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Abstract

Defunctionalization was introduced by John Reynolds in his 1972
article Definitional Interpreters for Higher-Order Programming Lan-
guages. Defunctionalization transforms a higher-order program into a
first-order one, representing functional values as data structures. Since
then it has been used quite widely, but we observe that it has never
been proven correct.

We formalize defunctionalization denotationally for a typed func-
tional language, and we prove that it preserves the meaning of any
terminating program. Our proof uses logical relations.
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logical relations.
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1 Introduction

In a language with lexical scope and higher-order functions, evaluating a
function abstraction naturally yields a function value, a closure [Lan64],
that contains information about both the definition of the function and the
denotation of its free variables. Functions taking functions as arguments
are common in functional programming with map- and fold-like functions.
Functions returning functions occur when applying curried functions like
iterators, or, e.g., a function implementing function composition, which takes
two functions as arguments and returns a function as result.

Defunctionalization is a program transformation that turns a program
with higher-order functions into one with only first-order functions, thus
removing the need to have closures as expressible values, using Strachey’s
terminology [Str00]. The method was described by Reynolds in his influ-
ential ’72 paper, “Definitional Interpreters for Higher-Order Programming
Languages” [Rey98]. It is based on (1) using algebraic data-types to rep-
resent the functional values as data values, at each declaration point; and
(2) decoding the representation with an apply function defined by cases over
the data-type, at each application point. Reynolds only applies defunction-
alization to one class of programs, definitional interpreters, but his method
is generally applicable to any closed program.

Reynolds’s method became an instant classic, one that has been used in
many contexts, not only for implementing interpreters for higher-order lan-
guages in first-order languages [Bel93, CJW00]. Defunctionalization can be
used in program transformers, such as compilers and partial evaluators, ei-
ther to simplify the language (implicit in Bondorf’s work [Bon90] section 5.6:
Representing Higher-Order Values) or to support higher-order functions if
the target language of the transformation does not support such [CJW00].
Recently, Bell, Bellegarde, and Hook have applied defunctionalization to
typed languages [BH94, BBH97]. In the latter of these papers they formalize
a defunctionalizing translation and prove that it preserves typability; how-
ever they provide no formal proof that defunctionalization is also a meaning
preserving transformation, although there is no real doubt that it is one.

1.1 This work

In this article, we choose a prototypical simply-typed functional language,
and define a defunctionalizing transformation from an annotated version of
this source language to a target language without higher-order functions.
This language and approach resemble the ones in Bell, Bellegarde, and
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Hook’s work [BBH97].
The target language is chosen as a subset of the one considered by Bell

et al., which is itself very standard:

• It is typed.

• It has top-level, mutually recursive function declarations, but not first-
class functions. That is, the function identifiers can only occur in
function position in applications, and only such function identifiers can
occur there. “Ordinary” variables cannot denote function values and
expressions cannot evaluate to such, and the language only supports
functions with two arguments. This is sufficient for the output of the
defunctionalization transformation, and we restrict the language to
avoid unnecessary features.

• It has user-defined algebraic data-types, with a syntax resembling that
of Standard ML. The datatype constructors are used for the repre-
sentation of function values when defunctionalizing, The data-types
denote sets constructed by products, disjoint sums, and recursive def-
initions, and as such they can be implemented in any language with
these type constructions.

• Its set of variable names includes the ones of the source language.

• It has the same operations on base type (natural numbers) as the
source language, making translation of these immediate.

Programs in the target language can be translated easily to any language
with top-level functions, product and sum constructions and recursive types,
and operations on integers, e.g., Standard ML or even C, using tuples and
inductive datatypes in the former and pointers to structures and tagged
unions in the latter [TO98].

We give the semantics of the source and target languages, and formalize
a defunctionalization transformation. We then prove that the translation
preserves the semantics of terminating programs.

1.2 Defunctionalization

Reynolds’s transformation works on untyped expressions. It turns function
abstractions into constructors applied to the denotation of the free variables,
and it turns applications into applications of a first-order apply function to
a value and an argument.
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We define a translation on both types and (typing derivations of) expres-
sions that maps function types into names of data-types, and expressions
into equivalent expressions, with only the above changes. In other words,
expressions that are not function abstractions or applications are merely
traversed to translate the subexpressions. We are translating typing deriva-
tions, so we can only translate well-typed programs.

Translating the types makes it clear how to proceed. Any function type is
translated to a data-type, so any expression having a functional type must be
translated into a new expression having the type of the data-type. Function-
type introduction (function abstractions) is then translated to data-type
construction, i.e., a constructor application. Function-type elimination, i.e.,
application, must then be turned into data-type deconstruction, i.e., a case
construct. Each case then corresponds to the body of each function that
could have flowed there in the original program.

Implementing this directly, using syntax that is introduced in Section 3,
would give

(fun f x : τ1 →τ2 = . . . x2 . . . x . . . x7 . . .)

which is the syntax we use for a recursive function value where x1 . . . xn are
free variables. Transforming this function definition yields

C 〈v1 = x1〉. . .〈vn = xn〉

which is the syntax used for applying a data-type constructor to a tuple
indexed by the names v1 through vn (reminiscent of, e.g., ML records).

Likewise, function application

f(y)

is transformed into a case dispatch matching the constructor that represents
the function definition:

case f of C 〈v1 = x1〉. . .〈vm = xn〉=> . . . x2 . . . y . . . x7 . . .

This immediate implementation falls short for recursive functions. A
recursive function can call itself inside the body of the function, so if the
transformation places the body of the function at its possible application
points, it would have to expand the application infinitely. This is where we
need the “apply” function mentioned earlier. An application thus induces a
global function definition for each data-type

fun app ff xx = case ff of Cl 〈v1 = x1〉. . .〈vm = xn〉=> . . .

6



Program (fun f x : nat →nat = ifz(x, 0, y.succ(succ(f y))))〈〉l
(succ(succ(0)))

is translated into

datatype cτ1→τ2 = Cl 〈〉
fun appτ1→τ2 ff xx =

case ff of Cl 〈〉 => ifz(xx , 0, y.succ(succ(appτ1→τ2 ff y)))
in
appτ1→τ2 (Cl 〈〉) succ(succ(0))

Figure 1: Example program

and the application itself becomes just

app f y

To preserve well-typedness, we also translate the types. We give a data-
type declaration defining one data-type for each function type occurring in
the program, such that each translated type is defined in the target program.
For each function abstraction we add, to the datatype corresponding to the
type of the abstraction, a constructor with an argument that contains the
values in the environment of the abstraction.

Notice that this data-type declaration might define data-types with no
constructors. Such declarations are allowed, but they are only needed if the
program contains unreachable code or a diverging expression, since it is a
symptom of there being an expression with a type for which no values are
ever created. On the other hand it is easy to write a well-typed program
with this property, so the translation must treat it properly.

We then define a group of top-level application functions, one for each
functional type occurring in an application. These functions take two ar-
guments, a function representation and an argument, and dispatch on the
function representation. The case contains a match for each constructor of
that type, with the body of the corresponding function as expression (and a
renaming of the arguments of the apply function to the name of the formal
parameters of the original function). We place the translation of the expres-
sion of the original program in the scope of these declarations. See Figure 1
for an example.
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1.3 Scope of the results

We prove the weak correctness of the defunctionalization translation of a
prototypical typed functional language with higher-order functions. In other
words, if the original program terminates, then so does the defunctionalized
one, and with the same result. Eventually, we want to prove full correctness,
i.e., semantic equivalence of the two programs.

The source language is monomorphic, whereas Bell, Bellegarde, and
Hook treat a polymorphic language, albeit by turning it into a monomorphic
one by code duplication. Reynolds’s programs are untyped, and only implic-
itly group the occurring functions into “continuations” and “abstractions”
in the interpreters.

Where Reynolds stores only the values of the free variables of a function
in the constructed value, our transformation stores the entire environment.
Only storing the value of the free variables is an optimization which does
not change the correctness of the translation, and we have omitted it from
the present work.

Reynolds does not translate all function abstractions into values, only the
ones that are actually used as arguments or results of higher-order functions.
He leaves the globally defined functions, such as the one called eval, as func-
tions. The present transformation, on the other hand, turns all abstractions
in the source program into constructed values in the target program.

Reynolds can avoid transforming such functions because he knows that
the function is not used as an argument or result of a function in the trans-
lated program, so there is no need to turn it into a non-functional value.
In this paper we do not assume such knowledge, though it could be added
with a prior analysis step. There is also another consideration at work; the
function eval does occur as a free variable in another function abstraction
which is translated into a constructor. If the value of eval is to be used as
part of the argument to this constructor, being a free variable in the body of
the function abstraction, then that value should have been translated too.
Here Reynolds recognizes that it is not necessary to put the eval function
into the “closure” he creates because it is defined at top level, and therefore
still in scope for the code of the body of the abstraction when the body is
moved into the apply function. This optimization is similar to Johnsson’s
λ-lifting which generates recursive equations [Joh85].

An analysis that detects whether the value of a function abstraction is
used as an argument or result is trivial for the source language we use.

To summarize, if the value of a function definition is not being passed
around, and the function is closed, then it can be made into a global (top-
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level) function. If it is not closed, but not being passed around and not free
in some other function that is being converted, then it can be left in place.
Reynolds at least uses the latter rule, and his program already has as many
functions global as possible. The present transformation does neither of
these optimizations. Rather, it makes the pessimistic, but safe, assumption
that any function can possibly be used as argument to another function,
so all function abstractions must be translated, just as in super-combinator
conversion [Pey85].

1.4 Related subjects

Defunctionalization is closely related to two other transformations: Closure
Conversion and Lambda Lifting.

Closure Conversion is a program transformation that turns all function
abstractions into pairs of closed code (no free variables) and a representation
of the values of the free variables in the original code. The closed code is
still a function, so this is not defunctionalization, but it shares the concept
of turning abstractions into values containing the values of the free variables
at the point of definition. Closure conversion has also been studied in a
typed setting by Harper, Morrisett, and Minamide [MMH96], and used in,
e.g., a the compiler for Standard ML of New Jersey [AJ89].

Lambda Lifting is a program transformation that bypasses the need to
represent closures by removing the lexical nesting. It “lifts” abstractions out
of the program and into “global” top-level declarations (traditionally a set
of mutually recursive equations), capturing the non-functional free variables
by abstracting over them. Their denotation must then be passed at each
application. The functions themselves are then all defined at the same level,
and need not be captured in the same way. They can still be passed as
arguments if needed, though [Joh85, DS00, FH00].

1.5 Prerequisites and notation

The reader is assumed to be familiar with Reynolds’s “Definitional Inter-
preters for Higher-Order Programming Languages” [Rey98], and the con-
cepts and notation of denotational semantics, as presented in, e.g., Winskel’s
textbook [Win93].

1.5.1 Indexed products

A product space, A × B, is characterized by, amongst other things, the
existence of the associated projection functions, π1 : A × B → A and π2 :
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A×B → B, i.e., the product is implicitly indexed by the numbers 1 and 2.
That is, A × B is isomorphic to the subset of the function space {1, 2} →
A ∪B that maps 1 to something in A and 2 to something in B.

Generalizing this to products over arbitrary finite sets, if for each s ∈ S
we can construct a set As, then

∏
s∈S As is a product space with projections

πs : (
∏

s∈S As) → As for each s in S. If the As are all equal to some set M ,
the product can be written MS . The set of indices is called the “index set”.

Let A def=
∏

s∈S As be an arbitrary product space, and α a tuple in it.
The notation for elements of such products will be {s1 = a1, . . . , sn = an}
where ai ∈ Asi , reminiscent of, e.g., records in ML.

An element of a product space is uniquely determined by its values under
the projections. That is, we can define an element of a product space,∏

s∈S As, by giving an element as ∈ As for each s ∈ S.

Dom(A)

The domain of a product space is the index set of the product. In this
case Dom(A) = S.

The Dom function may also be used on elements of the product, i.e.,
Dom(α). In that case it is just a shorthand for “Dom(A) where α ∈ A”.

Projection

Instead of writing πs(α), we write α(s), i.e., we interpret the tuple as
the corresponding function in S → ∪s∈SAs.

If it is not obvious from the context that s ∈ Dom(α) then writing
α(s) = x implicitly means s ∈ Dom(α) ∧ α(s) = x.

This notation is also used on the product spaces themselves, i.e., A(s)
is the set As, corresponding to the usual notation for applying a func-
tion to a set of arguments:

A(s) = πs(A) = {πs(α) |α ∈ A} = As

Extending a product

If A is a product space then A{x=M} is the product space∏
y∈Dom(A)∪{x}

A′
y

where A′
x = M and if y 6= x then A′

y = Ay.
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This definition allows extending the product both if the new index is
in the domain of the old product and if it is not.

The same notation will also be used for elements of the products, i.e.,
if α ∈ A and v ∈M then α{x=v} ∈ A{x=M}, and α{x=v} (x) = v.

Restricting a product

If A is a product then A\{x} is the product with domain Dom(A)\{x},
s.t. for y ∈ Dom(A) \ {x} we get (A \ {x})(y) = A(y).

Again, we will use the same notation on the elements of the product.

Terminology: environment

We use the word “environments” about the elements of a product
space of denotable values where the index set is a set of identifiers.

1.5.2 Disjoint indexed unions

A disjoint sum of two sets is usually defined as A+B = inl(A)∪inr(B) where
inl and inr are injection functions s.t. inl(A) ∩ inr(B) = ∅. Traditionally
these injections are defined as inl : A→ ({1} ×A) and inr : B → ({2} ×B)
with inl(a) = (1, a) and inr(b) = (2, b), but any pair of bijective functions
with disjoint images can be used.

Binary disjoint sums can be generalized to sums over arbitrary finite
index sets. If for each s ∈ S we can construct a set As, then

∑
s∈S As =⋃

s∈S{s} ×As is a sum with injections ins : As → {s} ×As for each s in S.
Product spaces come with an associated tupling operation, and similarly

a disjoint sum has an associated deconstructor. To deconstruct a sum, we
use the associated case function, that for binary sums has the “type scheme”

caseA+B : (A→M) × (B →M) → A+B →M

and satisfies caseA+B(f, g)(inl (x)) = f(x) and caseA+B(f, g)(inr (y)) =
g(y).

Generalizing to more than two summands we have the function

case :

(∏
s∈S

As →M

)
→
(∑

s∈S

As

)
→M

defined as case(p)(ins(a)) = case(p)(s, a) = p(s)(a).

11



1.5.3 Lifting CPOs

If (D,v) is the chain-complete partial order (CPO) with carrier set D and
partial ordering relation v, then (D⊥,v⊥) is the “lifted” partial order with
carrier set {up(x) |x ∈ D} ∪ {⊥}

If a CPO has a least element, the CPO is called pointed, and its least
element is called bottom, written ⊥. A lifted CPO is always pointed, so the
use of ⊥ is consistent.

If f is a function in the CPO D → E with E pointed then (f)† : D⊥ → E
is defined as (f)† (⊥) = ⊥ and (f)† (up(x)) = f(x).

Both the up(. . .) : D → D⊥ and (. . .)† : (D → E) → (D⊥ → E) are
continuous as functions from CPOs to CPOs, and the latter also preserves
continuity [Win93, Chapter 8].

1.6 Overview

Section 1 describes Reynolds’s defunctionalization and related work. Sec-
tions 2 through 4 formalize the source and target languages, and define the
defunctionalizing program transformation. While lengthy, these three sec-
tions uses only elementary constructions and concepts to establish the basis
for the following sections. Sections 5 and 6 show that the transformation
preserves typability and that it is weakly semantics preserving, i.e., it pre-
serves the semantics of all terminating programs. Finally Section 7 describes
possible extensions of the proof and suggests several directions for further
work.

2 The source language

In order to formalize defunctionalization, we give a formal definition of both
the source language and the target language with their denotational seman-
tics.

As a source language we use a prototypical higher-order functional lan-
guage.

2.1 Syntax

The syntax is given by the grammar in Figure 2, where x and f ranges over
a set of identifiers.

12



τ ::= nat
| τ → τ

e ::= x
| 0
| succ(e)
| ifz(e, e, x.e)
| (fun f x : τ → τ = e)
| (e e)

p ::= Program e

Figure 2: Syntax of the source language

2.2 Typing judgments

The typing rules in Figure 3 define well-typed expressions. The judgments
are of the form Γ ` e : τ , where Γ is a type assignment (an environment
mapping variables to types), e is an expression and τ a type, or of the form
` p where p is a program (“Program e” for some expression e of type nat).

If we can derive ` Program e then we say that the program is well-typed,
and the derivation is called a typing derivation of the program.

Since all function abstractions include their type syntactically, for any
type assignment Γ and expression e, there is at most one τ such that there
exists a typing derivation of Γ`e : τ , and there is at most one derivation of
any judgment (easy proof by induction on structure of program omitted).
Therefore there can be no ambiguity when referring to the derivation of
Γ`e : τ .

2.3 Denotational semantics

The denotational semantics used is a standard call-by-value semantics. It is
given as a inductively defined function over the structure of typing deriva-
tions, so it only makes sense to talk about the denotation of an expression
or a program if the expression or program is well-typed.

The denotation of a derivation is written as a function of the conclusion
only, but this is just for ease of representation. The function actually takes
the entire derivation as argument, and references to sub-derivations (again

13



Γ(x) = τ
Γ`x : τ Γ`0 : nat

Γ`e : nat
Γ` succ(e) : nat

Γ`e : nat Γ`e1 : τ Γ{x=nat}`e2 : τ
Γ` ifz(e, e1, x.e2) : τ

Γ{f=τ1 →τ2}{x=τ1}`e : τ2
Γ`(fun f x : τ1 → τ2 = e) : τ1 →τ2

Γ`e1 : τ1 →τ2 Γ`e2 : τ1
Γ`(e1 e2) : τ2

{}`e : nat
` Program e

Figure 3: Typing judgments for the source language

represented by their conclusions) are still compositional.
The semantic functions are shown in Figure 4. The arrow(→) in the de-

notation of a function type represents the continuous function space between
the CPOs.

2.4 Annotated source language

The defunctionalizing transformation is inherently nonlocal, since it moves
the bodies of functions from their original position in the program and into
the application functions. To reference specific subexpressions of the pro-
gram, we annotate each expression with a unique label taken from some
countably infinite set of label identifiers.

Also, we annotate function abstractions with the variables bound by the
type assignment of the expression. This annotation is of the form:

env ::= ·
| env〈x : τ〉

That such an annotation really represents the type assignment is captured

14



S[[nat]] = N
S[[τ1 →τ2]] = S[[τ1]] → S[[τ2]]⊥

S[[Γ]] =
∏

x∈Dom(Γ)
S[[Γ(x)]]

S[[Γ`e : τ ]] : S[[Γ]] → S[[τ ]]⊥
S[[Γ`x : τ ]]ρ = up(ρ(x))

S[[Γ`0 : nat]]ρ = up(0)
S[[Γ` succ(e) : nat]]ρ = (λx.up(x+ 1))† (S[[Γ`e : nat]]ρ)

S[[Γ` ifz(e, e1, x.e2) : τ ]]ρ = (Ψ)† (S[[Γ`e : nat]]ρ)

where Ψt =

{
S[[Γ`e1 : τ ]]ρ if t = 0
S[[Γ{x=nat}`e2 : τ ]]ρ{x= t1} if t > 0

S[[Γ`(fun f x : τ1 → τ2 = e) : τ1 →τ2]]ρ
= up(fix(Ψ))

where ΨF = λX.S[[Γ{f=τ1 →τ2}{x=τ}`e : τ2]]ρ{f=F}{x=X}
S[[Γ`(e1 e2) : τ2]]ρ =(

λf.((λx.fx)† (S[[Γ`e2 : τ1]]ρ))
)†

(S[[Γ`e1 : τ1 →τ2]]ρ)

S[[` p]] : N⊥
S[[` Program e]] = S[[{}`e : nat]]{}

Figure 4: Call-by-value denotational semantics of well-typed programs
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by the following judgment.

{} ` ·

Γ(x) = τ Γ \ {x} ` env ′
Γ ` env ′〈x : t〉

Let L be the set of labels occurring in the annotated program p. Since
labels are unique, we can define a function mapping labels of L to the sub-
derivations of `p of the expression labeled by that label.

Definition 1 The PROOF (p) relation
We define a function recursively on the derivation of (annotated) expres-

sions by.

PROOF
( D

Γ`el : τ

)
= {(l,Γ`el : τ)} ∪

⋃
d∈D

PROOF (d)

We can then show by an easy induction proof that for every Γ`el : τ the set
PROOF (Γ`el : τ) defines the graph of a function from labels to derivations,
since no l occurs more than once in a well-annotated program, and also that
any sub-derivation of Γ`e : τ is in the image of PROOF (Γ`e : τ).

Extending this function to programs, we define

PROOF (`Program el) = PROOF ({}`el : nat)

It follows from the definition that the domain of PROOF (p) is exactly L.

We use functions for recognizing and deconstructing syntax: isfun(e) and
isappl(e) are true if e is syntactically a function abstraction and respectively
an application expression. If e = (fun f x : τ1 →τ2 = e′)env then isfun(e) is
true and

funvar(e) = f
argvar(e) = x

argtype(e) = τ1
restype(e) = τ2

body(e) = e′

envof(e) = env

Likewise, if e = (e1 e2) then isappl(e) is true, funpart(e) = e1, and argpart(e) =
e2. We do not define function deconstructing the remaining kinds of expres-
sions, since we have no need for them.
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The functions on expressions are extended to work on derivations too,
by applying to the expression of the conclusion. Where the functions on
expressions return subexpressions, the extended functions return the sub-
derivation corresponding to that subexpression, e.g., funpart(Γ ` (e1 e2) :
τ2) = Γ ` e1 : τ1 → τ2. Also, we define the functions typeof(Γ ` e : τ) = τ
and envof(Γ`e : τ) = Γ.

To collect the set of all types occurring in the program p, we define
typesof(p) as the set

{τ | τ 6= nat ∧ (l,D) ∈ PROOF(p) ∧ (typeof(D) = τ ∨ (isfun(D) ∧
(argtype(D) = τ ∨ restype(D) = τ)))}

i.e., any type, other than nat, that is the type of an expression, or is the
type of an argument or a result of a function. This set could equally well
have been defined recursively in the structure of the derivation of p, in the
same way as PROOF(p).

3 The target language

The language we want to transform our annotated source language programs
into must necessarily have user-defined algebraic data-types for the transla-
tion to follow Reynolds’s method [Rey98]. It also needs mutually recursive
functions, and operations on natural numbers corresponding to the ones in
the source language. We do not need reflexive data-types (ones where the
types themselves can occur negatively, i.e., as domain of a function type, in
their own definition), since in the output of defunctionalization, the datatype
constructors are first order, just as the functions.

The target language will consist of a set of mutually recursive top-level
data-type definitions followed by a set of mutually recursive function def-
initions (with a fixed arity of two, which is all we need for the output of
defunctionalization). Finally there is one expression that is evaluated in the
scope of these declarations to give the result of the program.

3.1 Syntax

The syntax is more complex than for the source language, mainly due to
the extra syntactic categories introduced by the top-level data-type and
function declarations. It is displayed in Figure 5, where c ranges over type
names (of user-defined types), C ranges over constructor names, f ranges
over function names, x and y range over variable names, and v ranges over
indices of records.
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type τ ::= nat | c

datadecl-list ddl ::= · | dd and ddl

datadecl dd ::= c = cdl

condecl-list cdl ::= · | cd [] cdl

condecl cd ::= C ct

con-tuple ct ::= 〈〉 | ct〈v : τ〉

fundecl-list fdl ::= · | fd and fdl

fundecl fd ::= f x y : τ → τ → τ = exp

expression exp ::= x
| 0
| succ(exp)
| ifz(exp, exp, x.exp)
| f exp exp
| C at
| case exp of ml
| let x = exp in exp

arg-tuple at ::= 〈〉 | at〈v = exp〉

match-list ml ::= · | m [] ml

match m ::= C mt => exp

match-tuple mt ::= 〈〉 | mt〈v = x〉

program p ::= datatype ddl
fun fdl in exp

Figure 5: Syntax of the target language
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3.2 Typing judgments

The target language is also typed. There will be a typing judgment for each
syntactical category.

In the following, O ⊆ TypeID is a set of type names (ranged over by
c ∈ TypeID in the syntax), Ω is an environment from type names to a ∆,
where ∆ is an environment from constructor names (C ∈ ConID) to tuple
representations, V, where V again is an environment from label identifiers
(v ∈ LabelID) to types. Also, Φ is a map from function-names to triples of
types and Γ is a map from variable-names to types, i.e., a type assignment.

Notice that τ is used for types in both the source and the target language.
It will be obvious from the context which is meant by an instance of τ .
The typing judgment schema are as given below.

type: O ` τ
O ` nat

c ∈ O
O ` c

datadecl-list: O`ddl : Ω

O`· : {}
O`dd : (c,∆) O`ddl : Ω
O`dd and ddl : Ω{c=∆}

datadecl: O`dd : (c,∆)

O`cdl : ∆
O`c = cdl : (c,∆)

condecl-list: O`cdl : ∆

O`· : {}
O`cd : (C,V) O`cdl : ∆

O`cd[]cdl : ∆{C=V}

condecl: O`cd : (C,V)
O`ct : V

O`C ct : (C,V)

con-tuple: O`ct : V

O`〈〉 : {}
O`ct : V O ` τ

O`ct〈v : τ〉 : V{v=τ}

fundecl-list: Ω,Φ` fdl : Φ′

Ω,Φ`· : {}
Ω,Φ`fd : (f, (τ1, τ2, τ3)) Ω,Φ`fdl : Φ′

Ω,Φ`fd and fdl : Φ′{f=(τ1, τ2, τ3)}
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fundecl: Ω,Φ` fd : (f, (τ1, τ2, τ3))

Ω,Φ, {x = τ1, y = τ2}`e : τ3
Ω,Φ`f x y : τ1 → τ2 → τ3 = e : (f, (τ1, τ2, τ3))

expression: Ω,Φ,Γ`exp : τ

Γ(x) = τ Dom(Ω) ` τ
Ω,Φ,Γ`x : τ

Ω,Φ,Γ`0 : nat

Ω,Φ,Γ`e : nat
Ω,Φ,Γ` succ(e) : nat

Ω,Φ,Γ`e : nat Ω,Φ,Γ`e1 : τ Ω,Φ,Γ{x=nat}`e2 : τ
Ω,Φ,Γ` ifz(e, e1, x.e2) : τ

Φ(f) = (τ1, τ2, τ3) Ω,Φ,Γ`e1 : τ1 Ω,Φ,Γ`e2 : τ2
Ω,Φ,Γ`f e1 e2 : τ3

Ω(c)(C) = V Ω,Φ,Γ`at : V
Ω,Φ,Γ`C at : c

Ω,Φ,Γ`e : c Ω,Φ,Γ`ml : c⇒τ
Ω,Φ,Γ`case e of ml : τ

Ω,Φ,Γ`e1 : τ1 Ω,Φ,Γ{x=τ1}`e2 : τ2
Ω,Φ,Γ` let x = e1 in e2 : τ2

arg-tuple: Ω,Φ,Γ`at : V

Ω,Φ,Γ`〈〉 : {}
Ω,Φ,Γ`at : V \ {v} V(v) = τ Ω,Φ,Γ`e : τ

Ω,Φ,Γ`at〈v = e〉 : V

match-list: Ω,Φ,Γ`ml : c⇒τ

Ω,Φ,Γ`· : c⇒τ
Ω,Φ,Γ`ml : c⇒τ Ω,Φ,Γ`m : c⇒τ

Ω,Φ,Γ`m [] ml : c⇒τ

match: Ω,Φ,Γ`m : c⇒τ

Ω(c)(C) = V Γ,V `mt : Γ′ Ω,Φ,Γ′`e : τ
Ω,Φ,Γ`C mt => e : c⇒τ
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match-tuple: Γ,V `mt : Γ′

Γ, {}`〈〉 : Γ
Γ,V \ {v}`mt : Γ′ V(v) = τ
Γ,V `mt〈v = x〉 : Γ′{x=τ}

program: ` p

Dom(Ω)`ddl : Ω Ω,Φ`fdl : Φ Ω,Φ, {}`e : nat
` datatype ddl fun fdl in e

3.3 Denotational semantics

Again we give a denotation to the derivations for each syntactic category
and to Ω, Φ, etc.

We will let Set be the class of sets, ordered by inclusion. This ordering
is a pointed partial order (has a least element: the empty set) and is closed
under least upper-bounds (unions) of ω-chains, but it is not a partially
ordered set.

Working in something that is not a set is not in itself a problem, since
we will only referring to its elements, which are sets, and functions mapping
sets to sets, but we will need a fixed point of some sort on this construction.
The semantic domains are as follows.

D[[O]] =
∏
c∈O

Set = SetO

D[[O ` Ω]] : D[[Dom(O)]] → D[[Dom(O)]]

Notice that the meaning of a user-defined type is a set.
When we write D[[O ` Ω]], the function is actually defined on the en-

tire derivation of the conclusion O ` Ω. For ease of reading, we omit the
derivation. Also, if the argument of a semantic function matches the for-
mat of the conclusion of a rule exactly, then only the expression is given
(e.g., instead of [[Ω,Φ,Γ`e : τ ]] we just write [[e]]). This shorthand is still
unambiguous, since there is exactly one rule corresponding to each element
of each syntactic category.

If o ∈ D[[O]] for the O in O ` Ω then

D[[Ω]]o =
∏

c∈Dom(Ω)

Ds[[Ω(c)]]o

D[[∆]]o =
∏

C∈Dom(∆)

D[[∆(C)]]o

21



Ds[[∆]]o =
∑

C∈Dom(∆)

D[[∆(C)]]o

D[[V]]o =
∏

v∈Dom(V)

D[[V(v)]]o

D[[Φ]]o =
∏

f∈Dom(Φ)

D[[τ1]]o → D[[τ2]]o → D[[τ3]]o⊥

where (τ1, τ2, τ3) = Φ(f)

D[[Γ]]o =
∏

x∈Dom(G)

D[[Γ(x)]]o

The first argument, o ∈ D[[Dom(Ω)]], is written in superscript only to
indicate that it will be passed unchanged in any recursive calls, i.e., it can
be considered a constant for the expression.

Expanding the definition, we see that D[[Ω]]o, the meaning of the type
declarations, can be written more readably as follows.

D[[Ω]]o =
∏

c∈Dom(Ω)

∑
C∈Dom(Ω(c))

∏
x∈Dom(Ω(c)(C))

D[[Ω(c)(C)(x)]]o

In the following, we use the same convention as in the definition of the de-
notation of the source language: the semantic functions take full derivations
as arguments, even though only the conclusion is written, and references to
the premises are allowed and considered compositional.

type: To each type expression in the language we assign a set.

D[[O ` τ ]] : D[[O]] → Set
D[[O ` nat]]o = N
D[[O ` c]]o = o(c)

datadecl-list

D[[O`ddl : Ω]] : D[[Ω]]
D[[O`· : {}]]o = {}

D[[O`dd and ddl : Ω]]o = (D[[ddl ]]o){c=δs}
where (c, δs) = D[[dd]]o

datadecl

D[[O`dd : (c,∆)]]o : TypeID ×Ds[[∆]]o

D[[O`c = cdl : (c,∆)]]o = (c,
∑

C∈Dom(δ) δ(C))
where δ = D[[cdl ]]o
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condecl-list
D[[O`dcl : ∆]]o : D[[∆]]o

D[[O`· : {}]]o = {}
D[[O`cd [] cdl : ∆]]o = D[[cdl ]]o{C=v}

where (C, v) = D[[cd ]]o

condecl
D[[O`C ct : (C,V)]]o : ConID ×D[[V]]o

D[[O`C ct : (C,V)]]o = (C,D[[ct ]]o)

con-tuple
D[[O`ct : V]]o : D[[V ]]o

D[[O`〈〉 : {}]]o = {}
D[[O`ct〈v : τ〉 : V]]o = D[[ct ]]o{v=D[[τ ]]o}

fundecl-list
D[[Ω,Φ` fdl : Φ′]]o : D[[Φ]]o → D[[Φ′]]o

D[[Ω,Φ`· : {}]]oφ = {}
D[[Ω,Φ` fd and fdl : {}]]oφ = D[[fdl ]]oφ{f=F}

where (f, F ) = D[[fd ]]oφ

fundecl
D[[Ω,Φ` fd : (τ1, τ2, τ3)]]oφ : D[[τ1]]o → D[[τ2]]o → D[[τ3]]o⊥
D[[Ω,Φ`f x y : τ1 → τ2 → τ3 = e : (τ1, τ2, τ3)]]oφ =

λX1.λX2.D[[e]]oφ{x = X1, y = X2}
exp

D[[Ω,Φ,Γ`e : τ ]]o : D[[Φ]]o → D[[Γ]]o → D[[τ ]]o⊥
D[[Ω,Φ,Γ`x : τ ]]oφρ = up(ρ(x))

D[[Ω,Φ,Γ`0 : nat]]oφρ = up(0)
D[[Ω,Φ,Γ` ifz(e, e1, x.e2) : τ ]]oφρ = (ψ)† (D[[Ω,Φ,Γ`e : nat]]oφρ)

where ψ(n) =

{
D[[e1]]oφρ if n = 0
D[[e2]]oφρ{x=n− 1} if n > 0

D[[Ω,Φ,Γ`f e1 e2 : τ ]]oφρ =(
λX1. (λX2.φ(f) X1 X2)

† (D[[e2]]oφρ)
)†

(D[[e1]]oφρ)
D[[Ω,Φ,Γ`C at : c]]oφρ = (inC())†(D[[at]]oφρ)

D[[Ω,Φ,Γ`case e of ml : τ ]]oφρ =(
λX.case(D[[Ω,Φ,Γ`ml : c⇒τ ]]oφρ)(X)

)†
(D[[e]]oφρ)

D[[Ω,Φ,Γ` let x = e1 in e2 : τ2]]oφρ =(
λX.D[[e2]]oφρ{x=X}

)†
(D[[e1]]oφρ)
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arg-tuple

D[[Ω,Φ,Γ`at : V]]oρ : D[[Φ]]o → D[[Γ]]o → D[[V]]o⊥
D[[Ω,Φ,Γ`〈〉 : {}]]oφρ = up({})

D[[Ω,Φ,Γ`at〈v = e〉 : V]]oφρ =(
λX. (λV.up(V {x=X}))† (D[[at ]]oφρ)

)†
(D[[e]]oφρ)

match-list

D[[Ω,Φ,Γ`ml : c⇒τ ]]o :
D[[Φ]]o → D[[Γ]]o → ∏

C∈Dom(o(c))
(o(c)(C) → D[[τ ]]o⊥)

D[[Ω,Φ,Γ`· : c⇒τ ]]oφρ = Ψ
where Dom(Ψ) = Dom(o(c)) and

Ψ(C) = λX.⊥
D[[Ω,Φ,Γ`m [] ml : c⇒τ ]]oφρ = (D[[ml ]]oφρ){C=F}

where (C,F ) = D[[m]]oφρ

match

D[[Ω,Φ,Γ`C mt => e : c⇒τ ]]o :
D[[Φ]]o → D[[Γ]]o → ConID × (o(c)(C) → D[[τ ]]o⊥)

D[[Ω,Φ,Γ`C mt => e : c⇒τ ]]oφρ = (C, λV.D[[e]]oφ(D[[mt]]oρV ))

match-tuple

D[[Γ,V `mt : Γ′]]o : D[[Γ]]o → D[[V]]o → D[[Γ′]]o

D[[Γ,V `〈〉 : Γ]]oρν = ρ
D[[Γ,V `mt〈v = x〉 : Γ]]oρν = (D[[mt ]]oρ){x=ν(v)}

program

D[[` p]] : N⊥
D[[` datatype ddl fun fdl in e]] = D[[e]]oφ

where o = fix(λo.D[[ddl ]]o)
φ = fix(λφ.D[[fdl ]]oφ)

3.4 Comments

One can check that for any fixed element o ∈ D[[O]], and for any element
of any of the syntactic categories, S, D[[S]]o actually has the “type” stated
next to its definition. Whereas most of the above definitions are given using
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standard notation for writing continuous functions between domains (as in
[Win93, section 8]), and as such the fixed point used to find the recursive
closure of the meaning of the function definitions is known to exist, there is
one exception.

The part that is a source of possible problems is the fixed point of the
function D[[ddl]], which has type D[[Ω]] → D[[Ω]]. If D[[Ω]] had been a chain-
complete partial order, we would just have used the usual fixed point theo-
rems, but it is not even a set. It is defined to be a product of sets, and with
no further restrictions, for all we know it belongs to something at least as
“big” as the class of all sets.

We will not be using domain-theoretic methods then. Instead the mean-
ing is purely set-theoretic. Since we are defining algebraic, not reflexive,
data-types, the recursive set equations we need to solve are all defined “pos-
itively” (nothing that is being defined is used in a negative position, e.g., as
the domain of a function space, since there are no function spaces at all), so
we don’t need the methodology of domains for this case. All we define are
countable sets.

What we mean when we write “fix” is then the union of the chain of
(products of) countable sets, which is ordered by inclusion. It is easy to
show that given a product (over the associated index set) of sets, o, the
denotation D[[Cp]]o is again a product of sets (actually a product of sums of
products of sets), since the only operations we use are products and disjoint
sums of sets, which again define sets.

Iterating D[[Cp]] on the empty set defines the chain ordered by inclusion:

D[[Cp]]n(
∏

cτ∈Dom(Ωp)

∅)

(i.e., D[[Cp]]n(∅)), and as unions over sets of sets are always defined⋃
n∈N

D[[Cp]]n(∅)

is again a well-defined and countable set. The elements form a chain because
product and sum construction are monotone in their arguments. We will let
this be the definition of fix(λo.D[[ddl]]o).

4 The defunctionalizing transformation

The transformation we have been aiming at translates well-typed programs
in the (annotated) source language to well-typed programs in the target lan-
guage, while preserving the meaning of the program. The transformation
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turns all function declarations into constructions of a value containing infor-
mation about the environment at the abstraction point. Applications of such
values are transformed into case-constructs that decomposes the value and
evaluates the appropriate function body in an environment corresponding
to the environment in which the value was constructed. The transformation
is given as a function of the typing derivations of a program in the source
language.

In the remainder of the article, the program p is fixed, allowing us to
write PROOF(l) as shorthand for PROOF (p) (l), and everywhere we write
Γ` e : τ it will not only mean that Γ ` e : τ is derivable, but also that the
derivation of that judgment is part of the derivation of `p, i.e., the judgment
is in the image of PROOF(p). Also, we choose two identifiers, call them ff
and xx, that do not occur in p.

4.1 Definition of the transformation

The functions are defined using the usual shorthand for functions on deriva-
tions, and they even abbreviate the argument. Instead of writing T [Γ`e : τ ]
we will leave out everything except e if it corresponds verbatim to the conclu-
sion of the rule schema. We create index identifiers from normal identifiers
by underlining, representing some injective mapping from normal identifiers
into the set of index identifiers.

First, we transform the expressions.

T [τ ] : type
T [nat] = nat

T [τ1 →τ2] = cτ1→τ2

Tv [env ] : arg-tuple
Tv [〈〉] = 〈〉

Tv [env〈x : τ〉] = Tv [env ]〈x = x〉

T [e] : exp
T [x] = x
T [0] = 0

T [succ(e)] = succ(T [e])
T [ifz(e, e1, x.e2)] = ifz(T [e] ,T [e1] , x.T [e2])

T [(fun f x : τ1 →τ2 = e)env
l ] = Cl Tv [env ]

T [(e1 e2)] = appτ1→τ2 T [Γ`e1 : τ1 →τ2] T [e2]

Then we build the data-type declarations, Cp, and function declarations,

26



Fp.
In the following we use a translation from finite sets to lists, listof (S),

where lists are either nil or x ::xs where xs is again a list. It is not important
how this translation works, but to make it a function, let us just decide that
it gives us the sorted list of the set elements with regard to some total
ordering. The two types of sets we work on are sets of types in the source
language (elements of the syntactic category τ) and labels (ranged over by
l). We can impose a total order on the syntax of types by, e.g., saying that
nat is less than everything else, and τ1 → τ2 is less than τ ′1 → τ ′2 if τ2 is less
than τ ′2 or τ2 = τ ′2 and τ1 is less than τ ′1.

That is, we can define listof (S) as

listof (∅) = nil
listof (S) = (min(S)) :: listof (S \ {min(S)}) if S 6= ∅

as any finite and totally ordered set has a least element.
We will say that y member of (x ::xs) if x = y or y member of xs, and

then we have the property that x ∈ S ⇐⇒ x member of listof (S).
Using this way of ordering our types, we can define the datatype decla-

rations corresponding to functions in the source program in a fixed order.

Cp : datadecl-list
Cp = Cc[listof ({τ |τ ∈ typesof(p)})]

Cc[. . .] : type list → datadecl-list
Cc[nil ] = ·

Cc[τ ::tl] = cτ = CC[listof ({l |PROOF(l) = D ∧ isfun(D) ∧ typeof(D) = τ })]
and Cc[tl]

CC[. . .] : label list → condecl-list
CC[nil ] = ·

CC[l :: ls] = Cl Cv[envof(PROOF(l))] []CC[ls]

Cv[. . .] : env → contuple
Cv[〈〉] = 〈〉

Cv[ct〈x : τ〉] = Cv[ct]〈x : T [τ ]〉

These functions construct a list of data-type declarations. We define one
for each function type occurring in the program. The declarations of the
associated application functions are generated as follows.
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Fp : fundecl-list
Fp = Fc[listof ({τ |τ ∈ typesof(p)})]

Fc[. . .] : type list → fundecl-list
Fc[nil ] = ·

Fc[τ1 →τ2 ::tl] = appτ1→τ2 ff xx : T [τ1 →τ2] → T [τ1] → T [τ2] =
case ff

of FC

[
listof

({
l

∣∣∣∣∣ PROOF(l) = D ∧ isfun(D)
∧ typeof(D) = τ

})]

and Fc[tl]

FC[. . .] : label list → match-list
FC[nil ] = ·

FC[l :: ls] = Cl (Fv[env ]) => (let f = ff in let x = xx in T [e]) [] FC[ls]
where PROOF(l) = Γ`(fun f x : τ1 →τ2 = e)env

l : τ1 →τ2

Fv[. . .] : env → match-tuple
Fv[〈〉] = 〈〉

Fv[vt〈x : τ〉] = Fv[vt]〈x = x〉

where ff and xx are “fresh” variables, i.e., variables that does not appear in
the program, p, at all.

Finally, we transform the program by adding the datatype- and func-
tion declarations we constructed above to the transformation of the main
expression.

T [Program e] = datatype Cp fun Fp in T [e]

4.2 Comments on the transformation

Notice that we create data-types for any type appearing in the program
(typesof(p) is any type, other than nat, mentioned in the program, i.e., as
either domain, codomain, or function type of a function declaration), but
not all of them will have constructors. In the case

Program((fun f x : ((nat →nat) →nat) →nat = 0)〈〉l
(fun g y : (nat →nat) →nat = (y 0))〈〉l′ )l′′

we have nat →nat occurring in the program, so we need to define cnat→nat
in the translated program. Otherwise the translation of the above program
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would not type check, since the translation of nat → nat would not be
a defined type. In this program there are no values of type nat → nat,
and there will not be any constructors of type cnat→nat in the translated
program either. There is also an application-point where the function has
type nat → nat, so we define a function appnat→nat with a case-expression
with an empty match-list.

5 Type preservation

The translation given in the preceding section translates programs in the
source language into programs in the target language. In order for the
translation to preserve the semantics of programs, it necessarily have to
generate only well-typed programs, since the semantics of a program in the
target language is undefined unless the program is well-type. This section
shows that the translation generates only well-typed programs.

Formally, since we have fixed a program p, we need to prove that if
` Program e then ` datatype Cp fun Fp in T [e], where Cp and Fp are as
defined by the translation.

To this end we show the premises of this rule: There exists Ω and Φ s.t.
Dom(Ω)`Cp : Ω, Ω,Φ`Fp : Φ, and Ω,Φ, {}`T [e] : nat.

The following sections define such Ωp and Φp and show that they satisfy
the requirements.

5.1 Defining solutions to typing judgments

To prove the existence of Ω and Φ satisfying the premises for the well-
typedness of a program, we define two such mappings.

Define Ωp by

• Dom(Ωp) = {cτ |τ ∈ typesof(p)}

• Dom(Ωp(cτ )) = {Cl |PROOF(l) = D ∧ isfun(D) ∧ typeof(D) = τ }

• Dom(Ωp(cτ )(Cl)) = {x |x ∈ Dom(envof(PROOF (l)))}

• Ωp(cτ )(Cl)(x) = T [envof(PROOF(l) (x))]

The above rules uniquely define Ωp, since it gives both the domain of each
indexed product as well as the value at each projection. It defines an object
of the right “type” for an Ω (an environment from type names to environ-
ments from constructor names to environments from label names to types),
and we can also prove that it satisfies Dom(Ωp)`Cp : Ωp,
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Define Φp by

• Dom(Φp) =

{
appτ1→τ2

∣∣∣∣∣ PROOF(l) = D ∧ isappl(D)
∧ funtype(D, τ1 →τ2)

}

where
funtype(D, τ) = (isappl(D) ∧ typeof(funpart(D)) = τ) ∨

(isfun(D) ∧ typeof(D) = τ)

• Φp(appτ1→τ2) = (T [τ1 →τ2] ,T [τ1] ,T [τ2])

Again the above defines something of the right type (environment from
function-names to type triples), and we can prove that Ωp,Φp`Fp : Φp.

Most of the proofs will be omitted from this article, since the main point
is the semantic equivalence, not the preservation of typability, and the proofs
are not themselves technically challenging. Also, Bell et al. [BBH97] have al-
ready shown that their translation preserves typability, so type preservation
should not come as a surprise.

5.2 Data-type declarations are well-typed

The construction of Ωp allows us to prove

Dom(Ωp)`Cp : Ωp

by induction on the definition of Cp. It is a simple proof by unfolding the
definition and checking each part, with induction proofs over the lists that
are arguments to Cc[. . .] and CC[. . .]. The proof has been omitted for brevity.

5.3 Expressions are well-typed

We can prove that if Γ ` e : τ , then Ωp,Φp,Γ′ ` T [e] : T [τ ] for any Γ′ that
extends Γ, where “extends” is defined as follows.

Definition 2 Γ′ extends Γ
We will say that a type assignment in the target language Γ′ extends

a type assignment in the source language Γ, if Dom(Γ) ⊆ Dom(Γ′) and
∀x ∈ Dom(Γ).Γ′(x) = T [Γ(x)].

We prove that for any sub-derivation, Γ ` e : τ , of the derivation of p
that

(Γ`e : τ ∧ Γ′ extends Γ) ⇒ Ωp,Φp,Γ′`T [Γ`e : τ ] : T [τ ]

Proof.
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The proof is by structural induction on the structure of the derivation
(or, equivalently, on the structure of the expression e). The details can be
seen in Appendix A.

5.4 Function declarations are well-typed

The last premise to show is

Ωp,Φp`Fp : Φp

Showing this is done using the same methods as for Ωp, i.e., by showing
that it works for any part of Φp, expanding its definition, and using induc-
tions over the list-arguments to Fc[. . .] and FC[. . .]. There is nothing subtle
in this proof either, and it too has been omitted for brevity.

5.5 Summary and conclusion

We have shown that if the source program, p = Program e, is well-typed,
and if Ωp and Φp are chosen as described then Dom(Ωp)`Cp : Ωp, Ωp,Φp`
Fp : Φp, and Ωp,Φp, {} ` T [e] : T [nat]. From these premises, we can infer
that ` datatype Cp fun Fp in T [e], i.e., that ` T [p].

This result guarantees that the denotation of the translated program
is defined. In the next section we show that the translation preserves the
meaning of any terminating program.

6 Meaning preservation

In this section we show that the transformation is weakly correct, i.e., if
the original program terminates (evaluates to a non-bottom value), then so
does the translated program, and with the same value. It makes sense to
use equality as the desired relation between the results, since the denotation
of both source and destination programs have the same type: lifted natural
numbers.

The proof will be by logical relations as described in, e.g., Mitchell’s
textbook [Mit93].

We consider a single given program, so Cp and Fp are given. In the

following we will let o def= fix(λo.D[[Cp]]o) and φ def= fix(λφ.D[[Fp]]oφ).
The following subsections relate the functions in φ to the functions in

the original program, define the logical relation, prove that the translation

31



of any expression gives expressions that are related by the logical relation,
and finally extend this result to entire programs.

6.1 Properties of the semantics of the program

We need a few lemmas for the main proof.

Lemma 1 If PROOF (l) = Γ ` (fun f x : τ1 → τ2 = e)env : τ1 → τ2 and
Γ′ extends Γ and ρ′ ∈ D[[Γ′]]o then

D[[Tv [env ]]]oφρ′ = up(ν)

where Dom(ν) = {x |x ∈ Dom(Γ)} and ν(x) = ρ′(x).

Proof of Lemma 1 (sketched). Simple induction on the length of env ,
since Tv [env〈x : t〉] = Tv [env ]〈x = x〉 so all expressions are variables, and as
such cannot denote bottom, and then

D[[Tv [env ]〈x = x〉]]oφρ′ =
(
(λE.up(E

{
x=ρ′(x)

}
))
)† (D[[Tv [env ]]]oφρ′)

Lemma 2 If PROOF (l) = Γ ` (fun f x : τ1 → τ2 = e)env : τ1 → τ2 and
Γ′ extends Γ and ρ′ ∈ D[[Γ′]]o then

φ(appτ1→τ2)(inCl
(ν))b = D[[FC[ll]]]oφ{ff = inCl

(ν), xx = b}(Cl)(ν)

where up(ν) = D[[Tv [env ]]]oφρ′ (which by Lemma 1 isn’t bottom) and

ll = listof ({l |PROOF (l) = D ∧ isfun(D) ∧ typeof(D) = τ1 →τ2 })

Proof of Lemma 2. By definition of being a fixed point φ(appτ1→τ2) =
D[[Fp]]oφ(appτ1→τ2), and by simple induction on the way Fp is constructed it
follows that

D[[Fp]]oφ(appτ1→τ2) = λF.λX.D[[case ff of FC[ll]]]oφ{ff = F, xx = X}

where ll = listof ({l |PROOF (l) = D ∧ isfun(D) ∧ typeof(D) = τ1 →τ2 }).
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If we let g = inCl
(ν) (remember that inCl

(ν) = (Cl, ν)) then this allows
us to show

D[[Fp]]oφ(appτ1→τ2)(g)(b)
= D[[case ff of FC[ll]]]oφ{ff = g, xx = b}
=

(
λX.case(D[[FC[ll]]]oφ{ff = g, xx = b})(X)

)†
(D[[ff]]oφ{ff = g, xx = b})

= case(D[[FC[ll]]]oφ{ff = g, xx = b})(g)
= (D[[FC[ll]]]oφ{ff = g, xx = b})(π1(g))(π2(g))
= (D[[FC[ll]]]oφ{ff = g, xx = b})(Cl)(ν)

as needed.

Lemma 3 If PROOF (l) = Γ`(fun f x : τ1 →τ2 = e)env : τ1 →τ2, Γ ` env,
Γ′ extends Γ, ρ′ ∈ D[[Γ′]]o and ν satisfies that Dom(ν) = {x |x ∈ Dom(Γ)}
and ν(x) = ρ′(x) then

D[[Fv[env ]]]oφ{ff = g, xx = b}(ν) = ρ′′

implies Dom(ρ′′) = Dom(Γ) ∪ {ff, xx} and ∀x ∈ Dom(Γ).ρ′′(x) = ρ′(x),
ρ′′(ff) = g, and ρ′(xx) = b.

Proof of Lemma 3. The proof is (indirectly) by induction on the structure
of env . The actual induction is on the size of Dom(Γ), which relates to env
as we know Γ ` env by inversion.

The details can be seen in Appendix B.

Lemma 4 If PROOF (l) = Γ ` (fun f x : τ1 → τ2 = e)env : τ1 → τ2,
Γ′ extends Γ, ρ′ ∈ D[[Γ′]]o and up(ν) = D[[Tv [env ]]]oφρ′, and if l member of ll
then

D[[FC[ll]]]oφ{ff = g, xx = b}(Cl)(ν) = D[[T [e]]]oφρ′′

where Dom(ρ′′) = Dom(Γ) ∪ {ff, xx, f, x} and ∀x ∈ Dom(Γ) \ {f, x}.ρ′′(x) =
ρ′(x), ρ′′(ff) = ρ′′(f) = g, and ρ′(xx) = ρ′′(x) = b.

Proof of Lemma 4. If l member of ll then we can easily show by induction
on the list that

D[[FC[ll]]]oφ{ff = g, xx = b}(Cl)(ν)
=

D[[let f = ff in let x = xx in T [e]]]oφ(D[[Fv[env ]]]o{ff = g, xx = b}(ν))
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By Lemma 3 we know that

D[[Fv[env ]]]oφ{ff = g, xx = b}(ν) = ρ′′

such that Dom(ρ′′) = Dom(Γ) ∪ {ff, xx} and ρ′′(xx) = b, ρ′′(ff) = g, and for
x ∈ Dom(Γ) we have ρ′′(x) = ρ′(x).

By expanding the definitions we can see that

D[[let f = ff in let x = xx in T [e]]]oφρ′′

=
(
λX.D[[let x = xx in T [e]]]oφρ′′{f=X}

)†
(D[[ff]]oφρ′′)

= D[[let x = xx in T [e]]]oφρ′′{f=g}
= D[[T [e]]]oφρ′′{f=g}{x=b}

and ρ′′{f=g}{x=b} exactly satisfies the requirements of the lemma.

Theorem 1 If Γ ` (fun f x : τ1 → τ2 = e)env
l : τ1 → τ2, Γ′ extends Γ,

ρ ∈ D[[Γ′]]o, and up(ν) = D[[Tv [env ]]]oφρ′ then

φ(appτ )(inCl
(ν))b = D[[T [e]]]oφρ′′

where Dom(ρ′′) = Dom(ρ) ∪ {ff, xx, x, f} and ρ′′(x) = ρ′′(xx) = b, ρ′′(f) =
ρ′′(ff) = inCl

(ν), and y ∈ Dom(Γ) \ {f, x} ⇒ ρ′′(y) = ρ′(y).

Proof of Theorem 1. By Lemma 1 we know that if up(ν) = D[[Tv [env ]]]oφρ′

then ∀x ∈ Dom(Γ).ν(x) = ρ′(x), so we can use Lemma 2, from which we
know that

φ(appτ )(inCl
(ν))b = D[[FC[ll]]]oφ{ff = inCl

(ν), xx = b}(Cl)(ν)

By Lemma 4 we know that

D[[FC[ll]]]oφ{ff = inCl
(ν), xx = b}(Cl)(ν) = D[[T [e]]]oφρ′′

where ρ′′ is exactly the environment claimed in the theorem.

6.2 Definition of the logical relation

We define the type-indexed families of relations ≺τ and �τ between S[[τ ]]
and D[[T [τ ]]]o, and between S[[τ ]]⊥ and D[[T [τ ]]]o⊥ respectively, as given in
Figure 6.
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n ≺nat m iff n = m
f ≺τ1→τ2 g iff ∀a ≺τ1 b.fa �τ2 φ(appτ1→τ2)gb

x �τ y iff x = ⊥ ∨ (∃x′, y′.x = up(x′) ∧ y = up(y′) ∧ x′ ≺τ y
′)

Figure 6: The logical relation

These relations satisfy that for any g ∈ D[[T [τ1 →τ2]]]o and any y ∈
D[[T [τ ]]]o⊥ the relations over S[[τ1 →τ2]] and S[[τ ]]⊥, defined as {f |f ≺τ1→τ2 g}
and {x |x �τ y}, are inclusive. That is, the relations contains the bottom
of the corresponding domains and they are closed under least upper bounds
of ω-chains.

This can be shown by well-founded induction on the structure of types
and the dependencies between the relations, and noticing that the relations
are all constructed as intersections and inverse images by strict continuous
functions of smaller relations, which according to [Win93, Chapter 10] guar-
antees that the relations are inclusive if the smaller ones are. The base case
will be �nat, which follows directly, since the discrete set N is closed under
least upper bound of ω-chains.

We further define a family of relations indexed by type assignments such
that if Γ′ extends Γ and ρ ∈ S[[Γ]] and ρ′ ∈ D[[Γ′]]o then

ρ ≺Γ ρ
′ iff ∀x ∈ Dom(Γ).ρ(x) ≺Γ(x) ρ

′(x)

6.3 Translations of expressions

Now, we can show that the values of expressions are related to the values of
the translated expression, which then directly implies the same for programs.

Lemma 5 For any expression e, if PROOF (l) = Γ` e : τ and Ωp,Φp,Γ′ `
T [e] : T [τ ] where Γ′ extends Γ then for all ρ ∈ S[[Γ]] and ρ′ ∈ D[[Γ′]]o

ρ ≺Γ ρ
′ ⇒ S[[e]]ρ �τ D[[T [e]]]oφρ′

Proof of Lemma 5.
The proof is by structural induction on the structure of expressions.
The interesting cases are abstraction and application:
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case e = (fun f x : τ1 →τ2 = e′)env
l : As defined

S[[e]]ρ = up(fix(λF.λX.S[[e]]ρ{f=F}{x=X}))

and
D[[T [e]]]oφρ′ = (λv.up(inCl

(v)))† (D[[Tv [env ]]]oφρ′)

and we know from Lemma 1 that (D[[Tv [env ]]]oφρ′) = up(ν) for some
ν, i.e., D[[T [e]]]oφρ′ = up(inCl

(ν)).

To show that these are �τ1→τ2-related we use fixed-point induction
over the inclusive set

S
def= {f |f ≺τ1→τ2 inCl

(ν)}

to show that fix(λF.λX.S[[e]]ρ{f=F}{x=X}) belongs to it. That is,
we must show that the set is closed under the function

F def= λF.λX.S[[e]]ρ{f=F}{x=X}

Let p be any element of S. Then

F(p) ≺τ1→τ2 inCl
(ν)

since for any a ≺τ1 b

F(p)(a) = S[[e′]]ρ{f=p}{x=a}

and from Theorem 1 we know that

φ(appτ1→τ2)(inCl
(ν))b = D[[T

[
e′
]
]]oφρ′′

where ρ{f=p}{x=a} ≺Γ ρ
′′ necessarily by the requirements on ρ′′ (in

combination the two properties, ρ ≺Γ ρ′ and ∀x ∈ Dom(Γ).ρ′′(x) =
ρ′(x), implies ρ ≺Γ ρ

′′)

By induction hypothesis (e′ is smaller than e) the denotation of these
expressions are related, i.e. F(p)(a) �τ2 appτ1→τ2(inCl

(v))(b) which
proves that F(p) ≺τ1→τ2 inCl

(v).

Since p ∈ S ⇒ F(p) ∈ S, and S is inclusive, we can conclude that
fix(F) ∈ S, i.e.

fix(F) ≺τ1→τ2 inCl
(v)

We then conclude that

up(fix(F))�τ1→τ2up(inCl
(v))

as needed.
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case e = (e1 e2): By induction hypothesis we know that

S[[e1]]ρ �τ1→τ2 D[[T [e1]]]oφρ′

and
S[[e2]]ρ �τ1 D[[T [e2]]]oφρ′

Also, by definition,

S[[(e1 e2)]]ρ =
(
λf. (λx.fx)† (S[[e2]]ρ)

)†
(S[[e1]]ρ)

and

D[[appτ1→τ2 T [e1] T [e2]]]oφρ′ =(
λx1.((λx2.φ(appτ1→τ2)x1x2)

† (D[[T [e2]]]oφρ′))
)†

(D[[T [e1]]]oφρ′)

If either S[[e1]]ρ or S[[e2]]ρ is ⊥ then so is S[[(e1 e2)]]ρ (by strictness),
and ⊥ is �τ2 related to anything.

If neither is ⊥, then their values are up(v1) and up(v2) respectively
(for some v1 and v2), so S[[(e1 e2)]]ρ = v1v2. By definition of �τ there
exist v′1 and v′2 such that D[[T [e1]]]oφρ′ = up(v′1) and v1 ≺τ1→τ2 v

′
1 and

D[[T [e2]]]oφρ′ = up(v′2) and v2 ≺τ1 v
′
2, meaning that D[[T [(e1 e2)]]]oφρ′ =

φ(appτ1→τ2)v
′
1v

′
2

Now, v1 ≺τ1→τ2 v
′
1 means that for any a ≺τ1 b, especially a = v2 and

b = v′2, we know that

v1v2 �τ2 φ(appτ1→τ2)v
′
1v

′
2

but that is exactly the definition of

S[[(e1 e2)]]ρ �τ2 D[[T [(e1 e2)]]]oφρ′

The entire proof can be seen in Appendix C.

Theorem 2 For any program p,

S[[p]] = up(n) ⇒ D[[T [p]]] = up(n)
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Proof of Theorem 2.

S[[Program e]] = S[[e]]{}

and

D[[T [Program e]]] = D[[datatype Cp fun Fp in T [e]]] = D[[T [e]]]oφ{}

and these are �nat-related by lemma 5. That is, if S[[p]] = up(n) then
D[[T [p]]] = up(m) s.t. n ≺nat m, but being related at type nat is the same
as being equal, i.e., n = m.

6.4 Summary and conclusion

We have shown that the translation preserves the meaning of a program
if this meaning is up(n) for some n ∈ N, i.e., if the program terminates.
Section 7 discusses possible extensions of both the setting and the proof
that would make the result stronger or more widely applicable.

7 Applicability and conclusion

The previous sections have presented a proof that for a simple, typed func-
tional language, the näıve defunctionalization algorithm (no analysis or op-
timization) into a fairly restricted target language preserves the meaning of
terminating programs.

This section discusses possible extensions of the translation and the
source language that would increase the applicability of the result.

7.1 Extensions of the target language

There is no problem in extending the target language – the translation still
only translate into the same subset of it. If we use a more general target
language, e.g., Standard ML then we have a different semantics. For the
present result to be applicable, it is sufficient to show that the semantics of
the target language and of ML agree on the subset that is the image of the
translation.

7.2 Extensions of the source language

The source language is chosen to be simple. It could easily be extended
with a number of features without significantly increasing the difficulty of
the proof.
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More Base Types: If the source language had booleans or strings or other
base types, and the target language had the same types and operations
on them, then they could be translated directly, just like the operations
on natural numbers.

Data-types: The source language could have data-types like the ones of
the target language, and these could even allow function types as ar-
guments to the constructors. Such data-types would be treated as base
types by the translation, i.e., the name of the type and the operations
(case) on it would be copied verbatim. The types of the arguments of
the constructors would be converted if they were functional, just like
the arguments to functions. That is, the constructors are treated as
functions. Even allowing reflexive datatypes in the source language
would not necessitate changes to the target language, though the se-
mantics of the source language would of course have to take that into
account.

Global Declarations: The source language could have global function dec-
larations in the same way as the current target language. By design
they can never be used as arguments to functions or be the value of an
expression, since they can only occur in a specific position. Therefore
they can be translated merely by translating their bodies and types.

Polymorphic Types: The source language is simply typed. If we added
let-polymorphism then we could use the same method as Bell, Hook,
and Bellegarde [BBH97] to translate a program with polymorphic func-
tions into a monomorphic program.

This translation, however, potentially gives an exponential blow-up in
the size of the program, since each function is replicated at all the
types it can possibly be used at.

7.3 Extensions of annotations: analysis

The translation as it is now is very näıve. It basically assumes that any
function of a type can float to any application matching that type, which
is of course not always true. In the case where only one function can reach
a given application point, we could inline the body rather than putting it
in an apply-function. If this is the only application point that function
can reach, this will even be a saving. This is what Shivers calls “super-
β” reduction [Shi90]. Generally, if the functions of a type can be split into
groups such that no application point can be reached by functions from more
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than one group, then the data-types can be split into these groups too. This
is not a saving in code size as much as in readability of the produced code,
since such groups would usually be of functions that are used in similar
ways, and it would improve the accuracy of most types of analysis on the
translated program.

Also, functions that are never applied could be put in a group of their
own, and there would not need to be an application function for these.
The current approach is the crudest approximation to such grouping, but,
e.g., a control/data flow analysis [Shi91] would make better approximations
possible.

Another optimization is only storing the values of the free variables of a
function abstraction in the constructed values, just as Reynolds does.

7.4 Conclusion

We have proven that näıve defunctionalization preserves the meaning of
terminating programs in a typical simple, typed, functional language. The
proof is by logical relations. We expect that the proof can easily be extended
to a larger source language, and that the translation can be improved by
using global information, e.g., in the form of a control-flow analysis.
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A Proof of type preservation

We prove that for any sub-derivation, Γ`e : τ , of the derivation of p that

(Γ`e : τ ∧ Γ′ extends Γ) ⇒ Ωp,Φp,Γ′`T [Γ`e : τ ] : T [τ ]

Proof. The proof is by structural induction on the derivation of Γ`e : τ .
Proof by Structural Induction
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Basis (Axioms): The basic derivations are of the variable and null expres-
sions.

case e = x : If Γ ` x : τ then it must be because Γ(x) = τ . If
Γ′ extends Γ then Γ′(x) = T [τ ], and as T [x] = x we can also
conclude that Ωp,Φp,Γ′`T [x] : T [τ ] from the corresponding rule
for the destination language.

case e = 0 : If Γ` 0 : τ then τ = nat, and as T [0] = 0 and T [nat] =
nat, we can use the corresponding rule in the destination language
to conclude Ωp,Φp,Γ′`0 : nat

Induction Hypothesis : Assume it holds for expressions structurally smaller
than e.

Induction Step : case e = succ(e′) If Γ ` succ(e′) : τ then τ = nat and
Γ`e′ : nat

Since e′ is structurally smaller than e, we know by induction hy-
pothesis that Ωp,Φp,Γ′ `T [e′] : nat. By definition T [succ(e′)] =
succ(T [e′]) so it suffices that we can conclude Ωp,Φp,Γ′` succ(T [e′]) :
nat.

case e = ifz(e′, e1, x.e2): If Γ` e : τ then we know, by inversion, that
Γ`e′ : nat, Γ`e1 : τ , and Γ{x=nat}` :.
By induction hypothesis we can see that Ωp,Φp,Γ′ ` T [e′] : nat,
Ωp,Φp,Γ′ ` T [e1] : T [τ ], and Ωp,Φp,Γ′{x=nat} ` T [e2] : T [τ ]
(noticing that if Γ′ extends Γ then Γ′{x=T [τ ]} extends Γ{x=τ}).
As T [e] = ifz(T [e′] ,T [e1] , x.T [e2]) it suffices that we can derive,
using the above, that

Ωp,Φp,Γ′` ifz(T
[
e′
]
,T [e1] , x.T [e2]) : T [τ ]

case e = (fun f x : τ1 →τ2 = e)env
l : If Γ ` el : τ then τ = τ1 → τ2.

Note that τ1 →τ2 ∈ typesof(p) then.
We can see that for this to be derivable, the premise (Γ ` env)
must be derivable too.
Now, T [e] = Cl Tv [env ], so we must show that Ωp,Φp,Γ′ `
Tv [env ] : Ωp(cτ )(Cl) to get the result we need.
To this end, we show the more general statement

Γ ` env ∧ Γ′ extends Γ ⇒ Ωp,Φp,Γ′`Tv [env ] : VΓ

41



where Dom(VΓ) = {x |x ∈ Dom(Γ)} and VΓ(x) = T [Γ(x)]. This
statement is shown by mathematical induction on the size of
Dom(Γ).
Proof by Mathematical Induction

Basis (n = 0): Assume Γ ` env and Γ′ extends Γ. If |Dom(G)| =
0 then Γ = {}. If {} ` env then env = 〈〉, and then
Tv [env ] = 〈〉 too. Also VΓ = {}, since Dom(VΓ) = ∅.
From all this we can directly derive

Ωp,Φp,Γ′`Tv [env ] : VΓ

Induction Hypothesis : Assume it works for |Dom(Γ)| = k

Induction Step (n = k + 1): Assume |Dom(Γ)| = k + 1, Γ `
env , and Γ′ extends Γ.
Now, env must be of the form env ′〈x : τ〉 for some env ′, x,
and τ , s.t. Γ \ {x} ` env ′ and Γ(x) = τ . Then T [v]env =
Tv [env ′]〈x : x〉.
If Γ′ extends Γ then Γ′ extends Γ \{x}, so by the mathemat-
ical induction hypothesis we know that Ωp,Φp,Γ′`Tv [env ′] :
VΓ\{x}
As Γ′ extends Γ we know that Γ′(x) = T [Γ(x)], so Ωp,Φp,Γ′`
x : T [τ ].
From this we can derive

Ωp,Φp,Γ′`Tv [env ] : VΓ\{x}{x=T [τ ]}

and since VΓ = VΓ\{x}{x=T [Γ(x)]}, this is what we want.

By definition of Ωp we can see that Ωp(cτ )(Cl) = VΓ, so Ωp,Φp,Γ′`
Tv [env ] : Ωp(cτ )(Cl).
Then we can conclude that

Ωp,Φp,Γ′`Cl Tv [env ] : cτ

and as T [τ1 →τ2] = cτ1→τ2 this shows that

Ωp,Φp,Γ′`T [e] : T [τ ]

case e = (e1 e2): If Γ ` (e1 e2) : τ2 then there exists τ1 s.t. Γ ` e1 :
τ1 →τ2 and Γ`e2 : τ1.
Then τ1 →τ2 ∈ typesof(p) and

τ1 →τ2 ∈ {τ |∃l.PROOF(l) = D ∧ isappl(D) ∧ typeof(funpart(D)) = τ }
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In other words, cτ1→τ2 ∈ Dom(Ωp) and appτ1→τ2 ∈ Dom(Φp) with
Φp(appτ1→τ2) = (T [τ1 →τ2] ,T [τ1] ,T [τ2]).
By induction hypothesis we can derive

Ωp,Φp,Γ′`T [e1] : T [τ1 →τ2]

and
Ωp,Φp,Γ′`T [e2] : T [τ1]

and since T [(e1 e2)] = appτ1→τ2 T [e1] T [e2] we can use the above
to conclude

Ωp,Φp,Γ′`T [(e1 e2)] : T [τ2]

B Proof of Lemma 3

Lemma 3 is given as:
If PROOF (l) = Γ ` (fun f x : τ1 → τ2 = e)env : τ1 → τ2, Γ ` env ,

Γ′ extends Γ, ρ′ ∈ D[[Γ′]]o and ν satisfies that Dom(ν) = {x |x ∈ Dom(Γ)}
and ν(x) = ρ′(x) then

D[[Fv[env ]]]oφ{ff = g, xx = b}(ν) = ρ′′

implies Dom(ρ′′) = Dom(Γ) ∪ {ff, xx} and ∀x ∈ Dom(Γ).ρ′′(x) = ρ′(x),
ρ′′(ff) = g, and ρ′(xx) = b.
Proof of Lemma 3. The proof will indirectly be by induction on the
structure of env . The actual induction will be in the size of Dom(Γ), which
relates to env since we know Γ ` env by inversion.

We prove the following property for any sub-derivation, Γ`e : τ , of the
derivation of p:

(Γ`e : τ ∧ Γ′ extends Γ) ⇒ Ωp,Φp,Γ′`T [Γ`e : τ ] : T [τ ]

The proof is by mathematical induction on the size of Γ.
Proof by Mathematical Induction

Basis (|Dom(Γ)| = 0): Then Γ = {} and if {} ` env then env = 〈〉. Then
Fv[env ] = 〈〉, and D[[〈〉]]oφ{ff = g, xx = b}ν = {ff = g, xx = b}, which
trivially satisfies the requirements.

Induction Hypothesis : Assume the property holds for |Dom(Γ)| = k.
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Induction Step (|Dom(Γ)| = k + 1|): If Γ 6= {} and Γ ` env , then env =
env ′〈x : τ〉 such that Γ(x) = τ and Γ \ {x} ` env ′.

Let ρ′′ = D[[Fv[env ′]]]oφ{ff = g, xx = b}(ν \ {x})
Then, by induction hypothesis, Dom(ρ′′) = Dom(Γ \ {x}) ∪ {ff, xx}
and x ∈ Dom(Γ \ {x}) ⇒ ρ′′(x) = ρ′(x) (and values at ff and xx are
preserved).

Then D[[Fv[env ′]〈x : x〉]]oφ{ff = g, xx = b}(ν) = ρ′′{x=ν(x)}
We know that ν(x) = ρ′(x), and as x occurs in the program, it is not
equal to ff or xx which are chosen fresh, so

D[[Fv[env ]]]oφ{ff = g, xx = b}(ν) = ρ′′
{
x=ρ′(x)

}
which satisfies the requirements of the lemma, since Dom(ρ′′{x=ρ′(x)}) =
Dom(ρ′′)∪{x} = {ff, xx}∪Dom(Γ \ {x})∪{x} = {ff, xx}∪Dom(Γ) and
if y ∈ Dom(Γ) then either x = y and then ρ′′{x=ρ′(x))} (y) = ρ′(y)
or x ∈ Dom(Γ \ {x}) and then ρ′′{x=ρ′(x))} (y) = ρ′′(y) = ρ′(y), and
ρ′′{x=ρ′(x))} (ff) = ρ′′(ff) = g and likewise xx is mapped to b.

C Proof of Lemma 5

Lemma 5 states that for any expression e, if PROOF (l) = Γ ` e : τ and
Ωp,Φp,Γ′ ` T [e] : T [τ ] where Γ′ extends Γ then for all ρ ∈ S[[Γ]] and ρ′ ∈
D[[Γ′]]o

ρ ≺Γ ρ
′ ⇒ S[[e]]ρ �τ D[[T [e]]]oφρ′

Proof of Lemma 5.
The proof is by structural induction on the structure of expressions.

case e = x: Then T [e] = x. As ρ ≺Γ ρ′ we know that ρ(x) ≺Γ(x) ρ
′(x).

Then it follows that

up(ρ(x)) �Γ(x) up(ρ′(x))

which is exactly
S[[e]]ρ �Γ(x) D[[T [e]]]oφρ′

case e = 0: The proof of this case follows directly from S[[e]]ρ = up(0) and
D[[T [e]]]oφρ′ = up(0) and up(0) �nat up(0).

44



case e = succ(e′): By induction hypothesis S[[e′]]ρ �nat D[[T [e]]]oφρ′. That
means that either S[[e′]]ρ = ⊥, but then S[[e]]ρ = ⊥ too, and by defini-
tion S[[e]]ρ �nat D[[T [e]]]oφρ′.

If S[[e′]]ρ 6= ⊥ then there must exist some n ∈ N s.t. S[[e′]]ρ = up(n).

If up(n) �nat D[[T [e]]]oφρ′ then D[[T [e]]]oφρ′ = up(n) too.

Then S[[e]]ρ = up(n + 1) and D[[T [e]]]oφρ′ = up(n + 1), which are
�nat-related.

case e = ifz(e′, e1, x.e2): By an argument similar to the case for succ(e′),
either S[[e′]]ρ = ⊥ and we are finished, or S[[e′]]ρD[[T [e′]]]oφρ′ = up(n).

If n = 0 then S[[e]]ρ = S[[e1]]ρ and D[[T [e]]]oφρ′ = D[[T [e1]]]oφρ′, which
are �τ -related by induction hypothesis.

If n > 0 then S[[e]]ρ = S[[e2]]ρ{x=n− 1} and

D[[T [e]]]oφρ′ = D[[T [e2]]]oφρ′{x=n− 1}

which, since ρ{x=n− 1} ≺Γ{x=nat} ρ′{x=n− 1}, are also �τ -related
by induction hypothesis.

case e = (fun f x : τ1 →τ2 = e′)env
l : As defined

S[[e]]ρ = up(fix(λF.λX.S[[e]]ρ{f=F}{x=X}))

and
D[[T [e]]]oφρ′ = (λv.up(inCl

(v)))† (D[[Tv [env ]]]oφρ′)

and we know from Lemma 1 that (D[[Tv [env ]]]oφρ′) = up(ν) for some
ν, i.e., D[[T [e]]]oφρ′ = up(inCl

(ν)).

To show that these are �τ1→τ2-related we will use fixed-point induction
over the inclusive set

S
def= {f |f ≺τ1→τ2 inCl

(ν)}

to show that fix(λF.λX.S[[e]]ρ{f=F}{x=X}) is in it. That is, we
must show that the set is closed under the function

F def= λF.λX.S[[e]]ρ{f=F}{x=X}

Let p be any element of S. Then

F(p) ≺τ1→τ2 inCl
(ν)
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as for any a ≺τ1 b

F(p)(a) = S[[e′]]ρ{f=p}{x=a}

and from Theorem 1 we know that

φ(appτ1→τ2)(inCl
(ν))b = D[[T

[
e′
]
]]oφρ′′

where ρ{f=p}xa ≺Γ ρ′′ necessarily by the requirements on ρ′′ (in
combination the two properties, ρ ≺Γ ρ′ and ∀x ∈ Dom(Γ).ρ′′(x) =
ρ′(x), implies ρ ≺Γ ρ

′′).

By induction hypothesis (e′ is smaller than e) the denotation of these
expressions are related, i.e., F(p)(a) ≺τ2 appτ1→τ2(inCl

(v))(b) which
proves that F(p) ≺τ1→τ2 inCl

(v).

As p ∈ S ⇒ F(p) ∈ S, and S is inclusive, we can conclude that
fix(F) ∈ S, i.e.,

fix(F) ≺τ1→τ2 inCl
(v)

Then we can then conclude that

up(fix(F))�τ1→τ2up(inCl
(v))

as needed.

case e = (e1 e2): By induction hypothesis we know that

S[[e1]]ρ �τ1→τ2 D[[T [e1]]]oφρ′

and
S[[e2]]ρ �τ1 D[[T [e2]]]oφρ′

Also, by definition,

S[[(e1 e2)]]ρ =
(
λf. (λx.fx)† (S[[e2]]ρ)

)†
(S[[e1]]ρ)

and

D[[appτ1→τ2 T [e1] T [e2]]]oφρ′ =(
λx1.((λx2.φ(appτ1→τ2)x1x2)

† (D[[T [e2]]]oφρ′))
)†

(D[[T [e1]]]oφρ′)

If either S[[e1]]ρ or S[[e2]]ρ is ⊥ then so is S[[(e1 e2)]]ρ (by strictness),
and ⊥ is �τ2 related to anything.
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If neither is ⊥, then their values are up(v1) and up(v2) respectively
(for some v1 and v2), so S[[(e1 e2)]]ρ = v1v2.

By definition of �τ there exists v′1 and v′2 s.t. D[[T [e1]]]oφρ′ = up(v′1)
and v1 ≺τ1→τ2 v

′
1 and D[[T [e2]]]oφρ′ = up(v′2) and v2 ≺τ1 v

′
2.

From that we infer that D[[T [(e1 e2)]]]oφρ′ = φ(appτ1→τ2)v
′
1v

′
2

Now, v1 ≺τ1→τ2 v
′
1 means that for any a ≺τ1 b, especially a = v2 and

b = v′2, we know that

v1v2 �τ2 φ(appτ1→τ2)v
′
1v

′
2

which is exactly the definition of

S[[(e1 e2)]]ρ �τ2 D[[T [(e1 e2)]]]oφρ′
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