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Higher Order Reverse Mathematics

Ulrich Kohlenbach
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Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

kohlenb@brics.dk

Abstract

In this paper we argue for an extension of the second order frame-
work currently used in the program of reverse mathematics to finite
types. In particular we propose a conservative finite type extension
RCAω

0 of the second order base system RCA0. By this conservation
nothing is lost for second order statements if we reason in RCAω

0 in-
stead of RCA0. However, the presence of finite types allows to treat
various analytical notions in a rather direct way, compared to the en-
codings needed in RCA0 which are not always provably faithful in
RCA0. Moreover, the language of finite types allows to treat many
more principles and gives rise to interesting extensions of the existing
scheme of reverse mathematics. We indicate this by showing that
the class of principles equivalent (over RCAω

0 ) to Feferman’s non-
constructive µ-operator forms a mathematically rich and very robust
class. This is closely related to a phenomenon in higher type recursion
theory known as Grilliot’s trick.

∗Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation.
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1 Introduction

Reverse mathematics as developed by H. Friedman, S. Simpson and others
(see [16] for a comprehensive treatment) focuses on the language of second
order arithmetic ‘because that language is the weakest one that is rich enough
to express and develop the bulk of core mathematics’ ([16], p.viii).
However, as we have argued in [14], already the treatment of continuous
functions f : X → Y between Polish spaces X, Y not only requires a quite
complicated encoding. Even more importantly, the restricted language makes
it necessary (already for X = ININ, Y = IN) to use a constructively slightly
enriched definition of continuous functions whose equivalence with the usual
definition cannot be proved e.g. in the finite type extension E-PAω+QF-
AC1,0 of (a variant with function variables instead of set variables of) the
second order system RCA (i.e. RCA0 plus full induction, where RCA0

is the well-known base system used in reverse mathematics, see [16]). Here
QF-AC1,0 denotes the schema of quantifier-free choice from functions to num-
bers. In fact, the encoding of continuous functions used in reverse mathe-
matics amounts (for the spaces mentioned above) to the representation of
such functions via an associate in the sense of Kleene and Kreisel. This rep-
resentation, however, entails implicitly a (continuous) modulus of pointwise
continuity which cannot be shown (in the finite type extension of RCA men-
tioned above) to exist for a general continuous functional ϕ : ININ → IN. Of
course, in the presence of arithmetical comprehension the difference between
the encoding of continuous functionals and their direct treatment disappears.
For functions f : 2IN → IN, already the binary König’s lemma WKL suffices
for this but it is open whether this holds e.g. in E-PAω+QF-AC1,0 (see [14]
for all this).

Thus already for those parts of analysis which only deal with continuous
functions, there are reasons to extend the context of reverse mathematics to
the language of arithmetic in all finite types. This need becomes even more
urgent if one considers principles involving non-continuous functions since
whereas one can reason and quantify about continuous functions in systems
based on the language of RCA0 (though only using the constructively en-
riched representation mentioned above), one cannot even talk about single
non-continuous functions f : IR → IR as objects (of course it is possible to
formulate ∀∃-dependencies ‘∀x ∈ IR∃!y ∈ IR A(x, y)’ such that the function
f : IR → IR which is uniquely determined by this property is non-continuous.
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However, the existence of this function as an object cannot even been stated
in the language of second order arithmetic).

In systems formulated in the language of functionals of all finite types, how-
ever, one can represent arbitrary (and hence in particular continuous) func-
tions between Polish spaces in a rather direct way: the language contains
variables for arbitrary functions f : ININ → ININ and via the so-called stan-
dard representation of elements of Polish spaces X, Y by number theoretic
functions, arbitrary functions f : X → Y are directly given as functionals
Φ1→1

f : ININ → ININ which happen to be extensional w.r.t. =X and =Y , where
g1 =X h1 iff g, h represent the same element of X (similarly for Y ).

The availability of variables for arbitrary (and not just continuous) func-
tions within the language allows for an extension of reverse mathematics.
In this paper we indicate that there is in fact an interesting kind of reverse
mathematics for such principles which naturally takes place over a conserva-
tive finite type extension of RCA0 as base system.1 As a natural candidate
we propose the system RCAω

0 :=E-PRAω+QF-AC1,0, where E-PRAω is
Feferman’s ([4],[1]) restriction of E-PAω with quantifier-free induction and
predicative primitive recursion only.2

We will show that RCAω
0 is conservative over RCA0 so that for principles

which can be formalized already in RCA0 nothing is lost by using RCAω
0

as the base system.

In this paper we show that the principles which relative to RCAω
0 are equiv-

alent to
(∃2) :≡ ∃ϕ2∀f 1(ϕf =0 0 ↔ ∃x0(fx =0 0))

form a rich and very robust class. We conjecture that one gets further inter-
esting and robust classes by considering other functional existence principles

1Here (and also two sentences below) we again identify the official formulation of RCA0

(from [16]) with its (inessential) variant with function variables instead of set variabales.
As soon as we have defined that variant precisely in the next section we will call it RCA2

0

and reserve the name RCA0 for the official version. Note that Friedman’s original systems
proposed in [5] also had function variables.

2It is an easy exercise to show that RCAω
0 proves the second order axiom of Σ0

1-
induction on which RCA0 is based upon. ‘Predicative’ here means that we have only
primitive recursion in the type 0 (but with parameters of arbitrary types). So for pure
types this corresponds to the primitive recursive functionals in the sense of Kleene’s ([8])
schemata S1-S8.
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than (∃2), like the existence of the Suslin operator ([1],[4])

(Suslin): ∃S2∀f 1(S(f) =0 0 ↔ ∃g∀x(f(gx) =0 0))

This indicates that there is an interesting extension of the currently existing
kind of reverse mathematics to higher order statements.

2 Description of the theory RCAω
0

The set T of all finite types is defined inductively by

(i) 0 ∈ T and (ii) ρ, τ ∈ T ⇒ ρ → τ ∈ T.

Terms which denote a natural number have type 0. Elements of type ρ → τ
are functions which map objects of type ρ to objects of type τ .
The set P ⊂ T of pure types is defined by

(i) 0 ∈ P and (ii) n ∈ P ⇒ n + 1 := n → 0 ∈ P.

Brackets whose occurrences are uniquely determined are often omitted. For
arbitrary types ρ ∈ T the degree of ρ (for short deg(ρ) ) is defined by
deg(0) := 0 and deg(ρ → τ) := max(deg(τ),deg(ρ) + 1).

The theory E-PRAω is based on many–sorted classical logic formulated in
the language of all finite types plus the combinators Πρ,τ , Σδ,ρ,τ which allow
the definition of λ–abstraction.
Furthermore we include the axioms of extensionality

(E) : ∀xρ, yρ, zρ→τ (x =ρ y → zx =τ zy)

for all finite types (x =ρ y is defined as ∀zρ1
1 , . . . , zρk

k (xz1 . . . zk =0 yz1 . . . zk)
where ρ = ρ1 → . . . → ρk → 0).
In addition to the defining axioms for the combinators, the Kleene recursor
constant R0, the equality axioms for type-0 equality and the successor axioms
we have the schema of quantifier-free induction

QF-IA: A0(0) ∧ ∀x(A0(x) → A0(x
′)) → ∀xA0(x),

where A0 is quantifier-free.
This finishes the description of E-PRAω. The theory E-PAω is the extension
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of E-PRAω obtained by the addition of the schema of full induction and all
(impredicative) primitive recursive functionals in the sense of [6].

The schema of quantifier-free choice for the types ρ, τ is given by

QF-ACρ,τ : ∀xρ∃yτA0(x, y) → ∃Y ρ→τ∀xρA0(x, Y x),
QF-AC :=

⋃
ρ,τ∈T

{QF-ACρ,τ},

where A0 is quantifier-free.

The theory RCAω
0 is defined as

RCAω
0 :=E-PRAω+QF-AC1,0.

In deviating slightly from the ‘official’ definition of RCA0 with set variables
we define a version with function variables as follows

RCA2
0 :=E-PRA2+QF-AC0,0,

where E-PRA2 denotes the second order fragment of E-PRAω (see [12] for
details).

The base system RCA0 used in reverse mathematics can easily be seen as
a subsystem of RCA2

0 by identifying sets with their characteristic functions.
The axiom schemata of Σ0

1-induction and ∆0
1-comprehension from RCA0 are

then easily derivable in RCA2
0 by QF-AC0,0 and – in the case of Σ0

1-IA – the
primitive recursive function

Φit(0, y, f) :=0 y, Φit(x + 1, y, f) :=0 f(x, Φit(x, y, f)).

Conversely, RCA2
0 can be viewed as an inessential extension of RCA0 by

indentifying functions with their graphs. The only ‘extension’ provided by
RCA2

0 is the existence of primitive recursive type-2-functionals (in the sense
of Kleene) which allow to define a new function g := Φ(f) primitive recur-
sively in a function f . However, this can be simulated in RCA0 in the form
∀f∃gAΦ(f, g), where AΦ(f, g) expresses in terms of recursion equations that
g = Φ(f).

Notation: For ρ = ρ1 → . . . → ρk → 0, we define 1ρ := λxρ1
1 . . . xρk

k .10,
where 10 := S0.

In the following we will need the definition of the binary (‘weak’) König’s
lemma as given in [18]:
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Definition 2.1 (Troelstra(74))
WKL:≡ ∀f 1(T∞(f) → ∃b ≤1 λk.1∀x0(f(bx) =0 0)),
where

T∞(f) :≡


∀n0, m0(f(n ∗ m) =0 0 → fn =0 0)
∧∀n0, x0(f(n ∗ 〈x〉) =0 0 → x ≤0 1)
∧∀x0∃n0(lth n =0 x ∧ fn =0 0)

(i.e. T∞(f) asserts that f represents an infinite 0,1–tree).

3 First steps towards reverse mathematics in

higher types

In this section we show that various analytical principles are equivalent to
(∃2) (over our base system RCAω

0 ).
The fact that the class of these principles is rather rich and robust is mainly
due to the following facts

1. a great deal of non-continuous analysis can be done already in RCAω
0 +

(∃2)

2. if a principle A implies the existence of a non-continuous function, then
one can use an argument known as Grilliot’s trick (see [7]) to derive
the existence of (∃2).

We first show that nothing is lost by working relative to the base system
RCAω

0 instead of RCA2
0:

Proposition 3.1 RCAω
0 is a conservative extension of RCA2

0.

Proof: Locally, one can show in RCA2
0 that the type structure ECF of

all extensional hereditarily continuous functionals (see [17] for the technical
definition) forms a model of RCAω

0 , i.e.

(1) RCAω
0 ` A ⇒ RCA2

0 ` [A]ECF.

Together with the fact that

(2) RCA2
0 ` ∀f 1(Φ(f) =0 [Φ]ECF(f))
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for all ordinary primitive recursive functionals Φ2 of type 2 (i.e. the func-
tionals definable in RCA2

0) this yields the conservation result.
(1) is proved similarly to (and in fact easier than) the corresponding result
for E-HAω+QF-AC from [17](2.6.20). In particular, no induction beyond
Σ0

1-IA is needed. a
As a corollary of proposition 3.1 we get that the finite type extensions
RCAω

0+WKL and RCAω
0 + Π0

∞-CA etc. of the second order systems used
in reverse mathematics are conservative over their second order part.
However, we are now in the position to state conservation results which could
not even been expressed with second order systems:

Theorem 3.2 ([4]) RCAω
0 +(∃2) is conservative over first order Peano arith-

metic PA.

Definition 3.3 1. For k0, f 1 we define

( lim
n→∞ f(n) =0 k) :≡ ∃n∀m > n(f(m) =0 k).

2. For g1, g0→1
(·) we define

( lim
n→∞ gn =1 g) :≡ ∀k∃n∀m > n(gm(k) =0 g(k)).

3. A functional Φ2 is everywhere sequentially continuous if

∀g1, ∀g0→1
(·) ( lim

n→∞ gn =1 g → lim
n→∞Φ(gn) =0 Φ(g)).

4. A functional Φ1→1 is everywhere sequentially continuous if

∀g1, ∀g0→1
(·) ( lim

n→∞ gn =1 g → lim
n→∞Φ(gn) =1 Φ(g)).

Lemma 3.4 RCAω
0 proves that the existence of a not everywhere sequen-

tially continuous functional Φ1→1 implies the existence of a not everywhere
sequentially continuous functional Ψ2.

Proof: Define Φ̃(f, k) := Φ(f)(k). If λf.Φ̃(f, k) is everywhere sequentially
continuous for all fixed k then Φ is everywhere sequentially continuous. So if
Φ is not everywhere sequentially continuous there must exist a k such that
Ψ := λf.Φ̃(f, k) is not everywhere sequentially continuous. a
The following result essentially is the observation that a recursion theoretic
argument known as ‘Grilliot’s trick’ can be carried out in RCAω

0 :
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Proposition 3.5 Relative to RCAω
0 the following principles are equivalent:

1. (∃2),

2. there exists a functional Φ2 which is not everywhere sequentially con-
tinuous.

3. there exists a functional Φ1→1 which is not everywhere sequentially con-
tinuous.

Proof: 1. → 2. and 2. → 3. are obvious. 3. → 2. follows from lemma 3.4.
So it remains to show that 2. → 1.
2. implies the existence of Φ2, g0→1

(·) , g1 such that

∀n∃m(gm(n) = g(n) ∧ Φ(gm) 6= Φ(g)).

With QF-AC0,0 this yields

∃h1∀n(gh(n)(n) = g(n) ∧ Φ(gh(n)) 6= Φ(g)).

So with g̃n(k) := gh(n+1)(k) and Φ̃(f) :=

{
1, if Φ(f) 6= Φ(g)
0, otherwise

we get

∀n∀i ≤ n(g̃n(i) = g(i)) ∧ ∀n, m(Φ̃(g̃n) = Φ̃(g̃m) 6= Φ̃(g)).

We are now in the position to apply Grilliot’s trick as in the proof of prop.3.4
in [13]. For completeness we repeat that short argument here:
In RCAω

0 we can define a functional ξ(f 1, g̃0→1
(·) , i0) such that

ξ(f, g̃(·), i) =

{
g̃j(i), for the least j < i such that f(j) > 0 if it exists
g̃i(i), otherwise.

Using ∀j∀i ≤ j(g̃j(i) = g̃i(i)) and ∀i(g̃i(i) = g(i)) one gets

(1) ∃j(f(j) > 0) → ξ(f, g̃(·)) =1 g̃j for the least such j

and
(2) ∀j(f(j) = 0) → ξ(f, g̃(·)) =1 g.

Hence by the extensionality axiom for type-2-functionals we obtain

∀j(f(j) = 0) ↔ Φ̃(ξ(f, g̃(·)) = Φ̃(g).

Thus ϕ := λf 1.sg ◦ |Φ̃(ξ(sg ◦ f, g̃(·)) − Φ̃(g)|, where sg(x) := 0 for x 6= 0 and
sg(x) := 1 otherwise, satisfies (∃2). a
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Definition 3.6

1. (µ2) :≡ ∃µ2∀f 1(∃x0(fx = 0) → f(µf) = 0) (see [4]),

2. The uniform weak König’s lemma UWKL is the principle

UWKL :≡ ∃Φ1→1∀f 1(T∞(f) → ∀x0(f((Φf)x) = 0)) ([13]).

Proposition 3.7 ([13]) Relative to RCAω
0 the following principles are pair-

wise equivalent:

(i) (∃2),

(ii) (µ2),

(iii) UWKL.

Remark 3.8 In addition to WKL and UWKL one can also consider an
intermediate ‘weak’ uniform version of WKL which asserts for every given
sequence (fn)n∈IN of infinite binary trees the existence of a sequence (bn)n∈IN

of infinite paths bn of fn. This version however is implied already by WKL
(relative to RCAω

0 ).

We now sketch the representation of real numbers and functions f : IR → IR
but only to the very limited extent needed here (for more details see [2],[9]
and [11]. A systematic treatment of a general theory of representations can
be found in [19]). Rational numbers are represented as codes j(n, m) of pairs
(n, m) of natural numbers n, m. j(n, m) represents

the rational number
n
2

m+1
, if n is even,

and the negative rational − n+1
2

m+1
, if n is odd.

Here j is the surjective pairing function j(x, y) := 1
2
((x + y)2 + 3x + y). On

the codes of Q, i.e. on IN, we have an equivalence relation by

n1 =Q n2 :≡
j1n1

2

j2n1 + 1
=

j1n2

2

j2n2 + 1
if j1n1, j1n2 both are even

and analogously in the remaining cases, where a
b

= c
d

is defined to hold iff
ad =0 cb (for bd > 0).
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On IN one easily defines functions | · |Q, +Q,−Q, ·Q :Q, maxQ, minQ ∈ RCAω
0

and (quantifier–free) relations <Q ,≤Q which represent the corresponding
functions and relations on Q. We sometimes omit the index Q if this does
not cause any confusion. We write 〈q〉 to denote the canonical code of q ∈ Q.
We next want to represent real numbers as Cauchy sequences of rational
number with rate of convergence 2−n. Using the encoding of rational num-
bers by natural numbers, such a Cauchy sequence is given by a function f 1

satisfying

(∗) ∀n∀m, m̃(m, m̃ ≥ n → |f(m) −Q f(m̃)| <Q 〈2−n〉).

(∗) is implied by

(∗∗) ∀n(|f(n) −Q f(n + 1)| <Q 〈2−n−1〉)

and conversely for any f satisfying (∗), f̃(n) := f(n + 1) satisfies (∗∗). That
is why we can use the more convenient condition (∗∗) on our representing
sequences instead of (∗). To achieve that any function f 1 can be viewed as a
representative of (a uniquely determined) real number we use the construc-
tion

f̂(n) :=


f(n), if ∀k < n(|f(k) −Q f(k + 1)|Q <Q 〈2−k−1〉),
f(k) for the least k < n s.t. |f(k) −Q f(k + 1)| ≥Q 〈2−k−1〉,

otherwise.

f̂ always satisfies (∗∗) and if already f satisfies (∗∗) then f =1 f̂ . So in

particular
̂̂
f =1 f̂ .

On the representatives of reals, i.e. on the number theoretic functions f 1
1 , f 1

2 ,
we can define an equivalence relation =IR

f1 =IR f2 :≡ ∀n(f̂1(n + 1) −Q f̂2(n + 1)| <Q 〈2−n〉),

which holds iff f1 and f2 represent the same real number. Similarly one de-
fines relations ≤IR and <IR. Note that =IR,≤IR∈ Π0

1 while <IR∈ Σ0
1. The

usual arithmetical operations +IR,−IR etc. can easily be defined as function-
als (definable in RCAω

0 ) on the representation of the real numbers.
Functions F : IR → IR are represented as functionals Φ1→1 which satisfy

∀f1, f2(f1 =IR f2 → Φ(f1) =IR Φ(f2)).
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In a similar but technically somewhat more involved way one can also rep-
resent more general Polish spaces X, Y by ININ and functions F : X → Y as
functionals Φ1→1 respecting the corresponding equivalence relations =X and
=Y (for details see e.g. [9]).

Lemma 3.9 RCAω
0 proves

1. ∀f1, f2, n(f1(n + 2) =0 f 2(n + 2) → |f1 −IR f2| <IR 〈2−n〉).
2. ∀f 1, f 0→1

(·) (∀n(|fn −IR f | <IR 〈2−n−2〉 →
∃f̃ 1, f̃ 0→1

(·) (f̃ =IR f ∧ ∀n(f̃n =IR fn ∧ f̃n(n) =0 f̃(n)))).

Proof: 1. follows from

f 1(n + 2) = f2(n + 2) → f̂1(n + 2) = f̂2(n + 2)

and
|f −IR λk.f̂(n + 1)| <IR 〈2−n−1〉.

2. Define f̃ := λk.f̂(k + 3), f̃n(k) :=

{
f̂n(k + 3), for k ≥ n

f̂(k + 3), for k < n.
It is clear that

f̃ =IR f ∧ ∀n(f̃n(n) =0 f̃(n)).

It remains to show that ∀n(f̃n =IR fn). This easily follows from the fact that

f̃n satisfies (∗∗) (so that
̂̃
fn =1 f̃n for all n). Thus we have to show the latter.

The only problematic case is |f̃n(n− 1)−Q f̃n(n)| < 〈2−n〉 (for n ≥ 1) which
we establish as follows (using the assumption ∀n(|fn −IR f | <IR 〈2−n−2〉):

|f̃n(n − 1) −Q f̃n(n)| =Q |f̂(n + 2) −Q f̂n(n + 3)|
≤Q |f̂(n + 2) −Q f̂n(n + 2)| + |f̂n(n + 2) −Q f̂n(n + 3)|
≤IR |λk.f̂(n + 2) −IR f | + |f −IR fn| + |fn −IR λk.f̂n(n + 2)|

+|f̂n(n + 2) −Q f̂n(n + 3)|
<IR 〈2−n−2 + 2−n−2 + 2−n−2 + 2−n−3〉 <Q 〈2−n〉.

a

Proposition 3.10 The following principles are pairwise equivalent relative
to RCAω

0 :

1. (∃2),

11



2. the function F : IR → IR determined by

F (x) :=

{
0, for x ≤IR 0
1, for x >IR 0

exists,

3. there exists a function F : IR → IR which is not everywhere sequentially
continuous.

Proof: 1. → 2. and 2. → 3. are obvious. It remains to show that 3. → 1.
Let F : IR → IR, x ∈ IR and (xn) be a sequence in IR such that

xn → x ∧ ¬(F (xn) → F (x)),

where ‘→’ indicates convergence in the sense of IR. Then

∃l∀k∃n(|xn −IR x| <IR 〈2−k〉 ∧ |F (xn) −IR F (x)| >IR 〈2−l〉).

Since <IR∈ Σ0
1, we can apply QF-AC0,0 to obtain

∃l∃g∀k(|xg(k) −IR x| <IR 〈2−k−3〉 ∧ |F (xg(k)) −IR F (x)| >IR 〈2−l〉).

Lemma 3.9.b) applied to fk := xg(k) yields f̃k, f̃ with

f̃ =IR x ∧ ∀k(f̃k =IR xg(k) ∧ f̃k(k) =0 f̃(k)).

F is given by some functional Φ1→1. Using the extensionality of Φ w.r.t. =IR

we get
∀k(|Φ(f̃k) −IR Φ(f̃)| >IR 〈2−l〉)

and hence by lemma 3.9.a)

∀k(Φ(f̃k)(l + 2) 6= Φ(f̃)(l + 2)).

So put together we have shown that

∃l∀k(f̃k(k) =0 f̃(k) ∧ Φ(f̃k)(l + 2) 6= Φ(f̃ )(l + 2)).

Hence Φ1→1 is not everywhere sequentially continuous (in the sense of defi-
nition 3.3.4). By proposition 3.5 this implies (∃2). a
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Proposition 3.11
With RCAω

0 replaced by RCAω
0 +QF-AC0,1 one can add

‘4. there exists a function F : IR → IR which is not everywhere ε-δ-continuous’

to the list of equivalences in proposition 3.10.

Proof: This follows from the fact that E-PRAω+QF-AC0,1 proves the (lo-
cal) equivalence of sequential and ε-δ-continuity of F : IR → IR in any point
x ∈ IR (see theorem 4.1 in [14]). a
Notation: C denotes the space of all functions f ∈ C[0, 1] with
f(0) ≤ 0 ∧ f(1) ≥ 0.

We now consider uniform versions of the following principles:

1. the intermediate value theorem:
∀f ∈ C∃x ∈ [0, 1](f(x) =IR 0),

2. the attainment of the maximum principle:
∀f ∈ C([0, 1]d)∃x ∈ [0, 1]d∀y ∈ [0, 1]d(f(x) ≥IR f(y)),

3. Brouwer’s fixed point theorem:
∀f ∈ C([0, 1]d, [0, 1]d)∃x ∈ [0, 1]d(f(x) =IRd x).

These principles differ in strength: whereas 2. and 3. imply (already
for continuous functions as defined in reverse mathematics) WKL, 1.can be
proved in RCAω

0 (see [16]). In fact, there is also some difference between
2. and 3., since even the restriction of 2. to uniformly continuous functions
which are given with a modulus of uniform continuity implies WKL whereas
3. is provable in RCA0 for such functions (see the proof of thm.5.1.b in [15]).
In contrast to this, the uniform versions of 1.-3. are all equivalent to (∃2)
(indepedently of whether e.g. f ∈ C[0, 1] is given as a type-2 functional, with
a code in the sense of reverse matheatics, or even with a modulus of uniform
continuity).

Proposition 3.12 The following principles are pairwise equivalent relative
to
RCAω

0 :

1. (∃2),

2. ∃F : C → [0, 1]∀f ∈ C (f(F (f)) =IR 0),
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3. the restriction of 2) to Lipschitz continuous functions with λ = 1,

4. ∃F : C([0, 1]d) → [0, 1]d∀f ∈ C([0, 1]d)∀y ∈ [0, 1]d(f(F (f)) ≥IR f(y)),

5. the restriction of 4) to Lipschitz continuous functions with λ = 1,

6. ∃F :C([0, 1]d, [0, 1]d) → [0, 1]d∀f ∈ C([0, 1]d, [0, 1]d)(f(F (f)) =IRd F (f)).

7. the restriction of 6) to Lipschitz continuous functions with λ = 1.

Proof: It is a routine verification, that 2.-7. can be proved within RCAω
0 +

(∃2) by inspecting the proofs of the non-uniform versions of these theorems.
This holds true even if f ∈ C[0, 1] (and similarly f ∈ C([0, 1]d) and f ∈
C([0, 1]d, [0, 1]d)) is given just as a functional of type 1 → 1 which happens
to be ε-δ-continuous w.r.t. the usual topologies of [0, 1] and IR, but without
any witness information for this continuity. We sketch this for 4. and d = 1:
Let rn be a suitable enumeration of all rational numbers in [0, 1] and define3

g(n) :=


µi ≤ 2n − 1[∀k0, l0∃j0(rj ∈ [ i

2n , i+1
2n ] ∧ f(rj) ≥IR f(rk) − 2−l)],

if existent
00, otherwise.

Note that g is (Kleene-)primitive recursively definable in (∃2) and (a func-
tional representing) f since the property ‘[. . .]’ is arithmetical. In RCAω

0 +
(∃2) one easily shows that the case ‘otherwise’ cannot occur. Moreover, using
the continuity of f it follows that (g(n)/2n)n∈IN is a Cauchy sequence with
rate of convergence 2−n which converges to the least x ∈ [0, 1] such that
f(x) = supy∈[0,1] f(y).
We now prove that any of 2.-7. implies (∃2). It is clear that it suffices to con-
sider the case of Lipschitz continuous functions. We show this now for 3. (for
5. and 7. the proofs are very similar): Let f0 : [0, 1] → IR be the constant-
0-function f0(x) := 0. C is the space of all Lipschitz continuous functions
f ∈ C[0, 1] with Lipschitz constant λ = 1 satisfying f(0) ≤ 0, f(1) ≥ 0, and
F : C → [0, 1] is a function that satisfies 3.
Case 1: F (f0) ∈ [0, 1

2
]. For y ∈ [0, 1], define fy : [0, 1] → IR by fy(x) := yx−y.

fy ∈ C and fy(0) ≤ 0, fy(1) ≥ 0 for all y ∈ [0, 1]. Moreover,

∀y ∈ (0, 1]∀x ∈ [0, 1](fy(x) =IR 0 ↔ x =IR 1).

3For notational simplicity we write here i
2n and 2−l instead of their codes.
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Hence
∀y ∈ (0, 1](F (fy) =IR 1).

Define g : [0, 1] → IR by g(y) := F (fy). Then g(0) = F (f0) ∈ [0, 1
2
] and

∀y ∈ (0, 1](g(y) = F (fy) = 1).

Hence, ĝ : IR → IR, ĝ(y) := g(minIR(1, maxIR(0, y)) is not sequentially contin-
uous at y := 0.
Case 2: F (f0) ∈ [1

2
, 1]. Analogously to case 1 but with fy(x) := yx.

In both case we have constructed (Kleene-)primitive recursively in F a func-
tion g : IR → IR which is not everywhere sequential continuous. Hence,
proposition 3.10 yields the existence of (∃2). a
Above we saw that certain principles which in their non-uniform version are
different w.r.t. to the set existence axioms needed to prove them are equiv-
alent in their uniform formulation. We now indicate that also the opposite
phenomenon can occur: Consider again the attainment of the maximum
principle (for simplicity only for dimension 1)

(a) ∀f ∈ C[0, 1]∃x ∈ [0, 1]∀y ∈ [0, 1](f(x) ≥IR f(y))

and also the existence of the supremum

(b) ∀f ∈ C[0, 1]∃y ∈ IR(y =IR sup
x∈[0,1]

f(x)).

¿From ordinary reverse mathematics it is well-known that both principles
are equivalent to WKL (relative to RCA0 and using the encoding of such
functions as pointwise continuous functions as in [16]), i.e. without a modu-
lus of uniform continuity). We saw above that the uniform version of (a) is
equivalent to (∃2) (independently of whether f is assumed to be uniformly
continuous or even given with a modulus of uniform continuity or not). Let’s
consider the uniform version of (b). The status now depends on the repre-
sentation: it is easy to define a functional in RCAω

0 which computes the
supremum of f uniformly in f and a modulus of uniform continuity of f .
If, however, f is just given as a pointwise continuous functions one has to
compute a modulus of uniform continuity first. This can be achieved uni-
formly in f (given as a functional ϕ1→1 which is extensional w.r.t. =IR) by
the following so-called fan functional

(MUC): ∃Ω3∀ϕ2∀f1, f2 ≤1 1(f1(Ω(ϕ)) =0 f2(Ω(ϕ)) → ϕ(f1) =0 ϕ(f2)).

15



(MUC) is inconsistent with (∃2) but consistent relative to RCAω
0 . Moreover,

adapting the proof of theorem 2.6.4 in [17] one can show

Proposition 3.13 RCAω
0 +MUC is conservative over RCA2

0+WKL (and
hence Π0

2-conservative over PRA).

Since the uniform version of (b) (for pointwise continuous functions)4 can
be proved in RCAω

0+MUC it is proof-theoretically weaker than the uniform
version of (a).

Final Comments:

1. The equivalence results established in this paper also hold for the sub-
system RCAω∗

0 :=E-G3A
ω+QF-AC1,0 of RCAω

0 with elementary re-
cursive functionals only (i.e. E-G3A

ω only contains 0, S, +, ·, exp and
bounded predicative recursion). The absence of Φit blocks the deriv-
ability of Σ0

1-IA and, in fact, RCAω∗
0 (which is a higher order exten-

sion of the system RCA∗
0 from [16]) is Π0

2-conservative over Kalmar-
elementary arithmetic EA.

2. The results in this paper depend crucially on the fact that our sys-
tem RCAω

0 contains full extensionality (for type-2-objects). In [13] we
have shown that in a setting where (E) is replaced by Spector’s weak
quantifier-free rule of extensionality e.g. UWKL is as weak as WKL.

3. One could argue to use instead of systems based on a fixed system
of finite types more flexible systems like Feferman’s systems of ex-
plicit mathematics are appropriate subsystems of (classical versions of)
Martin-Löf type theories. However, in neither of these settings has been
formulated a natural equivalent to the system WKL0, i.e. a system
with the same mathematical strength then WKL0 but which at the
same time allows a finitistic reduction to primitive recursive arithmetic
PRA. The problem here seems to be that these frameworks treat a
principle like WKL automatically in its uniform version UWKL which,
however, is (in an extensional setting) proof-theoretically as strong as

4Actually, MUC even suffices to prove this for arbitrary functions f : IR → IR. We
don’t know whether the (classically valid) restriction of MUC to pointwise continuous
functionals ϕ2 suffices to prove the uniform version of (b). The problem is, that the
pointwise continuity of f : IR → IR does not imply that a functional ϕ1→1 representing f
is pointwise continuous in the sense of the Baire space.
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(∃2) as we saw above. In our view it is one of the most interesting
outcomes of reverse mathematics that large parts of mathematics can
be carried out in a PRA-reducible system like WKL0.
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