
B
R

IC
S

R
S

-01-4
B

ehrm
ann

etal.:
E

fficientG
uiding

Tow
ards

C
ost-O

ptim
ality

in
U

P
P

A
A

L

BRICS
Basic Research in Computer Science

Efficient Guiding Towards
Cost-Optimality in U PPAAL

Gerd Behrmann
Ansgar Fehnker
Thomas S. Hune
Kim G. Larsen
Paul Pettersson
Judi Romijn

BRICS Report Series RS-01-4

ISSN 0909-0878 January 2001

Copyright c© 2001, Gerd Behrmann & Ansgar Fehnker &
Thomas S. Hune & Kim G. Larsen & Paul
Pettersson & Judi Romijn.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/4/

Efficient Guiding Towards Cost-Optimality in

UPPAAL?

Gerd Behrmann1, Ansgar Fehnker3†, Thomas Hune2, Kim Larsen4,
Paul Pettersson‡5, and Judi Romijn3

1 Basic Research in Computer Science, Aalborg University,
E-mail: behrmann@cs.auc.dk

2 Basic Research in Computer Science, Aarhus University,
E-mail: baris@brics.dk

3 Computing Science Institute, University of Nijmegen,
E-mail: [ansgar,judi]@cs.kun.nl

4 Department of Computer Science, University of Twente§,
E-mail: kgl@cs.auc.dk

5 Department of Computer Systems, Information Technology,
Uppsala University, E-mail: paupet@docs.uu.se.

Abstract. In this paper we present an algorithm for efficiently comput-
ing the minimum cost of reaching a goal state in the model of Uniformly
Priced Timed Automata (UPTA). This model can be seen as a submodel
of the recently suggested model of linearly priced timed automata, which
extends timed automata with prices on both locations and transitions.
The presented algorithm is based on a symbolic semantics of UTPA, and
an efficient representation and operations based on difference bound ma-
trices. In analogy with Dijkstra’s shortest path algorithm, we show that
the search order of the algorithm can be chosen such that the number of
symbolic states explored by the algorithm is optimal, in the sense that
the number of explored states can not be reduced by any other search
order based on the cost of states. We also present a number of techniques
inspired by branch-and-bound algorithms which can be used for limiting
the search space and for quickly finding near-optimal solutions.
The algorithm has been implemented in the verification tool Uppaal.
When applied on a number of experiments the presented techniques re-
duced the explored state-space with up to 90%.

1 Introduction

Recently, formal verification tools for real-time and hybrid systems, such as Up-

paal [LPY97], Kronos [BDM+98] and HyTech [HHWT97], have been applied
? This work is partially supported by the European Community Esprit-LTR Project

26270 VHS (Verification of Hybrid systems).
§ On sabbatical from Basic Research in Computer Science, Aalborg University.
† Research supported by Netherlands Organization for Scientific Research (NWO)

under contract SION 612-14-004.
‡ Research partly sponsored by the AIT-WOODDES Project No IST-1999-10069.

to solve realistic scheduling problems [Feh99b,HLP00,NY99]. The basic com-
mon idea of these works is to reformulate a scheduling problem to a reachability
problem that can be solved by verification tools. In this approach, the automata
based modeling languages of the verification tools serve as the input language in
which the scheduling problem is described. These modeling languages have been
found to be very well-suited in this respect, as they allow for easy and flexible
modeling of systems consisting of several parallel components that interact in a
time-critical manner and constrain the behavior of each other in a multitude of
ways.

A main difference between verification algorithms and dedicated scheduling
algorithms is in the way they search a state-space to find solutions. Scheduling
algorithms are often designed to find optimal (or near optimal) solutions and
are therefore based on techniques such as branch-and-bound to identify and
prune parts of the states-space that are guaranteed to not contain any optimal
solutions. In contrast, verification algorithms do normally not support any notion
of optimality and are designed to explore the entire state-space as efficiently as
possible. The verification algorithms that do support notions of optimality are
restricted to simple trace properties such as shortest trace [LPY95], or shortest
accumulated delay in trace [NTY00].

In this paper we aim at reducing the gap between scheduling and verification
algorithms by adopting a number of techniques used in scheduling algorithms
in the verification tool Uppaal. In doing so, we study the problem of efficiently
computing the minimal cost of reaching a goal state in the model of Uniformly
Priced Timed Automata (UPTA). This model can be seen as a restricted version
of the recently suggested model of Linearly Priced Timed Automata (LPTA)
[BFH+01], which extends the model of timed automata with prices on all tran-
sitions and locations. In these models, the cost of taking an action transition is
the price associated with the transition, and the cost of delaying d time units in
a location is d ·p, where p is the price associated with the location. The cost of a
trace is simply the accumulated sum of costs of its delay and action transitions.
The objective is to determine the minimum cost of traces ending in a goal state.

The infinite state-spaces of timed automata models necessitates the use of
symbolic techniques in order to simultaneously handle sets of states (so-called
symbolic states). For pure reachability analysis, tools like Uppaal and Kro-

nos use symbolic states of the form (l, Z), where l is a location of the timed
automaton and Z ⊆ R

C1 is a convex set of clock valuations called a zone. For
the computation of minimum costs of reaching goal states, we suggest the use of
symbolic cost states of the form (l, C), where C : RC → (R≥0 ∪ {∞}) is a cost
function mapping clock valuations to real valued costs or ∞. The intention is
that, whenever C(u) < ∞, reachability of the symbolic cost state (l, C) should
ensure that the state (l, u) is reachable with cost C(u).

Using the above notion of symbolic cost states, an abstract algorithm for
computing the minimum cost of reaching a goal state satisfying ϕ of a uniformly

1
C denotes the set of clocks of the timed automata, and RC denotes the set of functions
from C to R≥0.

2

Cost := ∞
Passed := ∅
Waiting := {(l0, C0)}
while Waiting 6= ∅ do

select (l, C) from Waiting

if (l, C) |= ϕ and min(C) < Cost then
Cost := min(C)

if for all (l, C′) in Passed: C′ 6v C then
add (l, C) to Passed

for all (m,D) such that (l, C) ; (m, D): add (m, D) to Waiting

return Cost

Fig. 1. Abstract Algorithm for the Minimal-Cost Reachability Problem.

priced timed automaton is shown in Fig. 1. The algorithm is similar to a stan-
dard state-space traversal algorithm that uses two data-structures Waiting and
Passed to store states waiting to be examined, and states already explored, re-
spectively. Initially, Passed is empty and Waiting holds an initial (symbolic
cost) state. In each iteration, the algorithm proceeds by selecting a state (l, C)
from Waiting, checking that none of the previously explored states (l, C′) has
a “smaller” cost function, written C′ v C2, and if this is the case, adds it to
Passed and its successors to Waiting. In addition the algorithm uses the global
variable Cost, which is initially set to ∞ and updated whenever a goal state is
found that can be reached with a lower cost than the current value of Cost. The
algorithm terminates when Waiting is empty, i.e. when no further states are
left to be examined. Thus, the algorithm always searches the entire state-space
of the analyzed automaton.

In [BFH+01] an algorithm for computing the minimal cost of reaching desig-
nated goal states was given for the full model of LPTA. However, the algorithm
is based on a cost-extended version of regions, and is thus guaranteed to be ex-
tremely inefficient and highly sensitive to the size of constants used in the models.
As the first contribution of this paper, we give for the subclass of UPTA an ef-
ficient zone representation of symbolic cost states based on Difference Bound
Matrices [Dil89], and give all the necessary symbolic operators needed to im-
plement the algorithm. As the second contribution we show that, in analogy
with Dijkstra’s shortest path algorithm, if the algorithm is modified to always
select from Waiting the (symbolic cost) state with the smallest minimum cost,
the state-space exploration may terminate as soon as a goal state is explored.
This means that we can solve the minimum-cost reachability problem without
necessarily searching the entire state-space of the analyzed automaton. In fact,
it can even be shown that the resulting algorithm is optimal in the sense that
choosing to search a symbolic cost state with non-minimal minimum cost can
never reduce the number of symbolic cost states explored.

The third contribution of this paper is a number of techniques inspired by
branch-and-bound algorithms [AC91] that have been adopted in making the
2 Formally C′ v C iff ∀u. C′(u) ≤ C(u).

3

algorithm even more useful. These techniques are particularly useful for limiting
the search space and for quickly finding solutions near to the minimum cost of
reaching a goal state. To support this claim, we have implemented the algorithm
in an experimental version of the verification tool Uppaal and applied it to
a wide variety of examples. Our experimental findings indicate that in some
cases as much as 90% of the state-space searched in ordinary breadth-first order
can be avoided by combining the techniques presented in this paper. Moreover,
the techniques have allowed pure reachability analysis to be performed in cases
which were previously unsuccessful.

The rest of this paper is organized as follows: In Section 2 we formally define
the model of uniformly priced timed automata and give the symbolic semantics.
In Section 3 we present the basic algorithm and the branch-and-bound inspired
techniques. The experiments are presented in Section 4. We conclude the paper
in Section 5.

2 Uniformly Priced Timed Automata

In this section linearly priced timed automata are formalized and their seman-
tics are defined. The definitions given here resemble those of [BFH+01], except
that the symbolic semantics uses cost functions whereas [BFH+01] uses priced
regions. Zone-based data-structures for compact representation and efficient ma-
nipulation of cost functions are provided for the class of uniformly priced timed
automata.

2.1 Linearly Priced Timed Automata

Formally, linearly priced timed automata (LPTA) are timed automata with
prices on locations and transitions. We also denote prices on locations as rates.
Let C be a set of clocks. Then B(C) is the set of formulas that are conjunc-
tions of atomic constraints of the form x ./ n and x − y ./ n for x, y ∈ C,
./ ∈ {<,≤, =,≥, >} and n being a natural number. Elements of B(C) are called
clock constrains over C. P(C) denotes the power set of C.

Definition 1 (Linearly Priced Timed Automata). A linearly priced timed
automaton A over clocks C and actions Act is a tuple (L, l0, E, I, P) where L is
a finite set of locations, l0 is the initial location, E ⊆ L×B(C)×Act×P(C)×L
is the set of edges, where an edge contains a source, a guard, an action, a set
of clocks to be reset, and a target, I : L → B(C) assigns invariants to locations,
and P : (L ∪ E) → N assign prices to both locations and edges. In the case of
(l, g, a, r, l′) ∈ E, we write l

g,a,r−−−→ l′.

Following the common approach to networks of timed automata, we extend
LPTA to networks of LPTA by introducing a synchronization function f : (Act∪
{0}) × (Act ∪ {0}) ↪→ Act, where 0 is a distinguished no-action symbol.3 In

3 We extend the edge set E such that l
tt,0,∅,0−−−−→ l for any location l. This allows

synchronization functions to implement internal τ actions.

4

addition, two functions hL, hE : N × N → N for combining prices of transitions
and locations respectively are introduced.

Definition 2 (Parallel Composition). Let Ai = (Li, li,0, Ei, Ii, Pi), i = 1, 2
be two LPTA. Then the parallel composition is defined as A1 |fhL,hE

A2 =
(L1 × L2, (l1,0, l2,0), E, I, P), where, l = (l1, l2), I(l) = I1(l1) ∧ I2(l2), P (l) =
hL(P1(l1), P2(l2)), and l

g,a,r−−−→ l′ iff there exist gi, ai, ri such that f(a1, a2) = a,
li

gi,ai,ri−−−−−→i l′i, g = g1 ∧ g2, r = r1 ∪ r2, and P ((l, g, a, r)) = hE(P ((l1, g1, a1, r1)),
P ((l2, g2, a2, r2))).

Useful choices for hL and hE guaranteeing commutativity and associativity of
parallel composition are summation, minimum and maximum.

Clock values are represented as functions called clock valuations from C to
the non-negative reals R≥0. We denote by RC the set of clock valuations for C.

Definition 3 (Semantics). The semantics of a linearly priced timed automa-
ton A is defined as a labeled transition system with the state-space L × R

C with
initial state (l0, u0) (where u0 assigns zero to all clocks in C) and with the fol-
lowing transition relation:

– (l, u)
ε(d),p−−−→ (l, u + d) if ∀0 ≤ e ≤ d : u + e ∈ I(l), and p = d · P (l),

– (l, u)
a,p−−→ (l′, u′) if there exists g, r s.t. l

g,a,r−−−→ l′, u ∈ g, u′ = u[r 7→ 0],
u′ ∈ I(l), and p = P ((l, g, a, r, l′)),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(x) + d, and
u[r 7→ 0] denotes the clock valuation which maps each clock in r to the value 0
and agrees with u over C \ r.

The transitions are decorated with a delay-quantity or an action, together with
the cost of the transition. The cost of an execution trace is simply the accumu-
lated cost of all transitions in the trace.

Definition 4 (Cost). Let α = (l0, u0)
a1,p1−−−→ (l1, u1) · · · an,pn−−−−→ (ln, un) be a

finite execution trace. The cost of α, cost(α), is the sum Σn
i=1pi. For a given

state (l, u) the minimum cost mincost(l, u) of reaching the state, is the infimum
of the costs of finite traces ending in (l, u). For a given location l the minimum
cost mincost(l) of reaching the location, is the infimum of the costs of finite
traces ending in (l, u) for some u

mincost(l) = inf{cost(α)|α ends in a state (l, u)}
Example 1. An example of a LPTA can be seen in Fig. 2. The LPTA has three
locations and two clocks, x and y. The number inside the locations is the rate
of the location, and the number on the transition from the leftmost location is
the cost of the transition. The two other transitions have no cost. The initial
location is the leftmost location.

Because of the invariants on the locations, a trace reaching the rightmost
location must first visit the middle location and then go back to the initial loca-
tion. The minimal cost of reaching the rightmost location is 14. Note that there

5

2 2 2
y > 3x < 3

x < 34

{x}

Fig. 2. The LPTA from Example 1.

is no trace actually realizing the minimum cost because of the strict inequality
on the transition to the rightmost location. However, because of the infimum in
the definition of minimum cost, we will say that the minimum cost of reaching
the rightmost location is 14.

2.2 Cost Functions

The semantics of LPTA yields an uncountable state-space and is therefore not
suited for state-space exploration algorithms. To overcome this problem, the al-
gorithm in Fig. 1 uses symbolic cost states, quite similar to how timed automata
model checkers like Uppaal use symbolic states.

Typically, symbolic states are pairs on the form (l, Z), where Z ⊆ R
C is a

convex set of clock valuations, called a zone, representable by Difference Bound
Matrices (DBMs) [Dil89]. The operations needed for forward state-space explo-
ration can be efficiently implemented using the DBM data-structure. However,
the operations might as well be defined in terms of characteristic functions,
RC → {0, 1}. For example, let χ be the characteristic function of a zone Z. Then
delay can be defined as χ↑ : u 7→ max{χ(v) | ∃d ∈ R≥0 : v + d = u}, that
is, u is in χ↑ if there is a clock valuation v, that can delay into u. Looking at
zones in terms of their characteristic functions extends nicely to symbolic cost
states, but here zones are replaced by mappings, called clock functions, from
clock valuations to real valued costs.

In the priced setting we must in addition represent the costs with which
individual states are reached. For this we suggest the use of symbolic cost states,
(l, C), where C is a cost function mapping clock valuations to real valued costs.
Thus, within a symbolic cost state (l, C), the cost of a state (l, u) is given by
C(u).

Definition 5 (Cost Function). A cost function C : RC → R≥0 ∪ {∞} assigns
to each clock valuation, u, a positive real valued cost, c, or infinity. The support
sup(C) = {u | C(u) < ∞} is the set of valuations mapped to a finite cost.

Table 2 summarizes several operations that are used by the symbolic semantics
and the algorithm in Fig. 1. In terms of the support of a cost function, the
operations behave exactly as on zones; e.g. sup(r(C)) = r(sup(C)). The opera-
tions effect on the cost value reflect the intent to compute the minimum cost of
reaching a state, e.g., r(C)(u) is the infimum of C(v) for all v that reset to u.

6

Table 1. Common operations on clock valuations and zones.

Operation Clock Valuation (RC) Zone (P(RC))

Delay u + d, d ∈ R≥0 Z↑ = {u + d | u ∈ Z ∧ d ∈ R≥0}
Reset u[r 7→ 0] r(Z) = {r(u) | u ∈ Z}
Satisfaction u |= g g(Z) = {u ∈ Z | u |= g}
Comparison u = v Z1 ⊆ Z2

def⇔ ∀u : u ∈ Z1 ⇒ u ∈ Z2

Table 2. Common operations on cost functions.

Operation Cost Function (RC → R≥0)

Delay delay(C, p) : u 7→ inf{C(v) + p · d | d ∈ R≥0 ∧ v + d = u}
Reset r(C) : u 7→ inf{C(v) | u = r(v)}
Satisfaction g(C) : u 7→ min{C(v) | v |= g ∧ u = v}
Increment C + k : u 7→ C(u) + k, k ∈ N
Comparison D v C

def⇔ ∀u : D(u) ≤ C(u)

Infimum min(C) = inf{C(u) | u ∈ RC}

2.3 Symbolic Semantics

The symbolic semantics for LPTA is very similar to the common zone based
symbolic semantics used for timed automata.

Definition 6 (Symbolic Semantics). Let A = (L, l0, E, I, P) be a linearly
priced timed automaton. The symbolic semantics is defined as a labelled transi-
tion system over symbolic cost states on the form (l, C), l being a location and
C a cost function with the transition relation:

– (l, C) ε−→
(

l, I(l)
(
delay

(
C, P (l)

)))
,

– (l, C) a−→
(
l′, I(l)

(
r(g(C))

)
+ p

)
iff l

g,a,r−−−→ l′, and p = P ((l, g, a, r, l′)).

The initial state is (l0, I(l0)(C0)) where sup(C0) = {u0} and C0(u0) = 0.

Notice that the support of any cost function reachable by the symbolic semantics
is a zone.

Lemma 1. Given LPTA A, for each trace α of A that ends in state (l, u), there
exists a symbolic trace β of A, that ends up in a symbolic cost state (l, C), such
that C(u) = cost(α).

Proof. By induction in the length of the run α. The base case, a run of length
0, is trivial.

For the induction step assume we have a trace α ending in a state (l, u) and
a symbolic trace ending in a symbolic state (l, C), such that C(u) = cost(α). We
look at two cases:

7

– The trace α is extended with a delay transition (l, u)
ε(d),p−−−→ (l, u + d) such

that ∀0 ≤ e ≤ d : u+e ∈ I(l) where p = d∗P (l). The cost of u+d is cost(α)+
p. This can be matched in the symbolic semantics by a delay transition

(l, C) ε−→
(

l, I(l)
(
delay

(
C, P (l)

)))
. Using the definition of delay(C, p) in

Table 2 we get that the cost of u + d after the delay is C(u)+ d ∗P (l). Since
C(u) = cost(α) from the induction hypothesis we have the wanted result.

– The trace α is extended with an action transition (l, u)
a,p−−→ (l′, u′) using a

transition l
g,a,r−−−→ l′ where u ∈ g, u′ = u[r], and u′ ∈ I(l′). The cost of (l, u′)

is cost(α)+p where p = P ((l, g, a, r, l′)). This can be matched in the symbolic
semantics by an action transition (l, C) a−→

(
l′, I(l)

(
r(g(C))

)
+ p

)
. Since u

satisfies the guard g, u′ = u[r], and u′ satisfies the invariant I(l′), then
I(l′)(r(g(C)))(u′) = C(u). Therefore according to Table 2 (I(l′)(r(g(C))) +
p)(u′) = C(u) + p, where p = P ((l, g, a, r, l′)).

ut
Lemma 2. Given an LPTA A, for each symbolic trace, β, ending in a symbolic
state (l, C), for each u ∈ sup(C), there exist a trace α ending in state (l, u) such
that and cost(α) ≤ C(u).

Proof. We prove this by induction in the length of the symbolic trace leading to
(l, C). The case case, a trace of length zero, is trivial.

For the induction we assume that there is a symbolic trace ending in (l, C)
and for u ∈ sup(C) there is a trace α ending in state (l, u), such that and
cost(α) ≤ C(u). We look at two cases:

– The symbolic trace β is extended with a delay transition (l, C) ε−→ C′ where

C ′ =
(

l, I(l)
(
delay

(
C, P (l)

)))
. For the valuations u which were in sup(C)

before the delay, the cost has not changed (in the definition of delay(C, p) in
Table 2, choose d = 0). The valuations u′ which are in sup(I(l)

(
delay

(
I(l)(C), P (l)

))
)

but not in sup(C), are reachable from a valuation u in sup(C) by a delay d.
The cost of u′ is inf{C(u)+d ·p | u ∈ sup(C)}. This can be match in the con-
crete semantics by a delay transition from (l, u). Since mincost(l, u) ≤ C(u)
and the delay is the same, mincost(l, u′) ≤ C′(u′).

– The symbolic trace β is extend with an action transition (l, C) a−→ (l′, C′)
where C ′ = I(l)

(
r(g(C))

)
+ p using the transition l

g,a,r−−−→ l′ with cost p.
The same transition can be used to extend the trace, also with cost p. Since
mincost(l, u) ≤ C(u) from the assumption and the same transition is used,
we are finished.

ut
Theorem 1. mincost(l) = min{min(C) | (l, C) is reachable}
Theorem 1 ensures that the algorithm in Fig. 1 indeed does find the minimum
cost, but since the state-space is still infinite there is no guarantee that the algo-

8

rithm ever terminates. For zone based timed automata model checkers, termina-
tion is ensured by normalizing all zones with respect to a maximum constant M
[Rok93], but for LPTA ensuring termination also depends on the representation
of cost functions.

2.4 Representing Cost Functions

As stated in the introduction, we provide an efficient implementation of cost
functions for the class of Uniformly Priced Timed Automata (UPTA).

Definition 7 (Uniformly Priced Timed Automata). An uniformly priced
timed automaton is an LPTA where all locations have the same rate. We refer
to this rate as the rate of the UPTA.

Lemma 3. Any UPTA A with positive rate can be translated into an UPTA B
with rate 1 such that mincost(l) in A is identical to mincost(l) in B.

Proof (sketch). Let A be an UPTA with positive rate r. Now, let B be like A
except that all constants on guards and invariants are multiplied by r and set
the rate of B to 1. ut
Thus, in order to find the infimum cost of reaching a satisfying state in UPTA,
we only need to be able to handle rate zero and rate one.

In case of rate zero, all symbolic states reachable by the symbolic semantics
have very simple cost functions: The support is mapped to the same integer
(because the cost is 0 in the initial state and only modified by the increment
operation). This means that a cost function C can be represented as a pair (Z, c),
where Z is a zone and c an integer, s.t. C(u) = c when u ∈ Z and ∞ otherwise.
Delay, reset and satisfaction are easily implementable for zones using DBMs.
Increment is a matter of incrementing c and a comparison (Z1, c1) v (Z2, c2)
reduces to Z2 ⊆ Z1 ∧ c1 ≤ c2. Termination is ensured by normalizing all zones
with respect to a maximum constant M .

In case of rate one, the idea is to use zones over C∪ {δ}, where δ is an addi-
tional clock keeping track of the cost, s.t. every clock valuation u is associated
with exactly one cost Z(u) in zone Z4. Then, C(u) = c iff u[δ 7→ c] ∈ Z. This
is possible because the continuous cost advances at the same rate as time. De-
lay, reset, satisfaction and infimum are supported directly by DBMs. Increment
C + c translates to Z[δ 7→ δ + k] = {u[δ 7→ u(δ) + k] | u ∈ Z} and is also re-
alizable using DBMs. For comparison between symbolic cost states, notice that
Z2 ⊆ Z1 ⇒ Z1 v Z2, whereas the implication in the other direction does not
hold in general, see Fig. 3. However, it follows from the following Lemma 4 that
comparisons can still be reduced to set inclusion provided the zone is extended
in the δ dimension, see Fig. 3.

Lemma 4. Let Z† = {u[δ 7→ u(δ) + d] | u ∈ Z ∧ d ∈ R≥0}. Then Z1 v Z2 ⇔
Z†

2 ⊆ Z†
1.

4 We define Z(u) to be ∞ if u is not in Z.

9

x

δ

Z

Z1

Z†
2

Z†

Z2

Fig. 3. Let x be a clock and let δ be the cost. In the figure, Z v Z1 v Z2, but
only Z1 is a subset of Z. The ()† operation removes the upper bound on δ, hence
Z†

2 ⊆ Z† ⇔ Z v Z2.

Proof. By definition Z1 v Z2 ⇔ ∀u : Z1(u) ≤ Z2(u). First, assume Z1 v Z2 and
let u[δ 7→ c] ∈ Z†

2. Then Z1(u) ≤ Z2(u) ≤ c and by definition u[δ 7→ Z1(u)+d] ∈
Z†

1 for d ∈ R≥0 implying u[δ 7→ c] ∈ Z†
1 . This proofs one direction of the lemma.

Second, assume Z†
2 ⊆ Z†

1. By definition u[δ 7→ Z2(u)] ∈ Z†
2 ⊆ Z†

1 and it follows
that Z1(u) ≤ Z2(u). ut

It is straightforward to implement the ()†-operation on DBMs. However, a
useful property of the ()†-operation is, that its effect on zones can be obtained
without implementing the operation. Let (l0, Z

†
0), where Z0 is the zone encoding

C0, be the initial symbolic state. Then Z = Z† for any reachable state (l, Z) —
intuitively because δ is never reset and no guards or invariants depend on δ.

Termination is ensured if all clocks except for δ are normalized with respect
to a maximum constant M . It is important that normalization never touches
δ. With this modification, the algorithm in Fig. 1 will essentially encounter
the same states as the traditional forward state-space exploration algorithm for
timed automata, except for the addition of δ.

3 Improving the State-Space Exploration

As mentioned the major drawback of using the algorithm in Fig. 1 to find the
minimum cost of reaching a goal state is that the complete states space has
to be searched. However, this can in most cases be improved in a number of
ways. Realizing the connection between Dijkstra’s shortest path algorithm and
the Uppaal state-space search leads us to stop the search as soon as a goal state
has been found. However, this is based on a kind of breadth first search which
might not be possible for systems with very large state-spaces. In this case using
techniques inspired by branch and bound algorithms can be helpful.

3.1 Minimum Cost Order

In realizing the algorithm of Fig. 1, and in analogy with Dijkstra’s algorithm for
finding the shortest path in a directed weighted graph, we may choose always to

10

select a (symbolic cost) state (l, C) from Waiting for which C has the smallest
minimum cost. With this choice, we may terminate the algorithm as soon as a
goal state is selected from Waiting. We will refer the search order arising from
this strategy as the Minimum Cost order (MC order).

Lemma 5. Using the MC order, an optimal solution is found by the algorithm
in Fig. 1 when a goal state is selected from Waiting the first time.

Proof. When a state is taken from Waiting using the MC order, no state with
lower cost are reachable. Therefore, when the first goal state is taken from Wait-

ing no (goal) states with lower cost are reachable, so the optimal solution has
been found. ut

When applying the MC order, the algorithm in Fig. 1 can be simplified since
the variable Cost is not needed any more.

Again in analogy with Dijkstra’s shortest path algorithm, the MC ordering
finds the minimum cost of reaching a goal state with guarantee of its optimality,
in a manner which requires exploration of a minimum number of symbolic cost
states.

Lemma 6. Finding an the optimal cost of reaching a location and proving it
to be optimal using the algorithm in Fig. 1, it can never reduce the number of
explored states to prefer exploration of a symbolic cost state of Waiting with
non-minimal minimum cost.

Proof. Assume on the contrary that this would be the case. Then at some stage,
the exploration of a symbolic cost state (l, C) of Waiting with non-minimal cost
should be able to reduce the subsequent exploration of one of the symbolic cost
states (m, D) of Waiting with smaller minimum cost. That is, some derivative
of (l, C) should be applicable in pruning the exploration of some derivative of
(m, D), or more precisely, (l, C) ;∗ (l′, C′) and (m, D) ;∗ (m′, D′) with l′ = m′

and C′ v D′. By definition of v and since ; never decreases minimum cost, it
follows that min(C) ≤ min(C′) ≤ min(D′). But then, application of the MC
order would also explore (l, C) and (l′, C′) before (m′, D′) and hence lead to the
same pruning of (m′, D′) contradiction the assumed superiority of the non-MC
search order. ut

In situations when Waiting contains more than just one symbolic cost state
with smallest minimum cost, the MC order does not offer any indication as to
which one to explore first. In fact, for exploration of the symbolic state-space for
timed automata without cost, we do not know of a definite strategy for choos-
ing a state from Waiting such that the fewest number of symbolic states are
generated. However, any improvements gained with respect to the search-order
strategy for the state-space exploration of timed automata will be directly appli-
cable in our setting with respect to the strategy for choosing between symbolic
cost states with same minimum cost.

11

3.2 Using Estimates of the Remaining Cost

From a given state one often has an idea about the cost remaining in order to
reach a goal state. In branch-and-bound algorithms this information is used both
to delete states and to search the most promising states first. Using information
about the remaining cost can also decrease the number of states searched before
an optimal solution is reached.

For a state (l, u) let rem((l, u)) be the minimum cost of reaching a goal state
from that state. In general we cannot expect to know exactly what the remaining
cost of a state is. We can instead use an estimate of the remaining cost as long
as the estimate does not exceed the actual cost. For a symbolic cost state (l, C)
we require that Rem(l, C) satisfies Rem(l, C) ≤ inf{rem((l, u)) | u ∈ sup(C)},
i.e. Rem(l, C) offers a lower bound on the remaining cost of all the states with
location l and clock valuation within the support of C.

Combining the minimum cost min(C) of a symbolic cost state (l, C) with the
estimate of the remaining cost Rem(l, C), we can base the MC order on the sum
of min(C) and Rem(l, C). Since min(C) +Rem(l, C) is smaller than the actual
cost of reaching a goal state, the first goal state to be explored is guaranteed to
have optimal cost. We call this the MC+ order but it is also known as Least-
Lower-Bound order. In Section 4 we will show that even simple estimates of the
remaining cost can lead to large improvements in the number of states searched
to find the minimum cost of reaching a goal state.

One way to obtain a lower bound is for the user to specify an initial estimate
and annotate each transition with updates of the estimate. In this case it is the
responsibility of the user to guarantee that the estimate is actually a lower bound
in order to ensure that the optimal solution is not deleted. This also allows the
user to apply her understanding and intuition about the system.

To obtain a lower bound of the remaining cost in an automatic and efficient
manner, we suggest to replace one or more automata in the network with “more
abstract” automata. The idea is that this should result in an abstract network
which (1) contains (at least) all runs of the original one, and (2) with no larger
costs. Thus computing the minimum cost of reaching a goal state in the abstract
network will give the desired lower bound estimate of reaching a goal state in
the original network. Moreover, the abstract network should (3) be substantially
simpler to analyze than the original network making it possible to obtain the es-
timate efficiently. We are currently working with different ideas of implementing
this idea. In Section 4 we have used the idea when guiding systems manually.

3.3 Heuristics and Bounding

It is often useful to quickly obtain an upper bound on the cost instead of waiting
for the minimum cost. In particular, this is the case when faced with a state-space
too big for the MC order to handle. As will be shown in Section 4, the techniques
described here for altering the search order using heuristics are very useful. In
addition, techniques from branch-and-bound algorithms are useful for improving
the upper bound once it has been found. Applying knowledge about the goal

12

state has proven useful in improving the state-space exploration [RE99,HLP00],
either by changing the search order from the standard depth or breadth-first, or
by leaving out parts of the state-space.

To implement the MC order, a suitable data-structure for Waiting would
be a priority queue where the priority is the minimum cost of a symbolic cost
state. We can obviously generalize this by extending a symbolic cost state with a
new field, priority, which is the priority of the state used by the priority queue.
Allowing various ways of assigning values to priority combined with choosing
either to first select a state with large or small priority opens for a large variety
of search orders.

Annotating the model with assignments to priority on the transitions, is one
way of allowing the user to guide the search. Because of its flexibility it proves to
be a very powerful way of guiding the search. The assignment works like a normal
assignment to integer variables and allows for the same kind of expressions.

Example 2. An example of a strategy which we have used in Section 4 for the
Biphase Mark protocol, is first to search a limited part of the state-space in a
breadth-first manner. The sender of the protocol can either send the value 0 or
1. We are mainly interested in the part where a 1 is send because we suspect
that errors will occur in this case. Therefore, we want to search the part of the
state-space where a 1 is send before searching the part where 0 is send, and we
want to do this in a breadth first manner.

Using guiding a standard breadth-first search can be obtained by adding the
assignment priority := priority-1 to each transition and select the symbolic
state with the highest value from Waiting. This can be done by adding a global
assignment to the model. Giving very low priority to the part of the state-space
where a 0 has been send we will obtain the desired search order. The choice of
what to send is made in one place in the model of the sender. On the transition
choosing to send a 0 we add the assignment priority := priority-1000which
will give this state and all its successors very low priority and therefore these
will be explored last. In this way we do not leave out any part of the state-space,
but first search the part we consider to be interesting.

When searching for an error state in a system a random search order might
be useful. We have chosen to implement what we call random depth-first order
which as the name suggests is a variant of a depth-first search. The only difference
between this and a standard depth-first search is that before pushing all the
successors of a state on to Waiting (which is implemented as a stack), the
successors are randomly permuted.

Once a reachable goal state has been found, an upper bound on the minimum
cost of reaching a goal state has been obtained. If we choose to continue the
search, a smaller upper bound might be obtained. During state-space exploration
the cost never decreases therefore states with cost bigger than the best cost found
in a goal state cannot lead to an optimal solution, and can therefore be deleted.
The estimate of the remaining cost defined in Section 3.2 can also be used for
pruning exploration of states since whenever min(C) +Rem(l, C) is larger than

13

the best upper bound, no state covered by (l, C) can lead to a better solution
than the one already found.

All of the methods described in this section have been implemented in Up-

paal. Section 4 reports on experiments using these new methods.

4 Experiments

In this section we illustrate the benefits of extending Uppaal with heuristics and
costs through several verification and optimization problems. All of the examples
have previously been studied in the literature.

4.1 The Bridge Problem

The following problem was proposed by Ruys and Brinksma [RB98]. A timed
automaton model of this problem is included in the standard distribution of
Uppaal

5.
Four persons want to cross a bridge in the dark. The bridge is damaged

and can only carry two persons at the same time. To cross the bridge safely in
the darkness, a torch must be carried along. The group has only one torch to
share. Due to different physical abilities, the four cross the bridge at different
speeds. The time they need per person is (one-way) 25, 20, 10 and 5 minutes,
respectively. The problem is to find a schedule, if possible, such that all four
cross the bridge within a given time. This can be done with standard Uppaal.
With the proposed extension, it is also possible to find the fastest time for the
four to cross the bridge, and a schedule achieving this.

We compare four different search orders: Breadth-First (BF), Depth-First
(DF), Minimum Cost (MC) and an improved Minimum Cost (MC+). In this
example we choose the lower bound on the remaining cost, Rem(C), to be the
time needed by the slowest person, who is still on the “wrong” side of the bridge.

For the different search orders, Table 3 shows the number of states explored
to find the initial and the optimal time, and the values of the times. It can be
seen that BF explores 4491 states to find an initial schedule and 4539 to prove
what the optimal solution is. This number is reduced to 4493 explored states if
we prune the state-space, based on the estimated remaining cost (third column).
Thus, in this case only two additional states are explored after the initial solution
is found. DF finds an initial solution (with high costs) quickly, but explores 25779
states to find an optimal schedule, which is much more than the other heuristics.
Most likely, this is caused by encountering many small and incomparable zones
during DF search. In any case, it appears that the depth-first strategy always
explores many more states than any other heuristic.

Searching with the MC order does indeed improve the results, compared to
BF and DF. It is however outperformed by the MC+ heuristic that explores only
404 states to find a optimal schedule. Note that pruning based on the estimate
5 The distribution can be obtained at http://www.uppaal.com.

14

Table 3. Bridge problem by Ruys and Brinksma.

Initial Solution Optimal Solution With est. remainder
states cost states cost states cost

BF 4491 65 4539 60 4493 60
DF 169 685 25780 60 5081 60
MC 1536 60 1536 60 N/A N/A
MC+ 404 60 404 60 N/A N/A

of the remaining cost does not apply to MC and MC+ order, since the first
explored goal state has the optimal value.

Without costs and heuristics, Uppaal can only show whether a schedule
exists. The extension allows Uppaal to find the optimal schedule and explores
with the MC+ heuristic only about 10% of the states that are needed to find a
initial solution with the breadth-first heuristic.

4.2 Job Shop Scheduling

A well known class of scheduling problems are the Job Shop problems. The
problem is to optimally schedule a set of jobs on a set of machines. Each job
is a chain of operations, usually one on each machine, and the machines have
a limited capacity, also limited to one in most cases. The purpose is to allocate
starting times to the operations, such that the overall duration of the schedule,
the makespan, is minimal. Many solution methods such as local search algorithms
like simulated annealing [AvLLU94], shifting bottleneck [AC91], branch-and-
bound [AC91] or even hybrid methods have been proposed [JM99].

We apply Uppaal to 25 of the smaller Lawrence Job Shop problems.6 Our
models are based on the timed automata models in [Feh99a]. In order to es-
timate the lower bound on the remaining cost, we calculate for each job and
each machine the duration of the remaining operations. These estimates may
be seen as obtained by abstracting the model to one automaton as described
in Section 3.2. The final estimate of the remaining cost is then estimated to be
the maximum of these durations. Table 4 shows results obtained for the search
orders BF, MC, MC+, DF, Random DF, and a combined heuristic. The latter is
based on depth-first but also takes into account the remaining operation times
and the lower bound on the cost, via a weighted sum which is assigned to the
priority field of the symbolic states. The results show BF and MC order cannot
complete a single instance in 60 seconds, but even when allowed to spend more
than 30 minutes using more than 2Gb of memory no solution was found. It is
important to notice that the combined heuristic used includes a clever choice
between states with the same values of cost plus remaining cost. This is the rea-
son it is able to outperform the MC+ order which is only able to find solution
to two instances within the time limit of 60 seconds.

As can be seen from the table Uppaal is handling the first 15 examples quite
well finding the optimal solution in 11 cases and in 10 of these showing that it
6 These and other benchmark problems for Job Shop scheduling can be found on
ftp://ftp.caam.rice.edu/pub/people/applegate/jobshop/.

15

is optimal. This is much more than without the added guiding features. For the
10 largest problems (la16 to la25) with 10 machines we did not find optimal
solutions though in some cases we were very close to the optimal solution. Since
branch-and-bound algorithms generally do not scale too well when the number
of machines and jobs increase, this is not surprising. The branch-and-bound
algorithm for [AC91], who solves about 10 out the 15 problems in the same
setting, faces the same problem. Note that the results of this algorithm depend
sensitively on the choice of an initial upper bound. Also the algorithm used in
[BJS95], which combines a good heuristic with an efficient branch-and-bound
algorithm and thus solves all of these 15 instances, does not find solutions for
the larger instances with 15 jobs and 10 machines or larger.

Table 4. Results for the 15 Job Shop problems with 5 machines and 10 jobs (la1-
la5), 15 jobs (la6-la10) and 20 jobs (la11-la15), and 10 problems with 10 machines,
10 jobs (la16-20) and 15 jobs (la21-25). The table shows the best solution found by
different search orders within 60 seconds cputime on a Pentium II 300 MHz. If the
search terminated also the number of explored states is given. The last row gives the
makespan of an optimal solution.

problem BF MC MC+ DF RDF comb. heur. minimal
instance cost states cost states cost states cost states cost states cost states makespan
la01 - - - - - - 2466 - 842 - 666 292 666
la02 - - - - - - 2360 - 806 - 672 - 655
la03 - - - - - - 2094 - 769 - 626 - 597
la04 - - - - - - 2212 - 783 - 639 - 590
la05 - - - - 593 9791 1955 - 696 - 593 284 593
la06 - - - - - - 3656 - 1076 - 926 480 926
la07 - - - - - - 3410 - 1113 - 890 - 890
la08 - - - - - - 3520 - 1009 - 863 400 863
la09 - - - - - - 3984 - 1154 - 951 425 951
la10 - - - - - - 3681 - 1063 - 958 454 958
la11 - - - - - - 4974 - 1303 - 1222 642 1222
la12 - - - - - - 4557 - 1271 - 1039 633 1039
la13 - - - - - - 4846 - 1227 - 1150 662 1150
la14 - - - - 1292 10653 5145 - 1377 - 1292 688 1292
la15 - - - - - - 5264 - 1459 - 1289 - 1207
la16 - - - - - - 4849 - 1298 - 1022 - 945
la17 - - - - - - 4299 - 938 - 786 - 784
la18 - - - - - - 4763 - 1034 - 922 - 848
la19 - - - - - - 4566 - 1140 - 904 - 842
la20 - - - - - - 5056 - 1378 - 964 - 902
la21 - - - - - - 7608 - 1326 - 1149 - (1040,1053)
la22 - - - - - - 6920 - 1413 - 1047 - 927
la23 - - - - - - 7676 - 1357 - 1075 - 1032
la24 - - - - - - 7237 - 1346 - 1061 - 935
la25 - - - - - - 7141 - 1290 - 1070 - 977

4.3 The Sidmar Steel Plant

Proving schedulability of an industrial plant via a reachability analysis of a
timed automaton model was firstly applied to the SIDMAR steel plant, which
was included as case study of the Esprit-LTR Project 26270 VHS (Verification of
Hybrid Systems). It deals with the part of the plant in-between the blast furnace

16

place
storage

casting
machine

continuous

cranes
convertor

convertor

vessel #1

buffer

crane#2

crane#1

overhead

vessel #2

track#2

track#1
1 2 3

54

Fig. 4. Layout of the SIDMAR plant

and the hot rolling mill. The plant consists of five machines placed along two
tracks and a casting machine where the finished steel leaves the system. The
two tracks and the casting machine are connected via two overhead cranes on
one track. Figure 4 depicts the layout of the plant. Each quantity of raw iron
enters the system in a ladle and depending on the desired steel quality undergoes
treatments in the different machines of different durations. The aim is to control
the plant in particular the movement of the ladles with steel between the different
machines, taking the topology of the plant into consideration.

We use a model based on the models and descriptions in [BS99,Feh99b,HLP99].
A full model of the plant that includes all possible behaviors was however not
immediate suitable for verification. Its state space is very large since at each
point in time many different possibilities are enabled. Consequently, depth-first
(and breadth-first) search gives either no answer within reasonable time or comes
up with a solution that is far from optimal. In this way we were only able to
find schedules for models of the plant with two ladles.

Priorities can be used to influence the search order of the state space, and
thus to improve the results. Based on a depth-first strategy, we reward transitions
that are likely to serve in reaching the goal, whereas transitions that may spoil
a partial solution result in lower priorities. For instance, when a batch of iron
is being treated by a machine, it pays off to reward other scheduling activities
rather than wait for the treatment to finish.

A schedule for three ladles was produced in [Feh99b] for a slightly simplified
model using Uppaal. In [HLP99] schedules for up to 60 ladles were produced also
using Uppaal. However, in order to do this, additional constraints were included
that reduce the size of the state-space drastically, but also prune possibly sensible
behavior. A similar reduced model was used by Stobbe in [Sto00], who uses
constraint programming to schedule 30 ladles. All these works only consider
ladles with the same quality of steel and the initial solutions cannot be improved.

17

1 0 0 0 1 1

cell
cell edges

signals sent

mark subcell
code subcell

if these two signals are
equal, a 0 was sent

if these two signals are
different, a 1 was sent

message

sampling distance

Fig. 5. Biphase mark terminology

A lower bound for the time duration of any feasible schedule is given by the
time the first load needs for all treatments plus least the time one needs to cast
all batches. Analogously, an upper bound is given by the maximal time during
which the first batch is allowed to stay in the system, plus the maximal time
needed to cast the ladles. For the instance with ten batches, these bounds are
291 and 425, respectively. With the sketched heuristic, our extended Uppaal

is able to find a schedule with duration 355, within 60 seconds cputime on a
Pentium II 300 MHz. The initial solution found is improved by 5% within the
time limit. Importantly, in this approach we do not rule out optimal solutions.
Allowing the search to go on for longer, models with more ladles can be handled.

4.4 Pure Heuristics: The Biphase Mark Protocol

The Biphase Mark protocol is a convention for transmitting strings of bit and
clock pulses simultaneously as square waves. This protocol is widely used for
communication in the ISO/OSI physical layer; for example, a version called
“Manchester” is used in the Ethernet. The protocol ensures that strings of bits
can be submitted and received correctly, in spite of clock drift, jitter and filtering
by the channel. A formal parameterized timed automaton model of the Biphase
Mark Protocol was given in [Vaa00], where also necessary and sufficient condi-
tions on the correctness for a parametric model were derived. We will use the
corresponding Uppaal models to investigate the benefits of heuristics in pure
reachability analysis.

The model assumes that sender and receiver have both their own clock with
drift and jitter. The sender encodes each bit in a cell of length c clock cycles (see
Fig. 5). At the beginning of each cell, the sender toggles the voltage. The sender
then waits for m clock cycles, where m stands for the mark subcell. If the sender
has to encode a “0”, the voltage is held constant throughout the whole cell. If
it encodes a “1” it will toggle the voltage at the end of the mark subcell. The
signal is unreliable during a small interval after the sender generates an edge.
Reading it during this interval may produce any value.

The receiver waits for an edge that signals the arrival of a cell. Upon detecting
an edge, the receiver waits for a fixed number of clock cycles, the sampling dis-

18

tance s, and samples the signal. We adopt the notation bpm(c, m, s) for instances
of the protocol with cell size c, mark size m and sampling distance s.

Table 5. Results for nine erroneous instances of the Biphase Mark protocol. Numbers
of state explored before reaching an error state

nondetection sampling sampling
mark subcell early late

(1
6
,3

,1
1
)

(1
8
,3

,1
0
)

(3
2
,3

,2
3
)

(1
6
,9

,1
1
)

(1
8
,6

,1
0
)

(3
2
,1

8
,2

3
)

(1
5
,8

,1
1
)

(1
7
,5

,1
0
)

(3
1
,1

6
,2

3
)

breadth first 1931 2582 4049 990 4701 2561 1230 1709 3035
in==1 heuristic 1153 1431 2333 632 1945 1586 725 1039 1763

There are three kind of errors that may occur in an incorrect configuration.
Firstly, the receiver may not detect the mark subcell. Secondly, the receiver may
sample too early, before or right after the sender left the mark subcell. Finally,
the receiver may also sample too late, i.e. the sender has already started to
transmit the next cell. The first two errors can only occur if there is an edge
after the mark subcell. This is only the case if input ”1” is offered to the coder.
The third error seems to be independent of the offered input.

Since two of the three errors occur only if input ”1” is offered to the coder,
and the third error can occur in any case, it seems worthwhile to choose a heuris-
tic that searches for states with input “1” first, rather than exploring state-space
for both possible inputs concurrently. We apply a heuristic which is a mixture
of only choosing input 1 and the breadth-first order, see Example 2, to erro-
neous modifications of the (correct) instances bpm(16, 6, 11), bpm(18, 5, 10) and
bpm(32, 16, 23). Table 5 gives the results. It turns out that a bit more than half
of the complete state-space size is explored, which is due to the fact that for
input ”1”, there is more activity in the protocol. The corresponding diagnostic
traces show that the errors were found within the first cell or at the very begin-
ning of the second cell, thus at a stage were only one bit was sent and received.
An exception on this rule is the fifth instance bpm(18, 6, 10), which produces an
error after one and a half cell, and shows consequently a larger reduction when
verified with the heuristic.

5 Conclusion

On the preceding pages, we have contributed with (1) a cost function based sym-
bolic semantics for the class of linearly priced timed automata; (2) an efficient,
zone based implementation of cost functions for the class of uniformly priced
timed automata; (3) an optimal search order for finding the minimum cost of
reaching a goal state; and (4) experimental evidence that these techniques can
lead to dramatic reductions in the number of explored states. In addition, we
have shown that it is possible to quickly obtain upper bounds on the minimum

19

cost of reaching a goal state by manually guiding the exploration algorithm using
priorities.

References

[AC91] D. Applegate and W. Cook. A Computational Study of the Job-Shop
Scheduling Problem. OSRA Journal on Computing 3, pages 149–156, 1991.

[AvLLU94] E.H.L. Aarts, P.J.M. van Laarhoven, J.K. Lenstra, and N.L.J. Ulder. A
Computational Study of Local Search Algorithms for Job-Shop Scheduling.
OSRA Journal on Computing, 6(2):118–125, Spring 1994.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
Kronos: A Model-Checking Tool for Real-Time Systems. In Proc. of the
10th Int. Conf. on Computer Aided Verification, number 1427 in Lecture
Notes in Computer Science, pages 546–550. Springer–Verlag, 1998.

[BFH+01] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager. Minimum-Cost Reachability for Priced Timed Au-
tomata. Accepted for Hybrid Systems: Computation and Control, 2001.

[BJS95] P. Brucker, B. Jurisch, and B. Sievers. Code of a Branch &
Bound Algorithm for the Job Shop Problem. Available at url
http://www.mathematik.uni-osnabrueck.de/research/OR/, 1995.

[BS99] R. Boel and G. Stremersch. Report for VHS: Timed Petri Net Model of
Steel Plant at SIDMAR. Technical report, SYSTeMS Group, University
Ghent, 1999.

[Dil89] D. Dill. Timing Assumptions and Verification of Finite-State Concurrent
Systems. In J. Sifakis, editor, Proc. of Automatic Verification Methods for
Finite State Systems, number 407 in Lecture Notes in Computer Science,
pages 197–212. Springer–Verlag, 1989.

[Feh99a] A. Fehnker. Bounding and heuristics in forward reachability algorithms.
Technical Report CSI-R0002, Computing Science Institute Nijmegen, 1999.

[Feh99b] A. Fehnker. Scheduling a steel plant with timed automata. In Proceedings
of the 6th International Conference on Real-Time Computing Systems and
Applications (RTCSA99), pages 280–286. IEEE Computer Society, 1999.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker
for Hybird Systems. In Orna Grumberg, editor, Proc. of the 9th Int. Conf.
on Computer Aided Verification, number 1254 in Lecture Notes in Com-
puter Science, pages 460–463. Springer–Verlag, 1997.

[HLP99] T. Hune, K. G. Larsen, and P. Pettersson. Guided synthesis of control
programs using UPPAAL for VHS case study 5. VHS deliverable, 1999.

[HLP00] T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control
Programs Using Uppaal. In Ten H. Lai, editor, Proc. of the IEEE ICDCS
International Workshop on Distributed Systems Verification and Valida-
tion, pages E15–E22. IEEE Computer Society Press, April 2000.

[JM99] A.S. Jain and S. Meeran. Deterministic job-shop scheduling; past, present
and future. European Journal of Operational Research, 1999. to appear in
volume 113, issue 2.

[LPY95] K. G. Larsen, P. Pettersson, and W. Yi. Diagnostic Model-Checking for
Real-Time Systems. In Proc. of Workshop on Verification and Control of
Hybrid Systems III, number 1066 in Lecture Notes in Computer Science,
pages 575–586. Springer–Verlag, October 1995.

20

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[NTY00] P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability for timed
automata. In IEEE Mediteranean Control Conference, 2000. Accepted for
publication.

[NY99] P. Niebert and S. Yovine. Computing optimal operation schemes for multi
batch operation of chemical plants. VHS deliverable, May 1999. Draft.

[RB98] T. C. Ruys and E. Brinksma. Experience with Literate Programming in
the Modelling and Validation of Systems. In Bernhard Steffen, editor, Pro-
ceedings of the Fourth International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’98), number 1384
in Lecture Notes in Computer Science (LNCS), pages 393–408, Lisbon,
Portugal, April 1998. Springer-Verlag, Berlin.

[RE99] F. Reffel and S. Edelkamp. Error Detection with Directed Symbolic Model
Checking. In Proc. of Formal Methods, volume 1708 of Lecture Notes in
Computer Science, pages 195–211. Springer–Verlag, 1999.

[Rok93] T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis,
Stanford University, 1993.

[Sto00] M. Stobbe. Results on scheduling the sidmar steel plant using constraint
programming. Internal report, 2000.

[Vaa00] F. Vaandrager. Analysis of a biphase mark protocol with Uppaal. to appear,
2000.

21

Recent BRICS Report Series Publications

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-3 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaan-
drager. Minimum-Cost Reachability for Priced Timed Automata.
January 2001. 22 pp. To appear inHybrid Systems: Computa-
tion and Control, 2001.

RS-01-2 Rasmus Pagh and Jakob Pagter.Optimal Time-Space Trade-
Offs for Non-Comparison-Based Sorting. January 2001.
ii+20 pp.

RS-01-1 Gerth Stølting Brodal, AnnaÖstlin, and Christian N. S. Peder-
sen. The Complexity of Constructing Evolutionary Trees Using
Experiments. 2001.

RS-00-52 Claude Cŕepeau, Fŕedéric Légaŕe, and Louis Salvail. How to
Convert a Flavor of Quantum Bit Commitment. December 2000.
24 pp. To appear inAdvances in Cryptology: International Con-
ference on the Theory and Application of Cryptographic Tech-
niques, EUROCRYPT ’01 Proceedings, LNCS, 2001.

RS-00-51 Peter D. Mosses.CASL for CafeOBJ Users. December 2000.
25 pp. Appears in Futatsugi, Nakagawa and Tamai, editors,
CAFE: An Industrial-Strength Algebraic Formal Method, 2000,
chapter 6, pages 121–144.

RS-00-50 Peter D. Mosses.Modularity in Meta-Languages. December
2000. 19 pp. Appears in2nd Workshop on Logical Frameworks
and Meta-Languages, LFM ’00 Proceedings, 2000.

RS-00-49 Ulrich Kohlenbach. Higher Order Reverse Mathematics. De-
cember 2000. 18 pp.

RS-00-48 Marcin Jurdziński and Jens V̈oge.A Discrete Stratety Improve-
ment Algorithm for Solving Parity Games. December 2000.

