
B
R

IC
S

R
S

-00-32
J.C

.R
eynolds:

T
he

M
eaning

ofTypes
—

F
rom

Intrinsic
to

E
xtrinsic

S
em

antics

BRICS
Basic Research in Computer Science

The Meaning of Types

From Intrinsic to Extrinsic Semantics

John C. Reynolds

BRICS Report Series RS-00-32

ISSN 0909-0878 December 2000

Copyright c© 2000, John C. Reynolds.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/32/

The Meaning of Types — From Intrinsic to

Extrinsic Semantics ∗†

John C. Reynolds
Department of Computer Science

Carnegie Mellon University

Abstract

A definition of a typed language is said to be “intrinsic” if it assigns
meanings to typings rather than arbitrary phrases, so that ill-typed
phrases are meaningless. In contrast, a definition is said to be “extrin-
sic” if all phrases have meanings that are independent of their typings,
while typings represent properties of these meanings.

For a simply typed lambda calculus, extended with recursion, sub-
types, and named products, we give an intrinsic denotational semantics
and a denotational semantics of the underlying untyped language. We
then establish a logical relations theorem between these two semantics,
and show that the logical relations can be “bracketed” by retractions
between the domains of the two semantics. From these results, we
derive an extrinsic semantics that uses partial equivalence relations.

There are two very different ways of giving denotational semantics to a
programming language (or other formal language) with a nontrivial type sys-
tem. In an intrinsic semantics, only phrases that satisfy typing judgements
have meanings. Indeed, meanings are assigned to the typing judgements,
rather than to the phrases themselves, so that a phrase that satisfies several
judgements will have several meanings.

For example, consider λx. x (in a simply typed functional language).
Corresponding to the typing judgement ` λx. x : int → int, its intrinsic
meaning is the identity function on the integers, while corresponding to

∗This research was supported in part by National Science Foundation Grant CCR-
9804014. Much of the research was carried out during two delightful and productive visits
to BRICS (Basic Research in Computer Science, http://www.brics.dk/, Centre of the
Danish National Research Foundation) in Aarhus, Denmark, September to November 1999
and May to June 2000.

†A shorter and simpler version of this report, in which products and subtyping are
omitted and there is only a single primitive type, will appear in “Essays on Programming
Methodology”, edited by Annabelle McIver and Carroll Morgan (copyright 2001 Springer-
Verlag, all rights reserved).

1

the judgement ` λx. x : bool → bool, its intrinsic meaning is the identity
function on truth values. On the other hand, λx. x x, which does not satisfy
any typing judgement, does not have any intrinsic meaning.

In contrast, in an extrinsic semantics, the meaning of each phrase is the
same as it would be in a untyped language, regardless of its typing properties.
In this view, a typing judgement is an assertion that the meaning of a phrase
possesses some property.

For example, the extrinsic meaning of λx. x is the identity function on
the universe of all values that can occur in a computation. In the simple case
where integers and booleans can be regarded as members of this universe, the
judgement ` λx. x : int → int asserts that this function maps each integer
into an integer, and the judgement ` λx. x : bool → bool asserts that the
same function maps each truth value into a truth value.

The terms “intrinsic” and “extrinsic” are recent coinages by the author
[1, Chapter 15], but the concepts are much older. The intrinsic view is
associated with Alonzo Church, and has been called “ontological” by Leivant
[2]. The extrinsic view is associated with Haskell Curry, and has been called
“semantical” by Leivant.

In this report, we will consider the denotational semantics of a typed call-
by-name language with several primitive types, functions, named products,
subtyping, and recursion definitions of values (but not of types). First,
we will give an intrinsic semantics and an untyped semantics, which we
will relate by a logical relations theorem. Then we will define embedding-
retraction pairs between the domain specified for each type in the intrinsic
semantics and the universal domain used in the untyped semantics, and we
will show that these pairs “bracket” the logical relations. Finally, we will
use this result to derive an extrinsic semantics in which each type denotes
a partial equivalence relation on the universal domain.

In the course of this report, we will use a variety of notations for func-
tions. When f is a function, we write dom f for its domain. When ι1, . . . , ιn
are distinct, we write [f | ι1:x1 | . . . | ιn:xn] for the function with do-
main dom f ∪{ι1, . . . , ιn} that maps each ιk into xk and all other arguments
ι′ into f ι′; in the special case where f is the empty function, we write
[ι1:x1 | . . . | ιn:xn].

We write f ; g for the composition of functions f and g in diagrammatic
order, and ID for the identity function on the domain D. We assume that
function application is left-associative, e.g., that f x y abbreviates (f x)y.

1 Syntax and Typing Rules

In defining the syntax and type system of our illustrative language, we will
use the following metavariables, sometimes with decorations, to range over

2

denumerably infinite sets of syntactic entities:

ι: identifiers

p: phrases

δ: primitive types

θ: types

π: type assignments.

Identifiers will be used both as variables and field names. We write I to
denote the set of all identifiers.

Since our language is an extension of the lambda calculus, a phrase may
be a variable, an abstraction, or an application:

p ::= ι | λι. p′ | p′ p′′

We will also have operations for constructing a record (or named tuple),
and for selecting the field of a record corresponding to a field name:

p ::= 〈ι1: p1, . . . , ιn: pn〉 | p′.ι
Here, 〈ι1: p1, . . . , ιn: pn〉 is a concrete representation of a phrase that, ab-
stractly, is the function on the set {ι1, . . . , ιn} of field names that maps each
ιk into the subphrase pk. This implies that the field names must be distinct,
and that permuting the pairs ιk: pk does not change the phrase.

In addition, there will be a fixed-point expression for defining a value by
recursion, and a conditional expression that branches on a truth value to
choose between evaluating different subexpressions:

p ::= Y p′ | if p′ then p′′ else p′′′

Finally, as primitives, we will have typical constants and operations for
integers and truth values:

p ::= 0 | 1 | 2 | · · ·
| true | false
| p′ + p′′ | p′ × p′′ | p′ − p′′ | p′ = p′′ | p′ < p′′ | ¬ p′

Primitive types, types, and type assignments can also be defined by an
abstract grammar:

δ ::= int | nat | bool

θ ::= δ | θ1 → θ2 | rcd(π)

π ::= ι1: θ1, . . . , ιn: θn

Abstractly, a type assignment, like a record constructor, is a function whose
domain is the set {ι1, . . . , ιn}; in this case each identifier ιk is mapped into

3

the type θk. Again, the identifiers must be distinct, and permuting the pairs
ιk: θk will not change the type assignment.

Informally, the primitive types int, nat, and bool denote the sets of
integers, natural numbers (nonnegative integers), and truth values respec-
tively, θ1 → θ2 denotes the set of functions that map values of type θ1 into
values of type θ2, and rcd(ι1: θ1, . . . , ιn: θn) denotes the set of records with
fields named ι1, . . . , ιn such that the field named ιk has a value of type θk.

If θ and θ′ are types, then the formula θ ≤ θ′ is a subtype judgement,
which is read “θ is a subtype of θ′”. The valid subtype judgements are
defined by inference rules (i.e., they are the judgements that can be proved
by the use of these rules).

First, we have rules asserting that ≤ is a preorder:

θ ≤ θ
θ ≤ θ′′ θ′′ ≤ θ′

θ ≤ θ′.

Next there are rules for the primitive types:

nat ≤ int nat ≤ bool.

Informally, there is an implicit conversion of natural numbers into integers
that is an identity injection, and there is an implicit conversion of natural
numbers into truth values that maps zero into false and all positive numbers
into true. (We do not recommend this subtyping for the primitive types of a
real programming language; we use it in this report to illustrate the variety
of implicit conversions that are possible. For instance, the conversion from
nat to bool is not injective.)

For function types, we have

θ′1 ≤ θ1 θ2 ≤ θ′2
θ1 → θ2 ≤ θ′1 → θ′2.

In other words, the type constructor → is antimonotone in its left argument
and monotone in its right argument.

The rule for record types describes an implicit conversion in which fields
can be forgotten, and the remaining fields can be implicitly converted:

θ1 ≤ θ′1 · · · θm ≤ θ′m
rcd(ι1: θ1, . . . , ιn: θn) ≤ rcd(ι1: θ′1, . . . , ιm: θ′m)

when 0 ≤ m ≤ n.

Notice that, since the pairs ιk: θk can be permuted, {ι1, . . . , ιm} can be any
subset of {ι1, . . . , ιn}.

For example, the following is an (unnecessarily complex) proof of a sub-
type judgement, written as a tree of inferences:

4

rcd(k:nat, b:bool, f: int → nat)
≤ rcd(f: int → nat, k:nat)

nat≤ int nat≤bool

int → nat≤nat → bool nat≤ int

rcd(f: int → nat, k:nat)
≤ rcd(f:nat → bool, k: int)

rcd(k:nat, b:bool, f: int → nat)
≤ rcd(f:nat → bool, k: int).

If π is a type assignment, p is a phrase, and θ is a type, then the formula
π ` p : θ is a typing judgement, or more briefly a typing, which is read “p
has type θ under π”. The valid typing judgements are defined by inference
rules.

The subsumption rule captures the syntactic essence of subtyping: When
θ is a subtype of θ′, any phrase of type θ can be used in a context requiring
a phrase of type θ′:

π ` p : θ θ ≤ θ′

π ` p : θ′.

For the lambda calculus, record operations, fixed-point expressions, and
conditional expressions, we have standard inference rules. (In the first two
rules, we rely on the fact that type assignments are functions on identifiers.)

π ` ι : π ι when ι ∈ domπ

[π | ι: θ1] ` p′ : θ2

π ` λι. p′ : θ1 → θ2

π ` p′ : θ1 → θ2 π ` p′′ : θ1

π ` p′ p′′ : θ2

π ` p1 : θ1 · · · π ` pn : θn

π ` 〈ι1: p1, . . . , ιn: pn〉 : rcd(ι1: θ1, . . . , ιn: θn)

π ` p′ : rcd(ι1: θ1, . . . , ιn: θn)

π ` p′.ιk : θk

when 1 ≤ k ≤ n

π ` p′ : θ → θ

π ` Y p′ : θ

π ` p′ : bool π ` p′′ : θ π ` p′′′ : θ

π ` if p′ then p′′ else p′′′ : θ.

5

There are also a large number of rules for primitive constants and oper-
ations, which all have the form

π ` p1 : δ1 · · · π ` pn : δn

π ` op(p1, . . . , pn) : δ.

(To treat all of these rules uniformly, we use prefix form for the primitive
operations, and regard constants as zero-ary operations.) For each rule of
the above form, we say that δ1, . . . , δn → δ is a signature of the operator
op. Then, instead of giving the individual rules explicitly, it is enough to
list each operator and its signatures:

Operator Signatures

0, 1, 2, . . . → nat

true, false → bool

+,× nat,nat → nat
int, int → int

bool,bool → bool

− int, int → int

=, < int, int → bool

¬ bool → bool.

Here we have “overloaded” + and × to act on truth values as well as num-
bers; the intent is that + will act as “or” and × as “and”. At the other
extreme, − does not act on truth values, and does not, in general, map
natural numbers into natural numbers.

2 An Intrinsic Semantics

To give an intrinsic denotational semantics to our illustrative language, we
must define the meanings of types, type assignments, subtype judgements,
and typing judgements. Specifically, we must give:

• for each type θ, a domain [[θ]] of values appropriate to θ,

• for each type assignment π, a domain [[π]]∗ of environments appropriate
to π,

• for each valid subtype judgement θ ≤ θ′, a strict continuous function
[[θ ≤ θ′]] from [[θ]] to [[θ′]], called the implicit conversion from θ to θ′,

• for each valid typing judgement π ` p : θ, a continuous function [[π `
p: θ]] from [[π]]∗ to [[θ]], called the meaning of p with respect to π and θ.

6

We define a predomain to be a poset with least upper bounds of all
increasing chains, and a domain to be a predomain with a least element,
which we will denote by ⊥. (In fact, all of the domains we will use are Scott
domains, i.e., nonempty partially ordered sets that are directed complete,
bounded complete, algebraic, and countably based, but we will not make
use of this fact.) A continuous function is one that preserves least upper
bounds of all increasing chains; it is strict if it also preserves least elements.

In what follows, we will write Z, N, and B for the sets of integers,
natural numbers, and truth values respectively; denumerable sets such as
these will be also be regarded as discretely ordered predomains. We write
P⊥ for the domain obtained from a predomain P by adding a new least
element. When P is a predomain and D is a domain, we write P ⇒ D for
the pointwise-ordered domain of continuous functions from P to D.

The meanings of types and type assignments are defined by induction
on their structure:

Definition 2.1 For types θ and type assignments π, the domains [[θ]] and
[[π]]∗ are such that

[[int]] = Z⊥

[[nat]] = N⊥

[[bool]] = B⊥

[[θ1 → θ2]] = [[θ1]] ⇒ [[θ2]]

[[rcd(π)]] = [[π]]∗

[[ι1: θ1, . . . , ιn: θn]]∗ = { [ι1:x1 | . . . | ιn:xn] | x1 ∈ [[θ1]], . . . , xn ∈ [[θn]]}.
(The set on the right of the final equation is a Cartesian product, indexed by
the identifiers ι1, . . . , ιn, that becomes a domain when ordered component-
wise.)

On the other hand, the meanings of subtype and typing judgements are
defined by induction on the structure of proofs of these judgements. Specifi-
cally, for each inference rule, we give a semantic equation that expresses the
meaning of a proof in which the final inference is an instance of that rule,
in terms of the meanings of its immediate subproofs.

To write such equations succinctly, we write P(J) to denote a proof
of the judgement J . For example, corresponding to the inference rule for
subsumption, we have the semantic equation



P(π ` p : θ) P(θ ≤ θ′)

π ` p : θ′




 = [[P(π ` p : θ)]] ; [[P(θ ≤ θ′)]],

which asserts that the meaning of a proof of π ` p : θ′, in which the final in-
ference is an instance of the subsumption rule, is the functional composition
of the meanings of its immediate subproofs.

7

Before proceeding further, we must warn the reader that our illustrative
language is rich enough that a judgement may have several significantly
different proofs, e.g.,

m:nat, n:nat ` m : nat m:nat, n:nat ` n : nat

m:nat, n:nat ` m × n : nat

m:nat, n:nat ` m × n : bool
or

m:nat, n:nat ` m : nat

m:nat, n:nat ` m : bool

m:nat, n:nat ` n : nat

m:nat, n:nat ` n : bool

m:nat, n:nat ` m × n : bool.

If our intrinsic semantics is to make sense, so that we can take the meaning
[[P(J)]] of any proof of a judgement J to be the meaning of J itself, then we
must have the property of coherence:

Definition 2.2 An intrinsic semantics is said to be coherent if all proofs
of the same judgement have the same meaning.

In fact, as we will see in Section 5, our intrinsic semantics is coherent. How-
ever, this fact depends critically on the details of the language design, es-
pecially of the semantics of implicit conversions and “overloaded” operators
with more than one signature [3],[1, Chapter 16].

The meanings of the subtype judgements are defined by the following
semantic equations: [[

θ ≤ θ

]]
= I[[θ]]




P(θ ≤ θ′′) P(θ′′ ≤ θ′)

θ ≤ θ′




 = [[P(θ ≤ θ′′)]] ; [[P(θ′′ ≤ θ′)]]

[[
nat ≤ int

]]
n = n

[[
nat ≤ bool

]]
n =



⊥ when n = ⊥
true when n > 0

false when n = 0


P(θ′1 ≤ θ1) P(θ2 ≤ θ′2)

θ1 → θ2 ≤ θ′1 → θ′2




 f = [[P(θ′1 ≤ θ1)]] ; f ; [[P(θ2 ≤ θ′2)]]

8




 P(θ1 ≤ θ′1) · · · P(θm ≤ θ′m)

rcd(ι1: θ1, . . . , ιn: θn) ≤ rcd(ι1: θ′1, . . . , ιm: θ′m)




 [ι1:x1 | . . . | ιn:xn]

= [ι1: [[P(θ1 ≤ θ′1)]]x1 | . . . | ιm: [[P(θm ≤ θ′m)]]xm].

The semantic equations for typing judgements about variables, functions,
records, fixed-point expressions, and conditional expressions (as well as the
equation for subsumption given earlier) give meanings that are standard for
a call-by-name language:[[

π ` ι : π ι

]]
η = η ι




P([π | ι: θ1] ` p′ : θ2)

π ` λι. p′ : θ1 → θ2




 η = λx ∈ [[θ1]]. [[P([π | ι: θ1] ` p′ : θ2)]][η | ι:x]




P(π ` p′ : θ1 → θ2) P(π ` p′′ : θ1)

π ` p′ p′′ : θ2




 η

= [[P(π ` p′ : θ1 → θ2)]]η([[P(π ` p′′ : θ1)]]η)




 P(π ` p1 : θ1) · · · P(π ` pn : θn)

π ` 〈ι1: p1, . . . , ιn: pn〉 : rcd(ι1: θ1, . . . , ιn: θn)




 η

= [ι1: [[P(π ` p1: θ1)]]η | . . . | ιn: [[P(π ` pn: θn)]]η]




P(π ` p′ : rcd(ι1: θ1, . . . , ιn: θn))

π ` p′.ιk : θk




 η

= ([[P(π ` p′ : rcd(ι1: θ1, . . . , ιn: θn))]]η)ιk



P(π ` p′ : θ → θ)

π ` Y p′ : θ




 η =

∞⊔
n=0

([[P(π ` p′ : θ → θ)]]η)
n⊥




P(π ` p′ : bool) P(π ` p′′ : θ) P(π ` p′′′ : θ)

π ` if p′ then p′′ else p′′′ : θ




 η

=



⊥ when [[P(π ` p′ : bool)]]η = ⊥
[[P(π ` p′′ : θ)]]η when [[P(π ` p′ : bool)]]η = true

[[P(π ` p′′′ : θ)]]η when [[P(π ` p′ : bool)]]η = false.

9

The semantic equations for primitive constants and operations have the
general form



P(π ` p1 : δ1) · · · P(π ` pn : δn)

π ` op(p1, . . . , pn) : δ




 η

= Iδ1,...,δn→δ
op ([[P(π ` p1 : δ1)]]η, . . . , [[P(π ` pn : δn)]]η),

where
Iδ1,...,δn→δ
op ∈ [[δ1]] × · · · × [[δn]] → [[δ]].

Now suppose that S1, . . . , Sn are sets, D is a domain, and f is a function
from S1 × · · · ×Sn to some subset of D. Then the function f ′ from (S1)⊥ ×
· · · × (Sn)⊥ to D such that f ′〈x1, . . . , xn〉 = ⊥D when any xi is ⊥, and
f ′〈x1, . . . , xn〉 = f〈x1, . . . , xn〉 otherwise, is called a componentwise strict
extension of f . (In the special case where n = 0, so that f is a constant
function on the singleton domain {〈〉}, f ′ is the same as f .)

In particular, the interpretations of the primitive constants and opera-
tions are all componentwise strict extensions of standard functions:

The function: is the componentwise strict extension of:

I→nat
0 λx ∈ {〈〉}. 0

I→nat
1 λx ∈ {〈〉}. 1
...

...

I→bool
true λx ∈ {〈〉}. true

I→bool
false λx ∈ {〈〉}. false

Inat×nat→nat
+ addition of natural numbers

I int×int→int
+ addition of integers

Ibool×bool→bool
+ disjunction of truth values

Inat×nat→nat
× multiplication of natural numbers

I int×int→int
× multiplication of integers

Ibool×bool→bool
× conjunction of truth values

I int×int→int
− subtraction of integers

I int×int→bool
= equality of integers

I int×int→bool
< ordering of integers

Ibool→bool¬ negation of truth values.

10

3 An Untyped Semantics

Next, we consider the untyped semantics of our illustrative language. Here,
independently of the type system, each phrase p possesses a unique meaning
that is a mapping from environments to values, where environments map
variables (i.e., identifiers) into values, and values range over a “universal”
domain U :

[[p]] ∈ E ⇒ U where E = (I ⇒ U).

It is vital that this untyped semantics be call-by-name, and that U be
rich enough to contain “representations” of all the typed values used in the
intrinsic semantics of the previous section. These conditions, however, do
not fully determine the untyped semantics. To be general, therefore, rather
than specify a particular universal domain, we simply state properties of U
that will be sufficient for our development. (In fact, these properties hold
for a variety of untyped call-by-name models of our illustrative language.)

Specifically, we require the domains Z⊥ of integers (viewed as primitive
values), U ⇒ U of continuous functions (viewed as functional values), and
E of environments (viewed as record values) to be embeddable in U by pairs
of continuous functions:

Z⊥ U-Φp
�

Ψp

U ⇒ U U-Φf
�

Ψf

E U,-Φr
�

Ψr

where each Φi,Ψi is an embedding-retraction pair, i.e., each composition
Φi ; Ψi is an identity function on the embedded domain.

Using these embedding-retraction pairs, it is straightforward to give se-
mantic equations defining the untyped semantics of variables, functions,
records, and fixed points:

[[ι]] ε = ε ι

[[λι. p′]] ε = Φf(λy ∈ U. [[p′]][ε | ι: y])

[[p′ p′′]] ε = Ψf([[p′]] ε)([[p′′]] ε)

[[〈ι1: p1, . . . , ιn: pn〉]] ε = Φr([λι ∈ I. ⊥ | ι1: [[p1]] ε | . . . | ιn: [[pn]] ε])

[[p′.ι]] ε = Ψr([[p′]] ε) ι

[[Y p′]] ε =
∞⊔

n=0

(Ψf([[p′]] ε))
n⊥.

(Note that records with a finite number of fields are “represented” by records
with an infinite number of fields, almost all of which are ⊥.)

When we come to conditional expressions, however, we encounter a prob-
lem. Since, from the untyped viewpoint, all primitive values are integers,

11

to describe how a conditional expression branches on its first argument we
must understand how integers are used to represent truth values. In fact
(as we will formalize in the next section), false will be represented by zero,
true will be represented by any positive integer; and no truth value will be
represented by any negative integer. This leads to the semantic equation

[[if p′ then p′′ else p′′′]] ε

=




⊥ when Ψp([[p′]] ε) = ⊥
[[p′′]] ε when Ψp([[p′]] ε) > 0

[[p′′′]] ε when Ψp([[p′]] ε) = 0

anyval([[p′]] ε, [[p′′]] ε, [[p′′′]]ε) when Ψp([[p′]] ε) < 0.

Here anyval can be any continuous function from U×U×U to U . (Again, we
do not want to constrain our untyped semantics more than will be necessary
to establish a proper relationship to our intrinsic typed semantics.)

The semantic equations for primitive constants and operations have the
general form

[[op(p1, . . . , pn)]]ε = Φp(IU
op(Ψp([[p1]]ε), . . . ,Ψp([[pn]]ε))),

where IU
op ∈ (Z⊥)n → Z⊥. In particular,

The function: is the componentwise strict extension of:

IU
0 λx ∈ {〈〉}. 0

IU
1 λx ∈ {〈〉}. 1
...

...

IU
true λx ∈ {〈〉}. trueint

IU
false λx ∈ {〈〉}. 0

IU
+ addition of integers

IU× multiplication of integers

IU− subtraction of integers

IU
= eqint

IU
< lessint

IU¬ notint.

12

As with anyval, we state the necessary properties of trueint ∈ Z⊥, eqint,
lessint ∈ Z × Z → Z⊥, and notint ∈ Z → Z⊥, without being overspecific:

trueint > 0

eqint(i1, i2) > 0 when i1 = i2

eqint(i1, i2) = 0 when i1 6= i2

lessint(i1, i2) > 0 when i1 < i2

lessint(i1, i2) = 0 when i1 ≥ i2

notint(i1) > 0 when i1 = 0

notint(i1) = 0 when i1 > 0.

(Note that z > 0 does not hold when z = ⊥.)

4 Logical Relations

Our next task is to connect the intrinsic and untyped semantics by means
of a type-indexed family ρ of relations such that

ρ[θ] ⊆ [[θ]] × U.

The members ρ[θ] of this family are called logical relations. Informally,
〈x, y〉 ∈ ρ[θ] means that the value x of type θ is represented by the untyped
value y.

(Logical relations [4] are most often used to connect two intrinsic typed
semantics, but the idea works just as well to connect an intrinsic and an
untyped semantics.)

The relations ρ[θ] will be defined by induction on the structure of the
type θ. To sequester the effects of our particular choice of primitive types,
however, it is useful first to define primitive logical relations:

Definition 4.1 For primitive types δ, the primitive logical relations ρ̃ [δ] ⊆
[[δ]] × Z⊥ are such that:

〈x, z〉 ∈ ρ̃ [int] iff x = z

〈n, z〉 ∈ ρ̃ [nat] iff n = z

〈b, z〉 ∈ ρ̃ [bool] iff (b = ⊥ and z = ⊥) or (b = true and z > 0)

or (b = false and z = 0).

13

Then:

Definition 4.2 For types θ, the logical relations ρ[θ] ⊆ [[θ]] × U are such
that:

〈x, y〉 ∈ ρ[δ] iff 〈x,Ψpy〉 ∈ ρ̃ [δ]

〈f, g〉 ∈ ρ[θ1 → θ2] iff ∀〈x, y〉 ∈ ρ[θ1]. 〈f x,Ψf g y〉 ∈ ρ[θ2]

〈[ι1:x1 | . . . | ιn:xn], y〉 ∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)]

iff 〈x1,Ψr y ι1〉 ∈ ρ[θ1] and · · · and 〈xn,Ψr y ιn〉 ∈ ρ[θn].

To explicate the logical relations, we begin with two domain-theoretic
properties that will be necessary to deal with recursion:

Definition 4.3 A relation r between domains is

• strict iff 〈⊥,⊥〉 ∈ r,

• chain-complete iff, whenever x0 v x1 v · · · and y0 v y1 v · · · are
increasing sequences such that each 〈xi, yi〉 ∈ r,

〈⊔∞
i=0xi,

⊔∞
i=0yi〉 ∈ r.

Lemma 4.4 For all primitive types δ, the primitive logical relations ρ̃ [δ]
are strict and chain-complete.

Proof. By the definition (4.1) of the ρ̃ [δ], it is immediate that 〈⊥,⊥〉 ∈ ρ̃ [δ].
Suppose x0 v x1 v · · · and z0 v z1 v · · · are increasing sequences, in

[[δ]] and Z⊥ respectively, such that each 〈xi, zi〉 ∈ ρ̃ [δ]. Since [[δ]] and Z⊥
are both flat domains, there is a sufficiently large n that

⊔∞
i=0xi = xn and⊔∞

i=0zi = zn. Then 〈⊔∞
i=0xi,

⊔∞
i=0zi〉 = 〈xn, zn〉 ∈ ρ̃ [δ]. end of proof

Lemma 4.5 For all types θ, the logical relations ρ[θ] are strict and chain-
complete.

Proof. We first note that, if Φ,Ψ is any embedding-retraction pair, then
⊥ v Φ⊥, and since Ψ is monotone (since it is continuous) and Φ ; Ψ is an
identity, Ψ⊥ v Ψ(Φ⊥) = ⊥. Then since ⊥ v Ψ⊥, we have Ψ⊥ = ⊥, i.e., Ψ
is a strict function.

The main proof is by induction on the structure of θ.

• Suppose θ is a primitive type δ. Then 〈x, y〉 ∈ ρ[δ] iff 〈x,Ψpy〉 ∈ ρ̃ [δ].
Since Ψp is a strict function and ρ̃ [δ] is a strict relation, 〈⊥,Ψp⊥〉 =
〈⊥,⊥〉 ∈ ρ̃ [δ], so that 〈⊥,⊥〉 ∈ ρ[δ].

Now suppose that xi and yi are increasing sequences, in [[δ]] and U
respectively, such that 〈xi, yi〉 ∈ ρ[δ]. Then 〈xi,Ψpyi〉 ∈ ρ̃ [δ] for i ≥ 0,
and since Ψp is monotone, the Ψpyi are an increasing sequence in Z⊥.

14

Then, since Ψp is continuous, and ρ̃ [δ] is chain-complete,

〈⊔∞
i=0xi,Ψp(

⊔∞
i=0yi)〉 = 〈⊔∞

i=0xi,
⊔∞

i=0Ψpyi〉 ∈ ρ̃ [δ],

so that 〈⊔∞
i=0xi,

⊔∞
i=0yi〉 ∈ ρ[δ].

• Suppose θ is θ1 → θ2. Let f = ⊥ and g = ⊥, so that Ψf g = ⊥, since
Ψf is strict. Then, for any 〈x, y〉 ∈ ρ[θ1], since the least element of
a domain of functions is the constant function yielding ⊥, f x = ⊥
and Ψf g y = ⊥. By the induction hypothesis for θ2, 〈f x,Ψf g y〉 =
〈⊥,⊥〉 ∈ ρ[θ2], and since this holds for all 〈x, y〉 ∈ ρ[θ1], we have
〈f, g〉 = 〈⊥,⊥〉 ∈ ρ[θ1 → θ2].

Now suppose that fi and gi are increasing sequences, in [[θ1 → θ2]]
and U respectively, such that 〈fi, gi〉 ∈ ρ[θ1 → θ2]. Let 〈x, y〉 ∈ ρ[θ1].
Then 〈fi x,Ψf gi y〉 ∈ ρ[θ2] for i ≥ 0, and since function application
and Ψf are monotone, fi x and Ψf gi y are increasing sequences. Then,
since Ψf is continuous, and a least upper bound of functions distributes
through application, the induction hypothesis for θ2 gives

〈(⊔∞
i=0fi)x,Ψf(

⊔∞
i=0gi)y〉 = 〈⊔∞

i=0fi x,
⊔∞

i=0Ψf gi y〉 ∈ ρ[θ2],

and since this holds for all 〈x, y〉 ∈ ρ[θ1], 〈
⊔∞

i=0fi,
⊔∞

i=0gi〉 ∈ ρ[θ1 → θ2].

• Suppose θ is rcd(ι1: θ1, . . . , ιn: θn). Let [ι1:x1 | . . . | ιn:xn] = ⊥ and
y = ⊥. Then, for each k between one and n, since products are ordered
componentwise, xk = ⊥, and since Ψr is strict, Ψr y ιk = ⊥, so that
the induction hypothesis for θk gives 〈xk,Ψr y ιk〉 = 〈⊥,⊥〉 ∈ ρ[θk].
Then, since this holds for all k, we have 〈[ι1:x1 | . . . | ιn:xn], y〉
= 〈⊥,⊥〉 ∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)].

Now suppose that [ι1:x1,i | . . . | ιn:xn,i] and yi are increasing se-
quences (in i) in [[rcd(ι1: θ1, . . . , ιn: θn)]] and U respectively, such that
〈[ι1:x1,i | . . . | ιn:xn,i], yi〉 ∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)]. Let k be be-
tween one and n. Then 〈xk,i,Ψr yi ιk〉 ∈ ρ[θk] for i ≥ 0, and since
component selection, Ψr, and function application are monotone, xk,i

and Ψr yi ιk are increasing sequences. Then, since Ψr is continuous,
and a least upper bound of functions distributes through application,
the induction hypothesis for θk gives

〈⊔∞
i=0xk,i,Ψr(

⊔∞
i=0yi)ιk〉 = 〈⊔∞

i=0xk,i,
⊔∞

i=0Ψr yi ιk〉 ∈ ρ[θk].

Finally, since this holds for all k, and since least upper bounds of
products are taken componentwise,

〈⊔∞
i=0[ι1:x1,i | . . . | ιn:xn,i],

⊔∞
i=0yi〉

= 〈[ι1: ⊔∞
i=0x1,i | . . . | ιn:

⊔∞
i=0xn,i],

⊔∞
i=0yi〉

∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)].
end of proof

15

Next, we establish the connection between subtyping and the logical
relations:

Theorem 4.6 If P(θ ≤ θ′) is a proof of the subtype judgement θ ≤ θ′, and
〈x, y〉 ∈ ρ[θ], then 〈[[P(θ ≤ θ′)]]x, y〉 ∈ ρ[θ′].

Proof. By induction on the structure of the proof P(θ ≤ θ′).

• Suppose P(θ ≤ θ′) is

θ ≤ θ,

so that [[P(θ ≤ θ′)]] = I[[θ]]. If 〈x, y〉 ∈ ρ[θ], then 〈[[P(θ ≤ θ′)]]x, y〉 =
〈x, y〉 ∈ ρ[θ] = ρ[θ′].

• Suppose P(θ ≤ θ′) is

P(θ ≤ θ′′) P(θ′′ ≤ θ′)

θ ≤ θ′,

so that [[P(θ ≤ θ′)]] = [[P(θ ≤ θ′′)]] ; [[P(θ′′ ≤ θ′)]]. If 〈x, y〉 ∈ ρ[θ], then
〈[[P(θ ≤ θ′′)]]x, y〉 ∈ ρ[θ′′] by the induction hypothesis for P(θ ≤ θ′′),
and then 〈[[P(θ ≤ θ′)]]x, y〉 = 〈[[P(θ′′ ≤ θ′)]]([[P(θ ≤ θ′′)]]x), y〉 ∈ ρ[θ′]
by the induction hypothesis for P(θ′′ ≤ θ′).

• Suppose P(θ ≤ θ′) is

nat ≤ int,

so that [[P(θ ≤ θ′)]]n = n. If 〈n, y〉 ∈ ρ[nat], then n = Ψpy, so that

〈[[P(θ ≤ θ′)]]n,Ψpy〉 = 〈n,Ψpy〉 = 〈Ψpy,Ψpy〉,
which satisfies the definition (4.1) of a member of ρ̃ [int]. It follows
that 〈[[P(θ ≤ θ′)]]n, y〉 ∈ ρ[int].

• Suppose P(θ ≤ θ′) is

nat ≤ bool,
so that

[[P(θ ≤ θ′)]]n =



⊥ when n = ⊥
true when n > 0

false when n = 0.

If 〈n, y〉 ∈ ρ[nat], then n = Ψpy, so that the equation displayed above
implies that

〈[[P(θ ≤ θ′)]]n,Ψpy〉 =



〈⊥,Ψpy〉 when Ψpy = ⊥
〈true,Ψpy〉 when Ψpy > 0

〈false,Ψpy〉 when Ψpy = 0,

which satisfies the definition (4.1) of a member of ρ̃ [bool]. It follows
that 〈[[P(θ ≤ θ′)]]n, y〉 ∈ ρ[bool].

16

• Suppose P(θ ≤ θ′) is

P(θ′1 ≤ θ1) P(θ2 ≤ θ′2)

θ1 → θ2 ≤ θ′1 → θ′2,so that
[[P(θ ≤ θ′)]]f = [[P(θ′1 ≤ θ1)]] ; f ; [[P(θ2 ≤ θ′2)]].

Suppose 〈f, g〉 ∈ ρ[θ1 → θ2], and let 〈x, y〉 ∈ ρ[θ′1]. By the induction
hypothesis for P(θ′1 ≤ θ1),

〈[[P(θ′1 ≤ θ1)]]x, y〉 ∈ ρ[θ1],

and since 〈f, g〉 ∈ ρ[θ1 → θ2],

〈f([[P(θ′1 ≤ θ1)]]x),Ψf g y〉 ∈ ρ[θ2].

Then, by the induction hypothesis for P(θ2 ≤ θ′2),

〈[[P(θ2 ≤ θ′2)]](f([[P(θ′1 ≤ θ1)]]x)),Ψf g y〉 ∈ ρ[θ′2],

and since this holds for all 〈x, y〉 ∈ ρ[θ′1],

〈[[P(θ ≤ θ′)]]f, g〉 = 〈[[P(θ′1 ≤ θ1)]] ; f ; [[P(θ2 ≤ θ′2)]], g〉 ∈ ρ[θ′1 → θ′2].

• Suppose P(θ ≤ θ′) is

P(θ1 ≤ θ′1) · · · P(θm ≤ θ′m)

rcd(ι1: θ1, . . . , ιn: θn) ≤ rcd(ι1: θ′1, . . . , ιm: θ′m),
so that

[[P(θ ≤ θ′)]][ι1:x1 | . . . | ιn:xn]

= [ι1: [[P(θ1 ≤ θ′1)]]x1 | . . . | ιm: [[P(θm ≤ θ′m)]]xm].

Suppose 〈[ι1:x1 | . . . | ιn:xn], y〉 ∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)]. Then each
〈xk,Ψr y ιk〉 ∈ ρ[θk], so that, for 1 ≤ k ≤ m, the induction hypothesis
for P(θk ≤ θ′k) gives

〈[[P(θk ≤ θ′k)]]xk,Ψr y ιk〉 ∈ ρ[θ′k].

Since this holds for each k ≤ m, we have

〈[[P(θ ≤ θ′)]][ι1:x1 | . . . | ιn:xn], y〉
= 〈[ι1: [[P(θ1 ≤ θ′1)]]x1 | . . . | ιm: [[P(θm ≤ θ′m)]]xm], y〉
∈ ρ[rcd(ι1: θ′1, . . . , ιm: θ′m)].

end of proof

17

Next, we establish that, for any signature of any primitive operator,
applying the typed and untyped interpretations of the operator to related
arguments will yield related results, where the type-dependent notion of
“related” is given by the primitive logical relations:

Lemma 4.7 Suppose δ1, . . . , δn → δ is a signature of op, and 〈x1, z1〉 ∈
ρ̃ [δ1], . . . , 〈xn, zn〉 ∈ ρ̃ [δn]. Then

〈Iδ1,...,δn→δ
op (x1, . . . , xn),IU

op(z1, . . . , zn)〉 ∈ ρ̃ [δ].

The proof is a case analysis over each signature of each operator; we leave
the tedious details to the reader. The only nontriviality is the connection
between arithmetic and boolean operations that justifies the cases where +
and × have the signature bool,bool → bool: Suppose z1 ≥ 0 and z2 ≥ 0;
then z1 + z2 > 0 holds iff z1 > 0 or z2 > 0, and z1 × z2 > 0 holds iff z1 > 0
and z2 > 0.

Now we can establish our central result. Essentially, it asserts that, in
related environments, the typed and untyped meanings of the same expres-
sion give related values, where the type-dependent notion of “related” is
given by the logical relations:

Theorem 4.8 (The Logical Relations Theorem) Suppose P(π ` p : θ) is a
proof of the typing judgement π ` p : θ, and

∀ι ∈ domπ. η ι ∈ [[π ι]]

ε ∈ I ⇒ U

∀ι ∈ domπ. 〈η ι, ε ι〉 ∈ ρ[π ι],

(A)

Then

〈[[P(π ` p : θ)]]η, [[p]]ε〉 ∈ ρ[θ]. (B)

Proof. By induction on the structure of the proof P(π ` p : θ). More
precisely, we prove by induction on n that, for all π, η, ε, p, θ, and P(π `
p : θ), if the depth of P(π ` p : θ) is at most n, and the assumptions (A)
hold, then (B) holds. However, in all of the following cases except that for
abstractions (i.e., λι. p), the induction hypotheses are only applied for the
same values of π, η, and ε as in the theorem being proved. (Abstractions
are the only exception because they are the only binding construction in our
language.)

• Suppose that the final inference of P(π ` p : θ) is an instance of the
subsumption rule, i.e., P(π ` p : θ) is

P(π ` p : θ′) P(θ′ ≤ θ)

π ` p : θ,

18

so that
[[P(π ` p : θ)]] = [[P(π ` p : θ′)]] ; [[P(θ′ ≤ θ)]].

(We have renamed the metavariables θ and θ′ by interchanging them.)
Assume (A). By the induction hypothesis for P(π ` p : θ′), we have

〈[[P(π ` p : θ′)]]η, [[p]]ε〉 ∈ ρ[θ′].

Then,

〈[[P(π ` p : θ)]]η, [[p]]ε〉 = 〈[[θ′ ≤ θ]]([[P(π ` p : θ′)]]η), [[p]]ε〉 ∈ ρ[θ],

by Theorem 4.6.

• Suppose P(π ` p : θ) is

π ` ι : π ι,
so that

[[P(π ` p : θ)]]η = η ι

[[p]]ε = ε ι.

Assume (A). Then

〈[[P(π ` p : θ)]]η, [[p]]ε〉 = 〈η ι, ε ι〉 ∈ ρ[π ι] = ρ[θ].

• Suppose P(π ` p : θ) is

P([π | ι: θ1] ` p′ : θ2)

π ` λι. p′ : θ1 → θ2,

so that

[[P(π ` p : θ)]]η = λx ∈ [[θ1]]. [[P([π | ι: θ1] ` p′ : θ2)]][η | ι:x]

[[p]]ε = Φf(λy ∈ U. [[p′]][ε | ι: y]).

Assume (A), and suppose 〈x, y〉 ∈ ρ[θ1]. Then

∀ι′ ∈ dom[π | ι: θ1]. [η | ι:x] ι′ ∈ [[[π | ι: θ1] ι′]]

[ε | ι: y] ∈ I ⇒ U

∀ι′ ∈ dom[π | ι: θ1]. 〈[η | ι:x] ι′, [ε | ι: y] ι′〉 ∈ ρ[[π | ι: θ1] ι′],

(A′)

so that

〈[[P(π ` p : θ)]]η x,Ψf([[p]]ε) y〉
= 〈[[P([π | ι: θ1] ` p′ : θ2)]][η | ι:x],Ψf(Φf(λy. [[p′]][ε | ι: y]))y〉
= 〈[[P([π | ι: θ1] ` p′ : θ2)]][η | ι:x], [[p′]][ε | ι: y]〉
∈ ρ[θ2],

19

where the last step follows from the induction hypothesis for P([π |
ι: θ1] ` p′ : θ2), taking (A) to be (A′). Then, since this holds for all
〈x, y〉 ∈ ρ[θ1], the definition (4.2) of ρ[θ1 → θ2] gives

〈[[P(π ` p : θ)]]η, [[p]]ε〉 ∈ ρ[θ1 → θ2].

• Suppose P(π ` p : θ) is

P(π ` p′ : θ1 → θ2) P(π ` p′′ : θ1)

π ` p′ p′′ : θ2,

so that

[[P(π ` p : θ)]]η = [[P(π ` p′ : θ1 → θ2)]]η([[P(π ` p′′ : θ1)]]η)

[[p]]ε = Ψf([[p′]] ε)([[p′′]] ε).

Assume (A). Then the induction hypothesis for P(π ` p′ : θ1 → θ2)
gives

〈[[P(π ` p′ : θ1 → θ2)]]η, [[p′]] ε〉 ∈ ρ[θ1 → θ2],

and the induction hypothesis for P(π ` p′′ : θ1) gives

〈[[P(π ` p′′ : θ1)]]η, [[p′′]] ε〉 ∈ ρ[θ1],

so that

〈[[P(π ` p : θ)]]η, [[p]]ε〉
= 〈[[P(π ` p′ : θ1 → θ2)]]η([[P(π ` p′′ : θ1)]]η),Ψf([[p′]]ε)([[p′′]]ε)〉
∈ ρ[θ2],

by the definition (4.2) of ρ[θ1 → θ2].

• Suppose P(π ` p : θ) is

P(π ` p1 : θ1) · · · P(π ` pn : θn)

π ` 〈ι1: p1, . . . , ιn: pn〉 : rcd(ι1: θ1, . . . , ιn: θn),

so that

[[P(π ` p : θ)]]η = [ι1: [[P(π ` p1 : θ1)]]η | . . . | ιn: [[P(π ` pn : θn)]]η]

[[p]]ε = Φr([λι ∈ I. ⊥ | ι1: [[p1]] ε | . . . | ιn: [[pn]] ε]).

Assume (A). Then, for each k between one and n,

〈[[P(π ` pk : θk)]]η,Ψr(Φr([λι ∈ I. ⊥ | ι1: [[p1]] ε | . . . | ιn: [[pn]] ε])) ιk〉
= 〈[[P(π ` pk : θk)]]η, [λι ∈ I. ⊥ | ι1: [[p1]] ε | . . . | ιn: [[pn]] ε] ιk〉
= 〈[[P(π ` pk : θk)]]η, [[pk]]ε〉
∈ ρ[θk],

20

where the last step follows from the induction hypothesis for P(π `
pk : θk). Thus the definition (4.2) of ρ[rcd(ι1: θ1, . . . , ιn: θn)] gives

〈[[P(π ` p : θ)]]η, [[p]]ε〉
= 〈[ι1: [[P(π ` p1 : θ1)]]η | . . . | ιn: [[P(π ` pn : θn)]]η],

Φr([λι ∈ I. ⊥ | ι1: [[p1]] ε | . . . | ιn: [[pn]] ε])〉
∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)].

• Suppose P(π ` p : θ) is

P(π ` p′ : rcd(ι1: θ1, . . . , ιn: θn))

π ` p′.ιk : θk,

so that

[[P(π ` p : θ)]]η = ([[P(π ` p′ : rcd(ι1: θ1, . . . , ιn: θn))]]η)ιk

[[p]]ε = Ψr([[p′]] ε) ιk.

Assume (A). Then the induction hypothesis gives

〈[[P(π ` p′: rcd(ι1: θ1, . . . , ιn: θn))]]η, [[p′]]ε〉 ∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)],

so that

〈[[P(π ` p : θ)]]η, [[p]]ε〉
= 〈([[P(π ` p′ : rcd(ι1: θ1, . . . , ιn: θn))]]η)ιk,Ψr([[p′]] ε) ιk〉
∈ ρ[θk],

by the definition (4.2) of ρ[rcd(ι1: θ1, . . . , ιn: θn)].

• Suppose P(π ` p : θ) is

P(π ` p′ : θ → θ)

π ` Y p′ : θ.,

so that

[[P(π ` p : θ)]]η =
∞⊔

n=0

([[P(π ` p′ : θ → θ)]]η)
n⊥

[[p]]ε =
∞⊔

n=0

(Ψf([[p′]] ε))
n⊥.

Assume (A). By the induction hypothesis, we have

〈[[P(π ` p′ : θ → θ)]]η, [[p′]] ε〉 ∈ ρ[θ → θ].

21

Next we can show, by induction on n, that

〈([[P(π ` p′ : θ → θ)]]η)
n⊥, (Ψf([[p′]] ε))

n⊥〉 ∈ ρ[θ].

The case for n = 0 follows since, by Lemma 4.5, ρ[θ] is strict. For the
induction step, we have

〈([[P(π ` p′ : θ → θ)]]η)
n+1⊥, (Ψf([[p′]] ε))

n+1⊥〉
= 〈[[P(π ` p′ : θ → θ)]]η(([[P(π ` p′ : θ → θ)]]η)

n⊥),

Ψf([[p′]] ε)((Ψf([[p′]] ε))
n⊥)〉

∈ ρ[θ],

by the induction hypothesis for n and the definition (4.2) of ρ[θ → θ].

Finally,

〈[[P(π ` p : θ)]]η, [[p]]ε〉

= 〈
∞⊔

n=0

([[P(π ` p′ : θ → θ)]]η)
n⊥,

∞⊔
n=0

(Ψf([[p′]] ε))
n⊥〉

∈ ρ[θ],

since ρ[θ] is chain-complete by Lemma 4.5.

• Suppose P(π ` p : θ) is

P(π ` p′ : bool) P(π ` p′′ : θ) P(π ` p′′′ : θ)

π ` if p′ then p′′ else p′′′ : θ,

so that

[[P(π ` p: θ)]]η =



⊥ when [[P(π ` p′:bool)]]η = ⊥
[[P(π ` p′′: θ)]]η when [[P(π ` p′:bool)]]η = true

[[P(π ` p′′′: θ)]]η when [[P(π ` p′:bool)]]η = false

[[p]]ε =




⊥ when Ψp([[p′]] ε) = ⊥
[[p′′]] ε when Ψp([[p′]] ε) > 0

[[p′′′]] ε when Ψp([[p′]] ε) = 0

anyval([[p′]] ε, [[p′′]] ε, [[p′′′]]ε) when Ψp([[p′]] ε) < 0.

Assume (A). By the induction hypothesis for P(π ` p′ : bool),

〈[[P(π ` p′ : bool)]]η, [[p′]]ε〉 ∈ ρ[bool],

so that
〈[[P(π ` p′ : bool)]]η,Ψp([[p′]]ε)〉 ∈ ρ̃ [bool].

22

By the definition (4.1) of ρ̃ [bool], there are three cases:

– [[P(π ` p′ : bool)]]η = ⊥ and Ψp[[p′]]ε = ⊥. Then

〈[[P(π ` p : θ)]]η, [[p]]ε〉 = 〈⊥,⊥〉,
which belongs to ρ[θ] since ρ[θ] is strict.

– [[P(π ` p′ : bool)]]η = true and Ψp[[p′]]ε > 0. Then

〈[[P(π ` p : θ)]]η, [[p]]ε〉 = 〈[[P(π ` p′′ : θ)]]η, [[p′′]]ε〉,
which belongs to ρ[θ] by the induction hypothesis for P(π ` p′′: θ).

– [[P(π ` p′ : bool)]]η = false and Ψp[[p′]]ε = 0. Then

〈[[P(π ` p : θ)]]η, [[p]]ε〉 = 〈[[P(π ` p′′′ : θ)]]η, [[p′′′]]ε〉,
which belongs to ρ[θ] by the induction hypothesis for P(π ` p′′′: θ).

• Suppose P(π ` p : θ) is

P(π ` p1 : δ1) · · · P(π ` pn : δn)

π ` op(p1, . . . , pn) : δ,

so that
[[P(π ` p : θ)]]η = Iδ1,...,δn→δ

op ([[P(π ` p1 : δ1)]]η, . . . , [[P(π ` pn : δn)]]η)

[[p]]ε = Φp(IU
op(Ψp([[p1]]ε), . . . ,Ψp([[pn]]ε))).

Assume (A). By the induction hypothesis, we have, for 1 ≤ k ≤ n,

〈[[P(π ` pk : δk)]]η, [[pk]]ε〉 ∈ ρ[δk],

so that
〈[[P(π ` pk : δk)]]η,Ψp([[pk]]ε)〉 ∈ ρ̃ [δk].

Then
〈Iδ1,...,δn→δ

op ([[P(π ` p1 : δ1)]]η, . . . , [[P(π ` pn : δn)]]η),

Ψp(Φp(IU
op(Ψp([[p1]]ε), . . .Ψp([[pn]]ε))))〉

= 〈Iδ1,...,δn→δ
op ([[P(π ` p1 : δ1)]]η, . . . , [[P(π ` pn : δn)]]η),

IU
op(Ψp([[p1]]ε), . . .Ψp([[pn]]ε))〉

∈ ρ̃ [δ],

by Lemma 4.7, so that

〈[[P(π ` p : θ)]]η, [[p]]ε〉
= 〈Iδ1,...,δn→δ

op ([[P(π ` p1 : δ1)]]η, . . . , [[P(π ` pn : δn)]]η),

Φp(IU
op(Ψp([[p1]]ε), . . .Ψp([[pn]]ε)))〉

∈ ρ[δ].
end of proof

23

Finally, we can show that the logical relations possess a property that is
plausibly called convexity:

Definition 4.9 A relation r between a set and a domain is said to be convex
iff 〈x, y′〉 ∈ r holds whenever 〈x, y〉, 〈x, y′′〉 ∈ r and y v y′ v y′′.

Lemma 4.10 The primitive logical relations ρ̃ [δ] are convex.

Proof. For each primitive type δ, the domain [[δ]] is flat, so that y v y′ v y′′

implies that y′ = y or y′ = y′′. end of proof

Theorem 4.11 The logical relations ρ[θ] are convex.

Proof. By induction on the structure of θ.

• Suppose θ is a primitive type δ, and that 〈x, y〉, 〈x, y′′〉 ∈ ρ[δ] and y v
y′ v y′′. Then 〈x,Ψpy〉, 〈x,Ψpy

′′〉 ∈ ρ̃ [δ] and, since Ψp is monotone,
Ψpy v Ψpy

′ v Ψpy
′′. Since ρ̃ [δ] is convex, 〈x,Ψpy

′〉 ∈ ρ̃ [δ], so that
〈x, y′〉 ∈ ρ[δ].

• Suppose θ is θ1 → θ2, and that 〈f, g〉, 〈f, g′′〉 ∈ ρ[θ1 → θ2] and g v g′ v
g′′. Let 〈x, y〉 ∈ ρ[θ1]. Then 〈fx,Ψf g y〉, 〈fx,Ψf g

′′ y〉 ∈ ρ[θ2] and, since
Ψf and function application are monotone, Ψf g y v Ψf g

′ y v Ψf g
′′ y.

Then the induction hypothesis for ρ[θ2] gives 〈fx,Ψf g
′ y〉 ∈ ρ[θ2], and

since this holds for all 〈x, y〉 ∈ ρ[θ1], we have 〈f, g′〉 ∈ ρ[θ1 → θ2].

• Suppose θ is rcd(ι1: θ1, . . . , ιn: θn), and that 〈[ι1:x1 | . . . | ιn:xn], y〉,
〈[ι1:x1 | . . . | ιn:xn], y′′〉 ∈ ρ[rcd(ι1: θ1, . . . , ιn: θn)] and y v y′ v y′′.
Then, for each k between one and n, 〈xk,Ψr y ιk〉, 〈xk,Ψr y

′′ ιk〉 ∈ ρ[θk]
and, since Ψr and application to ιk are monotone, Ψr y ιk v Ψr y

′ ιk v
Ψr y

′′ ιk. Then the induction hypothesis for ρ[θk] gives 〈xk,Ψr y
′ ιk〉 ∈

ρ[θk], and since this holds for all k, we have 〈[ι1:x1 | . . . | ιn:xn], y′〉 ∈
ρ[rcd(ι1: θ1, . . . , ιn: θn)].

end of proof

5 Bracketing

Next, we show that the domains [[θ]] that are the meanings of types can be
embedded in the universal domain U by a type-indexed family of function
pairs:

[[θ]] U.-φ[θ]
�
ψ[θ]

We will show that these are embedding-retraction pairs, and that they are
closely related to the logical relations defined in the previous section. (The
idea that types denote retractions on a universal domain is due to Scott [5].)

24

First, however, as with the definition of logical relations, it is useful to
define a subsidiary kind of function pair for primitive types:

Definition 5.1 For primitive types δ, the functions

[[δ]] Z⊥-φ̃ [δ]
�
ψ̃ [δ]

are such that
φ̃ [int]x = x

ψ̃ [int]z = z

φ̃ [nat]n = n

ψ̃ [nat]z =



⊥ when z = ⊥
z when z ≥ 0

⊥ when z < 0

φ̃ [bool]b =



⊥ when b = ⊥
1 when b = true

0 when b = false

ψ̃ [bool]z =




⊥ when z = ⊥
true when z > 0

false when z = 0

⊥ when z < 0.

¿From this definition, by tedious case analysis, the reader may verify that
φ̃ [δ] and ψ̃ [δ] bear the following relationship to the primitive logical relations
ρ̃ [δ]:

Lemma 5.2 For each primitive type δ:

1. For all x ∈ [[δ]], 〈x, φ̃ [δ]x〉 ∈ ρ̃ [δ].

2. For all 〈x, z〉 ∈ ρ̃ [δ], x = ψ̃ [δ]z.

Now we can define the function pairs φ[θ], ψ[θ] by induction on the struc-
ture of θ:

Definition 5.3 For types θ, the functions

[[θ]] U-φ[θ]
�
ψ[θ]

25

are such that

φ[δ]x = Φp(φ̃ [δ]x)

ψ[δ]y = ψ̃ [δ](Ψpy)

φ[θ1 → θ2]f = Φf(ψ[θ1] ; f ; φ[θ2])

ψ[θ1 → θ2]y = φ[θ1] ; Ψfy ; ψ[θ2]

φ[rcd(ι1: θ1, . . . , ιn: θn)][ι1:x1 | . . . | ιn:xn]

= Φr([λι ∈ I. ⊥ | ι1:φ[θ1]x1 | . . . | ιn:φ[θn]xn])

ψ[rcd(ι1: θ1, . . . , ιn: θn)]y = [ι1:ψ[θ1](Ψry ι1) | . . . | ιn:ψ[θn](Ψry ιn)].

These function pairs are related to the logical relations ρ[θ] in a way that is
analogous to the previous lemma:

Theorem 5.4 (The Bracketing Theorem) For each type θ:

1. For all x ∈ [[θ]], 〈x, φ[θ]x〉 ∈ ρ[θ].

2. For all 〈x, y〉 ∈ ρ[θ], x = ψ[θ]y.

Proof. The proof is by induction on the structure of θ:

• Suppose θ is a primitive type δ, and x ∈ [[δ]]. ¿From the fact that
Φp ; Ψp is an identity, and the first part of Lemma 5.2, we have

〈x,Ψp(Φp(φ̃ [δ]x))〉 = 〈x, φ̃ [δ]x〉 ∈ ρ̃ [δ].

Then the definitions (5.3) of φ[δ] and (4.2) of ρ[δ] give

〈x, φ[δ]x〉 = 〈x,Φp(φ̃ [δ]x)〉 ∈ ρ[δ].

Now suppose 〈x, y〉 ∈ ρ[δ]. By the definition (4.2) of ρ[δ], we have
〈x,Ψpy〉 ∈ ρ̃ [δ]. Then the second part of Lemma 5.2 and the definition
(5.3) of ψ[δ] give

x = ψ̃ [δ](Ψpy) = ψ[δ]y.

• Suppose θ is θ1 → θ2, and f ∈ [[θ1 → θ2]]. Let 〈x, y〉 ∈ ρ[θ1]. By the
second part of the induction hypothesis for θ1, x = ψ[θ1]y. Then

φ[θ2](f x) = φ[θ2](f(ψ[θ1]y))

= (ψ[θ1] ; f ; φ[θ2])y

= Ψf(Φf(ψ[θ1] ; f ; φ[θ2]))y

= Ψf(φ[θ1 → θ2]f)y,

26

from the fact that Φf ; Ψf is an identity, and the definition (5.3) of
φ[θ1 → θ2]. Then by the first part of the induction hypothesis for θ2,

〈f x,Ψf(φ[θ1 → θ2]f)y〉 ∈ ρ[θ2],

and since this holds for all 〈x, y〉 ∈ ρ[θ1], the definition (4.2) of ρ[θ1 →
θ2] gives

〈f, φ[θ1 → θ2]f〉 ∈ ρ[θ1 → θ2].

Now suppose 〈f, g〉 ∈ ρ[θ1 → θ2], and let x ∈ [[θ1]]. By the first part of
the induction hypothesis for θ1, 〈x, φ[θ1]x〉 ∈ ρ[θ1], so by the definition
(4.2) of ρ[θ1 → θ2], 〈f x,Ψfg(φ[θ1]x)〉 ∈ ρ[θ2]. Then by the second part
of the induction hypothesis for θ2, f x = ψ[θ2](Ψfg(φ[θ1]x)).

Since this holds for all x ∈ [[θ1]], we have f = φ[θ1] ; Ψfg ;ψ[θ2], and by
the definition (5.3) of ψ[θ1 → θ2], f = ψ[θ1 → θ2]g.

• Suppose θ is rcd(ι1: θ1, · · · , ιn: θn), and [ι1:x1 | . . . | ιn:xn] belongs to
[[rcd(ι1: θ1, · · · , ιn: θn)]]. For each k between one and n, the fact that
Φr ; Ψr is an identity, and the first part of the induction hypothesis for
θk, give

〈xk,Ψr(Φr([λι. ⊥ | ι1:φ[θ1]x1 | . . . | ιn:φ[θn]xn]))ιk〉 = 〈xk, φ[θk]xk〉
∈ ρ[θk].

Then the definition (5.3) of φ[rcd(ι1: θ1, · · · , ιn: θn)] and the definition
(4.2) of ρ[rcd(ι1: θ1, · · · , ιn: θn)] give

〈[ι1:x1 | . . . | ιn:xn], φ[rcd(ι1: θ1, · · · , ιn: θn)][ι1:x1 | . . . | ιn:xn]〉
= 〈[ι1:x1 | . . . | ιn:xn],Φr([λι. ⊥ | ι1:φ[θ1]x1 | . . . | ιn:φ[θn]xn])〉
∈ ρ[rcd(ι1: θ1, · · · , ιn: θn)].

Now suppose 〈[ι1:x1 | . . . | ιn:xn], y〉 ∈ ρ[rcd(ι1: θ1, · · · , ιn: θn)]. By
the definition (4.2) of ρ[rcd(ι1: θ1, · · · , ιn: θn)], for each k between one
and n, 〈xk,Ψry ιk〉 ∈ ρ[θk]. Then by the second part of the induction
hypothesis for θk, xk = ψ[θk](Ψry ιk), and since this holds for all k,
the definition (5.3) of ψ[rcd(ι1: θ1, · · · , ιn: θn)] gives

ψ[rcd(ι1: θ1, . . . , ιn: θn)]y = [ι1:ψ[θ1](Ψry ι1) | . . . | ιn:ψ[θn](Ψry ιn)]

= [ι1:x1 | . . . | ιn:xn].

end of proof

An immediate consequence of the bracketing theorem is that

Corollary 5.5 The φ[θ], ψ[θ] are embedding-retraction pairs.

27

Proof. Suppose x ∈ [[θ]]. By the first part of the bracketing theorem,
〈x, φ[θ]x〉 ∈ ρ[θ]; then by the second part, x = ψ[θ](φ[θ]x). Since this holds
for all x ∈ [[θ]], we have φ[θ] ; ψ[θ] = I[[θ]]. end of proof

The name “bracketing theorem” alludes to a more succinct formulation
of the theorem as a subset relationship between graphs of functions and re-
lations. Writing † for the reflection of a graph, we can restate the bracketing
theorem as:

For each type θ, φ[θ] ⊆ ρ[θ] ⊆ (ψ[θ])†.

The essence of the bracketing theorem is that it connects the notion
of representation provided by the logical relations with the different notion
provided by the embedding-retraction pairs. For each typed value x ∈ [[θ]],
one can regard

• the set { y | x = ψ[θ]y } (i.e., the preimage of x under ψ[θ]) as the set
of untyped values that “weakly” represent x,

• the subset { y | 〈x, y〉 ∈ ρ[θ] } ⊆ { y | x = ψ[θ]y } as the set of untyped
values that represent x,

• the member φ[θ]x ∈ { y | 〈x, y〉 ∈ ρ[θ] } as the “best” or “canonical”
representation of x.

An essential difference between representation and weak representation is
that, since ψ[θ] is a total function, every untyped value “weakly” represents
some typed value.

By combining the bracketing theorem with Theorem 4.6, one can express
implicit conversions in terms of the embedding-retraction pairs:

Theorem 5.6 When θ ≤ θ′, [[P(θ ≤ θ′)]] = φ[θ] ; ψ[θ′].

Proof. Suppose x ∈ [[θ]]. By the first part of the bracketing theorem,
〈x, φ[θ]x〉 ∈ ρ[θ]. Then, by Theorem 4.6, 〈[[P(θ ≤ θ′)]]x, φ[θ]x〉 ∈ ρ[θ′], and
by the second part of the bracketing theorem, [[P(θ ≤ θ′)]]x = ψ[θ′](φ[θ]x).

end of proof

Finally, by combining the bracketing theorem with the logical relations
theorem, one can express the intrinsic typed semantics of a phrase in terms
of its untyped semantics:

Theorem 5.7 Suppose π ` p : θ and η ∈ [[π]]∗. Then

[[P(π ` p : θ)]]η = ψ[θ]([[p]](λι. if ι ∈ domπ then φ[π ι](η ι) else ⊥)).

Proof. Let ε = λι. if ι ∈ domπ then φ[π ι](η ι) else ⊥. For each ι ∈ domπ,
by this definition of ε and the first part of the bracketing theorem,

〈η ι, ε ι〉 = 〈η ι, φ[π ι](η ι)〉 ∈ ρ[π ι].

28

Then the logical relations theorem gives

〈[[P(π ` p : θ)]]η, [[p]]ε〉 ∈ ρ[θ],

and the second part of the bracketing theorem gives

[[P(π ` p : θ)]]η = ψ[θ]([[p]]ε).

end of proof

Theorem 5.6 expresses the meaning of a proof of the subtype judgement
θ ≤ θ′ as a function of the retraction-embedding pairs associated with θ and
θ′, which are determined by the judgement itself rather than its proof. Simi-
larly, Theorem 5.7 expresses the meaning of a proof of the typing judgement
π ` p : θ in terms of the untyped meaning of p and the retraction-embedding
pairs associated with θ and the components of π — all of which are deter-
mined by the judgement itself rather than its proof. Thus every proof of the
same judgement must have the same intrinsic semantics:

Corollary 5.8 The intrinsic semantics is coherent.

Of course, the coherence of the kind of language we have been considering
has been known for some time [6], but we believe this is an unusually elegant
proof.

It should also be noted that the above theorem expresses a particular
intrinsic semantics in terms of any of a variety of untyped semantics, i.e.,
all of the untyped semantics meeting the constraints in Section 3, where
we permitted variations in the universal domain U and the way in which
primitive values, functions, and records are embedded within it, as well as
in certain aspects of the primitive operations, such as the choice of trueint.

For example, one might take the untyped semantics to be one in which
η-reduction does or does not preserve meaning [1, Section 10.5], or one in
which the fixed-point combinator λf. (λx. f(xx))(λx. f(xx)) is or is not a
least fixed-point operator [7].

6 An Extrinsic PER Semantics

Suppose we define a type-indexed family of relations between untyped val-
ues:

Definition 6.1 For types θ, the relations σ[θ] ⊆ U × U are such that

〈y, y′〉 ∈ σ[θ] iff ∃x ∈ [[θ]]. 〈x, y〉, 〈x, y′〉 ∈ ρ[θ].

(More abstractly, using relational composition, σ[θ] def= (ρ[θ])† ; ρ[θ].)

29

Obviously, the σ[θ] are symmetric. Moreover, these relations are transi-
tive:

Theorem 6.2 If 〈y, y′〉, 〈y′, y′′〉 ∈ σ[θ], then 〈y, y′′〉 ∈ σ[θ].

Proof. If 〈y, y′〉, 〈y′, y′′〉 ∈ σ[θ], then there are x, x′ ∈ [[θ]] such that 〈x, y〉,
〈x, y′〉, 〈x′, y′〉, 〈x′, y′′〉 ∈ ρ[θ]. Then by the second part of the bracketing
theorem, x = ψ[θ]y′ and x′ = ψ[θ]y′, so that x = x′. Then 〈x, y〉, 〈x, y′′〉 ∈
ρ[θ], so that 〈y, y′′〉 ∈ σ[θ]. end of proof

Thus, the σ[θ] are partial equivalence relations (PER’s). Although we
have chosen to define them in terms of the logical relations, they can also be
described directly by induction on the structure of θ. To see this, we first
define a subsidiary relations for primitive types:

Definition 6.3 For primitive types δ, the relation σ̃ [δ] ⊆ Z⊥ × Z⊥ is such
that:

〈z, z′〉 ∈ σ̃ [δ] iff ∃x ∈ [[δ]]. 〈x, z〉, 〈x, z′〉 ∈ ρ̃ [δ].

The reader may verify from the definition (4.1) of ρ̃ [δ] that

Lemma 6.4

〈z, z′〉 ∈ σ̃ [int] iff z = z′

〈z, z′〉 ∈ σ̃ [nat] iff z = z′ and (z ≥ 0 or z = ⊥)

〈z, z′〉 ∈ σ̃ [bool] iff (z = z′ = ⊥) or (z > 0 and z′ > 0) or z = z′ = 0.

Then the σ[θ] are described by:

Theorem 6.5

〈y, y′〉 ∈ σ[δ] iff 〈Ψpy,Ψpy
′〉 ∈ σ̃ [δ]

〈g, g′〉 ∈ σ[θ1 → θ2] iff ∀〈y, y′〉 ∈ σ[θ1]. 〈Ψf g y,Ψf g
′ y′〉 ∈ σ[θ2]

〈y, y′〉 ∈ σ[rcd(ι1: θ1, . . . , ιn: θn)]

iff 〈Ψr y ι1,Ψr y
′ ι1〉 ∈ σ[θ1] and · · · and 〈Ψr y ιn,Ψr y

′ ιn〉 ∈ σ[θn].

Proof. Using the definitions (6.1) of σ, (4.2) of ρ[δ], and (6.3) of σ̃, we have
〈y, y′〉 ∈ σ[δ] iff there is an x ∈ [[δ]] such that 〈x, y〉, 〈x, y′〉 ∈ ρ[δ], iff there is
an x ∈ [[δ]] such that 〈x,Ψpy〉, 〈x,Ψpy

′〉 ∈ ρ̃ [δ], iff 〈Ψpy,Ψpy
′〉 ∈ σ̃ [δ].

Suppose 〈g, g′〉 ∈ σ[θ1 → θ2] and 〈y, y′〉 ∈ σ[θ1]. ¿From the definition
(6.1) of σ, there is an f ∈ [[θ1 → θ2]] such that 〈f, g〉, 〈f, g′〉 ∈ ρ[θ1 → θ2] and
there is an x ∈ [[θ1]] such that 〈x, y〉, 〈x, y′〉 ∈ ρ[θ1]. Then, from the definition
(4.2) of ρ[θ1 → θ2], we have 〈f x,Ψf g y〉 ∈ ρ[θ2] and 〈f x,Ψf g

′ y′〉 ∈ ρ[θ2],
and from the definition (6.1) of σ, we have 〈Ψf g y,Ψf g

′ y′〉 ∈ σ[θ2].

30

On the other hand, suppose

∀〈y, y′〉 ∈ σ[θ1]. 〈Ψf g y,Ψf g
′ y′〉 ∈ σ[θ2],

and let 〈x, y〉 ∈ ρ[θ1]. We have 〈y, y〉 ∈ σ[θ1] by the definition (6.1) of σ.
Moreover, since the first half of the bracketing theorem gives 〈x, φ[θ1]x〉 ∈
ρ[θ1], we also have 〈φ[θ1]x, y〉 ∈ σ[θ1] by the definition (6.1) of σ. Then, by
the supposition displayed above, we have both 〈Ψf g y,Ψf g

′ y〉 ∈ σ[θ2] and
〈Ψf g(φ[θ1]x),Ψf g

′ y〉 ∈ σ[θ2], and since σ[θ2] is symmetric and transitive,
〈Ψf g(φ[θ1]x),Ψf g y〉 ∈ σ[θ2].

Thus we have 〈Ψf g(φ[θ1]x),Ψf ĝ y〉 ∈ σ[θ2], where ĝ is either g or g′. By
the definition (6.1) of σ, there is a w ∈ [[θ2]] such that 〈w,Ψf g(φ[θ1]x)〉 ∈ ρ[θ2]
and 〈w,Ψf ĝ y〉 ∈ ρ[θ2]. ¿From the first of these inclusions, the second part
of the bracketing theorem gives w = ψ[θ2](Ψf g(φ[θ1]x)), or w = f x, where
f is the function φ[θ1] ;Ψf g ;ψ[θ2]. Thus the second inclusion can be written
as 〈f x,Ψf ĝ y〉 ∈ ρ[θ2]. Since this holds for all 〈x, y〉 ∈ ρ[θ1], the definition
(4.2) of ρ[θ1 → θ2] gives 〈f, ĝ〉 ∈ ρ[θ1 → θ2], and since this holds when ĝ is
either g or g′, the definition (6.1) of σ gives 〈g, g′〉 ∈ σ[θ1 → θ2].

Finally, we have the case where θ = rcd(ι1: θ1, . . . , ιn: θn). Using the
definitions (6.1) of σ, (2.1) of [[θ]], (4.2) of ρ[rcd(ι1: θ1, . . . , ιn: θn)], and (6.1)
of σ, we have that

〈y, y′〉 ∈ σ[θ]

iff there is a record r ∈ [[θ]] such that

〈r, y〉, 〈r, y′〉 ∈ ρ[θ],

iff there are x1 ∈ [[θ1]], . . . xn ∈ [[θn]] such that

〈[ι1:x1 | . . . | ιn:xn], y〉, 〈[ι1:x1 | . . . | ιn:xn], y′〉 ∈ ρ[θ],

iff there are x1 ∈ [[θ1]], . . . xn ∈ [[θn]] such that

〈x1,Ψr y ι1〉, 〈x1,Ψr y
′ ι1〉 ∈ ρ[θ1] and

· · · and 〈xn,Ψr y ιn〉, 〈xn,Ψr y
′ ιn〉 ∈ ρ[θn],

iff
〈Ψr y ι1,Ψr y

′ ι1〉 ∈ σ[θ1] and · · · and 〈Ψr y ιn,Ψr y
′ ιn〉 ∈ σ[θn].

end of proof

In terms of the notion of representation captured by the logical relations:

• 〈y, y〉 ∈ σ[θ] means that y is a representation of some value of type θ.

• 〈y, y′〉 ∈ σ[θ] means that y and y′ are representions of the same value
of type θ.

31

Thus, for each θ, the PER σ[θ] defines both the set { y | 〈y, y〉 ∈ σ[θ] }
of “representations” and also, when restricted to this set, an equivalence
relation of “representing the same thing”.

In early extrinsic denotational semantics, such as the Sethi-MacQueen
model [9, 10], types played only the first of these roles; the insight that they
denote PER’s (rather than subsets) on a universal domain of untyped values
is due to Scott [5, Section 7], [11, Section 5], [12].

In fact, the basic idea that types represent equivalence relations on sub-
sets of some universe of “realizers” is much older. Two examples are de-
scribed by Troelstra: the “hereditarily effective operations” (HEO) [13, Sec-
tion 2.4.11], [14, Section 3.3], where the realizers are natural numbers (used
as Gödel numbers), and the “extensional model of hereditarily continuous
functionals” (ECF) [13, Section 2.6.5], [14, Section 3.9], where the realizers
are functions from natural numbers to natural numbers. Troelstra attributes
HEO to Kreisel [15, Section 4.2], and ECF to both Kreisel [15] and, inde-
pendently, Kleene [16].

The common thread behind all these systems is that, to be continuous
(or computable) a typed value must be represented by some realizer. An
overview of realizability is given by Amadio and Curien [17, Chapter 15].

The combination of our untyped semantics with the PER’s σ[θ] gives
what we have called an extrinsic semantics. The essential connection be-
tween these entities is that, when a phrase satisfies a typing judgement,
its untyped meaning respects the type-dependent notion of representation
described by the σ[θ]. More precisely,

Theorem 6.6 Suppose π ` p : θ, and ε, ε′ ∈ I ⇒ U satisfy

∀ι ∈ domπ. 〈ε ι, ε′ ι〉 ∈ σ[π ι].

Then
〈[[p]]ε, [[p]]ε′〉 ∈ σ[θ].

Proof. If ε and ε′ are related as supposed, then for each ι ∈ domπ, there
must be an x ∈ [[π ι]] such that 〈x, ε ι〉, 〈x, ε′ ι〉 ∈ ρ[π ι]. Thus there must be
an environment η ∈ [[π]]∗ such that

∀ι ∈ domπ. 〈η ι, ε ι〉, 〈η ι, ε′ ι〉 ∈ ρ[π ι].

Then by two applications of the logical relations theorem,

〈[[P(π ` p : θ)]]η, [[p]]ε〉, 〈[[P(π ` p : θ)]]η, [[p]]ε′〉 ∈ ρ[θ],

so that
〈[[p]]ε, [[p]]ε′〉 ∈ σ[θ].

end of proof

Finally, we can connect the σ[θ] with a family of functions defined in
terms of the embedding-retraction pairs that bracket the ρ[θ]:

32

Definition 6.7 For types θ, the function µ[θ] is the composition ψ[θ] ;φ[θ] ∈
U ⇒ U .

It is easily seen that each µ[θ] is idempotent, so that its range is its set of
fixed points. Morever, it is well known that this set of fixed points, ordered
as a sub-partial-ordering of U, is a domain that is isomorphic to [[θ]].

The µ[θ] are related to the σ[θ] by the following theorem, which plays a
role at the level of PER’s that is similar to the bracketing theorem:

Theorem 6.8 For each type θ:

1. If 〈y, y′〉 ∈ σ[θ], then µ[θ]y = µ[θ]y′.

2. 〈µ[θ]y, µ[θ]y〉 ∈ σ[θ].

3. If 〈y, y〉 ∈ σ[θ], then 〈y, µ[θ]y〉 ∈ σ[θ].

Proof.

1. If 〈y, y′〉 ∈ σ[θ], then there is an x ∈ [[θ]] such that 〈x, y〉, 〈x, y′〉 ∈ ρ[θ].
Then the second part of the bracketing theorem gives x = ψ[θ]y =
ψ[θ]y′, so that µ[θ]y = µ[θ]y′.

2. We have 〈ψ[θ]y, µ[θ]y〉 = 〈ψ[θ]y, φ[θ](ψ[θ]y)〉 ∈ ρ[θ], by the first part of
the bracketing theorem. Thus, taking x to be ψ[θ]y, the definition of
σ[θ] gives 〈µ[θ]y, µ[θ]y〉 ∈ σ[θ].

3. If 〈y, y〉 ∈ σ[θ], then there is an x ∈ [[θ]] such that 〈x, y〉 ∈ ρ[θ]. Then,
by the second part of the bracketing theorem, x = ψ[θ]y. Moreover,
by the first part of the bracketing theorem, 〈x, φ[θ]x〉 ∈ ρ[θ], which in
conjunction with 〈x, y〉 ∈ ρ[θ] gives 〈y, φ[θ]x〉 ∈ σ[θ]. Then x = ψ[θ]y
gives 〈y, µ[θ]y〉 ∈ σ[θ].

end of proof

The reader may verify that as consequences of the parts of this theorem:

1. Every equivalence class of σ[θ] is a subset of the preimage under µ[θ]
of some fixed point of µ[θ].

2. Every fixed point of µ[θ] belongs to an equivalence class of σ[θ]. (Thus,
since each preimage of a fixed point contains that fixed point, every
preimage of a fixed point contains at least one equivalence class.)

3. Every equivalence class of σ[θ] contains a fixed point of µ[θ]. (Thus,
since no preimage contains more than one fixed point, no preimage of
a fixed point contains more than one equivalence class.)

33

7 Future Directions

Obviously, we would like to extend our approach to languages with richer
type systems, such as intersection or polymorphic types. During the last
year, we made a strenuous attempt to conquer intersection types, but we
were unable to find a semantics for which we could prove the bracketing
theorem. (This work was described in a talk at the Workshop on Intersection
Types and Related Systems [18].)

It is also of interest to try to move in the opposite direction, from extrin-
sic to intrinsic semantics. In a sense this is straightforward: Given σ[θ], one
simply takes [[θ]] to be the set of equivalence classes of σ[θ]. (More precisely,
one takes the semantic category to be a category of PER’s [17, Chapter
15].) In general, however, there may be no sensible way to order the set of
equivalence classes to make [[θ]] into a domain.

References

[1] John C. Reynolds. Theories of Programming Languages. Cambridge
University Press, Cambridge, England, 1998.

[2] Daniel Leivant. Typing and computational properties of lambda ex-
pressions. Theoretical Computer Science, 44(1):51–68, 1986.

[3] John C. Reynolds. Using category theory to design implicit conversions
and generic operators. In Neil D. Jones, editor, Semantics-Directed
Compiler Generation, volume 94 of Lecture Notes in Computer Science,
pages 211–258, Berlin, 1980. Springer-Verlag.

[4] Gordon D. Plotkin. Lambda-definability and logical relations. Mem-
orandum SAI–RM–4, University of Edinburgh, Edinburgh, Scotland,
October 1973.

[5] Dana S. Scott. Data types as lattices. SIAM Journal on Computing,
5(3):522–587, September 1976.

[6] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption,
minimum typing, and type-checking in F≤. Mathematical Structures in
Computer Science, 2(1):55–91, March 1992.

[7] David M. R. Park. The Y-combinator in Scott’s lambda-calculus mod-
els. Symposium on Theory of Programming, University of Warwick,
unpublished; cited in [8], 1970.

[8] Christopher P. Wadsworth. The relation between computational and
denotational properties for Scott’s D∞-models of the lambda-calculus.
SIAM Journal on Computing, 5(3):488–521, September 1976.

34

[9] David B. MacQueen and Ravi Sethi. A semantic model of types for
applicative languages. In Conference Record of the 1982 ACM Sympo-
sium on LISP and Functional Programming, pages 243–252, New York,
1982. ACM.

[10] David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. An ideal
model for recursive polymorphic types. Information and Control, 71(1–
2):95–130, October–November 1986.

[11] Dana S. Scott. Lambda calculus: Some models, some philosophy. In Jon
Barwise, H. Jerome Keisler, and Kenneth Kunen, editors, The Kleene
Symposium, volume 101 of Studies in Logic and the Foundations of
Mathematics, pages 223–265, Amsterdam, 1980. North-Holland.

[12] Andrej Bauer, Lars Birkedal, and Dana S. Scott. Equilogical spaces.
To appear in Theoretical Computer Science, 2000.

[13] Anne Sjerp Troelstra, editor. Metamathematical Investigation of In-
tuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1973.

[14] Anne Sjerp Troelstra. Realizability. In Samuel R. Buss, editor, Hand-
book of Proof Theory, volume 137 of Studies in Logic and the Founda-
tions of Mathematics, pages 407–473. Elsevier, Amsterdam, 1998.

[15] Georg Kreisel. Interpretation of analysis by means of constructive func-
tionals of finite types. In Arend Heyting, editor, Constructivity in Math-
ematics, pages 101–128. North-Holland, Amsterdam, 1959.

[16] S. C. Kleene. Countable functionals. In Arend Heyting, editor, Con-
structivity in Mathematics, pages 81–100. North-Holland, Amsterdam,
1959.

[17] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-
Calculi, volume 46 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Cambridge, England, 1998.

[18] John C. Reynolds. An intrinsic semantics of intersection types (abstract
of invited lecture). In Proceedings of the Workshop on Intersection
Types and Related Systems, 2000. The slides for this lecture are available
at ftp://ftp.cs.cmu.edu/user/jcr/intertype.ps.gz.

35

Recent BRICS Report Series Publications

RS-00-32 John C. Reynolds.The Meaning of Types — From Intrinsic to
Extrinsic Semantics. December 2000. 35 pp.

RS-00-31 Bernd Grobauer and Julia L. Lawall. Partial Evaluation of
Pattern Matching in Strings, revisited. November 2000. 48 pp.

RS-00-30 Ivan B. Damg̊ard and Maciej Koprowski. Practical Thresh-
old RSA Signatures Without a Trusted Dealer. November 2000.
14 pp.

RS-00-29 Luigi Santocanale.The Alternation Hierarchy for the Theory
of µ-lattices. November 2000. 44 pp. Extended abstract ap-
pears in Abstracts from the International Summer Conference
in Category Theory, CT2000, Como, Italy, July 16–22, 2000.

RS-00-28 Luigi Santocanale. Free µ-lattices. November 2000. 51 pp.
Short abstract appeared inProceedings of Category Theory 99,
Coimbra, Portugal, July 19–24, 1999. Full version to appear in
a special conference issue of theJournal of Pure and Applied
Algebra.

RS-00-27 Zolt́an Ésik and Werner Kuich. Inductive -Semirings. October
2000. 34 pp.

RS-00-26 Frantǐsek Čapkovič. Modelling and Control of Discrete Event
Dynamic Systems. October 2000. 58 pp.

RS-00-25 Zolt́an Ésik. Continuous Additive Algebras and Injective Simu-
lations of Synchronization Trees. September 2000. 41 pp.

RS-00-24 Claus Brabrand and Michael I. Schwartzbach.Growing Lan-
guages with Metamorphic Syntax Macros. September 2000.

RS-00-23 Luca Aceto, Anna Inǵolfsdóttir, Mikkel Lykke Pedersen, and
Jan Poulsen. Characteristic Formulae for Timed Automata.
September 2000. 23 pp.

RS-00-22 Thomas S. Hune and Anders B. Sandholm.Using Automata
in Control Synthesis — A Case Study. September 2000. 20 pp.
Appears in Maibaum, editor, Fundamental Approaches to Soft-
ware Engineering: First International Conference, FASE ’00
Proceedings, LNCS 1783, 2000, pages 349–362.

