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Practical Threshold RSA Signatures Without a

Trusted Dealer

Ivan Damg̊ard and Maciej Koprowski

BRICS?, Aarhus University

Abstract. We propose a threshold RSA scheme which is as efficient as the fastest previous
threshold RSA scheme (by Shoup), but where two assumptions needed in Shoup’s and in
previous schemes can be dropped, namely that the modulus must be a product of safe primes
and that a trusted dealer generates the keys.

1 Introduction

In a threshold public-key system we have a standard public key (for the RSA system,
for instance), while the private key is shared among a set of servers, in such a way
that by collaborating, these servers can apply the private key operation to a given
input, to decrypt it or sign it, as the case may be. If there are l servers, such schemes
typically ensure that even if an active adversary corrupts less than l/2 servers, he
will not learn additional information about the private key, and will be unable to
force the network to compute incorrect results. Thus threshold cryptography is an
important concept because it can improve substantially the reliability and security
of applications in practice of public-key systems.

Threshold schemes based on the discrete log problem are relatively straightfor-
ward to build, and have been known for a long time. It is even possible to make
efficient schemes where also the key generation phase is done by the servers in a dis-
tributed way [11, 7]. This way we can completely avoid assuming any trusted parties
in the system.

Basing threshold schemes on RSA is technically more difficult because we have
to work in a group of non-prime and unknown order (Z∗

n rather than a prime order
subgroup of Z∗

p for a prime p). Nevertheless RSA-based schemes have been known for
some time, see [8, 12] for the first reasonably efficient and robust solutions. However,
due to the technical difficulties mentioned, they tend to be more complex and less
efficient in comparison to the discrete log schemes. One concrete reason is that
they use secret sharing “in two levels”, i.e. server i knows a number di, such that∑

i di = d, the secret RSA exponent. In addition, each di is a verifiable secret shared
among the servers. In such a scenario, testing if servers have behaved correctly
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is more complex than in the discrete log case, and if faults do occur, interaction
between the servers is necessary to recover.

Recently, however, Shoup[14] proposed a threshold RSA signature scheme which
is essentially as efficient as possible: the scheme uses only one level of secret shar-
ing, to sign a message, each server simply sends a single response to a signature
request, and must do work that is equivalent up to a constant factor to comput-
ing a single RSA signature. No further interaction is needed to recover from faults.
Unfortunately, that scheme - like any previous efficient RSA-based scheme - needs
to assume a trusted dealer to generate keys. This is caused by the fact that it re-
lies on a special property for the RSA modulus, namely it must be the product of
two so called safe primes (i.e. the modulus n is the product of primes p, q, where
p′ = (p − 1)/2, q′ = (q − 1)/2 are also prime). The problem now is that although
reasonably efficient distributed RSA key generation protocols are known[1, 5], none
of these protocols can ensure that the modulus is a product of safe primes1. One
attempt to overcome this was made by Miyazaki et al. [9], who build a threshold
RSA scheme that can use the key generation protocol from [5]. Unfortunately that
scheme is significantly less efficient than Shoup’s. It uses two-level secret sharing and
needs interaction between servers for each message signed, even if no faults occur.

In this paper, we overcome the problem in a more efficient way by constructing
a new threshold RSA scheme which may be seen as a generalization of Shoup’s, is
essentially as efficient as that scheme, follows the same communication pattern, but
does not need the assumption about safe primes. As we shall see, this implies that
the distributed RSA key generation protocol from [5] can be used to generate keys
for our scheme. Note that there may be good reasons to avoid safe primes, other
than the distributed key generation issue: first, we do not even know if there are
infinitely many safe primes, and second it may turn out to be the case that safe
primes are not ”safe” at all: although it currently looks as if safe prime products
are as hard to factor as RSA moduli in general, this may eventually turn out to be
false, indeed most experts agree that choosing the primes as randomly as possibly
gives the best security.

On the technical level, one difficulty that arises when safe primes are not assumed,
relates to the efficient zero-knowledge protocols used in [14] to verify the behavior of
servers. These protocols seem to fail if safe primes are not used, primarily because
the group we are working in is no longer cyclic, and may have small prime factors
in its order. We get around this by showing that with small modifications to the
protocols and under an appropriate intractability assumption, the adversary will not
be able to exploit the “deficiencies” of the group. Concretely, we show that zero-
knowledge proofs of equality of discrete logarithms over a general RSA modulus can
be done very efficiently (i.e. without resorting to binary challenge proofs) as long

1 Of course, generic multiparty computation methods could be used to generate and share such keys in a
distributed fashion, but this would be extremely inefficient and completely unsatisfactory in practice
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as the prover does not know the factorization. This may be of independent interest,
and was previously only known if the modulus was a safe prime product.

Following Shoup, we describe and prove our scheme assuming the random or-
acle model, however, we rely on it only for robustness of the scheme (and not for
unforgeability). At the expense of an additional round of interaction when signing
a message, we can avoid using random oracles. The details of this are are omitted
since they are standard and straightforward.

To prove the security of our scheme, we need an intractability assumption in
addition to the standard RSA assumption. Informally speaking, we assume that
given the public key n, e:

– The adversary cannot compute an element a 6= 1,−1 mod n such that a has
“extremely small order”, more precisely q does not divide the order of a, where
q is the largest prime factor in φ(n).

– The adversary cannot distinguish a random square modulo n from a random
square of maximal order.

As evidence in favor of this assumption, we note that it is well known that computing
the order of a random element is equivalent to factoring. Specifically w.r.t. the first
item, for a random RSA modulus n, there is overwhelming heuristic evidence that
the prime q will be large (superpolynomial) with overwhelming probability. And so
a suitable a cannot be found by choosing randomly. Indeed, it seems that one would
need to raise a randomly chosen element to the q’th power to find such an a, however,
guessing q is very unlikely to be feasible if factoring is difficult at all. The second
item can be seen as a generalization of the Quadratic Residuosity Assumption, which
can be interpreted as stating that it is difficult to decide if a given element has a
maximal power of 2 dividing its order. Our conjecture makes a similar statement for
other prime factors.

For the version of our scheme we describe here, we actually need that this as-
sumption holds, even if the adversary is given an oracle for RSA signatures, i.e. ,
the adversary can specify an M and will be given the e’th root modulo n of H̃(M),
where H̃ is a secure hash function. While this extra condition does not seem to help
the adversary in computing orders of elements, it can be removed completely if we
are willing to assume that H̃ can be modelled as a random oracle.

In [3] and [6], Damg̊ard/Jurik and Fouque et al. construct threshold versions
for (generalizations of) Paillier’s probabilistic public key system [10] using the basic
techniques from Shoups scheme. These protocols all assume a trusted dealer. Using
similar constructions, but starting from our scheme instead of Shoup’s, threshold
versions of Paillier’s scheme without a trusted dealer are easily obtained.

3



2 Model

Here we describe the model for threshold signature schemes we use, rather infor-
mally, due to space limitations. In the type of schemes we consider there are l
servers. An honest dealer on input a security parameter k generates the public key
pk and secret key shares s1, ..., sl, where si is sent to server number i. There is a
signing protocol defined for the servers which takes a message M as input and out-
puts (publically) a signature σ. Finally, there is a verification predicate V , which is
efficiently computable, takes pk, message M and signature σ as inputs, and returns
accept or reject. Both the signing protocol and the verification predicate may make
use of a random oracle.

To define security, we assume a polynomially bounded static and active adversary
A, who corrupts initially t < l/2 of the l servers. Thus, the adversary always learns
pk and the si’s of corrupted servers. As the adversary’s algorithm is executed, he
may issue two types of requests:

– An oracle request, where he queries the random oracle used, he is then given the
oracle’s answer to the query he specified.

– A signature request, where the adversary specifies a message M . This causes the
signing protocol to be executed on input M , where the adversary controls the
behaviour of corrupted servers (and will of course see whatever information is
made public by honest servers).

At the end, A outputs a message M0 and a signature σ0.

We say that A wins, if any of the signing requests resulted in an invalid signature
being output, or if he produced a forged signature on a new message, i.e. M0 was
not used in a previous signature request, and V (pk, M0, σ0) = accept.

We say that the scheme is secure, if every adversary wins with probability neg-
ligible in k2.

3 The Honest Dealer Scheme

In this section we first describe our scheme assuming an honest dealer that will gen-
erate and distribute the keys. The algorithm we specify for the dealer looks rather
strange, taken by itself. However, the dealer is designed in such a way that the infor-
mation he distributes matches the output that can be generated by the distributed
RSA key generation protocol of Frankel et al. [5]. Therefore, once we prove the secu-

2 unlike the definition in [8], we treat robustness and unforgeability together - this does not make any es-
sential difference but is convenient for us because we prove both properties under the same intractability
assumptions.
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rity of the honest dealer scheme, a secure (and efficient) scheme without an honest
dealer follows easily. We return to this issue in Section 5 3.

In the threshold scheme to be described, an RSA public key n, e will be selected.
We will assume that there exists some method, represented by a function H̃ for
mapping an input message M to an element H̃(M) ∈ Z∗

n. Then the signature we will
compute is just the standard RSA signature H̃(M)d mod n, where d is the private
exponent corresponding to e. We will refer to this as the underlying RSA scheme.
The function H̃ can be a hash function, a redundancy scheme, or a combination
of both, our construction will work fine in any case. But we do assume throughout
that the underlying RSA signature scheme is secure - more precisely that it is not
existentially forgeable under a chosen message attack. This is clearly a necessary
assumption, since without it, no threshold scheme we build from the underlying
scheme can be secure. Note that, assuming H̃ can be modelled as a random oracle,
security of RSA signatures using H̃ follow from only the standard RSA assumption.

The dealer. The dealer chooses at random p1, . . . , pl, q1, . . . , ql ∈R [2k−1, 2k] until
p = (p1 + · · ·+pl) and q = (q1 + · · ·+ ql) are prime numbers and gcd((p−1)/2, ∆) =
gcd((q−1)/2, ∆) = 1. The RSA modulus is n = pq. The dealer also chooses a public
exponent e as a prime e > l. The public key is pk = (n, e).

Next the dealer executes generation of private keys from [5] to compute d∆2 =
d1 + · · · + dt+1 ∈ Z such that de ≡ 1 mod Φ(n), ∆|d1,. . . ,∆|dt+1 and

|d1| < Cll+1∆11n2, . . . , |dt+1| < Cll+1∆11n2 for some constant C > 1. 4

The dealer performs secret sharing over the integers, which was introduced in [4]
and presented in a modified version in [5]. For 1 ≤ i ≤ t + 1 a random polynomial
fi(x) =

∑t
j=0 fi,jx

j is chosen such that fi,0 = di and for 1 ≤ j ≤ t we have

fi,j ∈R {0, ∆, 2∆, . . . , ∆10n2·∆}. We define a polynomial f(x) = f1(x)+· · ·+ft+1(x).
We can observe that f(0) = d∆2.

For 1 ≤ i ≤ l, the dealer computes si = f(i) = f1(i) + · · · + ft+1(i), which is a
secret key of server i. If we define α(k, l) = 4k + (12l + 4) log l, it is easy to verify
that 0 ≤ si < 2α(k,l).

The dealer chooses v ∈ Z∗
n as a random square. For 1 ≤ i ≤ l, the dealer

computes verification key vi = vsi∆
2

of server i.

Signing protocol. When a message M is requested to be signed, we set x = H̃(M),
where H̃ is a hash function, a redundancy scheme, or a combination of both, and
use the scheme to compute xd mod n.
3 We note that the description in [5] in some places leaves open alternatives for how details in their

key generation protocol are executed. Choosing different options lead to minor differences in the out-
put distribution. We stick to one option here for simplicity. Any of the other options could easily be
accommodated here by adjusting the description of the honest dealer.

4 In case of a small public exponent, the protocol from [5] instead generates the private exponent d∆2 as
a sum of l shares. Our construction could also be based on this method. The protocol and the proofs
would be analogous.
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We define the signature share xi of server i by

xi = x2∆2si.

Then the server i can prove that the discrete logarithm of x2
i to base x̃ = x4∆2

is
the same as the discrete logarithm of vi to the base v∆2

.
We construct the proof of correctness. Let H be a hash function modelled as a

random oracle, whose output is an L1-bit integer, where L1 is a secondary security
parameter (e.g. L1 = 128).

Each server i chooses at random a number r ∈ {0, . . . , 2α(k,l)+2L1 − 1}. Let

c = H(v, x̃, vi, x
2
i , v

r∆2

, x4r∆2

), z = sic + r.

The proof of correctness produced by server i is (z, c).
To verify this proof of correctness, one should check that

c = H(v, x̃, vi, x
2
i , v

z∆2

v−c
i , x̃zx−2c

i ).

Suppose that valid shares were generated by servers from a set S = {i1, . . . , it+1} ⊂
{1, . . . , l}.

For all j ∈ S we define the Lagrange coefficients multiplied by ∆:

λS
0,j = ∆ ·

∏

i∈S\{j}

i

i − j
.

Clearly the coefficients λS
0,j are integers and

d∆3 = f(0)∆ =
∑

j∈S

λS
0,jf(j) =

∑

j∈S

λS
0,jsj.

Therefore to combine shares, we can compute

ω =
∏

j∈S

x
2λS

0,j

j = x4∆2
∑

j∈S(sjλS
0,j) = x4∆5d.

We can observe that
ωe = x4∆5

.

Since e is prime to 4∆5, we can obtain such integers a and b from the extended
Euclidian algorithm that a4∆5 + be = 1. Finally we have a signature y = waxb,
because

ye =
(
ωaxb

)e
= x.

This shows that y is obtained if the signature shares xi are computed by honest
servers only. In real life, we will only know that the xi’s are values that allow the
servers to produce acceptable proofs of correctness. We will later show that this
(with overwhelming probability) is sufficient.
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4 Proof of Security for the honest Dealer Scheme

We start by stating our intractability assumption more formally. To this end, we
define a signing oracle O(n, e, H̃) to be an oracle that on input a message M returns
the signature H̃(M)d mod n.

Conjecture 1. – Consider any probabilistic polynomial time algorithm who gets as
input n, e (as chosen by the honest dealer on input k), gets access to a signing
oracle O(n, e, H̃), and outputs a number a. For any such algorithm, the proba-
bility that a 6= 1,−1 mod n and q does not divide the order of a, where q is the
largest prime factor in φ(n), is negligible in k.

– Let D = {D(k)| k = 1, 2..} be the family of distributions where D(k) is the
distribution of n, e, v generated by our honest dealer on input k. Define D′ to be
the same, except that v is chosen as a random square of maximal order. Then
D and D′ are polynomial time indistinguishable, where distinguishers are given
access to a signing oracle O(n, e, H̃).

This assumption was already discussed in the introduction. Note that if we are
willing to assume that H̃ can be modelled as a random oracle, then the signing
oracles can be removed from the conjecture by a standard argument5.

A number of preliminary observations:

Lemma 1. The proofs of correctness for signature shares produced by honest servers
can be simulated with a statistically close distribution, given the public key and the
message to be signed.

Proof. We construct a simulator which can simulate the proof of correctness gener-
ated by server i without knowing the value of secret si. Recall that we invoke the
random oracle for the hash function H . The simulator controls the random oracle.
Whenever the adversary queries the random oracle, if it has not been defined yet at
the given point, the simulator picks a random value and sends it to the adversary.
When a honest server is expected to produce a proof of correctness for given x, xi,
the simulator picks random c′ ∈ {0, . . . , 2L1 − 1} and z′ ∈ {0, . . . , 2α(k,l)+2L1 − 1}.
The value of the random oracle at (v, x̃, vi, x

2
i , v

z′∆2
v−c′

i , x̃zx−2c′
i ) is declared to be

c′. With overwhelming probability, the random oracle has not been defined at this
point before. The simulated proof is (z′, c′). The only difference to a real proof (z, c)
is that in a real execution, we have z = r+ csi, where r is a random α(k, l)+2L1-bit
number. But since r and z′ are L1 bits longer than csi, the distance between the
distributions of z and z′ is exponentially small in L1. �
5 Since under this assumption, a signing oracle is easy to implement: if the adversary wants to see a

signature on message M , choose a random σ ∈ Z∗
n, define the output of H̃ on input M to be σe mod n,

so that σ now is the signature on M
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Lemma 2. Let q be the largest prime factor in φ(n), and consider a signature share
xi (for an input x) produced by a corrupt server. Assume that the element v produced
by the honest dealer has maximal order (among all squares modulo n), and that xi

is incorrect, i.e., x2
i 6= (x4∆2

)si mod n. Then, either q does not divide the order of
x2

i ·(x4∆2
)−si mod n, or the probability that the adversary can construct an acceptable

proof of correctness for xi is negligible. Furthermore, a correct signature can be
computed from t + 1 correct signature shares.

Proof. Let (z, c) be an acceptable proof produced by a corrupt server i. Therefore

c = H(v, x̃, vi, x
2
i , v

z∆2

v−c
i , x̃zx−2c

i ).

We can reinterpret this proof as an application of the following interactive protocol,
where the verifier is replaced by a call to the random oracle:

Let G be a group of squares in Z
∗
n. We have elements ṽ, w = vs ∈ G, where ṽ has

maximal order in G and the prover knows s. The prover P makes elements α, β,
guaranteed to be in G as well, and wants to convince us that αs = β.

So α, β, ṽ correspond to x̃, x2
i , v

∆2
above. Note that if v has maximal order, so

does v∆2
, since n was chosen such that G has order prime to ∆.

The prover performs the following steps:

1. P chooses r in some large enough interval and sends a = ṽr, b = αr.
2. P gets a random challenge c from the verifier.
3. P replies by sending z = r + cs
4. To check the proof, one verifies that ṽz = awc and αz = bβc.

We can always write G = G1× ..×Gu, where the order of Gj is a power of qj and
q1,. . . ,qu are the distinct prime factors in the order of G. So then we can think of α
as a u-tuple, α = (α1, ..., αu), αj ∈ Gj , and similarly for the other group elements.
Now, of course, αs = β iff αs

j = βj for all j.

Claim. If for some j, αs
j 6= βj, then for any initial message (a, b) in the protocol,

there is at most one value of c mod qj, for which a satisfactory reply z to c exists.
To prove this, there are two cases we must look at, depending on whether βj ∈<

αj > or βj 6∈< αj >.
Assume first that βj 6∈< αj >. Suppose that for some initial message a, the

prover can answer both c and c′, where c 6= c′ mod qj. This means that the prover
can send z and z′ such that αz

j = bβc
j and αz′

j = bβc′
j . Dividing one equation by the

other we get αz′−z
j = βc′−c

j . Since we assumed that βj 6∈< αj >, it must be the case

that < βj > ∩ < αj > is a proper subgroup of < βj >. Hence the order of βc′−c
j

must be strictly smaller than the order of βj , but this is a contradiction since c− c′

is relatively prime to qj by assumption.
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Next, assume that βj = αs̃
j for some s̃, but nevertheless βj 6= αs

j . So s̃ 6= s mod
ord(αj), where ord(αj) is some power of qj . If we let q

νj

j be the order of ṽj, we have

ord(αj) ≤ q
νj

j because ṽ has maximal order in G. Assume again that given some
initial message a, the prover can answer both c and c′, where c 6= c′ mod qj , by
sending responses z, z′. From the equations the verifier checks, we get

ṽz′−z
j = wc′−c

j , αz′−z
j = βc′−c

j

Now, c′−c is relatively prime to qj , we can set d = (c′−c)−1 mod q
νj

j and raise both

equations to the d’th power. Since the order of αj - and hence of βj - is at most q
νj

j ,
this gives us

ṽ
d(z′−z)
j = wj, α

d(z′−z)
j = βj

Hence d(z − z′) = s mod ord(ṽj) and also d(z − z′) = s̃ mod ord(αj), which implies
s = s̃ mod ord(αj), a contradiction.

This finishes the proof of the claim.
We now return to the situation where we have given an incorrect signature share

xi. Recall that we defined q to be the largest prime factor in the order of Z∗
n, and

hence in the order of G, so q is one of the qj ’s, say q = q1. Let φ be the natural
homomorphism from G to G1. We may assume that φ(x2

i ) 6= φ((x4∆2
)si), i.e., xi is “

incorrect in G1”, since otherwise q does not divide the order of x2
i (x

4∆2
)−si. It then

follows from the claim we just proved that for each oracle call the adversary makes
where xi occurs as signature share, the probability that this results in an acceptable
proof is at most 1/q. (note that if the adversary attempts to make a proof without
calling the oracle it is clear that it will be accepted with probability at most 2−L1). It
follows from the first part of conjecture 1 that 1/q must be negligible, since otherwise
a small order element could be found by guessing at random. Since the adversary
can only make a polynomial number of oracle calls, it follows that the probability
that he can make an acceptable proof for such an xi is negligible.

Combining shares. Assume that we have t+1 correct signature shares x′
i1 , . . . , x

′
it+1

.
For 1 ≤ j ≤ t + 1 the signature shares satisfy a property

x′
ij

= x̃
s′ij , where s′ij ≡ sij mod ord(v∆2

).

Since v is an element of maximal order in the group of squares in Z
∗
n and x̃ = x4∆2

,
we have

x′
ij

= x̃
s′ij = x̃sij mod n.

Therefore t + 1 correct signature shares allow us to compute a correct signature.
�

Lemma 3. Let n, e, distributed as the honest dealer chooses them, be given. Based
on this, the information the adversary learns from the honest dealer initially can be
simulated with a statistically close distribution.

9



Proof. Suppose that the adversary corrupted t servers i1, . . . , it.
We choose at random r ∈ Zln and distribute r∆2 randomly as a sum r∆2 =

r1+· · ·+rt+1, where ∆|r1,. . . ,∆|rt+1 and |r1| < Cll+1∆11n2, . . . , |rt+1| < Cll+1∆11n2.
We perform secret sharing over the integers to share r. For 1 ≤ i ≤ l a random
polynomial gi(x) =

∑t
j=0 gi,jx

j is chosen such that gi,0 = ri and for 1 ≤ j ≤ t we

have gi,j ∈R {0, ∆, . . . , ∆10n2·∆}. We define a polynomial g(x) = g1(x)+· · ·+gt+1(x).
We can observe that g(0) = r∆2.

The function g gives us a polynomial sharing over the integers of r, which was gen-
erated like in the sum-to-poly protocol [4] and by Lemma 3 from [4] it is almost t-wise
independent. Since the adversary learns t shares si1 = (f1 + · · ·+ ft+1)(i1), . . . , sit =
(f1 + · · · + ft+1)(it), he can not distinguish these shares from random values and
from the shares generated for him by the honest dealer.

Let w be a random square in Z
∗
n. We define the verification key v = we mod n.

The verification key of a corrupted server i is vi = vsi∆
2
. For an uncorrupted

server i, we define set S = {0, i1, . . . , it}. We can take the normal Lagrange coeffi-
cients and multiply them by ∆ so they become integers. The results are called λS

i,j

and we have
∆f(i) =

∑

j∈S

λS
i,jf(j).

Since the adversary can not distinguish our secret d from r, we can compute

vi = vsi∆2

= v∆(d∆2λS
i,0+λS

i,i1
si1

+···+λS
i,it

sit)

= w∆(∆2λS
i,0+e(λS

i,i1
si1

+···+λS
i,it

sit)) mod n.

The adversary’s view consists from n, e, si1, . . . , sit , v, v1, . . . , vl. Since it was gen-
erated on the basis of the adversary’s shares si1, . . . , sit , which were statistically
indistinguishable from the adversary’s shares produced by the honest dealer, the
adversary can not distinguish this view from the one given by the honest dealer. �
Lemma 4. Assume we are given a set of values distributed by the honest dealer
to the adversary, i.e., n, e, v, v1, v2, ..., vl and the si’s sent to the corrupt servers.
Let also a message M , and the signature H̃(M)d mod n be given. Based on this, the
contributions from honest servers in the protocol where M is signed can be simulated
with the correct distribution.

Proof. Let {i1, . . . , it} be the set of corrupted servers. Let y ≡ H̃(M)d mod n and
x ≡ ye ≡ H̃(M) mod n.

We define set S = {0, i1, . . . , it}. We can take the normal Lagrange coefficients
and multiply them by ∆ so they become integers. We can easily compute xi = x2∆2si

for an uncorrupted player i as

xi = y2∆(∆2λS
i,0+e(λS

i,i1
si1

+···+λS
i,it

sit)) mod n.

�
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4.1 Proof assuming v has Maximal Order

As a first step, we prove:

Lemma 5. Modify the honest dealer scheme described above such that the honest
dealer chooses v to be a random element of maximal order (among the squares mod-
ulo n). Then the resulting scheme is secure under Conjecture 1 and assuming the
underlying standard RSA signature scheme is secure.

Proof. Assume we are given an adversary A that breaks the scheme, with probability
at least 1/p(k), for some polynomial p(). We will then build an algorithm that with
approximately the same probability either breaks the first part of Conjecture 1 or the
underlying RSA scheme. So our algorithm gets n, e as input, and also gets a chosen
message attack on the underlying RSA scheme, i.e., access to an oracle which on
input M returns H̃(M)d mod n. The algorithm now behaves as follows:

1. Invoke Lemma 3 to generate from n, e a simulation of the honest dealer (note
that this produces a random square v which does not necessarily have maximal
order - we deal with this problem below). Send the data produced to A.

2. For every oracle request A issues, check if the input value to the oracle that
A specified has been asked for before. If so, return the same answer that was
returned earlier. Otherwise, return a fresh random value as an answer and record
this value.

3. For every signature request (say, on message M) A issues, call the oracle to
obtain the signature H̃(M)d mod n. Use this and the data generated in step 1
to invoke Lemma 4 and compute the contributions from honest servers in the
signing protocol where M is the input. Invoke Lemma 1 to simulate the proofs
of correctness from honest players. Send all data produced in this step to A, and
receive signature shares xi and proofs for the corrupt servers from A.

4. If A produces an incorrect signature share xi and an acceptable proof for this
share, stop and output x2

i · (x4∆2
)−si mod n (where x = H̃(M) and M is the

message that was signed).
5. If A stops and outputs M0, σ0, output this pair and stop.

To analyze this algorithm, note first that the simulation of the honest dealer in
step 3 produces v as a random square, where the honest dealer we have assumed in
this subsection chooses v as a random square of maximal order. However, for any
prime p, there is a non-negligible probability that a randomly chosen number modulo
p has maximal order, namely p − 1 (see [13]). This (and the Chinese Remainder
Theorem) implies that if we let GOOD be the event that v is a square of maximal
order, there is a non-negligible probability that GOOD occurs. It will therefore be
sufficient to show that the probability that our algorithm breaks one of the two
assumptions, given that GOOD occurs, is non-negligible.

11



Under this assumption, step 3 simulates our honest dealer with a statistically
close distribution. Therefore, the simulations of the signing protocols are also sta-
tistically close to the real life distributions (by Lemma 4 and 1). The simulation
of the random oracle is trivially perfectly indistinguishable from the real thing. It
follows that the probability that A breaks the threshold signature scheme during
our simulation is equal to the probability with which this happens in real life except
for a negligible amount, and certainly is at least 1/p′(k) for some polynomial.

However, assume first that A does this by producing an incorrect signature share
xi and a valid proof for it (by Lemma 2 this is necessary to make the signing protocol
output a bad signature). By Lemma 2, this means that x2

i ·(x4∆2
)−si mod n has order

not divisible by q, except with negligible probability, and so we have broken the first
part of Conjecture 1. On the other hand, if M0 did not occur in any of A’s signature
requests, it did not occur in any of ours either, so if also σ0 = H̃(M0)

d mod n, i.e.,
is a valid signature, we have broken the underlying RSA signature scheme.

4.2 Proof in General

We are now ready for the main result:

Theorem 1. Consider the original honest dealer scheme described above where the
honest dealer chooses v to be a random square modulo n. This scheme is secure
under Conjecture 1 and assuming the underlying standard RSA signature scheme is
secure.

Proof. Assume the result is false, i.e. there exists an adversary A that breaks the
scheme with significant probability. We will then argue that this leads to a contra-
diction with the second part of Conjecture 1. So let us assume that we are given
values n, e, v. We know that n, e are chosen as the honest dealer would choose them,
and we will show how to use the assumed adversary A to decide if v is a random
square or a square of maximal order.

Note first that we may as well try to decide if ve mod n is random or of maximal
order, since raising to the e’th power preserves order and is a 1-1 mapping. So by
replacing v by ve mod n, we see that we may assume without loss of generality that
we know the e’th root of v. With this in mind, a trivial modification of Lemma 3
shows how the honest dealer can be simulated given n, e and v (and the e’th root of
v).

We now run the simulation algorithm that appears in the proof of Lemma 5,
with two changes:

– In step 1, we run the modified simulation of the honest dealer we just described.
– Having finished, we output v is random if A broke the threshold signature scheme,

and v has maximal order otherwise.

12



It is evident from this description that if v has maximal order, we will be pro-
ducing a simulation that is statistically close to the view of A attacking the scheme
with maximal order v, and similarly for random v. It now follows that if v is in
fact random, we will output v is random with probability at least 1/p(k) for some
polynomial p(), by assumption on A, while this happens with negligible probability
if v has maximal order, by Lemma 5.

5 Removing the Honest Dealer

By inspection, it is straightforward to check that the output data from the dis-
tributed key generation protocol of [5] matches the data we have assumed that the
trusted dealer generates, with one exception : we have required that n is such that
φ(n)/4 is not divisible by any prime less than l, and this condition is not automati-
cally satisfied using [5].

This is easily handled, however: the protocol from [5] contains a test division
step where each candidate p for a prime factor in n is testdivided by small prime
factors. At this point, p is shared additively among the players, so it is trivial to
obtain an additive sharing of p − 1, and testdivide p − 1 by all primes less than l.
This will of course slow down the protocol because more candidates will be rejected,
however, by Mertens’ theorem the cost will only be a factor proportional to log l.

To show security of the combined scheme, we assume (for concreteness) that the
protocol from [5] according to the definition of Canetti [2] is a secure protocol for
computing the function F , which on input the security parameter k outputs to all
players the values n, e, v, {vsi mod n}, and si as private output to server i6. Security
of the entire combined scheme now follows from Canetti’s composition theorem,
provided we show that our protocol is secure given an “ideal implementation” of F ,
i.e., an oracle that on input k outputs to all players a set of output values for F
chosen according to the correct distribution. But since such an oracle is equivalent to
an honest dealer, the required proof is precisely what we have given in the previous
sections.

6 Efficiency Analysis

It is straightforward to check that the number of bits sent by each server in order
to sign a message, as well as the number of modular multiplications the server
needs to perform, is proportional to the bit length of its share si of the secret key.
From the estimates on si in Section 3 it therefore follows that the communication
complexity per server is O(k + l log l) bits and the computation is O(k + l log l)

6 [5] does not directly reference the definition of [2]. Nevertheless, the simulation based security proof
they give fits with Canetti’s definition
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modular multiplications, where l is the number of servers and k is the length of the
modulus.

This is more than in Shoups[14] scheme which has complexity O(k), however, in
practice k must be 1000 or more for security reasons, while l is going to be much
smaller, so this difference is hardly significant in practice. In the hidden constants,
the main difference is a factor of 2 in Shoup’s favor. As a concrete example, for a
1000 bit modulus and 32 servers, Shoups scheme will have shares of size 1 Kbit while
our shares will be about 4 Kbits.
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