([[C]] ⊆ [[C ′]]∧∀i, j : C |= eij(≺ij

=⇒ ≺′
ij)e

′
ij).

11

3.2 Operations on PDBMs

Our algorithm requires basically four operations to be implemented on
constrained PDBMs: adding guards, canonicalization, resetting clocks and
computing time successors.

Adding Guards In the case of DBMs, adding a guard is a simple op-
eration. It is implemented by taking the conjunction of a DBM and the
guard (which is also viewed as a DBM). The conjunction operation just
takes the pointwise minimum of the entries in both matrices. In the para-
metric case, adding a guard to a constrained PDBM may result in a set of
constrained PDBMs. We define a relation ⇐ which relates a constrained
PDBM and a guard to a collection of constrained PDBMs that satisfy
this guard. For this we need an operation C that takes a PDBM and a
simple guard, and produces a constraint stating that the bound imposed
by the guard is larger than the corresponding bound in the PDBM, so let
Dij = (eij ,≺ij) then

C(D,xi − xj ≺ e) = eij (≺ij =⇒ ≺) e.

Relation ⇐ is defined as the smallest relation that satisfies the following
rules:

(R1)
O(C(D, f), C) = yes

(C, D)
f⇐ (C, D)

(R2)
O(C(D, f), C) = no, f proper

(C,D)
f⇐ (C, D[f])

(R3)
O(C(D, f), C) = split

(C, D)
f⇐ (C ∪ {C(D, f)}, D)

(R4)
O(C(D, f), C) = split, f proper

(C,D)
f⇐ (C ∪ {¬C(D, f)}, D[f])

(R5)
(C, D)

g⇐ (C′, D′) , (C′D′)
g′
⇐ (C′′, D′′)

(C, D)
g∧g′
⇐ (C′′, D′′)

If the oracle replies “yes”, then adding a simple guard will not change
the constrained PDBM. If the answer is “no” then we tighten the bound
in the PDBM according to the simple guard. With the answer “split”
there are two possibilities and two pairs with updated constraint systems
are returned. The side condition “f proper” in rules R2 and R4 ensures
that the diagonal bounds in the PDBM always remain equal to (0,≤). If
we update a bound in D then the semantics of the PDBM may become
empty. The following lemma characterizes ⇐ semantically.

Lemma 4. [[C,D]] ∩ [[g]] =
⋃{[[C ′,D′]] | (C,D)

g⇐ (C ′,D′)}.

12

Proof. “⊆”. Assume (v,w) ∈ [[C,D]]∧(v,w) |= g. By structural induction
on g we prove that there exists a constrained PDBM (C ′,D′) such that
(C,D)

g⇐ (C ′,D′) and (v,w) ∈ [[C ′,D′]].
For the induction basis, suppose g is of the form xi − xj ≺ e. We

consider four cases:

– O(C(D, g), C) = yes. Let C ′ = C and D′ = D. Then trivially (v,w) ∈
[[C ′,D′]] and, by rule R1, (C,D)

g⇐ (C ′,D′).
– O(C(D, g), C) = no. By contradiction we prove that g is proper. Sup-

pose g is not proper. Then, since i = j and v |= ¬eij(≺ij =⇒ ≺)e,
v |= ¬(0 ≺ e). By Lemma 1(6), v |= e¬ ≺ 0. But (v,w) |= g implies
v |= 0 ≺ e. Hence, by Lemma 1(1), v |= 0 < 0, a contradiction. Let
C ′ = C and D′ = D[g]. Then, by rule R2, (C,D)

g⇐ (C ′,D′). Since
(v,w) ∈ [[C,D]] and (v,w) |= g, it follows that (v,w) ∈ [[C ′,D′]].

– O(C(D, g), C) = split and v |= C(D, g). Let C ′ = C ∪ {C(D, g)} and
D′ = D. Then, by rule R3, (C,D)

g⇐ (C ′,D′). Moreover, by the
assumptions, (v,w) ∈ [[C ′,D′]].

– O(C(D, g), C) = split and v |= ¬C(D, g). By contradiction we prove
that g is proper. Suppose g is not proper. Then, since v |= ¬C(D, g),
v |= ¬(0 ≺ e). By Lemma 1(6), v |= e¬ ≺ 0. But (v,w) |= g implies
v |= 0 ≺ e. Hence, by Lemma 1(1), v |= 0 < 0, a contradiction. Let
C ′ = C ∪ {¬C(D, g)} and D′ = D[g]. Then, by rule R4, (C,D)

g⇐
(C ′,D′). By the assumptions (v,w) ∈ [[C ′,D′]].

For the induction step, suppose that g is of the form g′∧g′′. Then (v,w) |=
g′. By induction hypothesis, there exist C ′′,D′′ such that (C,D)

g′⇐ (C ′′,D′′)
and (v,w) ∈ [[C ′′,D′′]]. Since (v,w) |= g′′, we can use the induction hy-

pothesis once more to infer that there exist C ′,D′ such that (C ′′,D′′)
g′′⇐

(C ′,D′) and (v,w) ∈ [[C ′,D′]]. Moreover, by rule R5, (C,D)
g⇐ (C ′,D′).

“⊇” Assume (C,D)
g⇐ (C ′,D′) and (v,w) ∈ [[C ′,D′]]. By induction on

size of the derivation of (C,D)
g⇐ (C ′,D′), we establish (v,w) ∈ [[C,D]]

and (v,w) |= g. There are five cases, depending on the last rule r used in
the derivation of (C,D)

g⇐ (C ′,D′).

1. r = R1. Then C = C ′, D = D′ and C |= C(D, g). Let g be of the
form xi − xj ≺ e. Hence (v,w) ∈ [[C,D]] and v |= C(D, g). By the
first statement (v,w) |= xi − xj ≺D

ij e
D
ij , and by the second statement

v |= eDij (≺D
ij =⇒ ≺) e. Combination of these two observations, using

parts (2) and (4) of Lemma 1 yields (v,w) |= g.

13

2. r = R2. Then C = C ′,D′ = D[g] and C |= ¬C(D, g). Hence (v,w) |= g
and v |= ¬C(D, g). Let g be of the form xi − xj ≺ e. By Lemma 1(6),
v |= e ¬(≺D

ij =⇒ ≺) eDij . Using parts (2) and (4) of Lemma 1, combi-
nation of these two observations yields (v,w) |= xi − xj ≺D

ij e
D
ij . Since

trivially (v,w) is a model for all the other guards inD, (v,w) ∈ [[C,D]].

3. r = R3. Then C ′ = C ∪ {C(D, g)} and D′ = D. Let g be of the form
xi−xj ≺ e. We have (v,w) ∈ [[C,D]]. This implies (v,w) |= xi−xj ≺D

ij

eDij . We also have v |= eDij (≺D
ij =⇒ ≺) e. Combination of these two

observations, using parts (2) and (4) of Lemma 1 yields (v,w) |= g.

4. r = R4. Then C ′ = C ∪ {¬C(D, g)} and D′ = D[g]. We have v |=
¬C(D, g) and (v,w) |= g. Let g be of the form xi − xj ≺ e. By
Lemma 1(6), v |= e ¬(≺D

ij =⇒ ≺) eDij . Using parts (2) and (4) of
Lemma 1 yields (v,w) |= xi − xj ≺D

ij e
D
ij . Since trivially (v,w) is a

model for all other guards in D, (v,w) ∈ [[C,D]].

5. r = R5. Then g is of the form g′ ∧ g′′ and there are C ′′,D′′ such that

(C,D)
g′⇐ (C ′′,D′′) and (C ′′,D′′)

g′′⇐ (C ′,D′). By induction hypothe-
sis, (v,w) ∈ [[C ′′,D′′]] and (v,w) |= g′′. Again by induction hypothesis,
(v,w) ∈ [[C,D]] and (v,w) |= g′. It follows that (v,w) |= g.

Canonicalization Each DBM can be brought into canonical form using
classical algorithms for computing all-pairs shortest paths, for instance
the Floyd-Warshall (FW) algorithm [7]. In the parametric case, we also
apply this approach except that now we run FW symbolically.

The algorithm repeatedly compares the difference between two clocks
to the difference obtained by looking at the difference when an interme-
diate clock is taken into account (the comparison used in Definition 9).
In the symbolic case the result is, in general, a (possibly empty, finite)
set of constrained PDBMs, rather than just a single matrix.

Below, we describe the computation steps of the symbolic FW algo-
rithm in SOS style. Recall that the FW algorithm consists of three nested
for-loops, for indices k, i and j, respectively. Correspondingly, in the SOS
description of the symbolic version, we use configurations of the form
(k, i, j, C,D), where (C,D) is a constrained PDBM and k, i, j ∈ [0,m+1]

14

record the values of indices. In the rules below, k, i, j range over [0,m].

(C,D)
xi−xj ≺ik∧≺kj eik+ekj⇐ (C ′,D′)

(k, i, j, C,D) →FW (k, i, j + 1, C ′,D′)

(k, i,m + 1, C,D) →FW (k, i+ 1, 0, C,D)

(k,m+ 1, 0, C,D) →FW (k + 1, 0, 0, C,D)

We write (C,D) →c (C ′,D′) if there exists a sequence of →FW steps lead-
ing from configuration (0, 0, 0, C,D) to configuration (m+ 1, 0, 0, C ′,D′).
In this case, we say that (C ′,D′) is an outcome of the symbolic Floyd-
Warshall algorithm on (C,D). It is easy to see that the set of all out-
comes is finite and can be effectively computed. If the semantics of (C,D)
is empty, then the set of outcomes is also empty. We write (C,D)

g⇐c

(C ′,D′) iff (C,D)
g⇐ (C ′′,D′′) →c (C ′,D′), for some C ′′,D′′.

The following lemma says that if we run the symbolic Floyd-Warshall
algorithm, the union of the semantics of the outcomes equals the seman-
tics of the original constrained PDBM.

Lemma 5. [[C,D]] =
⋃{[[C ′,D′]] | (C,D) →c (C ′,D′)}.

Proof. By an inductive argument, using Lemma 4 and the fact that, for
any valuation (v,w) in the semantics of (C,D),

(v,w) |= xi − xk ≺ik eik and
(v,w) |= xk − xj ≺kj ekj , and therefore by Lemma 1(5)
(v,w) |= xi − xj ≺ik ∧ ≺kj eik + ekj.

Lemma 6. Each outcome of the symbolic Floyd-Warshall algorithm is a
constrained PDBM in canonical form.

Proof. As in [7].

Remark 2. Non-parametric DBMs can be canonicalized in O(n3), where
n is the number of clocks. In the parametric case, however, each operation
of comparing the bound D(x, x′) to the weight of another path from x to
x′ may give rise to two new PDBMs if this comparison leads to a split.
Then the two PDBMs must both be canonicalized to obtain all possible
PDBMs with tightest bounds. Still, that part of these two PDBMs which
was already canonical, does not need to be investigated again. So in the
worst case, the cost of the algorithm becomes O(2n3

). In practice, it turns
out that this is hardly ever the case.

15

Resetting Clocks A third operation on PDBMs that we need is re-
setting clocks. Since we do not allow parameters in reset sets, the reset
operation on PDBMs is essentially the same as for DBMs, see [20]. If D is
a PDBM and r is a singleton reset set {xi := b}, then D[r] is the PDBM
obtained by (1) replacing each bound Dij , for j 6= i, by (e0j + b,≺0j); (2)
replacing each bound Dji, for j 6= i, by (ej0 − b,≺j0). We generalize this
definition to arbitrary reset sets by

D[xi1 := b1, . . . , xih := bh] = D[xi1 := b1] . . . [xih := bh].

It easily follows from the definitions that resets preserves canonicity.

Lemma 7. If (C,D) is canonical then (C,D[r]) is canonical as well.

The following lemma characterizes the reset operation semantically.

Lemma 8. Let (C,D) be a constrained PDBM in canonical form, v ∈
[[C]], and w a clock valuation. Then w ∈ [[D[r]]]v iff ∃w′ ∈ [[D]]v : w =
w′[r].

Proof. We only prove the lemma for singleton resets. Using Lemma 7, the
generalization to arbitrary resets is straightforward. Let r = {xi := b} and
D′ = D[r].
“⇐” Suppose w′ ∈ [[D]]v and w = w′[r]. In order to prove w ∈ [[D′]]v, we
must show that (v,w) |= D′

kj, for all k and j. There are four cases:

1. k 6= i 6= j. Then D′
kj = Dkj. Since (v,w′) |= Dkj and w and w′ agree

on all clocks occurring in Dkj , (v,w) |= D′
kj.

2. k = i = j. Then D′
kj = Dkj. Since (v,w′) |= Dii, 0 ≺ii eii[v]. Hence

(v,w) |= D′
kj .

3. k 6= i = j. Then D′
kj = xk − xj ≺k0 ek0 − b. Using that (v,w′) |= Dk0,

we derive w(xk) − w(xj) = w′(xk) − b ≺k0 ek0[v] − b. Hence (v,w) |=
D′

kj.
4. k = i 6= j. ThenD′

kj = xk−xj ≺0j e0j+b. Using that (v,w′) |= D0j , we
derive w(xk)−w(xj) = b−w′(xj) ≺0j e0j [v] + b. Hence (v,w) |= D′

kj .

“⇒” Suppose w ∈ [[D′]]v. We have to prove that there exists a clock
valuation w′ ∈ [[D]]v such that w = w′[r]. Clearly we need to choose w′ in
such a way that, for all j 6= i, w′(xj) = w(xj). This means that, for any
choice of w′(xi), for all j 6= i 6= k, v,w′ |= Djk. Using the same argument
as in the proof of Lemma 2, we can find a value for w′(xi) such that also
the remaining simple guards of D are satisfied.

16

Time Successors Finally, we need to transform PDBMs for the passage
of time, notation D↑. As in the DBMs case [9], this is done by setting the
xi − x0 bounds to (∞, <), for each i 6= 0, and leaving all other bounds
unchanged. We have the following lemma.

Lemma 9. Suppose (C,D) is a constrained PDBM in canonical form,
v ∈ [[C]], and w a clock valuation. Then w ∈ [[D↑]]v iff ∃d ≥ 0 ∃w′ ∈
[[D]]v : w′ + d = w.

Proof. “⇐” Suppose d ≥ 0, w′ ∈ [[D]]v and w′ + d = w. We claim that
w ∈ [[D↑]]v . For this we must show that for each guard f of D↑, (v,w) |=
f . Let f be of the form xi − xj ≺ e. We distinguish between three cases:

– i 6= 0 ∧ j = 0. In this case, by definition of D ↑, f is of the form
xi − x0 <∞, and so (v,w) |= f trivially holds.

– i = 0. In this case f is also a constraint of D. Since w′ ∈ [[D]]v we have
(v,w′) |= f , and thus −w′(xj) ≺ e[v]. But since d ≥ 0, this means
that −w(xj) = −w′(xi) − d ≺ e[v] and therefore (v,w) |= f .

– i 6= 0∧j 6= 0. In this case f is again a constraint of D. Since w′ ∈ [[D]]v
we have (v,w′) |= f , and therefore w′(xi) − w′(xj) ≺ e[v]. But this
means that w′(xi) − w′(xj) = (w(xi) − d) − (w(xj) − d) ≺ e[v] and
therefore (v,w) |= f .

“⇒” Suppose w ∈ [[D↑]]v . If m = 0 (i.e., there are no clocks) then D↑= D
and the rhs of the implication trivially holds (take w′ = w and d = 0).
So assume m > 0. For all indices i, j with i 6= 0 and j 6= 0, (v,w) |= Dij .
Hence w(xi) − w(xj) ≺ij eij [v]. Thus, for any real number t, w(xi) − t−
(w(xj) − t) ≺ij eij [v]. But this means (v,w − t) |= Dij . It remains to be
shown that there exists a value d such that in valuation (v,w − d) also
the remaining guards D0i and Di0 hold. Let

t0 = max(0, w(x1) − e10[v], . . . , w(xn) − en0[v])
t1 = min(w(x1) + e01[v], . . . , w(xn) + e0n[v])
d = (t0 + t1)/2
w′ = w − d

Intuitively, t0 gives the least amount of time one has to go backwards in
time from w to meet all upper bounds of D (modulo strictness), whereas
t1 gives the largest amount of time one can go backwards in time from w
without violating any of the lower bounds of D (again modulo strictness).
Value d sits right in the middle of these two. We claim that d and w′ satisfy
the required properties. For any i, since (v,w) |= D0i, trivially

0 ≺0i w(xi) + e0i[v] (5)

17

Using that D is canonical we have, for any i, j,

eji[v] (≺ji =⇒ ≺j0 ∧ ≺0i) ej0[v] + e0i[v]

and, since v,w |= Dji,

w(xj) − w(xi) ≺ji eji[v].

Using these two observations we infer

w(xj) − ej0[v] (≺ji =⇒ ≺j0 ∧ ≺0i) w(xj) − eji[v] + e0i[v] ≺ji w(xi) + e0i[v].

Hence

w(xj) − ej0[v] ≺j0 ∧ ≺0i w(xi) + e0i[v] (6)

By inequalities (5) and (6), each subterm of max in the definition of t0
is dominated by each subterm of min in the definition of t1. This implies
0 ≤ t0 ≤ t1.

Now either t0 < t1 or t0 = t1. In the first case it easy to prove that in
valuation (v,w) the guards D0i and Di0 hold, for any i:

w′(xi) = w(xi) − d < w(xi) − t0 ≤ w(xi) − (w(xi) − ei0[v]) = ei0[v]

and thus w′(xi) < ei0[v] and v,w′ |= Di0. Also

−w′(xi) = −w(xi) + d < −w(xi) + t1 ≤ −w(xi) + (w(xi) + e0i[v]) = e0i[v]

and so −w′(xi) < e0i[v] and v,w′ |= D0i.
In the second case, fix an i. If w(xi) − ei0[v] < t0 then

w′(xi) = w(xi) − d = w(xi) − t0 < w(xi) − (w(xi) − ei0[v]) = ei0[v]

and thus w′(xi) < ei0[v] and v,w′ |= Di0. Otherwise, if w(xi)− ei0[v] = t0
observe that by t0 = t1, inequality (6) and the fact that, t1 = w(xj) +
e0j [v], for some j, ≺i0=≤. Since

w′(xi) = w(xi) − d ≤ w(xi) − t0 ≤ w(xi) − (w(xi) − ei0[v]) ≤ ei0[v]

and thus w′(xi) ≤ ei0[v] this implies v,w′ |= Di0.
The proof that v,w′ |= D0i, for all i, in the case where t0 = t1 proceeds

similarly.

18

3.3 Symbolic Semantics

With the four operations on PDBMs, we can describe the semantics of a
parametric timed automaton symbolically.

Definition 10 (Symbolic semantics). The symbolic semantics of PTA
A = (Q, q0,→, I) is an LTS. The states are triples (q, C,D) with q a lo-
cation from Q and (C,D) a constrained PDBM in canonical form. The
set of initial states is

{(q0, C,D) | (>,E↑) I(q0)⇐ c (C,D)},

where E is the PDBM with Eij = (0,≤), for all i, j. The transitions are
defined by the following rule:

q
a,g,r−→ q′ , (C,D)

g⇐c (C ′′,D′′) , (C ′′,D′′[r]↑) I(q′)⇐ c (C ′,D′)
(q, C,D) → (q′, C ′,D′)

.

Using Lemma 4 and Lemma 5, it follows by a simple inductive argu-
ment that if state (q, C,D) is reachable in the symbolic semantics and
(v,w) ∈ [[C,D]] then (v,w) |= I(q). It is also easy to see that the symbolic
semantics of a PTA is a finitely branching transition system. It may have
infinitely many reachable states though. Our search algorithm explores
the symbolic semantics in an “intelligent” manner, and for instance stops
whenever it reaches a state whose semantics is contained in the semantics
of a state that has been encountered before. Despite this, our algorithm
need not terminate.

Each run in the symbolic semantics can be simulated by a run in the
concrete semantics.

Proposition 1. For each parameter valuation v and clock valuation w, if
there is a run in the symbolic semantics of A reaching state (q, C,D), with
(v,w) ∈ [[C,D]], then this run can be simulated by a run in the concrete
semantics [[A]]v reaching state (q, w).

Proof. By induction on the number of transitions in the run.
As basis we consider a run with 0 transitions, i.e., a run that consists

of a start state of the symbolic semantics. So this means that (q, C,D) is
a start state.

Using the fact that (v,w) ∈ [[C,D]], the definition of start states,
Lemma 5 and Lemma 4, we know that q = q0, (v,w) |= I(q0) and (v,w) ∈
[[>,E↑]]. By Lemma 9, we get that there exists a d ≥ 0 and w′ ∈ [[E]]v

19

such that w′ + d = w. Since (v,w) |= I(q0) and invariants in a PTA only
give upper bounds on clocks, also (v,w′) |= I(q0). It follows that (q0, w′)
is a state of the concrete semantics [[A]]v and (q0, w′) d−→ (q0, w). Since
w′ ∈ [[E]]v , w′ must be of the form λx.0, so (q0, w′) is an initial state of
the concrete semantics. This completes the proof of induction basis.

For the induction step, assume that we have a run in the symbolic
semantics, ending with a transition (q′, C ′,D′) → (q, C,D). Using the
fact that (v,w) ∈ [[C,D]], the definition of transitions in the symbolic
semantics, Lemma 5 and Lemma 4, we know that there is a transition
q′ a,g,r−→ q in A, and there are C ′′,D′′ such that (v,w) |= I(q), (v,w) ∈
[[C ′′,D′′[r]↑]] and (C ′,D′)

g⇐ (C ′′,D′′). By Lemma 9, we get that there
exists a d ≥ 0 and w′ ∈ [[D′′[r]]]v such that w′+d = w. Since (v,w) |= I(q)
and invariants in a PTA only give upper bounds on clocks, also (v,w′) |=
I(q). It follows that (q, w′) is a state of the concrete semantics [[A]]v and
(q, w′) d−→ (q, w). Using Lemma 8 we get that there exists a w′′ ∈ [[D′′]]v
such that w′ = w′′[r]. Using Lemma 5 and Lemma 4 again, it follows that
(v,w′′) |= g and (v,w′′) ∈ [[C ′,D′]]. Following Definition 10, we already
observed that the location invariant holds for any reachable state in the
symbolic semantics. In particular, (v,w′′) |= I(q′). Hence, by definition of
the concrete semantics, (q′, w′′) is a state of the concrete semantics and
(q′, w′′) a−→ (q, w′) is a transition in the concrete semantics. By induction
hypothesis, there is a path in the concrete semantics leading up to state
(q′, w′′). Extension of this path with the transitions (q′, w′′) a−→ (q, w′)
and (q, w′) d−→ (q, w) gives the required path in the concrete semantics.

For each path in the concrete semantics, we can find a path in the sym-
bolic semantics such that the final state of the first path is semantically
contained in the final state of the second path.

Proposition 2. For each parameter valuation v and clock valuation w,
if there is a run in the concrete semantics [[A]]v reaching a state (q, w),
then this run can be simulated by a run in the symbolic semantics reaching
a state (q, C,D) such that (v,w) ∈ [[C,D]].

Proof. In any execution in the concrete semantics, we can always insert
zero delay transitions at any point. Also, two consecutive delay transitions
(q, w) d−→ (q, w + d) and (q, w + d) d′−→ (q, w + d + d′) can always be

combined to a single delay transition (q, w) d+d′−→ (q, w+d+d′). Therefore,
without loss of generality, we only consider concrete executions that start
with a delay transition, and in which there is a strict alternation of action

20

transitions and delay transitions. The proof is by induction on the number
of action transitions.

As basis we consider a run (q0, w0)
d−→ (q0, w0 + d), where w0 =

λx.0, consisting of a single time-passage transition. By definition of the
concrete semanctics, (v,w0 + d) |= I(q0). Using Lemma 9, we have that
(v,w0 + d) ∈ [[>,E↑]] since (v,w0) ∈ [[>,E]]. From (v,w0 + d) ∈ [[>,E↑]]
and (v,w0 + d) |= I(q0), using Lemma 4 and Lemma 5 we get that there

exists C,D such that (>,E ↑) I(q0)⇐ (C,D) and (v,w0 + d) ∈ [[C,D]].
By definition, (C,D) is an initial state of the symbolic semantics. This
completes the proof of the induction basis.

For the induction step, assume that the run in the concrete semantics
of [[A]]v ends with transitions (q′′, w′′) a−→ (q′, w′) d−→ (q, w). By induction
hypothesis, there exists a run in the symbolic semantics ending with a
state (q′′, C ′′,D′′) such that (v,w′′) ∈ [[C ′′,D′′]].

By definition of the concrete semantics, there is a transition q′′ g,a,r−→ q′

in A such that (v,w′′) |= g and w′ = w′′[r]. Moreover, we have q′ = q and
w = w′ + d and (v,w) |= I(q). Using Lemma 4 and Lemma 5 gives that
there exists C ′,D′ such that (C ′′,D′′)

g⇐c (C ′,D′) and (v,w′′) ∈ [[C ′,D′]].
By Lemma 8, w′ ∈ [[D′[r]]]v . Moreover, by Lemma 9, w ∈ [[D′[r]↑]]v . Using
(v,w) |= I(q), Lemma 4 and Lemma 5, we infer that there exists C,D

such that (v,w) ∈ [[C,D]] and (C ′,D′[r]↑) I(q)⇐ c (C,D). Finally, using the
definition of the symbolic semantics, we infer the existence of a transition
(q′′, C ′′,D′′) → (q, C,D).

Example 2. Figure 2 shows the symbolic state-space of the automaton in
Fig. 1 represented by constrained PDBMs. In the initial state the invariant
x ≤ p limits the value of x, and since both clocks have the same value
also the value of y. When taking the transition from S0 to S1 we have
to compare the parameters p and q. This leads to a split where in the
one case no state is reachable since the region is empty, and in the other
(when q ≤ p) S1 can be reached. From then on no more splits occur and
only one new state is reachable.

3.4 Evaluating Properties

We now define the relation
φ⇐ which relates a symbolic state and a state

formula φ to a collection of symbolic states that satisfy φ.
In order to check whether a property holds, we break it down into

the small basic formulas, namely checking locations and clock guards.

21

y

x(S0, , ∅)

(, ∅, {q > p})

(S1, x

(S0, , {q ≤ p})

y

p

q

, {q ≤ p})

y

p

q

Fig. 3. The symbolic state space of the PTA in Fig. 1.

Checking that a clock guard holds relies on the definition given earlier, of
adding that clock guard to the constrained PDBM. We rely on a special
normal form of the state formula, in which all ¬ signs have been pushed
down to the basic formulas.

Definition 11. State formula φ is in normal form if all ¬ signs in φ
appear only in front of a subformula that checks a location: ¬q.
Since each simple guard with a ¬ sign in front can be rewritten to equiv-
alent simple guard without, for each state formula there is an equivalent
one in normal form.

In the following, let f be a simple guard, and φ be in normal form.

(Q1)
(q,C, D)

q⇐ (q, C, D)
(Q2)

q 6= q′

(q, C, D)
¬q′⇐ (q, C, D)

(Q3)
(C, D)

f⇐c(C
′, D′)

(q, C, D)
f⇐ (q, C′, D′)

(Q4)
(q, C, D)

φ1⇐ (q, C′, D′) , (q, C′, D′)
φ2⇐ (q, C′′, D′′)

(q, C, D)
φ1∧φ2⇐ (q, C′′, D′′)

(Q5)
(q, C, D)

φ1⇐ (q, C′, D′)

(q,C, D)
φ1∨φ2⇐ (q, C′, D′)

(Q6)
(q, C, D)

φ2⇐ (q, C′, D′)

(q, C, D)
φ1∨φ2⇐ (q, C′, D′)

22

The following lemma gives the soundness and completeness of relation
φ⇐.

Lemma 10. Let [[φ, q]] denote the set {(v,w) | (q, w) |= φ}. Then for all

properties φ in normal form [[C,D]] ∩ [[q, φ]] =
⋃ {[[C ′,D′]] | (q, C,D)

φ⇐
(q, C ′,D′)}.
Proof. ⊆: We prove that, for all C, D, v, w and q, if (v,w) ∈ [[C,D]] ∧

(q, w) |= φ then there are C ′,D′ such that (v,w) ∈ [[C ′,D′]]∧(q, C,D)
φ⇐

(q, C ′,D′). We use induction on |φ|, where |φ| yields the depth of φ,
as follows. For a location q and a simple guard f , we have |q| = |¬q| =
|f | = 0 and for composed properties we have |φ1 ∧ φ2| = |φ1 ∨ φ2| =
1 + max(|φ1|, |φ2|).
• Base cases. Let |φ| = 0 and let (v,w) ∈ [[C,D]] and (q, w) |= φ.

∗ Suppose φ = q′. As (q, w) |= q′, clearly, q = q′. Since (q, C,D)
q⇐

(q, C,D), we can take C = C ′ and D = D′ and the result fol-
lows.

∗ Suppose φ = ¬q′. Similar to the previous case.
∗ Suppose φ = f with f a simple guard. Then (v,w) ∈ [[C,D]]

and (q, w) |= f . By Lemma 4 we have that there exist C ′′,D′′

such that (C,D)
f⇐ (C ′′,D′′) and using that (v,w) ∈ [[C ′′,D′′]]

and Lemma 5 yields C ′,D′ with (C ′′,D′′) →c (C ′,D′) and

(v,w) ∈ [[C ′,D′]]. Thus, we also have (q, C,D)
f⇐ (q, C ′,D′).

• Induction step. Let |φ| = n+1 and let (v,w) ∈ [[C,D]] and (q, w) |=
φ.
∗ Suppose φ = φ1 ∧ φ2. Clearly, (q, w) |= φ1 and (q, w) |= φ2. By

applying the induction hypothesis on φ1, C and D, we derive

that there exist C ′′,D′′ such that (q, C,D)
φ1⇐ (q, C ′′,D′′) and

(v,w) ∈ [[C ′′,D′′]]. Applying the induction hypothesis on φ2,

C ′′ and D′′ yields C ′,D′ such that (q, C ′′,D′′)
φ2⇐ (q, C ′,D′)

and (v,w) ∈ [[C ′,D′]]. Then also (q, C,D)
φ1∧φ2⇐ (q, C ′,D′).

∗ Suppose φ = φ1 ∨ φ2. Clearly, (q, w) |= φ1 or (q, w) |= φ2.
Suppose (q, w) |= φ1. The induction hypothesis yields C ′,D′

such that (q, C,D)
φ1⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]]. Then

(q, C,D)
φ1∨φ2⇐ (q, C ′,D′). The case (q, w) |= φ2 is similar.

⊇: By induction on the structure of the derivation of
φ⇐, we establish that

for all v, w, C,D, C ′,D′, if (q, C,D)
φ⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]]

then (v,w) ∈ [[C,D]] and (q, w) |= φ.

23

• Base cases. The derivation consists of a single step r. Assume

(q, C,D)
φ⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]].

∗ r = Q1. Then φ = q, C = C ′, D = D′. Then clearly, (v,w) ∈
[[C,D]] and (q, w) |= q.

∗ r = Q2. Similar to the previous case.

∗ r = Q3. Suppose φ = f with f a simple guard. Then (q, C,D)
φ⇐

(q, C ′,D′) has been derived from (C,D)
f⇐c(C ′,D′). Then there

exist C ′′,D′′ such that (C,D)
f⇐(C ′′,D′′) and (C ′′,D′′)→c(C ′,D′).

By Lemma 5 we have (v,w) ∈ [[C ′′,D′′]]. Then we have by
Lemma 4 that (v,w) |= f and (v,w) ∈ [[C,D]].

• Induction step. Assume (q, C,D)
φ⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]]

and consider the last rule r used in the derivation of (q, C,D)
φ⇐

(q, C ′,D′).

∗ r = Q4. Then φ = φ1 ∧ φ2 and (q, C,D)
φ1⇐ (q, C ′′,D′′) and

(q, C ′′,D′′)
φ2⇐ (q, C ′,D′) for some C ′′,D′′. Applying the induc-

tion hypothesis to the second statement yields that (q, w) |= φ2

and (v,w) ∈ [[C ′′,D′′]]. Then applying the induction hypothesis
to the first statement yields (q, w) |= φ1 and (v,w) ∈ [[C,D]].
Then also (v,w) |= φ1 ∧ φ2.

∗ r = Q5. Then φ = φ1 ∨ φ2. Then (q, C,D)
φ1⇐ (q, C ′,D′).

By the induction hypothesis we have that (q, w) |= φ1 and
(v,w) ∈ [[C,D]].

∗ r = Q6. Similarly to the previous case.

3.5 Algorithm

We are now in a position to present our model checking algorithm for
parametric timed automata. The algorithm displayed in Fig. 4 describes
how our tool explores the symbolic state space and searches for constraints
on the parameters for which a reachability formula ∃3φ holds in a PTA
A. The result returned by the algorithm is a set of symbolic states, all
of which satisfy φ, for any valuation of the parameters and clocks in the
state. For invariance properties ∀2φ, the tool performs the algorithm on
¬φ, and the result is then a set of symbolic states, none of which satisfies
φ. The answer to the model checking problem, stated in Section 2.2, is
obtained by taking the union of the constraint sets from all symbolic
states in the result of the algorithm; in the case of an invariance property
we take the complement of this set.

24

algorithm Reachable(A, φ)

Result := ∅,Passed := ∅,Waiting := {(q0, C, D) | (>,E↑)
I(q0)

⇐ c (C,D)}
while Waiting 6= ∅ do

select (q, C, D) from Waiting

Result := Result ∪ {(q′, C′, D′) | (q, C, D)
φ⇐ (q′, C′, D′)}

False := {(q′, C′, D′) | (q, C, D)
¬φ⇐ (q′, C′, D′)}

for each (q′, C′, D′) in False do
if for all (q′′, C′′, D′′) in Passed: (q′, C′, D′) 6⊆ (q′′, C′′, D′′) then

add (q′, C′, D′) to Passed

for each (q′′, C′′, D′′) such that (q′, C′, D′) → (q′′, C′′, D′′) do
Waiting := Waiting ∪ {(q′′, C′′, D′′)}

return Result

Fig. 4. The parametric model checking algorithm

A difference between the above algorithm and the standard timed
model checking algorithm is that we continue the exploration until either
no more new states are found or all paths end in a state satisfying the
property. This is because we want to find all the possible constraints on
the parameters for which the property holds. Also, the operations on non-
parametric DBMs only change the DBM they are applied to, whereas in
our case, we may end up with a set of new PDBMs and not just one.

Some standard operations on symbolic states that help in exploring as
little as possible, have also been implemented in our tool for parametric
symbolic states. Before starting the state space exploration, our imple-
mentation determines the maximal constant for each clock. This is the
maximal value to which the clock is compared in any guard or invariant
in the PTA. When the clock value grows beyond this value, we can ignore
its real value. This enables us to identify many more symbolic states, and
helps termination2.

4 Reducing the Complexity

This section introduces the class of lower bound/upper bound automata
and describes several (rather intuitive) observations that simplify the
model checking of PTAs in this class. Our results allow us to eliminate
parameters in certain cases. Since the complexity of parametric model
checking grows very fast in the number of parameters, this is a rele-
vant issue. Secondly, our observations yield a decidability result for lower

2 For purely timed model checking this guarantees termination.

25

bound/upper bound automata whereas the corresponding problem for
general PTAs is undecidable.

Informally, a positive occurrence of a parameter in a guard or an
invariant of a PTA enforces (or contributes to) an upper bound on a
clock difference, for instance p in x− y < 2p. A negative occurrence of a
parameter contributes to a lower bound on a clock difference, for instance
q and q′ in y−x > q+2q′ (≡ x−y < −q−2q′) and in x−y < 2p−q−2q′.
Hence, a PTA containing the guards x − y ≤ p − q and z < q − p is not
an L/U automaton.

Definition 12. A parameter pi ∈ P is said to occur in the linear ex-
pression e = t0 + t1 · p1 + · · · tn · pn if ti 6= 0; pi occurs positively in e if
ti > 0 and pi occurs negatively in e if ti < 0. A lower bound parameter
of a PTA A is a parameter that only occurs negatively in the expressions
of A and an upper bound parameter of A a parameter that only occurs
positively in A. We call A a lower bound/upper bound (L/U) automaton
if every parameter occuring in A is either a lower bound parameter or an
upper bound parameter of A, but not both.

Example 3. The automaton in Fig. 5 is an L/U automaton where min is
a lower bound parameter and max is an upper bound parameter. Also the
model of Fischer protocol in Fig. 2 is an L/U automaton. Here min rw
and min delay are lower bound parameters and max rw and max delay are
the upper bound parameters.

From now on, we work with a fixed set L = {l1, . . . lK} of lower bound
parameters and a fixed set U = {u1, . . . uM} of upper bound parameters
with L ∩ U = ∅ and L ∪ U = P .

We consider, apart from parameter valuations, also extended param-
eter valuations. Intuitively, an extended parameter valuation is a param-
eter valuation with values in R≥0 ∪ {∞}, rather than in R≥0. Extended
parameter valuations are useful in certain cases to solve the verification
problem (over non-extended valuations) stated in Section 2.3. Working
with extended parameter valuations may cause the evaluation of an ex-
pression to be undefined. For example, the expression e[v] is not defined
for e = p− q and v(p) = v(q) = ∞. We require that an extended param-
eter valuation of an L/U automaton does not assign the value ∞ both to
a lower bound parameter and to an upper bound parameter. Then the
expression e[v] is defined for every extended valuation of an L/U automa-
ton.

Therefore, we can easily extend notions e[v], (v,w) |= e and A[v]
(defined in Section 2) to extended valuations, by using the conventions

26

that 0 ·∞ = 0, that x − y ≺ ∞ evaluates to true and x − y ≺ −∞ to
false. In particular, we have [[A]]v = A[v] for extended valuations v and
L/U automata A. Moreover, we extend the orders ∼ to R ∪ {∞} in the
usual way and to extended valuations via point wise extension (i.e. v ∼ v′

iff v(p) ∼ v′(p) for all p ∈ P). We denote an extended valuation of an
L/U automaton by a pair (λ, µ), which equals the function λ on the lower
bound parameters and µ on the upper bound parameters. We write 0 and
∞ for the functions assigning respectively 0 and ∞ to each parameter.

The following proposition is based on the fact that weakening the
guards in A (i.e. decreasing the lower bounds and increasing the upper
bounds) yields an automaton whose reachable states include those of A.
Dually, strengthening the guards in A (i.e. increasing the lower bounds
and decreasing the upper bounds) yields an automaton whose reachable
states are a subset of those of A. We claim that this proposition, formu-
lated for L/U automata, can be generalized to lower bound and upper
bound parameters present in general PTAs. It is however crucial that (by
definition) state formulae do not contain parameters. The usefulness of
this property (and of several other properties in this section) lies in the
fact that it allows to conclude the satisfaction of a property for infinitely
many parameter valuations from the satisfaction of that property for one
valuation.

Proposition 3. Let A be an L/U automaton and φ a state formula.
Then

1. [[A]](λ,µ) |= ∃3φ ⇐⇒ ∀λ′ ≤ λ, µ ≤ µ′ : [[A]](λ′,µ′) |= ∃3φ.

2. [[A]](λ,µ) |= ∀2φ ⇐⇒ ∀λ ≤ λ′, µ′ ≤ µ : [[A]](λ′,µ′) |= ∀2φ.

Proof. (sketch) Both parts of the proposition can be proven by induction
on the length of runs in the L/U automata. The crucial observation is
that for parameter valuations λ′ ≤ λ and µ ≤ µ′ and linear expression
e we have that e[λ′, uval] ≤ e[lval, uval] and e[λ, uval] ≤ e[λ, uvalpr].
Therefore whenever ((λ, µ), w) |= g then ((λ′, µ′), w) |= g. ut

The following example illustrates how Proposition 3 can be used to
eliminate parameters from L/U automata.

Example 4. The automaton in Fig. 5 is an L/U automaton. Its location S1

is reachable irrespective of the parameter values. By setting the parameter
min to ∞ and max to 0, one checks with a non-parametric model checker
that A[(∞, 0)] |= ∃3S1. Then Proposition 3 (together with [[A]]v = A[v])
yields that S1 is reachable in [[A]](λ,µ) for all extended parameter valua-
tions 0 ≤ λ, µ ≤ ∞.

27

Clearly, [[A]](λ,µ) |= ∃3S2 iff λ(min) ≤ µ(max) ∧ λ(min) < ∞. We
will see in this running example how we can verify this property com-
pletely by non-parametric model checking. Henceforth, we construct the
automaton A′ from A by substituting the parameter max by the param-
eter min yielding an (non L/U) automaton with one parameter, min . If
we show that [[A′]]v |= ∃3S2 for all valuations v, this essentially means
that [[A]](λ,µ) |= ∃3S2 for all λ, µ such that µ(max) = λ(min) < ∞
and then Proposition 3 implies that [[A]](λ,µ) |= ∃3S2 for all λ, µ with
λ(min) ≤ µ(max) and λ(min) <∞.

S0 S1 x<=max

S2

x:=0

x=> min

Fig. 5. Reducing parametric to non-parametric model checking

The question whether there exists a (non-extended) parameter valu-
ation such that a given (final) location q is reachable, is known as the
emptiness problem for PTAs. In [3], it is shown that the emptiness prob-
lem is undecidable for PTAs with three clocks or more. The following
proposition implies that we can solve the emptiness problem for an L/U
automaton A by only considering A[(0,∞)], which is a non-parametric
timed automaton. Since reachability is decidable for timed automata ([2]),
the emptiness problem is decidable for L/U automata. Then it follows
that the dual problem is also decidable for L/U automata. This is the
universality problem for invariance properties, asking whether an invari-
ance property holds for all parameter valuations.

Proposition 4. Let A be an L/U automaton. Then A[(0,∞)] |= ∃3q if
and only if there exist a (non-extended) parameter valuation (λ, µ) such
that [[A]](λ,µ) |= ∃3q.

Proof. The “if”–part is an immediate consequence of Proposition 3 and
the fact that A[(0,∞)] = [[A]](0,∞). For the “only if”–part, assume that α
is a run of A[(0,∞)] that reaches q. Let T ′ be the smallest constant occur-
ring A and T be the maximum clock value occurring in α. (More precisely,
if α = s0a1s1a2 . . . aNsN and si = (qi, wi), then T = maxi≤N,x∈C wi(x);
T ′ compensates for negative constants t0.) Now, take λ(lj) = 0 and

28

µ(uj) = T + |T ′| + 1. Then for every guard or invariant g occurring
in A we have that ((0,∞), wi) |= g =⇒ ((λ, µ), wi) |= g. Hence, α is a
run of [[A]](λ,µ), so [[A]](λ,µ) |= ∃3q. ut

Corollary 1. The emptiness problem is decidable for L/U automata.

Definition 13. A PTA A is fully parametric if clocks are only reset to
0 and every linear expression in A of the form t1 · p1 + · · ·+ tn · pn, where
ti ∈ Z.

The following proposition is basically the observation in [2], that mul-
tiplication of each constant in a timed automaton and in a system prop-
erty with the same positive factor preserves satisfaction.

Proposition 5. Let A be fully parametric PTA. Then for all parameter
valuations v and all system properties ψ

[[A]]v |= ψ ⇐⇒ ∀t ∈ R>0 : [[A]]t · v |= t ·ψ,

where t · v denotes the valuation p 7→ t · v(p) and t ·ψ the formula obtained
from ψ by multiplying each number in ψ by t.

Proof. It is easy to see that for all t ∈ R>0, α = s0a1s1a2 . . . aNsN with
si = (qi, wi) is a run of [[A]]v if and only if s′0a1s

′
1 . . . aNs

′
N is a run of

[[A]]t · v, where s′i = (qi, t ·wi) and t ·wi denotes x 7→ t ·wi(x).

Then for fully parametric PTAs with one parameter and system prop-
erties ψ without constants (except for 0), we have [[A]]v |= ψ for all valua-
tions v of P if and only if both A[0] |= ψ and A[1] |= ψ. The fact that the
0-case has to be treated separatly is illustrated by the (fully parametric)
automaton with a single transition equipped with the guard x < p. The
target location of the transition is not reachable for p = 0.

Corollary 2. For fully parametric PTAs with one parameter and prop-
erties ψ without constants (except 0), it is decidable whether ∀v ∈ [[C]] :
[[A]]v |= ψ.

Example 5. The PTA A′ mentioned in Example 4 is a fully parametric
timed automaton and the property ∃3S2 is without constants. We estab-
lish that A′[0] |= ∃3S2 and A′[1] |= ∃3S2. Then Proposition 5 implies
that A′[v] |= ∃3S2 for all v. As shown in Example 4, this implies that
[[A]](λ,µ) |= ∃3S2 for all λ, µ with λ(min) = µ(max) <∞.

29

In the running example, we would like to use the same methods as
above to verify that [[A]](λ,µ) 6|= ∃3S2 if λ(min) > µ(max). We can in this
case not fill in for min = max , since the bound in the constraint is a strict
one. The following definition and results allows us to move the strictness
of a constraint into the PTA.

Definition 14. Let P ′ ⊆ P be a set of parameters. Define A<
P ′ as the

automaton obtained by replacing every inequality x−y ≤ e in A by a strict
inequality x− y < e, provided that e contains at least one parameter from
P ′. Similarly, define A≤

P ′ as the automaton from A obtained by replacing
every inequality x− y < e by a non–strict inequality x− y ≤ e, provided
that e contains at least one parameter from P ′. For ≺=<,≤, write A≺ for
A≺

P . Moreover, define v ≺P ′ v′ by v(p) ≺ v′(p) if p ∈ P ′ and v(p) = v′(p)
otherwise.

Proposition 6. Let A be an L/U automaton. Then

1. [[A≤]](λ,µ) |= ∃3φ =⇒ ∀λ′ < λ,µ < µ′ : [[A]](λ′,µ′) |= ∃3φ.
2. [[A<]](λ,µ) |= ∀2φ ⇐⇒ ∀λ < λ′, µ′ < µ : [[A]](λ′,µ′) |= ∀2φ.

Proof. 1, =⇒ Let e be a linear expression occuring in A. Then we can
write e = t0 + e1 + e2, where t0 ∈ Z, e1 is an expression over the
upperbound parameters and e2 an expression over the lower bound
parameters. Then we have

µ ≤ µ′ =⇒ e1[µ] ≤ e1[µ′],
λ′ ≤ λ =⇒ e2[λ′] ≤ e2[λ],
λ′ ≤ λ, µ ≤ µ′ =⇒ e[(λ, µ)] ≤ e[(λ′, µ′)].

If there is at least one parameter occuring in e1 or e2 respectively then
respectively

µ < µ′ =⇒ e1[µ] < e1[µ′]
λ′ < λ =⇒ e2[λ] < e2[λ′].

Thus if there is at least one parameter occuring in e, then

λ′ < λ,µ < λ =⇒ e[(λ, µ)] < e[(λ′, µ′)].

Now, let (λ, µ) be an extended valuation. Let g ≡ x−y ≺ e be a simple
guard occuring in A≤ and let g′ ≡ x − y ≺′ e be the corresponding
guard in A. Assume that (w, (λ, µ)) |= g, i.e. w(x) −w(y) ≺ e[(λ, µ)].
We show that (w, (λ, µ)) |= g′. We distinguish two cases.

30

case 1: There exists a parameter occuring in e. Then w(x)−w(y) ≺
e[(λ, µ)] < e[(λ′, µ′)]. Then certainly (w, (λ, µ)) |= g′ ≡ x− y ≺′ e.

case 2: The expression e does not contain any parameter. Then
g′ ≡ g and hence (w, (λ, µ)) |= g′.

Now it easily follows that every run of [[A≤]](λ,µ) is also a a run of
[[A]](λ′,µ′). Thus, if a state satisfying ψ is reachable in [[A≤]](λ,µ) then
it is also reachable in [[A]](λ′,µ′).

2, =⇒ : This follows from 1. Assume that [[A<]](λ,µ) |= ∀2φ and let λ′,
µ′ be such that λ < λ′, µ′ < µ. Since [[A<]](λ,µ) 6|= ∃3¬φ, we have

¬∀λ′′ < λ′, µ′ < µ′′ : [[A<]](λ′′,µ′′) |= ∃3¬φ.

Then contraposition of statement (1) of this proposition together with
(A<)≤ = A≤ yields [[A≤]](λ′,µ′) 6|= ∃3¬φ. As A imposes stronger
bounds than A≤, also [[A]](λ′,µ′) 6|= ∃3¬φ, i.e. [[A]](λ′,µ′) |= ∀2φ.

2, ⇐=: Let (λ, µ) be an extended valuation and assume that [[A]](λ′,µ′) |=
∀2φ for all λ′ > λ, µ′ < µ. Assume that α is a run of [[A<]](λ,µ). We
construct λ′ > λ and µ′ < µ such that α is also a run of [[A]](λ′,µ′).
(Then we are done: since [[A]](λ′,µ′) |= ∀2φ, the last state of α satisfies
φ. Hence every reachable state of [[A]](λ,µ) satisfies φ, i.e. [[A]](λ,µ) |=
∀2φ.)
We use the following notation. We write v = (λ, µ) and v′ = (λ′, µ′).
For a run α, we write α = s0a1s1a2 . . . aNsN with si = (qi, wi), I(qi) =
∧J ′

j Iij , Iij = xij ≺ij Eij. As α is a run, there exists a transition

qi−1
gi,ai,ri−−−−→ qi for each i, 1 ≤ i ≤ N . We write the guard on this

transition by gi = ∧J
j gij , gij = xij − yij ≺ij eij . Finally, if g is a guard

or invariant in A, then we denote the corresponding guard or invariant
in A< by g<, i.e. the guard that is obtained as in Definition 14.
If neither the guards gij nor the invariants Iij contains a parameter,
then we can take v′ arbitrarily and we have that α is a run of [[A]]v′ .
Therefore, assume that at least one of the guards gij or invariants
Iij contains a parameter. Then, by definition of A<, this guard or
invariant contains a strict bound. In this case, we construct λ′ > λ and
µ′ < µ such that wi(x− y) < e[(λ′, µ′)] < e[(λ, µ)] if g = x− y < e is
an invariant Iij or guard gij as above. Informally, we use the minimum
“distance” e[(λ, µ)]−wi(x− y) occurring in α to slightly increase the
lower bounds and slightly decrease the upper bounds yielding λ < λ′

and µ < µ′.

31

Let

T0 = min
i≤N,j≤J ′ {Eij [v] − wi(xij) | ≺ij=<},

T1 = min
i≤N,j≤<J

{eij [v] − wi(xij − yij) | ≺ij=<},
0 <T < min {T0, T1},

with the convention that min ∅ = ∞. At least one of the inequalities
≺i j is strict, since at least one of the guards contains a parameter.
Hence T0 < ∞ or T1 < ∞. Since (v,wi) |= Iij ∧ gij , we have we
have that T0 ≥ 0 and T1 ≥ 0. Hence ∞ > min {T0, T1} > 0 and the
requested T exists. It crucial property is that if gij ≡ xij − yij < eij
or gij ≡ xij − yij < Eij we have respectively

T < eij [v] − wi(xij − yij)
T < Eij[v] − wi(xij − yij).

Now, let T ′ be the sum of the constants appearing in the guards and
invariants that appear in the run α i.e.

T ′ =
∑

i≤N,j≤J ′
sum of const(Eij) +

∑
i≤n,j≤J

sum of const(eij),

where sum of const(t0 + t1 ·p1 + · · ·+ tn ·pn) = |t1|+ · · ·+ |tn| . Since
at least one of the guards or invariants contains a parameter, we have
T ′ > 0.
Now, take v′ = (λ + T

T ′ , µ − T
T ′) and consider gij ≡ xij − yij ≺ij eij .

We claim that (v′, wi) |= gij .
case 1: The expression gij does not contain any parameter. Then
gij = g<

ij and eij [v] = eij [v′]. Since (wi, v) |= gij , also (wi, (v′)) |=
g<
ij .

case 2: There exists a parameter occuring in e. We can write e =
t0 + t1 ·u1 + · · ·+ tM ·uM − t′1 · l1 − · · ·− t′K · lK , with ti ≥ 0, t′i ≥ 0
for i > 0. Then

eij [v′] = t0 +
M∑

k=1

tk ·(µ′k − T

T ′) −
K∑

k=1

tk ·(λ′k +
T

T ′)

= (t0 +
M∑

k=1

tk ·µ′k −
K∑

k=1

tk ·λ′k) −
T

T ′ ·(
M∑

k=1

tk +
K∑

k=1

t′k)

≥ eij [v] − T

> eij [v] − (eij [v] − wi(xij − yij))
= wi(xij − yij).

32

Therefore (wi, v
′) |= xij − yij < g<

ij and then also (wi, v
′) |= xij −

yij ≺ij g
<
ij .

Combining the cases (1) and (2) yields that for all i, j, (wi, v
′) |=

xij − yij ≺ij g
<
ij . Similarly, one proves that (wi, v

′) |= xij − yij ≺ij Iij .
Therefore, α is a fun of [[A]](λ′,µ′).

ut
The previous result concerns the automaton that is obtained when all

the strict inequalities in the automaton are changed into nonstrict ones,
(or the other way around). Sometimes, we want to ‘toggle’ only a some
of the inequalities. Then the following result can be applied.

Corollary 3. Let A be an L/U automaton and P ′ ⊆ P .

1. [[A≤
P ′]](λ,µ)

|= ∃3φ =⇒ ∀λ′ <P ′ λ, µ <P ′ µ′ : [[A]](λ′,µ′) |= ∃3φ.
2. [[A<

P ′]](λ,µ)
|= ∀2φ ⇐⇒ ∀λ <P ′ λ′, µ′ <P ′ µ : [[A]](λ′,µ′) |= ∀2φ.

Proof. Let (λ, µ) be an extended valuation. Let A0 be the automaton
obtained from A by substituting p by (λ, µ)(p) for every p /∈ P ′. Then
A<

P ′ = A0
< and A≤

P ′ = A0
≤. Now the result follows by applying Proposi-

tion 6 to A0. ut
The following example shows that the converse of Proposition 6, item 1

does not hold.

Example 6. Consider the automaton A in Fig. 6. Recall that the clocks
x and y are initially 0. Then A = A≤ and the location q is reachable if
max > 0 but not if max = 0. Thus ∀λ′ < 0, 0 < µ′ : [[A]](λ′,µ′) |= ∃3φ,
but not [[A≤]](0,0) |= ∃3φ.

We believe the class of L/U automata can be very useful in practice.
Several examples known from the literature fall into this class, or can
be modelled slightly differently to achieve this. We mention the IEEE
Root Contention protocol [12], Fischer’s mutual exclusion protocol [13],
the (toy) rail road crossing example from [3], the Bounded Retransmission
protocol (when considering a fixed value for the integer variables) and the
Biphase Mark protocol (with minor adaptations). Moreover, the MMT
models from [16] can be encoded straightforwardly into L/U automata.

We expect that quite a few other distributed systems and protocols
can be modelled with L/U automata, since it is quite natural to have
the duration of an event (such as the communication delay in a channel,
the computation time needed to produce a result, the time required to

33

q0

x<=2

q

x<=max

x:=0

y>=10

Fig. 6. The converse of Proposition 6 (1) does not hold.

open the gate in a rail road crossing) lying between a lower bound and an
upper bound and these bounds are often the parameters of the system.

Section 4.1 and Section 5 show that the techniques discussed in this
section to eliminate parameters in L/U models reduce the verification
effort significantly and possibly leads to a completely non-parametric
model.

4.1 Verification of Fischer’s Mutual Exclusion Protocol

In this section, we apply the results from the previous section to verify the
Fischer protocol with 2 processes. We can establish the sufficiency of the
protocol constraints by non-parametric model checking and the necessity
of the constraints by eliminating three of the four parameters.

Consider the Fischer protocol from Section 2.4 again. In this section,
we consider a system A consisting of two parallel processes P1 and P2. It is
clear that A is a fully parametric L/U automaton: min rw and min delay
are lower bound parameters and max rw and max delay upper bound
parameters.

The mutual exclusion property is expressed by the formula ΦME ≡
∀2¬(P1.cs ∧ P2.cs). Recall that assuming the basic constraints BME ≡
0 ≤ min rw <max rw ∧ 0 ≤ min delay < max delay , mutual exclusion
is guaranteed if and only if CME ≡ max rw ≤min delay . Thus we prove
that for all valuations v: v |= BME =⇒ ([[A]]v |= ΦME ⇐⇒ v |= CME).

Sufficiency of the Constraints We show that the constraints assure
mutual exclusion, that is

if v |= CME ∧BME , then A[v] |= ΦME .

34

We perform the substitution

min rw 7→ 0,max delay 7→ ∞,min delay 7→ max rw

to obtain a fully parametric automaton A′ with one parameter, max rw .
We have established by non-parametric model checking that A′[0] |= ΦME

and A′[1] |= ΦME . Now Proposition 5 yields that [[A′]]v |= ΦME for all
valuations v (where only the value of max delay matters). This means
that [[A]]v |= ΦME if v(min rw) = 0, v(max rw) = v(min delay) and
v(max delay) = ∞. Then Proposition 3 yields that the mutual exclusion
property, which is an invariance property, also holds if the lower bound
parameters min rw and min delay are increased and if the upper bound
parameter max rw is decreased. More precisely, Proposition 3 implies that
[[A]]v |= ΦME for all v with 0 ≤ v(min rw), v(max rw) ≤ v(min delay)
and v(max delay) ≤ ∞. Then, in particular, if v |= CME ∧ BME , then
[[A]]v |= ΦME .

Necessity of the Constraints: We show that if

v |= BME ∧ ¬CME =⇒ A[v] |= ¬ΦME ,

i.e. that if v |= min rw<max rw ∧ min delay<max delay ∧ min delay<
max rw , then A[v] |= ¬ΦME ≡ ∃3(P1.cs ∧ P2.cs). We construct the
automaton A≤ and proceed in two steps.

Step 1 Let v0 be the valuation v0(min delay) = v0(max delay) = 0 and
v0(min rw) = v0(max delay) = 1. By non-parametric model checking we
have established that

A≤[0] |= ¬ΦME (7)

A≤[v0] |= ¬ΦME . (8)

We show that it follows that for all v

v |= 0 = min delay = max delay ≤ min rw = max rw =⇒ A≤[v] |= ¬ΦME .
(9)

Assume v |= 0 = min delay = max delay ≤ min rw = max rw . Consider
t = v(min rw). If v(min rw) = 0, then (7) shows that [[A≤]]v |= ¬ΦME .
Therefore, assume v(min rw) > 0 and consider v

t ≡ λx.v(x)
t . It is not

difficult to see that
v

t
|= 0 = min delay = max delay ≤ min rw = max rw = 1.

35

Therefore, (8) yields [[A≤]] v
t
|= ¬ΦME . Since A≤ is a fully parametric

PTA, Proposition 5 yields that [[A≤]]v |= ¬ΦME .

Step 2 Let A′ be the automaton that is constructed from A≤ by perform-
ing the following substitution min delay 7→ 1, max delay 7→ 1, min rw 7→
max rw . By parametric model checking we have established

v |= 1 ≤ max rw =⇒ [[A′]]v |= ¬ΦME . (10)

This means that if

v |= min delay = max delay = 1 ≤ min rw = max rw =⇒
[[A≤]]v |= ¬ΦME .

By a argument similar to the one we used to prove (9), (where now the
case v(min delay) = 0 is covered by statement (9) in Step 1.), we can use
Proposition 5 to show that

v |= min delay = max delay ≤ min rw = max rw =⇒ [[A≤]]v |= ¬ΦME .

Now, Proposition 3 yields that ¬ΦME – which is a reachability property –
also holds if the values for the lower bounds are decreased and the values
for the upper bounds are increased. Note that we may increase max delay
as much as we want; v(max delay) may be larger than v(min rw). Thus
we have

v |= min rw ≤max rw ∧ min delay≤max delay ∧ min delay≤max rw

=⇒ [[A≤]]v |= ¬ΦME

and then Proposition 6 yields that

v |= min rw<max rw ∧ min delay<max delay ∧ min delay<max rw
=⇒ [[A]]v |= ¬ΦME .

We have checked the result formulated in statement 10 with our proto-
type implementation. The experiment was performed on a SPARC Ultra
in 2 seconds CPU time and 7.7 Mb of memory. We also tried to verify the
protocol model without any substitutions or changing of bounds with our
prototype, which did not terminate within 20 hours. Since we observed
that the constraints lists of the states explored kept growing, we concluded
that this experiment would not terminate at all. (Recall that parametric
verification is undecidable.) The good news here is that in some cases,

36

the techniques for L/U automata yield results even if the state space
exploration algorithm does not terminate on the original model.

The substitutions and techniques used in the verification to eliminate
parameters are ad hoc. We believe however that more general strategies
can be applied, especially in this case, where the constraints are L/U–like
(i.e. can be written in the form e ≺ 0 such that every p occurring nega-
tively in e is a lower bound parameter and every p occurring positively
in e is an upper bound parameter).

5 Experiments

5.1 A Prototype Extension of Uppaal

In this section, we report on the results of experimenting with a prototype
extension of Uppaal described in the previous sections.

Our prototype allows the user to give some initial constraints on
the parameters. This is particularly useful when explorations cannot be
finished due to lack of memory or time resources, or because a non-
converging series of constraint sets is being generated. Often, partial
results can be derived by observing the constraint sets that are gener-
ated during the exploration. Based on partial results, the actual solution
constraints can be established in many cases. These partial results can
then be checked by using an initial set of constraints. Always, for each
parameter p the constraint p ≥ 0 is added as initial constraint.

5.2 The Root Contention Protocol

The root contention protocol is part of a leader election protocol in the
physical layer of the IEEE 1394 standard (FireWire/i-Link), which is used
to break symmetry between two nodes contending to be the root of a tree,
spanned in the network topology. The protocol consists of first drawing
a random number (0 or 1), then waiting for some time according to the
result drawn, followed by the sending of a message to the contending
neighbor. This is repeated by both nodes until one of them receives a
message before sending one, at which point the root is appointed.

We use the Uppaal models of [18, 17], turn the constants used into pa-
rameters, and experiment with our prototype implementation (see Fig. 7
for results3). In both models, there are five constants, all of which are pa-
rameters in our experiments. The delay constant indicates the maximum
3 All experiments were performed on a 366 MHz Celeron, except the liveness property

which was performed in a 333 MHz SPARC Ultra Enterprise.

37

delay of signals sent between the two contending nodes. The rc fast min
and rc fast max constants give the lower and upper bound to the wait-
ing time of a node that has drawn 1. Similarly, the rc slow min and
rc slow max constants give the bounds when 0 has been drawn. It is rea-
sonable to assume that initially, the constraints rc fast min ≤ rc fast max
≤ rc slow min ≤ rc slow max hold.

We have checked for safety with the following property:

∀2 . (¬(Node1.root ∧ Node2.root) ∧ ¬(Node1.child ∧ Node2.child))

Safety for [18] It is shown in [18], that the safety property holds, if the
parameters obey the following relation: delay < rc fast min. We have
checked that the error states, expressed in the safety property, are indeed
unreachable when this parameter constraint is met. We have also checked
whether error states are reachable when we assume the constraint delay
= rc fast min. This turns out not to be the case. In fact, it is argued
in Remark 2 in [18], that the mentioned constraint is not needed for the
correctness of the protocol. Rather than checking this on the parame-
terized model without any initial constraints, which is a large task, we
experiment with a non-parametric version of the model without any tim-
ing constraints. It turns out that this model satisfies the safety property,
hence we deduce that the parametric model, in which guards and invari-
ants have been added, satisfies the safety property for any valuation of
the parameters.

Safety for [17] A different model of the root contention protocol is pro-
posed in [17], in which it is shown that the relation between the parame-
ters for the safety property to hold, should obey: 2∗delay < rc fast min.
In fact, the model satisfies the safety property already when delay <
rc fast min, but the stronger constraint is needed for proper behavior of
the connecting wires. The necessity and sufficiency of these constraints is
shown in [17] by applying standard Uppaal to several valuations for the
parameters, and presented as an experimental result.

We have checked that the error states, expressed in the safety prop-
erty, are indeed unreachable when either of these parameter constraints
are met. We have also checked whether error states are reachable when
we assume the constraint delay = rc fast min, which turns out to be the
case as well. In fact, the union of the constraint sets of reachable states
reported, can be rewritten to the constraint delay = rc fast min. As a
double-check, we have ascertained for some parameter valuations, satis-
fying delay = rc fast min, that standard Uppaal also reaches an error
state.

38

Since the model used for safety is a L/U automaton, we can exper-
iment with Proposition 3, as follows. We show that our invariant prop-
erty is satisfied by a more general model of root contention, and de-
duce with part 2 of Proposition 3 that it holds for the constraints we
are after. We first identify the sets L = {rc fast min, rc slow min} and
U = {delay, rc fast max, rc slow max}. We substitute infinity for both
rc fast max and rc slow max, rc fast min for rc slow min. The new model,
together with either initial constraint delay < rc fast min, or 2∗delay <
rc fast min, satisfies the invariant property. This allows us to conclude
that the original model satisfies the invariant property for any valuation
of the parameters where rc fast min ≤ rc slow min, and the given ini-
tial constraint are satisfied. This includes the special case rc fast min ≤
rc fast max ≤ rc slow min ≤ rc slow max.

We can do even better by applying Proposition 6, if we first change
each guards or invariants for delay to a strict version, and then substitute
infinity for both rc fast max and rc slow max, and rc fast min for both
delay and rc slow min. Now we have a model with only one parameter
and no constants, which we can verify non-parametrically with standard
Uppaal, for two valuations of the parameter rc fast min, namely 0 and
a non-zero value. The invariant property is satisfied, hence, by Proposi-
tion 5, we can deduce that it holds for all valuations of rc fast min, hence
the original model satisfies the invariant property for any valuation of the
parameters where rc fast min ≤ rc slow min, and delay < rc fast min.
Likewise, we can substitute rc fast min/2 for delay, and derive the other
constraint. As can be seen in Fig. 7, the speed-up in terms of memory
and time is drastic.

Finally, we can combine the results for initial constraints delay <
rc fast min and delay = rc fast min with the fact that our model is a L/U
automaton, and derive the necessity of constraint delay < rc fast min, as
follows. Suppose that a parameter valuation for delay and rc fast min ex-
ists, such that (1) the safety property holds, but (2) the constraint delay
< rc fast min is not satisfied. Assume this valuation assigns d to delay and
r to rc fast min. By our results, we know that d 6= r, so d > r. We now
apply Proposition 3, and deduce that for each parameter valuation that
assigns a value to upper bound parameter delay which is smaller than d,
and a value to lower bound parameter rc fast min which is larger than
r, the safety property must hold. This includes valuations that satisfy
constraint delay = rc fast min, which contradicts our results. We con-
clude that only for parameter valuations that satisfy constraint delay <
rc fast min, the safety property holds.

39

model from initial constraints? reduced? property Uppaal time memory

[18] yes no safety param 2.9 h 185 Mb
[18] yes yes safety std 1 s 800 Kb
[17] yes no safety param 1.6 m 36 Mb
[17] yes partly safety param 11 s 13 Mb
[17] yes completely safety std 1 s 800 Kb
[17] yes no liveness param 2.6 h 308 Mb

Fig. 7. Experimental results for the root contention protocol

Liveness for [17] In [17], it is also shown that a refinement relation be-
tween the model of the most detailed level, and a model which is a bit
more abstract, holds when the following relations are obeyed: 2∗delay <
rc fast min, and 2∗delay < rc slow min - rc fast max. The refinement re-
lation is such that it preserves both safety and liveness properties for the
root contention protocol (which is proved in [17]). Again, the necessity
and suffiency of the constraints is shown by experimenting with standard
Uppaal for several valuations for the parameters, and presented as an
experimental result.

We have checked for a completely parameterized version of the sys-
tem with the detailed model and the test automaton of the more ab-
stract model, that error states in the test automaton are unreachable,
that is, that the refinement relation holds. We have also checked, whether
error states are reachable, that is, that the refinement relation does not
hold, in the following two cases: either 2∗delay = rc fast min, and 2∗delay
< rc slow min - rc fast max, or 2∗delay < rc fast min, and 2∗delay =
rc slow min - rc fast max. This turns out to be the case as well. In fact,
in both cases, the union of the constraint sets of reachable states reported,
can be rewritten to these initial constraints. Again, this has been double
checked by feeding parameter valuations that satisfy either of the above
constraint sets to standard Uppaal, which comes up with error states
as well. Since the models for liveness use constraints that fall outside the
scope of L/U automata, we cannot apply Proposition 6 here.

5.3 The Bounded Retransmission Protocol

This protocol was designed by Philips for communication between remote
controls and audio/video/TV equipment. It is a slight alteration of the
well-known alternating bit protocol, to which timing requirements and a
bound on the retry mechanism have been added. In [8] constraints for
the correctness of the protocol are derived by hand, and some instances

40

are checked using Uppaal. Based on the models in [8], an automatic
parametric analysis is performed in [4], however, no further results are
given.

model from initial constraints property Uppaal time memory

[8] yes safety1 param 1.3 m 34 Mb
[8] no safety2 param 11 m 180 Mb
[8] yes safety2 param 3.5 m 64 Mb

Fig. 8. Experimental results for the bounded retransmission protocol

For our analysis we have also used the timed automata models from
[8]. In [8] three different constraints are presented based on three prop-
erties which are needed to satisfy the safety specification of the protocol.
We are only able to check two of these since one of the properties contain
a parameter which our prototype version of Uppaal is not able to handle
yet.

One of the constraints derived in [8] is that TR ≥ 2 · MAX · T1 +
3 · TD, where TR is the timeout of the receiver, T1 is the timeout of
the sender, MAX is the number of resends made by the sender, and TD

is the delay of the channel. This constraint is needed to ensure that the
receiver does not time out prematurely before the sender has decided to
abort transmission. The sender has a parameter SYNC which decides for
how long the sender waits until it expects that the receiver has realized
a send error and reacted to it. In our parametric analysis we used TR

and SYNC as parameters and instantiated the others to fixed values.
Using our prototype we did derive the expected constraint TR ≥ 2 ·
MAX · T1 + 3 · TD, however, we also derived the additional constraint
TR − 2 ≤ SYNC which was not stated in [8] for this property. The
necessity of this constraint was verified by trying models with different
fixed values for the parameters. The full set of constraints derived in [8]
includes a constraint TR ≥ SYNC which is based on the property we
cannot check. Therefore the error we have encountered is only present in
an intermediate result, the complete set of constraints derived is correct.
The authors of [8] have acknowledged the error and provided an adjusted
model of the protocol, for which the additional constraint is not necessary.

The last constraint derived in [8] arises from checking that the sender
and receiver are not sending messages too fast for the channel to handle.
In this model we treat T1 as a parameter and derive the constraint T1 >
2 ·TD which is the same as is derived in [8].

41

5.4 Other Experiments

We have experimented with parameterized versions of models included
in the standard Uppaal distribution, namely Fischer’s mutual exclusion
protocol, a train gate controller, and a car gear box controller.

In the case of Fischer’s protocol (which is the version of the standard
Uppaal distribution, and not the one discussed in the rest of this paper),
we parameterized a model with two processes, by turning the bound on
the period the processes wait, before entering the critical section, into
a parameter. We were able to generate the constraints that ensure the
mutual exclusion within 2 seconds of CPU time on a 266 MHz Pentium
MMX. Using these constraints as initial constraints and checking that now
indeed the mutual exclusion is guaranteed, is done even faster. Fischer’s
protocol with two processes was also checked in [4], which took about 3
minutes.

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In J.W.
de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proceedings
REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands, June
1991, volume 600 of Lecture Notes in Computer Science, pages 1–27. Springer-
Verlag, 1992.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In
Proceedings of the 25th Annual Symposium on Theory of Computing, pages 592–
601. ACM Press, 1993.

4. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric
reasoning about counter and clock systems. In E.A. Emerson and A.P. Sistla, edi-
tors, Proceedings of the 12th International Conference on Computer Aided Verifica-
tion, volume 1855 of Lecture Notes in Computer Science, pages 419–434. Springer-
Verlag, 2000.

5. G. Bandini, R. Lutje Spelberg, and H. Toetenel. Parametric verification of the
IEEE 1394a root contention protocol using LPMC. http://tvs.twi.tudelft.nl/, July
2000. Submitted for publication.

6. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
Model-Checking Tool for Real-Time Systems. In A.J. Hu and M.Y. Vardi, editors,
Proceedings of the 10th International Conference on Computer Aided Verification,
Vancouver, BC, Canada, volume 1427 of Lecture Notes in Computer Science, pages
546–550. Springer-Verlag, June/July 1998.

7. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
McGraw-Hill, Inc., 1991.

8. P.R. D’Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded retrans-
mission protocol must be on time! In E. Brinksma, editor, Proceedings of the Third
Workshop on Tools and Algorithms for the Construction and Analysis of Systems,

42

Enschede, The Netherlands, volume 1217 of Lecture Notes in Computer Science,
pages 416–431. Springer-Verlag, April 1997.

9. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
J. Sifakis, editor, Proceedings of the International Workshop on Automatic Verifi-
cation Methods for Finite State Systems, Grenoble, France, volume 407 of Lecture
Notes in Computer Science, pages 197–212. Springer-Verlag, 1990.

10. Ansgar Fehnker. Scheduling a Steel Plant with Timed Automata. In Sixth
International Conference on Real-Time Computing Systems and Applications
(RTCSA’99). IEEE Computer Society Press, 1999.

11. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hy-
brid Systems. In O. Grumberg, editor, Proceedings of the 9th International Confer-
ence on Computer Aided Verification, volume 1254 of Lecture Notes in Computer
Science, pages 460–463. Springer-Verlag, 1997.

12. IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std
1394-1995, August 1996.

13. L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1–11, February 1987.

14. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

15. R.F. Lutje Spelberg, W.J. Toetenel, and M. Ammerlaan. Partition refinement in
real-time model checking. In A.P. Ravn and H. Rischel, editors, Proceedings of
the Fifth International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT’98), Lyngby, Denmark, volume 1486 of Lecture Notes
in Computer Science, pages 143–157. Springer-Verlag, 1998.

16. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Fransisco, California, 1996.

17. D.P.L. Simons and M.I.A. Stoelinga. Mechanical verification of the IEEE 1394a
root contention protocol using Uppaal2k. Technical Report CSI-R0009, Computing
Science Institute, University of Nijmegen, May 2000. Conditionally accepted for
Springer International Journal on Software Tools for Technology Transfer (STTT).

18. M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In J.-
P. Katoen, editor, Proceedings 5th International AMAST Workshop on Formal
Methods for Real-Time and Probabilistic Systems, Bamberg, Germany, volume
1601 of Lecture Notes in Computer Science, pages 53–74. Springer-Verlag, 1999.

19. Available via http://www.uppaal.com.

20. S. Yovine. Model checking timed automata. In G. Rozenberg and F.W. Vaandrager,
editors, Lectures on Embedded Systems, volume 1494 of Lecture Notes in Computer
Science, pages 114–152. Springer-Verlag, October 1998.

A Notational Conventions

a action
b natural number
c constraint
d nonnegative real number
e linear expression
f simple guard

43

g guard
i, j index
k total number of actions
l lower bound parameter
m total number of clocks
n total number of parameters
p parameter
q location
r reset set
s state
t, T integer or real number
u upper bound parameter
v parameter valuation
w clock valuation
x, y clock
z parametric zone
A set of actions
C set of constraints
D parametric difference bound matrix
E set of linear expressions
G set of guards
I invariant function
K number of lower bound parameters
L set of lower bound parameters
M number of upper bound parameters
P set of parameters
Q set of locations
R set of reset sets
S set of states
U set of upper bound parameters
X set of clocks
A parametric timed automaton
E unit PDBM
L labelled transition system
N the natural numbers
R the real numbers
Z the integers
λ, µextended valuation of lower bound (upper bound) parameter, respectively
φ state formula
ψ system property

44

Recent BRICS Report Series Publications

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear inTools
and Algorithms for The Construction and Analysis of Systems:
7th International Conference, TACAS ’01 Proceedings, LNCS,
2001.

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-3 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaan-
drager. Minimum-Cost Reachability for Priced Timed Automata.
January 2001. 22 pp. To appear inHybrid Systems: Computa-
tion and Control, 2001.

RS-01-2 Rasmus Pagh and Jakob Pagter.Optimal Time-Space Trade-
Offs for Non-Comparison-Based Sorting. January 2001.
ii+20 pp.

RS-01-1 Gerth Stølting Brodal, AnnaÖstlin, and Christian N. S. Peder-
sen. The Complexity of Constructing Evolutionary Trees Using
Experiments. 2001.

RS-00-52 Claude Cŕepeau, Fŕedéric Légaŕe, and Louis Salvail. How to
Convert a Flavor of Quantum Bit Commitment. December 2000.
24 pp. To appear inAdvances in Cryptology: International Con-
ference on the Theory and Application of Cryptographic Tech-
niques, EUROCRYPT ’01 Proceedings, LNCS, 2001.

RS-00-51 Peter D. Mosses.CASL for CafeOBJ Users. December 2000.
25 pp. Appears in Futatsugi, Nakagawa and Tamai, editors,
CAFE: An Industrial-Strength Algebraic Formal Method, 2000,
chapter 6, pages 121–144.

RS-00-50 Peter D. Mosses.Modularity in Meta-Languages. December
2000. 19 pp. Appears in2nd Workshop on Logical Frameworks
and Meta-Languages, LFM ’00 Proceedings, 2000.

