
B
R

IC
S

R
S

-00-35
D

anvy
&

N
ielsen:

C
P

S
Transform

ation
ofB

eta-R
edexes

BRICS
Basic Research in Computer Science

CPS Transformation of Beta-Redexes

Olivier Danvy
Lasse R. Nielsen

BRICS Report Series RS-00-35

ISSN 0909-0878 December 2000

Copyright c© 2000, Olivier Danvy & Lasse R. Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/35/

CPS Transformation of Beta-Redexes ∗

Olivier Danvy and Lasse R. Nielsen

BRICS †

Department of Computer Science
University of Aarhus ‡

December 21, 2000

Abstract

The extra compaction of Sabry and Felleisen’s transformation is due
to making continuations occur first in CPS terms and classifying more
redexes as administrative. We show that the extra compaction is actu-
ally independent of the relative positions of values and continuations and
furthermore that it is solely due to a context-sensitive transformation of
beta-redexes. We stage the more compact CPS transformation into a first-
order uncurrying phase and a context-insensitive CPS transformation. We
also define a context-insensitive CPS transformation that is just as com-
pact. This CPS transformation operates in one pass and is dependently
typed.

Keywords: Continuation-passing style (CPS), Plotkin, Fischer, one-pass CPS
transformation, two-level λ-calculus, generalized reduction.

∗To appear in the proceedings of the Third ACM SIGPLAN Workshop on Continuations
(CW’01), January 16, 2001, London, UK.

†Basic Research in Computer Science (http://www.brics.dk/),
Centre of the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {danvy,lrn}@brics.dk

1

Contents

1 Introduction 3
1.1 Continuation-passing style (CPS) 3
1.2 The CPS transformation . 3
1.3 Sabry and Felleisen’s optimization 3
1.4 This article . 4

2 Administrative reductions in the CPS transformation 4
2.1 Context-insensitive administrative reductions 4
2.2 Context-sensitive administrative reductions 5
2.3 CPS transformation of let expressions 6
2.4 CPS transformation of embedded β-redexes 6
2.5 Summary and conclusion . 7

3 Staging the more compact CPS transformation 7

4 More compact CPS transformations in one pass 8

5 Conclusion and issues 10

List of Figures

1 A family of one-pass, call-by-value CPS transformations à la Plotkin 9
2 A family of one-pass, call-by-value CPS transformations à la Fischer 9

2

1 Introduction

1.1 Continuation-passing style (CPS)

The meaning of a λ-term, in general, depends on its evaluation order. Evaluation-
order independence was one of the motivations for continuations [14, 21], and
continuation-passing style was developed as an evaluation-order independent
λ-encoding of λ-terms [4, 13]. In this λ-encoding, each evaluation context is
represented by a λ-abstraction, called a continuation, and each λ-abstraction is
passed a continuation in addition to its usual argument. All intermediate results
are sent to a continuation and thus all calls are tail-calls. This λ-encoding gives
rise to a variety of continuation-passing styles, whose structure is a subject of
study in itself [8, 15, 20].

1.2 The CPS transformation

The format of CPS λ-terms was soon noticed to be of interest for the compiler
writer [18], which in turn fostered interest in automating the transformation of
λ-terms into CPS. Over the last twenty years, a wide body of CPS transfor-
mations has thus been developed for various purposes, e.g., to compile and to
analyze programs, and to generate compilers [1, 6, 10, 17, 18, 22].

The näıve λ-encoding into CPS, however, generates a quite impressive infla-
tion of lambdas, most of which form administrative redexes that can be safely
reduced. Administrative reductions yield CPS terms corresponding to what one
could write by hand. It has therefore become a challenge to eliminate as many
administrative redexes as possible, at CPS-transformation time.

1.3 Sabry and Felleisen’s optimization

In their article “Reasoning about Programs in Continuation-Passing Style” [16],
Sabry and Felleisen present a CPS transformation that yields more compact
terms than existing CPS transformations. For example [16, Footnote 6], CPS-
transforming

((λx.λy.x) a) b

where a and b are variables, yields the term

λk.((λx.((λy.k x) b)) a)

whereas earlier transformations, such as Steele’s [18] or Danvy and Filinski’s [3],
yield the more voluminous term

λk.((λx.λk1.(k1 (λy.λk2.k2 x))) a (λm.m b k)).

Sabry and Felleisen’s optimization relies on using Fischer’s CPS (where
continuations occur first, as in λk.λx.e), whereas earlier transformations use
Plotkin’s CPS (where values occur first, as in λx.λk.e).

3

1.4 This article

Section 2 reviews administrative reductions in the CPS transformation and
characterizes Sabry and Felleisen’s optimization, independent of the relative
positions of values and continuations in CPS terms (i.e., both for Fischer’s and
Plotkin’s CPS). Section 3 constructs a similarly compact CPS transformation by
composing an uncurrying phase and an ordinary CPS transformation. Section
4 integrates the optimization in a context-insensitive, one-pass CPS transfor-
mation. Section 5 concludes.

2 Administrative reductions in the CPS trans-
formation

2.1 Context-insensitive administrative reductions

Appel, Danvy and Filinski, and Wand each independently developed a “one-
pass” CPS transformation for call by value [1, 3, 22]. This CPS transforma-
tion relies on a context-free characterization of administrative reductions, i.e., a
characterization that is independent of any source term. This one-pass transfor-
mation, shown below for Plotkin’s CPS, is formulated with a static, context-free
distinction between (translation-time) administrative reductions and (run-time)
reductions, using a two-level λ-calculus [3, 12].

[[·]]p : Λ → (Λ → Λ) → Λ
[[x]]p = λκ.κ @x

[[λx.e]]p = λκ.κ @(λx.λk.[[e]]p @(λt.k @ t))
[[e0 e1]]p = λκ.[[e0]]p @ (λt0.[[e1]]p @(λt1.(t0 @ t1)@ (λv.κ @ v)))

“λ” and “@” denote hygienic abstract-syntax constructors and “λ” and “@”
denote translation-time abstractions and (infix) applications, respectively. A
λ-term e : Λ is CPS-transformed with

λk.[[e]]p @(λt.k @ t).

The corresponding one-pass transformation for Fischer’s CPS is as follows.

[[·]]f : Λ → (Λ → Λ) → Λ
[[x]]f = λκ.κ @x

[[λx.e]]f = λκ.κ @(λk.λx.[[e]]f @(λt.k @ t))
[[e0 e1]]f = λκ.[[e0]]f @(λt0.[[e1]]f @(λt1.(t0 @ (λv.κ @ v))@ t1))

A λ-term e : Λ is CPS-transformed with

λk.[[e]]f @ (λt.k @ t).

4

2.2 Context-sensitive administrative reductions

Sabry and Felleisen (1) tag all the “new” lambdas introduced by the CPS trans-
formation, (2) reduce systematically the β-redexes with a tagged lambda, and
(3) untag the remaining tagged lambdas:

[[x]] = λk.k x

[[λx.e]] = λk.k (λk.λx.[[e]] k)
[[e0 e1]] = λk.[[e0]] (λt0.[[e1]] (λt1.t0 k t1))

A λ-term e is CPS-transformed with

[[e]].

An administrative reduction amounts to reducing a β-redex where the λ-abstr-
action is tagged.

This three-pass CPS transformation resembles much the Fischer-style one-
pass CPS transformation of Section 2.1, with three exceptions:

Form: it does not use @ for applications, is more implicit by not underlining
abstract-syntax constructors, and η-reduces continuations.

Content: it is a first-order rewriting system whereas the one-pass transforma-
tion is a higher-order one.

Plus: it contains one more overlined λ-abstraction, namely the one declaring
the continuation of a λ-abstraction.

The extra overline makes administrative reductions context-sensitive, as illus-
trated below:

[[λx.((λy.y) x)]] =
λk.k (λk.λx.(λk.k (λk.λy.(λk.k y) k))λt0.(λk.k x) λt1.t0 k t1)
−→

β
+ λk.k (λk.λx.(λk.λy.k y) k x)

−→β λk.k (λk.λx.(λy.k y)x)

The term λk.λx.... arises from the transformation of λx.... and cannot be ad-
ministratively reduced. The term λk.λy.... arises from the transformation of
λy.... and can be administratively reduced.

In contrast, in a context-insensitive one-pass CPS transformation, all over-
lined λ-abstractions are guaranteed to occur in an overlined application (and
thus there is no need for post-erasure). A context-sensitive CPS transformation
thus can perform more administrative reductions than a context-insensitive one.

Furthermore, we can precisely locate the extra gain: for source β-redexes.
Given a source β-redex, one can actually substitute the continuation of the
application for the continuation of the abstraction:

(λx.e[c/k]) t1

5

thereby enabling further administrative reductions inside e.
This reduction is not accounted for in a (say, Plotkin-style) one-pass CPS

transformation, since in the particular case where t0 denotes λx.λk.e, one does
not simplify

(t0 @ t1) @ c

into
(λx.e[c/k]) @ t1.

The reduction thus yields more compact CPS counterparts of source β-
redexes, in that the translated λ-abstractions are not explicitly passed any con-
tinuation when they occur in a β-redex.1

On the other hand, a similar phenomenon occurs for let expressions, as
reviewed next.

2.3 CPS transformation of let expressions

The CPS transformation of let expressions reads as follows:

[[let x = e′ in e]] = λκ.[[e′]]λt′.let x = t′ in [[e]]κ

In words, e is in tail-position in the let expression, and is CPS-transformed with
respect to the same κ as the let expression. This technique is instrumental in
continuation-based partial evaluation [11].

Seeing let expressions as syntactic sugar for β-redexes, it appears clearly
that the context-sensitive administrative reduction includes the standard let
optimization, independently of whether continuations are put first or last. This
administrative reduction, however, yields more.

2.4 CPS transformation of embedded β-redexes

Extra mileage is obtained for fully applied (curried) λ-abstractions. CPS-
transforming the curried application of a “n-ary” λ-abstraction to n arguments
relocates the continuation of the application to the body of the λ-abstraction.

[[(λx1....λxn.e) e1... en]] =
λκ.[[e1]] @ (λt1....[[en]] @ (λtn.(λxn....(λx1.[[e]] @κ)@ t1...)@ tn)...)

This extra mileage is independent of whether continuations are put first or last.
As a net effect, a term such as

(λf.λg.λx.f x (g x)) (a b) c (d e)

1As Shivers puts it [17] and can be read off their type, the translated λ-abstractions are
promoted to continuations.

6

where a, b, c, d, and e are variables, is CPS transformed into (letting continua-
tions occur last)

λk.a b (λf.(λg.d e (λx.f x (λv1.g x (λv2.v1 v2 k)))) c).

Observe how the λ-abstractions λf.... and λx.... end up as the continuations of
the applications (a b) and (d e), and how the application of λg.... to c survives
in the CPS term.

Letting continuations occur first would yield a similar term:

λk.a (λf.(λg.d (λx.f (λv1.g (λv2.v1 k v2) x)x) e) c) b.

2.5 Summary and conclusion

A CPS transformation with context-sensitive administrative reductions yields
more compact CPS terms because it exposes more administrative redexes. The
extra administrative reductions affect nested β-redexes corresponding to fully
applied curried λ-abstractions, and reduce continuation-passing by promoting
the inner λ-abstractions to continuations. These extra administrative reductions
can be carried out independently of whether continuations occur first or last in
CPS terms.

3 Staging the more compact CPS transforma-
tion

Sabry and Felleisen [16, Definition 7, page 306] identify a reduction βlift moving
the context of a β-redex into the body of the corresponding λ-abstraction:2

E[(λx.M)N] −→ (λx.E[M])N
where E 6= [] and x 6∈ FV (E)

(βlift)

They also pointed out that CPS-transforming a term e and mapping the result
back to direct style yields a term in βlift -normal form.

But a term in βlift -normal form does not give rise to the extra context-
sensitive administrative reduction of Section 2. Therefore, the extra power of
the context-sensitive CPS transformation is solely due to βlift .

The more compact CPS transformation can thus be staged as follows:

1. a phase uncurrying (and appropriately renaming, if need be) all β-redexes
(λx1....λxn.e) e1... en

into embedded let expressions let x1 = e1

in let x2 = e2

in ... let xn = en

in e

2The transitive closure of βlift is a generalized reduction in the sense of Bloo, Kamareddine,
and Nederpelt [2].

7

2. an ordinary, context-insensitive CPS transformation (either à la Plotkin
or à la Fischer) handling let expressions.

The benefit of this staging, we believe, is three-fold: (1) it clarifies the extra
compaction; (2) it extends a context-insensitive, one-pass CPS transformation;
and (3) it suggests how to obtain even more compact terms. Indeed, in the
same fashion as control-flow analysis can be used to locate the application sites
of curried λ-abstractions in order to uncurry them [1, 7], the CPS transforma-
tion can benefit from control-flow information to promote more functions to
continuations.

4 More compact CPS transformations in one
pass

Promoting functions into continuations compromises context independence in
the CPS transformation, since how to CPS-transform a λ-abstraction depends
on whether it occurs in a β-redex or not. Fortunately, it does so in a very regular
way, which makes it possible to derive a family of one-pass CPS transformations
indexed by positions in the current context.

@0

ssss KKKK

@1

rrrr LLLL

qqq
q

@n

rrrr LLL
L

λn−1

λn−2

Indexing the transformation functions with the lexical position of their ar-
gument yields the one-pass CPS transformation à la Plotkin of Figure 1. A
λ-term e : Λ is CPS-transformed with

λk.[[e]]0 @ (λt.k @ t).

Similarly, a one-pass CPS transformation à la Fischer is displayed in Figure
2.

8

Ψ0 v = v : τ0

where τ0 = Λ.

Ψn+1 v = λt.λκ.(t @ v)@ (λv′.κ @(Ψn v′))
: τn+1

where τn+1 = Λ → (τn → Λ) → Λ.

[[·]]n : Λ → (τn → Λ) → Λ
[[x]]n = λκ.κ @(Ψn x)

[[λx.e]]0 = λκ.κ @(λx.λk.[[e]]0 @ (λt.k @ t))
[[λx.e]]n+1 = λκ.κ @(λt.λκ′.(λx.[[e]]n @κ′)@ t)

[[e0 e1]]n = λκ.[[e0]]n+1 @(λt0.[[e1]]0 @(λt1.(t0 @ t1)@ κ))

Figure 1: A family of one-pass, call-by-value CPS transformations à la Plotkin

Φ0 v = v : τ0

where τ0 = Λ.

Φn+1 v = λκ.v @ (λv′.κ @(Φn v′))
: τn+1

where τn+1 = (τn → Λ) → Λ.

[[·]]n : Λ → (τn → Λ) → Λ
[[x]]n = λκ.κ @(Φn x)

[[λx.e]]0 = λκ.κ @(λk.λx.[[e]]0 @ (λt.k @ t))
[[λx.e]]n+1 = λκ.κ @(λκ′.λx.[[e]]n @ κ′)

[[e0 e1]]n = λκ.[[e0]]n+1 @(λt0.[[e1]]0 @(λt1.(t0 @ κ)@ t1))

Figure 2: A family of one-pass, call-by-value CPS transformations à la Fischer

9

[[·]]0 is applied to the root of a term (i.e., to the body of a λ-abstraction or
to the expression in position of argument in an application). For n > 0, [[·]]n
is applied to an expression in position of function in an application. n is the
depth of the expression since the closest root, as in the picture above. Ψ (resp.
Φ) coerces a syntactic object into a translation-time one.

The transformation based on these families of functions can be proven correct
by a simulation theorem similar to Plotkin’s [13]. The correctness criterion is a
relation between the transformation of the result of an expression and the result
of the transformation of it, i.e., (noting contextual equivalence with ∼)

e −→∗ v implies [[e]]0 λa.a −→∗ v′ and v′ ∼ [[v]]0 λa.a

as well as preservation of non-termination and of getting stuck.
Reflecting the context dependence of both CPS transformations, the two-

level specifications in Figures 1 and 2 are not themselves simply typed. Instead,
they are dependently typed and define two families of simply typed two-level
specifications. Each of these families produces simply-typed two-level λ-terms,
that can be statically (i.e., administratively) reduced in one pass.

Figures 1 and 2 can be programmed in a dependently typed language and
also in Scheme, if one treats the indices as arguments.

5 Conclusion and issues

In their study of CPS programs [16], Sabry and Felleisen needed a CPS trans-
formation that would perform more administrative reductions than the ones
already available [1, 3, 6, 22]. We have identified the extra power of this CPS
transformation: a context-sensitive administrative reduction enabling a more
effective treatment of β-redexes which corresponds to Bloo, Kamareddine, and
Nederpelt’s notion of generalized reduction. This treatment turns out to be
independent of the relative positions of values and continuations. The resulting
CPS transformation can be factored into (1) a first-order uncurrying phase and
(2) a CPS transformation with context-insensitive administrative reductions.
We have also presented two one-pass CPS transformations embodying the extra
compaction and generalizing the corresponding one-pass CPS transformations à
la Plotkin and à la Fischer. They can be adapted mutatis mutandis for encod-
ing λ-terms into monadic normal form [9], A-normal form [5, Figure 9], nqCPS,
etc., including βlift .

Acknowledgements: The first author is grateful to Matthias Felleisen, Andrzej
Filinski, John Hatcliff, and Amr Sabry for discussions and comments on this
topic and these transformations in June and July 1993, at CMU. Kristoffer
Rose wanted to see the dependent types of Figures 1 and 2 spelled out. Thanks
are also due to the reviewers and to Julia Lawall for perceptive comments.

10

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube
with definitions and generalised reduction. Information and Computation,
126(2):123–143, 1996.

[3] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[4] Michael J. Fischer. Lambda-calculus schemata. In Talcott [19], pages
259–288. An earlier version appeared in an ACM Conference on Proving
Assertions about Programs, SIGPLAN Notices, Vol. 7, No. 1, January 1972.

[5] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In David W. Wall, editor, Pro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 28, No 6, pages 237–
247, Albuquerque, New Mexico, June 1993. ACM Press.

[6] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages. The MIT Press and McGraw-Hill, 1991.

[7] John Hannan and Patrick Hicks. Higher-order unCurrying. Higher-Order
and Symbolic Computation, 13(3):179–218, 2000.

[8] John Hatcliff. The Structure of Continuation-Passing Styles. PhD thesis,
Department of Computing and Information Sciences, Kansas State Univer-
sity, Manhattan, Kansas, June 1994.

[9] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages 458–471,
Portland, Oregon, January 1994. ACM Press.

[10] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan
Philbin, and Norman Adams. Orbit: An optimizing compiler for Scheme.
In Proceedings of the ACM SIGPLAN’86 Symposium on Compiler Con-
struction, pages 219–233, Palo Alto, California, June 1986. ACM Press.

[11] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation.
In Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, LISP Pointers, Vol. VII, No. 3, Orlando,
Florida, June 1994. ACM Press.

11

[12] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1992.

[13] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[14] John C. Reynolds. The discoveries of continuations. In Talcott [19], pages
233–247.

[15] Amr Sabry. The Formal Relationship between Direct and Continuation-
Passing Style Optimizing Compilers: A Synthesis of Two Paradigms. PhD
thesis, Computer Science Department, Rice University, Houston, Texas,
August 1994. Technical report TR94-242.

[16] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In Talcott [19], pages 289–360.

[17] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Tam-
ing Lambda. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
CS-91-145.

[18] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-
474, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, May 1978.

[19] Carolyn L. Talcott, editor. Special issue on continuations (Part I), Lisp
and Symbolic Computation, Vol. 6, Nos. 3/4, December 1993.

[20] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, Edinburgh, Scotland, 1985. ECS-LFCS-
97-376.

[21] Christopher P. Wadsworth. Continuations revisited. Higher-Order and
Symbolic Computation, 13(1/2):131–133, 2000.

[22] Mitchell Wand. Correctness of procedure representations in higher-order
assembly language. In Stephen Brookes, Michael Main, Austin Melton,
Michael Mislove, and David Schmidt, editors, Proceedings of the 7th In-
ternational Conference on Mathematical Foundations of Programming Se-
mantics, number 598 in Lecture Notes in Computer Science, pages 294–311,
Pittsburgh, Pennsylvania, March 1991. Springer-Verlag.

12

Recent BRICS Report Series Publications

RS-00-35 Olivier Danvy and Lasse R. Nielsen.CPS Transformation of
Beta-Redexes. December 2000. 12 pp. Appears in Sabry, editor,
3rd ACM SIGPLAN Workshop on Continuations, CW ’01 Pro-
ceedings, Association for Computing Machinery (ACM) Tech-
nical report 545, Computer Science Department, Indiana Uni-
versity, 2001, pages 35–39.

RS-00-34 Olivier Danvy and Morten Rhiger.A Simple Take on Typed Ab-
stract Syntax in Haskell-like Languages. December 2000. 25 pp.
Appears in Kuchen and Ueda, editors,Fifth International Sym-
posium on Functional and Logic Programming, FLOPS ’01
Proceedings, LNCS 2024, 2001, pages 343–358.

RS-00-33 Olivier Danvy and Lasse R. Nielsen.A Higher-Order Colon
Translation. December 2000. 17 pp. Appears in Kuchen and
Ueda, editors, Fifth International Symposium on Functional
and Logic Programming, FLOPS ’01 Proceedings, LNCS 2024,
2001, pages 78–91.

RS-00-32 John C. Reynolds.The Meaning of Types — From Intrinsic to
Extrinsic Semantics. December 2000. 35 pp. A shorter version
of this report describing a more limited language appears in
Annabelle McIver and Carroll Morgan (eds.) Essays on Pro-
gramming Methodology, Springer-Verlag, New York, 2001.

RS-00-31 Bernd Grobauer and Julia L. Lawall. Partial Evaluation of
Pattern Matching in Strings, revisited. November 2000. 48 pp.

RS-00-30 Ivan B. Damg̊ard and Maciej Koprowski. Practical Thresh-
old RSA Signatures Without a Trusted Dealer. November 2000.
14 pp. Appears in Pfitzmann, editor, Advances in Cryptol-
ogy: International Conference on the Theory and Application
of Cryptographic Techniques, EUROCRYPT ’01 Proceedings,
LNCS 2045, 2001, pages 152–165.

RS-00-29 Luigi Santocanale.The Alternation Hierarchy for the Theory of
µ-lattices. November 2000. 44 pp. Extended abstract appears
in Abstracts from the International Summer Conference in Cat-
egory Theory, CT2000, Como, Italy, July 16–22, 2000. Appears
in Theory and Applications of Categories, Volume 9, CT2000,
pp. 166-197.

