
B
R

IC
S

R
S

-00-26
F.Č

apkovič:
M

odelling
and

C
ontrolofD

iscrete
E

ventD
ynam

ic
S

ystem
s

BRICS
Basic Research in Computer Science

Modelling and Control of
Discrete Event Dynamic Systems

Franti šekČapkovič

BRICS Report Series RS-00-26

ISSN 0909-0878 October 2000

Copyright c© 2000, FrantǐsekČapkovič.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/26/

Modelling and Control of Discrete Event
Dynamic Systems

Frantǐsek Čapkovič
capkovic@brics.dk

October, 2000

Abstract

Discrete event dynamic systems (DEDS) in general are in-
vestigated as to their analytical models most suitable for control
purposes and as to the analytical methods of the control synthe-
sis. The possibility of utilising both the selected kind of Petri nets
and the oriented graphs on this way is pointed out. Because many
times the control task specifications (like criteria, constraints, spe-
cial demands, etc.) are given only verbally or in another form of
non analytical terms, a suitable knowledge representation about
the specifications is needed. Special kinds of Petri nets (logical,
fuzzy) are suitable on this way too. Hence, the knowledge-based
control synthesis of DEDS can also be examined. The developed
graphical tools for model drawing and testing as well as for the
automated knowledge-based control synthesis are described and
illustratively presented.

Two approaches to modelling and control synthesis based on
oriented graphs are developed. They are suitable when the sys-
tem model is described by the special kind of Petri nets - state
machines. At the control synthesis the first of them is straightfor-
ward while the second one combines both the straight-lined model
dynamics development (starting from the given initial state to-
wards the prescribed terminal one) and the backtracking model
dynamics development.

1

Contents

1 Introduction 3

2 Petri net-based approach 5
2.1 Modelling DEDS . 5

2.1.1 The model structure 6
2.1.2 The model dynamics 6

2.2 The control synthesis . 8
2.2.1 The verbal flowchart of the procedure 8
2.2.2 The description of particulars 9

2.3 Knowledge representation 11
2.3.1 The knowledge structure 11
2.3.2 The knowledge dynamics 13

2.4 The knowledge inference 14
2.5 Graphical tools . 16

2.5.1 The tool for the model drawing and testing 17
2.5.2 The tool for the knowledge-based control synthesis 17

2.6 The illustrative example 22

3 Graph-based approaches for the state machines 28
3.1 The model based on the oriented graph 28

3.1.1 The model structure 29
3.1.2 The model dynamics 30
3.1.3 The OG-based model and its dynamics development 31
3.1.4 The illustrative example 33

3.2 The combined approach to the control synthesis 39
3.2.1 The straight lined dynamics development 40
3.2.2 The backtracking dynamics development 41
3.2.3 The control synthesis by means of intersection . . 41
3.2.4 A general view on the approach 44
3.2.5 The illustrative example 45

3.3 Summary . 52

4 Conclusions 54

2

1 Introduction

In Control Theory there are many successful methods of modelling and
control that are suitable for the continuous-time systems (CTS) or/and
discrete-time systems (DTS). However, usually they are not usable for
solving the problems connected with modelling and control of DEDS.
Namely, DEDS are completely different (as to the principle of their dy-
namic behaviour) from the CTS and DTS. The development of their
dynamic behaviour depends on the occurrence of discrete events. DEDS
are asynchronous systems with many conflict situations and with high
parallelism among subsystems activities. A typical course of a DEDS
variable x is given on the Fig. 1. It can be seen that there is not

-

6

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

discrete events

discrete values

Figure 1: The course of a variable of DEDS

any explicit time on the horizontal axis but only the sequence of oc-
curring events {e0, e2, e3, e5, e6, e7} with the corresponding sequence
{x2, x3, x6, x5, x8, x3} of the variable values on the vertical axis rep-
resenting responses on the discrete events occurrence. A different order
of the events sequence leads to a different sequence of the values i.e. to

3

the different course of the variable x.
DEDS are used very frequently in human practice. Usually they are

large-scale and/or complex systems. Typical representatives of DEDS are
especially manufacturing systems, some kinds of transport systems and
communication systems (including the communication processes inside
computers). DEDS in general will be investigated here with the aim to
find analytical models most suitable for control purposes and as to the
analytical methods of the control synthesis. The possibility of utilising
both the selected kinds of Petri nets (PN) and the oriented graphs (OG)
on this way is pointed out. However, the manufacturing systems (MS),
especially flexible manufacturing systems (FMS) will be emphasised a
little more.

The system control in general is defined as the task when it is nec-
essary to transfer the system from a given initial state into a prescribed
terminal one at simultaneous satisfying control task specifications like
criteria, constraints, external conditions, etc. imposed on the system
activity. The specifications prescribes how the system should operate.

Control tasks for DEDS are usually multi-criterial and many times
they are given only verbally or in another form of non-analytical terms.
Consequently, DEDS need methods for their modelling and control that
are different from those used for CTS and DTS. Especially, a suitable
knowledge representation about the control task specifications is needed
in order to quantify them. Therefore, the knowledge-based control syn-
thesis of DEDS cannot be avoided. Special kinds of PN (logical, fuzzy)
are used on this way.

However, in spite of the fact that the model is able to describe the
system to be controlled, it does not yield any prescription how to control
the system. Consequently, the control synthesis procedure should be
found in order to deal with the DEDS control problems - i.e. to find the
a way how to reach the prescribed terminal state from a given initial one
and simultaneously satisfy the control task specifications.

The PN-based approach to modelling DEDS and the knowledge-based
control synthesis are presented in the first part of this paper. The graph-
ical tools developed for both the system modelling and the automated
knowledge-based control synthesis are also described there.

The second part is devoted to the OG-based approaches suitable for
the systems that can be modelled by the special kind of PN - the state
machines. The methods make analytical solving the control synthesis
problems possible. Such a process is automated or even fully automatic.

4

Two approaches are presented. The first procedure is straightforward,
based on the functional adjacency matrix of OG. The second procedure
combines both the straight-lined development (starting from the given
initial state towards the prescribed terminal one) of the system model
behaviour and the backtracking one (starting from the prescribed termi-
nal state towards the given initial one). The possibility of creating the
OG-based k-variant model of DEDS (where k is the step of the model dy-
namics development) corresponding to the PN-based k-invariant one was
pointed out already in the author’s paper [2] and (in an extended form)
recently in [11]. The main principle of the simple straightforward control
system synthesis was also presented in the latter paper. Because such an
approach to the control synthesis is not fully automatic, but only auto-
mated, the idea of the combination both the straight-lined approach and
the backtracking one is unfolded. It even makes the automatic solving
the control synthesis problem possible.

From the system theory point of view MS are a kind of DEDS be-
cause they meet all attributes mentioned above - they consist of many
cooperating subsystems with many conflicts among some of them on one
hand but also the parallelism among some of them on the other hand.
Even, the possibility of the parallelism is welcome because of the maxi-
mal productivity criterion. The MS behaviour is influenced by occurring
discrete events that start or stop activities of the subsystems (e.g. ma-
chine tools, robots, automatically guided vehicles, etc.). They are asyn-
chronous systems. Usually, they are large-scale or/and complex. The
presented methods are especially suitable for the MS subclass - for FMS.
Because MS are very important in human practice, the demand of the
successful and efficient control of them is very actual.

2 Petri net-based approach

2.1 Modelling DEDS

PN are utilised for modelling of many kind of systems [25]. PN-based
models of DEDS are used very frequently. The approach based on an
analogy with the ordinary PN (OPN) is used also here, in order to build
the mathematical model of the DEDS to be controlled. It is the analogy
between the DEDS subprocesses or activities and the OPN positions (the
PN places will be named here as the positions) as well as the analogy
between the DEDS discrete events and the OPN transitions.

5

2.1.1 The model structure

The OPN are understood here (as to their structure) to be the directed
bipartite graphs

〈P, T, F,G 〉 ; P ∩ T = ∅ ; F ∩ G = ∅ (1)

where
P = {p1, ..., pn} is a finite set of the OPN positions with pi , i = 1, n,

being the elementary positions.
T = {t1, ..., tm} is a finite set of the OPN transitions with tj , j =

1, m, being the elementary transitions.
F ⊆ P × T is a set of the oriented arcs entering the transitions. It

can be expressed by means of the arcs incidence matrix F = {fij} , fij ∈
{0,Mfij

} , i = 1, n ; j = 1, m. The element fij represents the absence
(when 0) or presence and multiplicity Mfij

(when Mfij
> 0) of the arc

oriented from the position pi to its output transition tj .
G ⊆ T × P is a set of the oriented arcs emerging from the

transitions. It can be expressed by means of the arcs incidence matrix
G = {gij} , gij ∈ {0,Mgij

} , i = 1, m ; j = 1, n.
The element gij represents analogically (to the matrix F) the absence

or presence and multiplicity of the arc oriented from the transition ti to
its output position pj .

∅ is an empty set.

2.1.2 The model dynamics

However, OPN have not only their structure but also their dynamics - i.e.
marking of their positions and its dynamic development. It can formally
be expressed by another quadruplet

〈X,U, δ,x0 〉 ; X ∩ U = ∅ (2)

where
X = {x0, x1..., xN} is a finite set of the state vectors with xk , k =

0, N , being the elementary state vectors. Here, xk = (σk
p1
, ..., σk

pn
)T is

the n-dimensional state vector (marking) of the OPN-based model in
the step k of the system dynamics development. The element σk

pi
∈

{0, cpi
}, i = 1, n is the state of the elementary position pi in the step k

- i.e. the passivity (when 0) or activity (when 0 < σk
pi
≤ cpi

), where cpi

is the capacity of the position pi. (.)T symbolises the matrix or vector
transpose.

6

U = {u0, u1 ..., uN} is a finite set of the elementary control vectors
uk , k = 0, N . Here, uk = (γk

t1
, ..., γk

tm)T is the m-dimensional control
vector of the OPN-based model in the step k and γk

tj
∈ {0, 1}, j = 1, m

is the state of the elementary transition tj in the step k - i.e. disabled
(when 0) or enabled (when 1).

δ : X × U −→ X is the transition function of the model dynamics
development.

x0 is an initial state vector of the model.

The simplest form how to describe the transition function δ in ana-
lytical terms - see e.g. [3, 29] - is the following linear discrete system that
will represent the DEDS model

xk+1 = xk + B.uk , k = 0, N (3)

B = GT − F (4)

F.uk ≤ xk (5)

where
k is the discrete step of the DEDS dynamics development
xk = (σk

p1
, ..., σk

pn
)T is the n-dimensional state vector of the system

in the step k. Its components express the states of the DEDS elementary
subprocesses or operations - in case of MS e.g. waiting or movement
of robots, tooling by a machine tool, number of the enter or exit parts
on a pallet, etc. The capacity of the OPN position pi as to its marking
represents e.g. the maximal number of technical parts that can be placed
onto a pallet or a transport belt of MS.

uk = (γk
t1
, ..., γk

tm)T is the m-dimensional control vector of the system
in the step k. Its components represent occurring of the DEDS ele-
mentary discrete events - e.g. starting or ending elementary operations,
switching machines on/off and other activities.

B, F, G are, respectively, (n×m), (n×m) and (m×n)- dimensional
structural matrices of constant elements. The matrix F expresses the
mutual causal relations among the states of the DEDS and the discrete
events occurring during the DEDS operation, when the states are the
causes and the events are the consequences. The matrix G expresses very
analogically the causal relations among the discrete events (the causes)
and the DEDS states (the consequences). Both of these matrices are
(in the graph theory terminology) said to be the oriented arcs incidence
matrices. The matrix B is given by (4).

7

2.2 The control synthesis

The control synthesis problem is that of finding the most suitable se-
quence (with respect to the control task specifications) of the control
vectors uk, k = 0, N that is able to transform the controlled system
from the given initial state x0 to a prescribed terminal state xt. However
as a rule, the DEDS control policy cannot be expressed analytically in a
closed form like in CTS or DTS. Namely, the control task specifications
(e.g. constraints, criteria, etc.) are usually expressed only verbally. Con-
sequently, in order to quantify the specifications the proper knowledge
representation (e.g. the rule-based one) is needed - see [3] - in the form
of a domain oriented knowledge base. The knowledge base is utilised at
the choice of the most suitable control vector uk in any step k when there
are several possibilities at disposal (in order to avoid any ambiguity as
to the further development of the DEDS dynamics).

2.2.1 The verbal flowchart of the procedure

In order to find the suitable control vector uk able to transform the
system from the existing state xk into a following state xk+1 the simple
procedure can be used. It can be concisely described as follows:

START

• k = 0 i.e. xk = x0; x0 is an initial state; xt is a terminal state

LABEL:

• generation of the control base wk

• generation of the possible control vectors {uk} ∈ wk

• generation of the corresponding model responses {xk+1}

• consideration of the possibilities in the knowledge base (built on
IF-THEN rules and expressing the control task specifications)

• choice of the most suitable control possibility

• if (the xt or another stable state was found) then (goto END) else
(begin k = k + 1 ; goto LABEL; end)

END
This procedure is schematically illustrated on Fig. 2.

8

-

-

-

�� �

k = k + 1

Control
Vectors
Generation

Control
Base
Creation

Knowledge

Base

System

Model
?

a-a

wk

{uk}

(uk, xk+1)

{xk+1}xt

Figure 2: The principial procedure of the off-line control synthesis

2.2.2 The description of particulars

The procedure of the control base generation is the following

xk = (x1
k, ..., xn

k)T (6)

yk = (y1
k, ..., yn

k)T (7)

yi
k = {

1 if xi
k > 0

0 otherwise
; i = 1, n (8)

yk = neg yk = 1n − yk (9)

vk = FT . yk (10)

vk = (v1
k, ..., vm

k)T (11)

zk = (z1
k, ..., zm

k)T (12)

zj
k = {

1 if vj
k > 0

0 otherwise
; j = 1, m (13)

wk = neg zk = 1m − zk (14)

wk = (w1
k, ..., wm

k)T (15)

where

9

neg is the operator of logical negation.
1n is the n-dimensional constant vector with all of its elements

equalled to the integer 1.
yk is n-dimensional auxiliary vector with binary elements..
vk, zk are, respectively, m-dimensional auxiliary vector and m-

dimensional auxiliary vector with binary elements.
wk is m-dimensional vector of the base for the control vector choice.

The nonzero elements of the vector yk point out the active positions. The
nonzero elements of the vector yk point out the passive positions. The
nonzero elements of the vector zk point out the transitions having at least
one passive position among their input positions. Hence, such transitions
are disabled and from the control policy point of view they are out of the
field of our interest. The nonzero elements of the vector wk point out
the OPN transitions that can theoretically (potentially) be enabled in
the step k - i.e. on the possible discrete events which could occur in the
DEDS in the step k and which could be utilised in order to transfer the
system from the present state xk into another state xk+1. The vector wk

represents the control base because it expresses the possible candidates
for generating the control vectors {uk} in the step k.

The above described procedure eliminates all disabled transitions.
When only one of the wk components is different from zero, it can be
(when (5) is met, of course) used to be the control vector, i.e. uk = wk.
The same is valid when wk has more components but the condition (5) is
fulfilled. The maximal parallelism is welcome in MS. When the condition
(5) is not met and there are several components of the wk different from
zero, the most suitable control vector uk has to be chosen on the base of
additional information about the actual control task. The choice of the
control vector can be made either by a human operator or automatically
on the base of a corresponding domain oriented knowledge representation
built in the form of the rules (e.g. IF-THEN ones) predefined by an
expert in the corresponding domain. Such a knowledge base consists of a
suitable expression of the constraints imposed upon the activities of the
controlled system in question, control criteria, and further particulars
concerning the control task.

In general, to obtain the elementary control vectors {uk} ∈ wk the
following procedure is performed

uk = (u1
k, ..., um

k)T

uk ⊆ wk (16)

10

uj
k = {

wj
k if chosen

0 otherwise
; j = 1, m (17)

Theoretically (i.e. from the combinatorics point of view) there exist

Np
k =

Nt
k∑

i=1

(
Nt

k

i

)
= 2Nt

k − 1 (18)

possibilities of the control vector choice in the step k. Here,

Nt
k =

m∑
j=1

wj
k. (19)

It means that there are the control vectors containing single nonzero
elements of the base vector wk, the control vectors containing pairs of its
nonzero elements, triples, quadruplets of its nonzero elements, etc., until
the vector containing all of the nonzero elements of the base vector wk.

2.3 Knowledge representation

On the base of the above described control synthesis procedure, it is
evident that a suitable form of the knowledge representation is needed
in order to decide which control possibility should be actually chosen in
any step k. To construct a suitable knowledge base (KB) the rule-based
knowledge representation is usual in practice. The PN-based approach
is used here in order to express the KB, even in analytical terms. It is
supported by the logical PN (LPN) or/and fuzzy PN (FPN) - defined in
[22], [23] and improved in [15].

2.3.1 The knowledge structure

Under the notion knowledge we mean some pieces of knowledge (some
statements) mutually connected by causal interconnections in the form
of IF-THEN rules. The statements are expressed by the LPN/FPN po-
sitions and the rules are expressed by the LPN/FPN transitions (taken
together with their input and output positions). The mutual causality
interconnections among the statements and rules are expressed by means
of the analogy with the oriented arcs among the PN positions and tran-
sitions - see Fig. 3. More details about such a knowledge representation
can be found in [4]-[10]. Consequently, the KB structure can be formally
expressed as

〈S,R,Ψ,Γ 〉 ; S ∩ R = ∅ ; Ψ ∩ Γ = ∅ (20)

11

Sc

Sb

Sa

Se

Sd

φSc

φSb

φSa

φSe

φSd

Rj

ωRj

��
��

��
��

��
��

��
��

��
��

�
�

�
�

��

-

@
@

@
@

@R �����*

HHHHHj

Figure 3: The rule Rj with input and output statements

where
S = {S1, ..., Sn1} is a finite set of the statements; Si , i = 1, n1, are

the pieces of knowledge (the elementary statements).
R = {R1, ..., Rm1} is a finite set of the rules; Rj , j = 1, m1, are the

rules either in the form of implications:
Rj : (Sa and Sb and ... and Sc) ⇒ (Sd and Se)

or in the form of IF-THEN structures:
Rj : IF (Sa and Sb and ... and Sc) THEN (Sd and Se),

where Sa, Sb, ..., Sc are the input statements of the rule Rj, and the
Sd, Se are the output statements of this rule.

Ψ ⊆ S × R is a set of the causal interconnections among the
statements entering the rules (the causes) and the rules themselves. It can
be expressed by means of the incidence matrix Ψ = {ψij} , i = 1, n1 ; j =
1, m1. ψij ∈ {0, 1} in the analogy with the LPN and ψij ∈< 0, 1 > in
the analogy with the FPN. In other words the element ψij represents
the absence (when 0), presence (when 1) or a fuzzy measure of existence
(when its real value is between these boundary values) of the causal
relation between the input statement Si and the rule Rj.

Γ ⊆ R × S is a set of the causal interconnections among the rules
and the statements emerging from them (the consequences). It can be
expressed by means of the incidence matrix Γ = {γij} , i = 1, m1 ; j =
1, n1, where γij ∈ {0, 1} , in case of the LPN or γij ∈< 0, 1 > in case

12

of the FPN. γij expresses the occurrence of the causal relation between
the rule Ri and its output statement Sj (i.e. the absence, presence or a
fuzzy measure of existence).

2.3.2 The knowledge dynamics

The KB dynamics development (i.e. the statements truth propagation)
can be formally expressed as follows

〈Φ,Ω, δ1,Φ0 〉 ; Φ ∩ Ω = ∅ (21)

where
Φ = {Φ0, Φ1..., ΦN1} is a finite set of the KB elementary state vec-

tors ΦK , K = 0, N1. Here, ΦK = (φK
S1
, ..., φK

Sn1
)T is the n1-dimensional

state vector of the statements truth propagation in the step K. φK
Si

∈
{0, 1}, i = 1, n1 is the state of the elementary statement Si in the step K
- i.e. in the case of using the LPN-based model - true (when 1) or false
(when 0). In the case of using the FPN-based model φK

Si
∈< 0, 1, >, i =

1, n1 and it expresses the fuzzy measure of the statement truth. K is the
step of the KB dynamics development.

Ω = {Ω0, Ω1 ..., ΩN1} is a finite set of the KB elementary control
vectors ΩK , K = 0, N1 expressing the state of the KB rules enabling.
Here, Ωk = (ωK

R1
, ..., ωK

Rm1
)T is the m1-dimensional control vector of the

KB in the step k. ωK
Rj

∈ {0, 1}, j = 1, m1 is the state of the rule Rj

enabling in the step K - i.e. disabled (when 0) or enabled (when 1). In
fuzzy case ωK

Rj
∈< 0, 1 >, j = 1, m1 and it expresses the fuzzy measure

of the rule enabling.
δ1 : Φ × Ω −→ Φ is the transition function of the KB dynamics

development.
Φ0 is an initial state vector of the KB.

The simplest form how to describe the transition function δ1 in ana-
lytical terms is the following linear logical system that will represent the
KB model.

ΦK+1 = ΦK or∆ andΩK , K = 0, N1 (22)

∆ = ΓT orΨ (23)

Ψ andΩK ≤ ΦK (24)

where

13

Sc

Sb

Sa

Se

Sd

x

x

x

Rj

ωRj
= 0

��
��

��
��

��
��

��
��

��
��

�
�

�
�

��

-

@
@

@
@

@R �����*

HHHHHj

Figure 4: The enabled logical rule Rj

and is the operator of logical multiplying in general. For both the
bivalued logic and the fuzzy one it can be defined (for scalar operands) to
be the minimum of its operands. For example the result of its application
on the scalar operands a, b is a scalar c which can be obtained as follows:
a and b = c = min {a, b}.

or is the operator of logical additioning in general. For both the
bivalued logic and the fuzzy one it can be defined (for scalar operands) to
be the maximum of its operands. For example the result of its application
on the scalar operands a, b is a scalar c which can be obtained as follows :
a or b = c = max {a, b}.

2.4 The knowledge inference

The procedure of the knowledge inference is very analogical to that for
obtaining the above introduced control base vector wK . It is the following

ΦK = negΦK = 1n1 − ΦK (25)

vK = ΨTand ΦK (26)

ΩK = neg vK = 1m1 − vK =

= neg(ΨT and (negΦK)) (27)

where

14

Sc

Sb

Sa

Se

Sd

x

x

x

x

x

Rj

ωRj
= 1

��
��

��
��

��
��

��
��

��
��

�
�

�
�

��

-

@
@

@
@

@R �����*

HHHHHj

Figure 5: The logical rule Rj after firing

Sc

Sb

Sa

Se

Sd

0.8

0.7

0.6

0.0

0.0

Rj

ωRj
= 0.0

��
��

��
��

��
��

��
��

��
��

�
�

�
�

��

-

@
@

@
@

@R �����*

HHHHHj

Figure 6: The enabled fuzzy rule Rj

15

Sc

Sb

Sa

Se

Sd

0.8

0.7

0.6

0.3

0.3

Rj

ωRj
= 0.3

��
��

��
��

��
��

��
��

��
��

�
�

�
�

��

-

@
@

@
@

@R �����*

HHHHHj

Figure 7: The fuzzy rule Rj after firing

vK is the m1-dimensional auxiliary logical vector pointing out (by
its nonzero elements) the rules that cannot be evaluated, because there
is at least one false (of course in the LPN analogy) statement among its
input statements.

ΩK is the m1-dimensional ”control” vector pointing out the rules
that have all their input statements true and, consequently, they can be
evaluated in the step K of the KB dynamics development. This vector is
a base of the inference, because it contains information about the rules
that can contribute to obtaining the new knowledge - i.e. to transfer the
KB from the state ΦK of the truth propagation into another state ΦK+1.
The rules are pointed out by the nonzero elements of the vector ΩK .

neg is the operator of logical negation in general. For both the
bivalued logic and the fuzzy one it can be defined (for scalar operands)
to be the complement of its operand. For example : neg a = b = 1 − a.

2.5 Graphical tools

To automatise the model creating and testing as well as the process of the
knowledge-based control synthesis the graphical tools were developed.

16

2.5.1 The tool for the model drawing and testing

The graphical editor for drawing and testing the PN-based models is able
to draw ordinary PN, to compute their invariants, to draw their reacha-
bility tree, to test their properties and to display the marking dynamics
development (token player). In addition to this it is able to draw the log-
ical and fuzzy PN-based models, the time and timed PN-based models
(see e.g. [17, 18]) and to display their marking dynamics development.
It was developed during works on Master Theses [1],[24],[16]. To illus-
trate some of its abilities, the following figures (see Fig. 8 - Fig. 13) are
introduced.

2.5.2 The tool for the knowledge-based control synthesis

In order to automatise the control synthesis process as well as in order to
bridge the OPN-based model with the LPN/FPN-based KB the program
system (knowledge-based control synthesiser) was created in the Master
Thesis [12]. It makes possible to express relations between the states
of DEDS on one hand and the statements and rules of the KB on the
other hand. It is user friendly and makes possible to simplify the work of
the operator performing the DEDS control synthesis. Using the program
system correctly, the control synthesis process can be fully automatised
(even automatic).

Two files can be opened in the system - the OPN-based model (in the
form of a file like ’model-name.pnt’) created by means of the graphical
editor of OPN mentioned above and the LPN/FPN-based KB (in the
form of a file like ’kb-name.pnt’) created by means of the same graphi-
cal editor by means of LPN/FPN. During the program system operation
three windows are on the screen - see Fig. 14 or Fig. 15. The KB oper-
ates if the button KB is switched on. In the left window on the screen
the OPN-based model is displayed (the graphical model or its verbal de-
scription can be alternatively seen). In the right window the LPN/FPN
model of the KB or the I/O interface between OPN model and the KB
can alternatively be seen. The I/O interface yields (at the beginning
of its utilising) the empty skeleton corresponding to the number of the
statements and rules of the KB. It can be fulfilled by the operator in
order to define desirable relations between the OPN-based model and
the LPN/FPN-based KB. For example in the case of the KB with only
one rule with two input and one output statements the skeleton is the
following:

17

Figure 8: The example of the ordinary PN-based model.

Figure 9: The reachability tree of this model.

18

Figure 10: The example of the logical PN-based model.

Figure 11: The example of the fuzzy PN-based model.

19

Figure 12: The example of the time PN-based model.

Figure 13: The example of the timed PN-based model.

20

Figure 14: A view on the screen of control synthesiser - the graphical
OPN model and the I/O interface.

input {
P1 {

return F
} end
P2 {

return F
} end

} end
output {
// output place:
// P3,

return F
} end

The third window (the state one) is placed in the down part of the
screen and it contains the actual state of the system as well as information
about the enabled transitions of the OPN model. After finishing the

21

Figure 15: The verbal description of the OPN and KB.

control synthesis process the final sequence of the control interferences
for the real DEDS can be obtained from this window. When KB is
switched off, another small window appears in the center of the screen -
see Fig. 16. It offers to the user the actual control possibilities and yields
him the possibility to choose manually the most suitable one (from his
subjective point of view). The same window appears also in the case
when KB works but it is not able to choose the most suitable possibility.
In such a case the decision must be made by the human operator. The
detail description of the program system is given in the user handbook
[13].

2.6 The illustrative example

In order to illustrate the above introduced approach consider the FMS
given on the Fig. 17. It can be seen that it consists of two robots serving
five machine tools, two automatic guided vehicles (AGVs), two entries
(the inputs of raw materials A and B, respectively), and two exits (the
outputs of the final A-parts and B-parts, respectively). The machines 1
and 2 produce the same intermediate A-parts and the machine 4 produces
the intermediate B-parts. Machines 3 and 5 produce the final A-parts

22

Figure 16: The window for the manual choice. KB is switched off.

and B-parts, respectively. Using above mentioned analogy the OPN-
based model can be obtained - see Fig. 18.

It can be knitted e.g. by means of the method elaborated and pre-
sented in [14]. Meaning the OPN positions is the following:
P1 - availability of A-raw material, P2 - loading by Robot 1 (R1), P3 -
machining by Machine 1 (M1), P4 - delivering via AGV1, P5 - loading
by R2, P6 - machining by M3, P7 - machining by M2, P8 - availability of
R1, P9 - availability of AGV1, P10 - availability of M1, P11 - availability
of M2, P12 - availability of R2, P13 - availability of M3, P14 - loading
by R1, P15 - loading by R2, P16 - machining by M4, P17 - delivering
via AGV2, P18 - machining by M5, P19 - availability of B-raw material,
P20 - availability of M4, P21 - availability of AGV2, P22 - availability of
M5. The transitions T1 - T14 represent the starting or/and ending the
corresponding operations. The nonzero elements of the structural matri-
ces of the OPN-based model are in case of the F : {f11, f22, f27, f33, f44,
f55, f66, f78, f81, f89, f93, f98, f10,2, f11,7, f12,4, f12,12, f13,5, f14,10, f15,13,
f16,11, f17,12, f18,14, f19,9, f20,10, f21,11, f22,13} and in case of the G : {g12,
g23, g28, g34, g3,10, g45, g49, g56, g5,12, g61, g6,13, g77, g78, g84, g8,11, g9,14,
g10,8, g10,16, g11,17, g11,20, g12,15, g12,21, g13,18, g13,12, g14,19, g14,22}. The full
matrices are not presented with regard to the limited space. Starting

23

Figure 17: The flexible manufacturing system.

Figure 18: The OPN-based model of the FMS.

24

from the initial state vector of the process

x0 = (1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1)T

the following control base is obtained in the step k = 0

w0 = (1 0 0 0 0 0 0 0 1 0 0 0 0 0)T

Hence, the following control possibilities can be automatically generated

u1
0 = (1 0 0 0 0 0 0 0 0 0 0 0 0 0)T (28)

u2
0 = (0 0 0 0 0 0 0 0 1 0 0 0 0 0)T (29)

u3
0 = (1 0 0 0 0 0 0 0 1 0 0 0 0 0)T (30)

Only u3
0 does not satisfy the existence condition (5). It means that

remaining two possibilities are admissible, however, not simultaneously
(R1 can take either A or B raw material). There is the conflict between
them (i.e. between the enabled transitions T1 and T9). The model
itself is not able to solve such a conflict because it has no information
about it. To solve the conflict unambiguously external information (the
intervention of the KB) is needed. The KB intervention should reflect
both the actual state of the system and the external conditions (EC)
expressing the control task specifications (e.g. the actual state of stores
of the A and B raw materials or/and actual requirements on the amount
of the production of the A and B final parts). The form of a simple
rule can be (in case of Np control possibilities) e.g. the following: IF

((u1
k, x1

k+1) and ... and (ui
k, xi

k+1) and ... and (u
Np

k , x
Np

k+1) and EC)
THEN (ui

k corresponding to the EC).
When (28) is chosen in the step k = 0 then

x1 = (0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1)T

w1 = (0 1 0 0 0 0 1 0 0 0 0 0 0 0)T

Hence, three control possibilities can be automatically generated. How-
ever, only two of them can be alternatively realized (R1 can serve either
M1 or M2), namely

u1
1 = (0 1 0 0 0 0 0 0 0 0 0 0 0 0)T (31)

u2
1 = (0 0 0 0 0 0 1 0 0 0 0 0 0 0)T (32)

When the possibility (31) is chosen then

x2 = (0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1)T

w2 = (1 0 1 0 0 0 0 0 1 0 0 0 0 0)T

25

Consequently, seven control possibilities can be automatically generated.
Five of them meet (5) and consequently, they can be separately realized.
The following two ones must be eliminated

u5
2 = (1 0 0 0 0 0 0 0 1 0 0 0 0 0)T

u7
2 = (1 0 1 0 0 0 0 0 1 0 0 0 0 0)T

When (29) is chosen in the step k = 0 then

x1 = (1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1)T

w1 = (0 0 0 0 0 0 0 0 0 1 0 0 0 0)T

Hence, only one control possibility is generated

u1 = (0 0 0 0 0 0 0 0 0 1 0 0 0 0)T

It can be accepted because it satisfies (5). Consequently,

x2 = (1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1)T

w2 = (1 0 0 0 0 0 0 0 1 0 1 0 0 0)T

Hence, seven control possibilities can be automatically generated. Only
five of them are admissible as to (5), however, their simultaneous using
is excluded. The following two ones must be eliminated

u4
2 = (1 0 0 0 0 0 0 0 1 0 0 0 0 0)T

u7
2 = (1 0 0 0 0 0 0 0 1 0 1 0 0 0)T

It can be seen that the process is branching very extensively. To
analyse all possibilities manually is practically impossible. In situations
when there are several equivalent possibilities (from the theoretical point
of view) how to choose the vector uk in a step k the domain oriented KB
yields the most suitable one (from the practical point of view). Let us
use the program system for the DEDS control synthesis. The proposed
structure of the KB is given by the Fig. 19 and proposed corresponding
interface is the following

input {
P1 {

return F
if (N > 0) then return T

26

Figure 19: The KB of the FMS.

//N is the number of realizable control vectors in the
//actual step k of the OPN dynamics development

} end
P2 {

return F
if (N > 1) then return T

} end
P3 {

return F
if (N = 2) then return T
if (N > 3) then return T

} end
P4 {

return F
if (N = 3) then return T

} end
P5 {

return F

27

} end
P6 {

return F
} end

} end
output {
// output places:
// P7, P8

return 0
if (N < 4) then {

if (p.7=1) & (p.8=0) then return 1
if (p.7=0) & (p.8=1) then return 2
if (p.7=1) & (p.8=1) then return 3

// p.j is the j-th component of the KB state vector
}

if (N > 3) then {

if (p.7=1) & (p.8=0) then return 4
if (p.7=0) & (p.8=1) then return 5

}

if (N = 1) then return 1
} end

The result of the program operation (when maximal parallelism is
utilised) in the case when number of the final parts A has the priority
with respect to the number of the final parts B is given in Tab. 1 as the
sequence of control interferences into the real DEDS.

3 Graph-based approaches for the state ma-

chines

For analytical modelling and control synthesis of DEDS that can be de-
scribed by the special kind of PN - the so called state machines (where
any PN transition has only one input and only one output position)- the
OG-based approaches are used.

3.1 The model based on the oriented graph

When the PN transitions are fixed on the corresponding oriented arcs
among the PN positions - see Fig. 20 - we have a structure that can be

28

step k of dynamics OPN fired transitions
1 t1
2 t2
3 t3 & t9
4 t4 & t10
5 t5 & t11
6 t6 & t12
7 t1 & t13
8 t2 & t14
9 t3 & t9

.

Table 1: The final results of the control synthesis.

understood to be the oriented graph. However, because the transition
functions of elementary transitions were functions, the oriented arcs will
be weighted by the functions too.

��
��

��
��

- - -

pj pitpi|pj

γk
tpi|pj

σk
pj

σk
pi

Figure 20: An example of the placement of a transition on the oriented
arc between two positions pi and pj

3.1.1 The model structure

The model structure can formally be described as

〈P,∆〉 (33)

where

29

P = {p1, ..., pn} is a finite set of the OG nodes with pi , i = 1, n,
being the elementary nodes. As a matter of fact they are the PN posi-
tions.

∆ ⊆ P × P is a set of the OG edges i.e. the oriented arcs among
the nodes. Its elements are represented by the functions expressing the
occurrence of the discrete events (represented above by the PN transi-
tions). More precisely ∆ = ∆k ⊆ (P × T) × (T × P). It means that
the PN transitions fixed on the oriented edges of the OG-based model
represent the model parameters while in the PN-based model they rep-
resented the control vector. It is the principal difference between the
PN-based model of DEDS and the OG-based one. The set ∆ can be ex-
pressed in the form of the incidence matrix ∆k = {δk

ij} , δk
ij ∈ {0, 1} , i =

1, n , j = 1, n , k = 0, N . Its element δk
ij represents the absence (when 0)

or presence (when 1) of the edge oriented from the node pi to the node
pj containing the PN transition. However, it is the transition function
and its value depends also on the step k. Namely, the corresponding
transition may be enabled in a step k1 but disabled in another step k2.

3.1.2 The model dynamics

The OG-based model dynamics can be formally expressed as follows

〈X, δ1,x0 〉 (34)

where

X = {x0,x1, ...,xN} is a finite set of the state vectors of the graph
nodes in different situations with xk = (σk

p1
, ..., σk

pn
)T , k = 0, N , being

the n-dimensional state vector of the graph nodes in the step k; σk
pi

∈
xk, i = 1, n is the state of the elementary node pi in the step k; k is the
discrete step of the OG-based model dynamics development.

δ1 : (X × U) × (U × X) −→ X is the transition function of the
graph dynamics. It contains implicitly the states of the transitions (the
set U is the same like in the PN-based model dynamics) situated on the
OG edges.

x0 is the initial state vector of the model dynamics.

30

3.1.3 The OG-based model and its dynamics development

The k-variant OG-based linear discrete dynamic model of the DEDS can
be written as follows

{xk+1} = ∆k.{xk} , k = 0, N − 1 (35)

where

k is the discrete step of the DEDS dynamics development.
xk = (σk

p1
, ..., σk

pn
)T ; k = 0, N is in general the n- dimensional state

vector of the DEDS in the step k; σk
pi
, i = 1, n is the state of the ele-

mentary subprocess pi in the step k. However, the model (35) generates
aggregates of the state vectors because of its multiplicative character.
Hence, it is better to write {xk+1}, k > 0, N −1 as an aggregate of all
of the states that are reachable from the previous aggregated state {xk}

in one step k; However, {x0} = x0, because the initial state is single.
∆k = {δk

ij} , δk
ij = γk

tpi|pj
∈ {0, 1}, i = 1, n ; j = 1, n. This matrix

expresses the causal relations between the subprocesses depending on the
occurrence of the discrete events. The element δk

ij = γk
tpi|pj

expresses the

actual value of the transition function of the PN transition fixed on the
OG edge oriented from the node pj to the node pi in the step k.

Let us develop the system dynamics by means of the OG-based model
in the straight-lined direction. Thus,

{x1} = ∆0.x0 (36)

{x2} = ∆1.{x1} = ∆1.∆0.x0 (37)
...

...
...

{xk} = ∆k−1.{xk−1} = ∆k−1∆k−2 . . .∆0.x0 (38)

{xk} = Φk,0.x0 (39)

{xN} = ΦN,0.x0 (40)

Φk,j =
k−1∏
i=j

∆i ; j = 0, k − 1 (41)

where
Φk,j is the transition matrix from the state xj into the state xk.

Multiplying of matrices inside the product symbol is made from the left
because of respecting the causality principle in the model.

31

B- - ∑
6

B- - ∑
6

B- - ∑
6

uk−1

xk−1-t
uk−2

xk−2-t

u0

x0

xk -

...

6 x1-t

--

--

--

t

t
6

...

{xk}

{xk−1}

{x1}x0

{xk−2}

{xk−1}

Φk,k−1

Φk−1,k−2

Φ1,0

Figure 21: The illustration of comparing the PN-based model (on the
left) and the OG-based one (on the right)

There is a symbolic interpretation as to the operators of multiplying
and additioning inside the matrices. The element φk,0

i,j ∈ Φk,0 has the
form of either a product of k elements (the transition functions expressing
the sequence of elementary transitions that must be fired in order to reach
the the final elementary state σk

pi
from the initial elementary state σ0

pj
)

or a sum of several such products (when there are several ways how to
reach the final state from the initial one). In the other words, any nonzero
element δk

ij ∈ ∆k yields information about reachability of the state σk+1
pi

from the state σk
pj

. Thus, any element φk2,k1
i,j ∈ Φk2,k1 yields information

about the reachability of the state σk2
pi

from the state σk1
pj

.
Both the PN-based model and the OG-based one are compared, as

to their structure, on Fig. 21. It can be seen that the former model is
strongly additive and it yields the actual states xi, i = 0, k (however
the control vectors ui, i = 0, k − 1 has to be known) while the latter
one is strongly multiplicative and it yields only aggregates of the state
vectors, however the actual values of the parameters need not be known.
Such an OG-based approach to the control synthesis yields the analytical
solution in the closed form.

32

15

mouse

3

cat

4 2

rtv c6 rtvc3

rtvm4 rtvm1

rtvc7rtv

rtv
c5

rtv
m5

rtv
m6

rtv
c4 rtv

c1

rtv
m3

rtv
m2

rtv
c2

Figure 22: The maze structure.

3.1.4 The illustrative example

Consider the maze problem introduced by Ramadge and Wonham in [31].
Two participants - in [31] a cat and a mouse - can be as well e.g. two
mobile robots or two AGVs of the FMS, two cars in a road network, two
trains in a railway network, etc. They are placed in the maze (however,
it can also be e.g. a complicated crossroad, complicated railways points,
crossing AGVs lines in FMS etc.) given on Fig. 22 consisting of five rooms
denoted by numbers 1, 2,..., 5 connecting by the doorways exclusively for
the cat denoted by ci, i = 1, 7 and the doorways exclusively for the mouse
denoted by mj , j = 1, 6. The cat is initially in the room 3 and the mouse
in the room 5. Each doorway can be traversed only in the direction
indicated. Each door (with the exception of the door c7) can be opened
or closed by means of control actions. The door c7 is uncontrollable
(or better, it is continuously open in both directions). The controller
to be synthesised observes only discrete events generated by sensors in
the doors. They indicate that a participant is just running through.
The control problem is to find a feedback controller (e.g. an automatic
points-man or switchman in railways, a system of crossroad lights, etc.)
such that the following control task specifications - three criteria or/and

33

constraints will be satisfied:

1. The participants never occupy the same room simultaneously

2. It is always possible for both of them to return to their initial
positions (the first one to the room 3 and the second one to the
room 5)

3. The controller should enable the participants to behave as freely as
possible with respect to the constraints imposed.

It can be seen that the criteria and constraints are completely given in
the verbal form.

At the construction of the PN-based model of the system the rooms
1 - 5 of the maze will be represented by the PN positions p1 - p5 and the
doorways will be represented by the PN transitions. The permanently
open door c7 is replaced by means of two PN transitions t7 and t8 sym-
bolically denoted as ck7 and ck8. The PN-based representation of the maze
is given on Figure 23. The initial state vectors of the cat and the mouse
are

cx0 = (0 0 1 0 0) , mx0 = (0 0 0 0 1)T (42)

The structure of the cat and mouse control vectors is

cuk = (ck1, c
k
2, c

k
3, c

k
4, c

k
5, c

k
6, c

k
7, c

k
8)

T ; cki ∈ {0, 1}, i = 1, 8
muk = (mk

1, m
k
2, m

k
3, m

k
4, m

k
5, m

k
6)

T ; mk
i ∈ {0, 1}, i = 1, 6

The parameters of the cat model are

n = 5 mc = 8

cF =

1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0

; cG =

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

and the parameters of the mouse model are

34

m m

m

m m

m m

m

m mv

v
p4 p5

p1

p2 p3

a)

p4 p5

p1

p2 p3

b)

rtv

rtv

rtv

rtv

�

�rtv

rtv

rtv

rtv

rtv

rtvrtv

rtv
@

@rtvrtv
�

�rtv

�
�rtv @

@rtv

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

rtv

rtv

rtv

rtv

rtv

rtvrtv

rtv
@

@rtv �
�rtv

�
�rtv

@
@rtv

ck2

ck5

ck7 ck8

ck1 ck3

ck4 ck6

mk
2

mk
5

mk
3 mk

1

mk
6 mk

4

Figure 23: The PN-based representation of the maze. a) possible be-
haviour of the cat; b) possible behaviour of the mouse

n = 5 mm = 6

mF =

1 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

; mGT
m =

0 0 1 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

At the construction of the OG-based model (see Fig. 24) the matrices
c∆k and m∆k of the system parameters are the following

c∆k =

0 0 ck3 0 ck6
ck1 0 0 ck8 0
0 ck2 0 0 0
ck4 ck7 0 0 0
0 0 0 ck5 0

=

0 0 cδk
13 0 cδk

15
cδk

21 0 0 cδk
24 0

0 cδk
32 0 0 0

cδk
41

cδk
42 0 0 0

0 0 0 cδk
54 0

m∆k =

0 mk
3 0 mk

6 0
0 0 mk

2 0 0
mk

1 0 0 0 0
0 0 0 0 mk

5

mk
4 0 0 0 0

=

35

m m

m

m m

m m

m

m mv

v
p4 p5

p1

p2 p3

a)

p4 p5

p1

p2 p3

b)

rtv

rtv

�

�rtv

rtv

rtv

rtvrtv

rtv

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

rtv

rtv

rtv

rtvrtv

rtv

cδk
32

cδk
54

cδk
42

cδk
24

cδk
21

cδk
13

cδk
41

cδk
15

mδk
23

mδk
45

mδk
12

mδk
31

mδk
14

mδk
51

Figure 24: The OG-based model of the maze. a) possible behaviour of
the cat; b) possible behaviour of the mouse

=

0 mδk
12 0 mδk

14 0
0 0 mδk

23 0 0
mδk

31 0 0 0 0
0 0 0 0 mδk

45
mδk

51 0 0 0 0

The transitions matrices for the cat and mouse are the following

cΦk+2,k = c∆k+1.
c∆k =

=

0 ck+1
3 .ck2 0 ck+1

6 .ck5 0
ck+1
8 .ck4 ck+1

8 .ck7 ck+1
1 .ck3 0 ck+1

1 .ck6
ck+1
2 .ck1 0 0 ck+1

2 .ck8 0
ck+1
7 .ck1 0 ck+1

4 .ck3 ck+1
7 .ck8 ck+1

4 .ck6
ck+1
5 .ck4 ck+1

5 .ck7 0 0 0

cΦk+3,k = c∆k+2.
c∆k+1.

c∆k =

=

ck+2
3 .ck+1

2 .ck1 + ck+2
6 .ck+1

5 .ck4 ck+2
6 .ck+1

5 .ck7
...

ck+2
8 .ck+1

7 .ck1 ck+2
1 .ck+1

3 .ck2
...

ck+2
2 .ck+1

8 .ck4 ck+2
2 .ck+1

8 .ck7
...

ck+2
7 .ck+1

8 .ck4 ck+2
4 .ck+1

3 .ck2 + ck+2
7 .ck+1

8 .ck7
...

ck+2
5 .ck+1

7 .ck1 0
...

36

... 0 ck+2
3 .ck+1

2 .ck8 0
... ck+2

8 .ck+1
4 .ck3 ck+2

1 .ck+1
6 .ck5 + ck+2

8 .ck+1
2 .ck8 ck+2

8 .ck+1
4 .ck6

... ck+2
2 .ck+1

1 .ck3 0 ck+2
2 .ck+1

1 .ck6
... ck+2

7 .ck+1
1 .ck3 ck+2

4 .ck+1
6 .ck5 ck+2

7 .ck+1
1 .ck6

... ck+2
5 .ck+1

4 .ck3 ck+2
5 .ck+1

7 .ck8 ck+2
5 .ck+1

4 .ck6

mΦk+2,k = m∆k+1.
m∆k =

=

0 0 mk+1
3 .mk

2 mk+1
6 .mk

5

mk+1
2 .mk

1 0 0 0 0

0 mk+1
1 .mk

3 0 mk+1
1 .mk

6 0
mk+1

5 .mk
4 0 0 0 0

0 mk+1
4 .mk

3 0 mk+1
4 .mk

6 0

mΦk+3,k = m∆k+2.
m∆k+1.

m∆k =

=

mk+2
3 .mk+1

2 .mk
1 +mk+2

6 .mk+1
5 .mk

4 0
...

0 mk+2
2 .mk+1

1 .mk
3

...

0 0
...

0 mk+2
5 .mk+1

4 mk
3

...

0 0
...

... 0 0 0

... 0 mk+2
2 .mk+1

1 .mk
6 0

... mk+2
1 .mk+1

3 .mk
2 0 mk+2

1 .mk+1
6 .mk

5

... 0 mk+2
5 .mk+1

4 .mk
6 0

... mk+2
4 .mk+1

3 .mk
2 0 mk+2

4 .mk+1
6 .mk

5

The corresponding states reachability trees are given on Fig. 25 and
Fig. 26. It can be seen that in order to fulfil the prescribed control
task specifications introduced above, the comparison of the transition
matrices of both animals in any step of their dynamics development is
sufficient. Because the animals start from the defined rooms given by
their initial states, it is sufficient to compare the columns 3 and 5. Con-
sequently,

37

c03

(0, 0, 1, 0, 0)

(1, 0, 0, 0, 0)

@
@

@@

�
�

��
c11

c14

(0, 1, 0, 0, 0) (0, 0, 0, 1, 0)

@
@

@@

�
�

��
c22

c27

(0, 0, 1, 0, 0) (0, 0, 0, 1, 0)

@
@

@@

�
�

��
c25

c28

(0, 0, 0, 0, 1) (0, 1, 0, 0, 0)

. .

Figure 25: The fragment of the reachability tree of the cat

m0
5

(0, 0, 0, 0, 1)

(0, 0, 0, 1, 0)

m1
6

(1, 0, 0, 0, 0)

@
@

@@

�
�

��
m2

1 m2
4

(0, 0, 1, 0, 0) (0, 0, 0, 0, 1)

.

Figure 26: The reachability tree of the mouse

38

1. the corresponding (as to indices) elements of the transition matrices
in these columns have to be mutually disjunct in any step of the
dynamics development in order to avoid encounter of the animals
on the corresponding trajectories.

2. if they are not disjunct one of them must be removed. It depends
on the control task specifications which one will be removed. Let us
go to focus attention on the elements with indices [3,3] and [5,5] of
the matrices Φk+3,0. Namely, they express the trajectories making
the return of the animals to their initial states possible. In case of
the elements with indices [3,3] the element of the matrix cΦk+3,0

should be chosen. It represents the trajectory of the cat making
their come back possible. In case of the elements with indices [5,5]
the element of the matrix mΦk+3,0 should be chosen. It represents
the trajectory of the mouse making their come back possible.

3. in the matrix cΦk+3,k two elements in the column 3 (with the indices
[2,3] and [4,3]) stay unremoved, because of the permanently open
door. It can be seen that also the elements of the column 5 of
this matrix (with indices [2,5] and [4,5]) stay unremoved. This
facts correspond with the prescribed condition 3 in the control task
specifications.

On the base of these particulars it is clear that the KB construction need
not be very complicated. In any case it is easier than that required by
the OPN-based model at the knowledge-based approach to the control
synthesis, because it is sufficient here to check only the actual elements
of the transition matrices.

3.2 The combined approach to the control synthesis

The main disadvantage of the previous approach is the consumption of
much memory because of the functional matrices - the functional adja-
cency matrix and its powers. It should be more suitable to work with
the classical numerical adjacency matrix. Below such an approach is pro-
posed. The adjacency matrix helps to generate automatically the state
reachability tree in both the straight-lined system development (from an
initial state towards the prescribed terminal one) and that of the back-
tracking system development (from the terminal state towards the initial
one). To perform the DEDS control synthesis the combination both of

39

these kinds of the model behaviour development is used. The coinci-
dence (a suitable intersection) both of the state reachability trees yields
the possible trajectories of the system development. In such a way all
solutions how to reach the prescribed terminal state from the given ini-
tial one are automatically found. To choose the most suitable solution
rule-based knowledge about the control task specifications can also be
utilised. Sometimes it may be fuzzy.

3.2.1 The straight lined dynamics development

When the input vector xk represents a state of the system and we do not
know the actual state of the transition functions (i.e. the actual state
of the functional elements δk

ij of the k-variant matrix ∆k), we can use
the transpose of the classical (numerical) OG adjacency matrix - i.e. the

matrix ∆ = {δij} having the same structure like the matrix ∆k = {δ
(k)
ij },

however its elements are not functional but they are defined as follows

∆ = {δij}; δij = {
1 if δk

ij 6= 0
0 otherwise

; i = 1, n, j = 1, n (43)

It means that ∆ is the constant matrix with all elements corresponding
with the functional elements of the matrix ∆k equal to 1. Thus, in the
below system development we can understand that ∆k = ∆, k = 0, N−1.
Let us start to derive the approach from the following form of the model
description

{xk+1} = ∆.{xk} , k = 0, N − 1 (44)

where {xk+1} is an aggregate of all of the states that are reachable from
the previous states {xk} in one step k. There is only one exception
{x0} = x0, because the given initial state is only single. There is only
one difference here in comparison with the model (35). The matrix ∆
is the constant matrix (the transpose of the adjacency matrix). Let us
develop the system dynamics in the straight-lined orientation. Hence,

{x1} = ∆.x0 (45)

{x2} = ∆.{x1} = ∆.(∆.x0) = ∆2.x0 (46)
...

...
...

{xk} = ∆.{xk−1} = ∆.(∆k−1.x0) = ∆k.x0

{xk} = Φk,0.x0 (47)

Φk,j =
k−1∏
i=j

∆ (48)

40

The multiplying is made from the left because of the causality principle.

3.2.2 The backtracking dynamics development

The procedure very analogical to that starting from the initial state x0

can start from the terminal state xt. Let us denote the terminal state
as xN . Using the functional matrix ∆k, in general the following relation
can be written

{xN−k−1} = ∆T
N−k−1.{xN−k}, k = 0, N − 1 (49)

where
{xN−k−1} is an aggregate of all of the states from which the states

{xN−k} are reachable in one step k. There is only one exception {xN} =
xN , because the terminal state is only single.

Consequently, the backtracking system development is the following

{xN−1} = ∆T
N−1.xN (50)

{xN−2} = ∆T
N−2.{xN−1} = ∆T

N−2∆
T
N−1.xN (51)

...
...

...
...

...
...

...

{x0} = ∆T
0 .{x1} = ∆T

0 ∆T
1 . . .∆

T
N−2∆

T
N−1.xN (52)

However, using the constant matrix ∆ we have in general

{xN−k−1} = ∆T .{xN−k}, k = 0, N − 1 (53)

and the backtracking system development is the following

{xN−1} = ∆T .xN (54)

{xN−2} = ∆T .{xN−1} = ∆T .(∆T .xN) = (∆T)2.xN (55)
...

...
...

...
...

...
...

{x0} = ∆T .{x1} = ∆T .((∆T)N−1.xN) = (∆T)N .xN (56)

3.2.3 The control synthesis by means of intersection

The main problem of the control synthesis is that usually there are sev-
eral possibilities how to proceed in any step of the system dynamics
development. Consequently, there exists a tree of the possibilities of the
system behaviour. The process of searching the most suitable path can

41

be tedious. The main idea of the approach presented here is to avoid the
actual tree construction. Simultaneous utilising both the straight-lined
approach and the backtracking one reduces the amount of computations.
The procedure is the following:

• to proceed from the initial state x0 by the straight-lined approach

• to proceed from the desirable terminal state xN by the backtracking
approach

• to compare and intersect the aggregated states obtained by means
of the straight-lined procedure and that obtained by means of the
backtracking one. In such a way all possible trajectories from the
given initial state to the desirable terminal one are found.

What is important is that the state reachability trees need not be gen-
erated in the form of actual graphs. It is sufficient to work with the
numerical matrix ∆ of the OG-based model of DEDS and with three
further constant matrices.

The intersection both the straight-lined tree and the backtracking one
eliminates the complicated searching and yields all feasible trajectories
from the initial state to the terminal one. Namely, the trajectories con-
tain common fragments both of the trees. Because the relation between
the trajectories and the control variables is known the control synthesis is
finished by choosing the most suitable trajectory with respect to the con-
trol task specifications and by finding the corresponding sequence of the
control vectors. The procedure of the control synthesis is the following:

1. to proceed from the initial state x0 by the straight-lined approach
and enumerate the sequence {x0,

1{x1}, . . . ,
1{xN}} where the

left upper index 1 denotes the straight-lined procedure. The ele-
mentary vectors are represented by the columns of the (n×(N+1))-
dimensional matrix M1 = (x0,

1{x1}, . . . ,
1{xN})

2. to proceed from the desirable terminal state xN by the backtracking
approach and enumerate the sequence {2{x0},

2{x1}, . . . , xN}

where the left upper index 2 denotes the backtracking procedure.
The elementary vectors are represented by the columns of the (n×
(N + 1))-dimensional matrix M2 = (2{x0},

2{x1}, . . . ,xN})

3. to make the column-to-column intersection M = M1 ∩ M2. The
intersection of the corresponding columns is understood to be find-
ing minima of their corresponding elements. The matrix M =

42

(x0, {x1}, . . . , {xN−1},xN), where {xi} = min(1{xi},
2{xi}), i =

0, N with 1{x0} = x0,
2{xN} = xN , contains in its columns the

vertices of the feasible trajectories (the aggregates of the feasible
states)

4. to find the final set {Ti} of transitions enabled in the step i =
0, N − 1

{Ti} = bt{Ti} ∩ sl{Ti} (57)

bt{Ti} = {bt{xi}
+}; sl{Ti} = {sl{xi}

+} (58)

bt{xi} = ∆T
k .{xi+1} (59)

sl{xi} = ∆k.{xi} (60)

where

bt{xi}
+, sl{xi}

+ denotes respectively the sets that consist only
of the nonzero elements of the bt{xi} and sl{xi} (sl-straight-lined;
bt-backtracking).

On this way the composed elements (like e.g. a + b in general)
express in (59) separating the elementary trajectories (i.e. forks)
and in (60) their assembling (i.e. joins). Let as denote the former
ones as (a + b)∨ and the latter ones as (a + b)∧. The global set of
t he enabled transitions is

{T} = {{T0}, {T1}, ..., {TN−1}} (61)

5. to choose the most suitable sequence {U} = {u0,u1, ...,uN−1} of
the control vectors by means of a suitable representation of knowl-
edge about the control task specifications - e.g. by means of a
knowledge base constructed by the methods presented in [4, 5, 6, 7].

The applicability of the approach. To utilise successfully the ap-
proach presented above it is necessary to inform about its universality
in the sense of causality. In opposite case this aspect could stay hidden.
On the base of the theorem proved in graph theory (see e.g. [27]) the
solution of the control synthesis problem should be found after n−1 steps
or less (k ≤ n − 1). However, sometimes it may be useful to observe a
longer development of the system dynamics than it is necessary. Because
of the causality principle any shorter feasible solution can be found very

43

simply because it is involved in the longer one. Namely, when during the
intersection of the matrices M1 and M2 the latter one is shifted to the
left for one column we obtain another matrix −1M with dimensionality
(n×N). It is the following

−1M = (x0, {x1}, . . . , {xN−2},xN−1) (62)

where
xN−1 = xt (the same terminal state like before).

In general, the shifting (i.e. finding the [n× (N − k+1)]-dimensional
matrices −kM, k = 1, 2, ...) can continue until the intersections exist, i.e.
until x0 ∈ 2{x0} and simultaneously xt ∈ 1{xN−k}.

3.2.4 A general view on the approach

The adjacency matrix ∆ is the non-negative matrix defined e.g. in
[20, 28, 30]. The necessary condition for the above procedure has to
be fulfilled - namely, the terminal state xN must be reachable from the
initial state x0. It is not very difficult to test the reachability. For such
a testing the result of the proved theorem [20, 26, 27] can be used. The
test is based on computation of the k-th power (where k is unknown
before) of the OG adjacency matrix. Because we use the transpose ∆ of
the original adjacency matrix, to obtain ∆k containing the first nonzero
element δk

ij we have to multiply the matrix ∆ from the left. The nonzero
element δk

ij of the matrix ∆k gives us information not only about the
reachability of the i-th element of the state vector xk from the j-th el-
ement of the state vector x0 but also about the number of the steps k
that have to be performed (more mathematical details can be found in
literature [20, 26, 27]). How long is it necessary to compute the powers
of the matrix? The question is answered in [27] - the exponent k ≤ n−1.
Of course, it is concerning only the reachability of a single position from
another single one. The simultaneous reachability of several positions
(the vector of the positions like the state vector in our case) from an-
other vector of positions requires more steps. Because the higher powers
of the adjacency matrix (that is nonnegative matrix) can be positive
matrices, the following discussion is useful. The results on this way can
create a base for a possible generalisation of the above introduced control
synthesis procedure.

A discussion about the exponent k for the indecomposable ad-
jacency matrix. At the guess of the exponent k in special cases the re-

44

sults published in [28, 30] concerning indecomposable non-negative n×n-
dimensional matrices can be utilised. The indecomposable matrix is de-
fined in [20] as the matrix which is not decomposable. The matrix A
is decomposable if it is of the following form (63) or if there exists a
permutation matrix P such that PTAP is of the form (63)

A =

(
A11 A12

0/ A22

)
(63)

where submatrices Aii, i = 1, 2 are square matrices. 0/ is the zero matrix
with the corresponding dimensionality. A real matrix R is non-negative
if all its elements rij ≥ 0. When a power of the indecomposable non-
negative n × n-dimensional matrix is a positive matrix (a real matrix
Q is positive if all its elements qij > 0), the matrix is primitive (as it is
mentioned in [28] this term was introduced by Frobenius in 1912). For the
best upper bound of the exponent kmin guaranteeing that corresponding
power of the primitive matrix (for n ≥ 2) is positive the inequality kmin ≤
ωn = (n−1)2 +1 is valid - see [28, 30]. Hence, at least one common state
can be found by both the straight-lined procedure and the backtracking
one after such a number of steps. The proposed combined approach to
the control synthesis seems to be powerful and may be promising for
extension of its validity for a wider class of PN.

There are some new results for n ≥ 3 in [21] concerning the minimal
exponent. It is proved that if kmin ≥ bωn/2c + 2 then the primitive di-
rected graph has cycles of exactly two different lengths i, j with n ≥ j > i.
Because in the graph theory - see e.g. [19] - the oriented and directed
graphs are distinguished (the oriented graph is understood in [19] to be
a directed graph having no symmetric pair of directed edges or in other
words the directed graphs without loops or multiple edges) the new re-
sults are partially applicable for our case. The adjacency matrix of the
OG-based model of DEDS can be decomposable in general (and conse-
quently, it will be imprimitive). However, the considerations analogical
to indecomposable matrix A can be done for the indecomposable sub-
matrices Aii, i = 1, 2 of the decomposable matrix A.

3.2.5 The illustrative example

Consider the same maze problem introduced above. Its structure is given
on Fig. 22. The PN-based models for cat and mouse are given on Fig. 23
and the OG-based models on Fig. 24. The parameters of the PN-based
models are introduced there too (the matrices cF, cG, mF, mG) as well

45

as the parameters of the OG-based models (c∆k and m∆k). Let us
demonstrate on this example of DEDS the presented approach in details.
Many particulars can be explained in such a way.

The control task specifications determine that the terminal state vec-
tor of the cat cxN is equal to the initial one

cxN = cx0 = (0 0 1 0 0)T (64)

The terminal state vector of the mouse mxN is equal to the initial one as
well

mxN = mx0 = (0 0 0 0 1)T (65)

The powers of the adjacency matrix c∆ are the following

c∆ =

0 0 1 0 1
1 0 0 1 0
0 1 0 0 0
1 1 0 0 0
0 0 0 1 0

c∆2 =

0 1 0 1 0
1 1 1 0 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 0

c∆3 =

2 1 0 1 0
1 1 1 2 1

1 1 1 0 1
1 2 1 1 1
1 0 1 1 1

c∆4 =

2 1 2 1 2
3 3 1 2 1

1 1 1 2 1
3 2 1 3 1
1 2 1 1 1

c∆5 =

2 3 2 3 2
5 3 3 4 3

3 3 1 2 1
5 4 3 3 3
3 2 1 3 1

c∆6 =

6 5 2 5 2
7 7 5 6 5

5 3 3 4 3
7 6 5 7 5
5 4 3 3 3

In the case of the mouse adjacency matrix m∆ they are as follows

m∆ =

0 1 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
1 0 0 0 0

m∆2 =

0 0 1 0 1
1 0 0 0 0
0 1 0 1 0
1 0 0 0 0
0 1 0 1 0

46

m∆3 =

2 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0

0 0 1 0 1

m∆4 =

0 2 0 2 0
0 0 1 0 1
2 0 0 0 0
0 0 1 0 1
2 0 0 0 0

m∆5 =

0 0 2 0 2
2 0 0 0 0
0 2 0 2 0
2 0 0 0 0
0 2 0 2 0

m∆6 =

4 0 0 0 0
0 2 0 2 0
0 0 2 0 2
0 2 0 2 0

0 0 2 0 2

The transition matrices (i.e. the corresponding powers of the matrices
∆) yields information (see the bold elements cδ3,3 of the corresponding
powers of the matrix c∆) that the cat has single solutions with the length
3, 4, and 5 steps and three 6-step solutions. The mouse has (see the
bold elements mδ5,5 of the corresponding powers of the matrix m∆) the
single solution of the length 3 and two 6-step solutions. This matrix is
not primitive. It is a special matrix, where m∆k+3 = 2.m∆k. Let us
illustrate the proposed approach to the control synthesis. The straight-
lined sequence of the aggregated states of the cat behaviour and that of
mouse behaviour are stored, respectively, in the matrices cM1 and mM1.

cM1 =

0 1 0 0 2 2 2
0 0 1 1 1 3 5
1 0 0 1 1 1 3
0 0 1 1 1 3 5
0 0 0 1 1 1 3

; mM1 =

0 0 1 0 0 2 0
0 0 0 0 1 0 0
0 0 0 1 0 0 2
0 1 0 0 1 0 0
1 0 0 1 0 0 2

Very analogically (using the powers of the transpose of the matrices c∆
and c∆) the backtracking sequence of the aggregated states of the cat
and mouse are found

cM2 =

5 3 1 1 1 0 0
3 3 1 1 0 1 0
3 1 1 1 0 0 1
4 2 2 0 1 0 0
3 1 1 1 0 0 0

; mM2 =

0 0 2 0 0 1 0
0 2 0 0 1 0 0
2 0 0 1 0 0 0
0 2 0 0 1 0 0
2 0 0 1 0 0 1

Consider the situation when the the matrices cM1 and cM2 are over-
lapped as well as the matrices mM1 and mM2. Let us compare the

47

corresponding columns of the overlapped matrices and create their in-
tersection. In such a way the resulting matrices cM and mM can be
obtained.

cM =

0 1 0 0 1 0 0
0 0 1 1 0 1 0
1 0 0 1 0 0 1
0 0 1 0 1 0 0
0 0 0 1 0 0 0

; mM =

0 0 1 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
1 0 0 1 0 0 1

To assign the corresponding transitions to the elementary sections of
trajectories of the cat the following has to be done

bt{T0} = {t03, t
0
6}

+; sl{T0}{t
0
3}

+

bt{T1} = {(t11 + t14)
∨, t17, t

1
8}

+; sl{T1} = {t11, t
1
4}

+

bt{T2} = {t21, t
2
2, (t

2
5 + t28)

∨}+; sl{T2} = {t28, t
2
2, t

2
7, t

2
5}

+

bt{T3} = {t33, t
3
4, t

3
6, t

3
7}

+; sl{T3} = {(t33 + t36)
∧, t32, t

3
7}

+

bt{T4} = {t41, t
4
8}

+; sl{T4} = {(t41 + t48)
∧, t44, t

4
5}

+

bt{T5} = {t52}
+; sl{T5} = {t52, t

5
7}

+

{T} = {[t03], [(t
1
1 + t14)

∨], [t22, (t
2
5 + t28)

∨], [(t33 + t36)
∧, t37], [(t

4
1 + t48)

∧], [t52]}

Very analogically the assignment for mouse trajectory sections can be
done.

Let us illustrate the results on figures. The straight-lined and back-
tracking development of the cat is given on Fig. 27 and Fig. 28 respec-
tively and those of the mouse on the Fig. 29. Although the cat graphs
seem to be very complicated, from the numerical computation point of
view they bring no special problems. Using the 6-step matrices the in-
dependent solutions for the cat and the mouse expressed on Fig. 30 are
obtained. Comparing both the 6-step independent solution of the cat and
that of the mouse and their confrontation with the control task specifi-
cations yield the final solution of the problem in question. Namely, c25
is eliminated and m2

4 is preferred because the room 5 is the place de-
termined for the mouse comeback. Analogically, m2

1 is eliminated and
c22 is preferred because the room 3 is the place determined for the cat

48

b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b

A
A
A
A
A
A
AU�

�
�
�
�
�
�
�
�
���

�
�

���

A
A
A
A
A
A
AU

�
�

���

�
�

���

�
�
�
�
�
�
��A

A
A
A
A
A
AU

�
�

���

A
A
A
A
A
A
AU

C
C
C
C
C
C
C
C
C
C
C
C
C
CW

�
�

���

A
A
A
A
A
A
AU�

�
���

�
�
�
�
�
�
�
�
�
���

C
C
C
C
C
C
C
C
C
C
C
C
C
CW

�
�
�
�
�
�
��

�
�

���

A
A
A
A
A
A
AU�

�
�
�
�
�
��

�
�

���
c03

c14

c11

c28

c25

c22

c27

0

1

1 2 3 4 5

2

3

4

5

- step k

?s
t
a
t
e

Figure 27: The graphical expression of the straight-lined development of
the cat behaviour

comeback. The final solution of the cat and mouse control synthesis is
given on Fig. 31.

Hence, the sequence of the final control vectors for the cat is the
following

cu0 = (0, 0, 1, 0, 0, 0, 0, 0)T ; cu1 = (1, 0, 0, 0, 0, 0, 0, 0)T

cu2 = (0, 1, 0, 0, 0, 0, 0, 0)T ; cu3 = (0, 0, 1, 0, 0, 0, 0, 0)T

cu4 = (1, 0, 0, 0, 0, 0, 0, 0)T ; cu5 = (0, 1, 0, 0, 0, 0, 0, 0)T

In order to satisfy the demand of the free movement also the following
sequence is possible (however, it contains movement through the uncon-
trollable door and consequently, we can neither force the cat to pass
through the door nor to prevent it from doing this).

cu0 = (0, 0, 1, 0, 0, 0, 0, 0)T ; cu1 = (0, 0, 0, 1, 0, 0, 0, 0)T

cu2 = (0, 0, 0, 0, 0, 0, 0, 1)T ; cu3 = (0, 0, 1, 0, 0, 0, 1 , 0)T

cu4 = (1, 0, 0, 0, 0, 0, 0, 1)T ; cu5 = (0, 1, 0, 0, 0, 0, 0, 0)T

The sequence of the final control vectors for the mouse is the following

mu0 = (0, 0, 0, 0, 1, 0)T ; mu1 = (0, 0, 0, 0, 0, 1)T

mu2 = (0, 0, 0, 1, 0, 0)T ; mu3 = (0, 0, 0, 0, 1, 0)T

mu4 = (0, 0, 0, 0, 0, 1)T ; mu5 = (0, 0, 0, 1, 0, 0)T

49

b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b

�
�

���

A
A
A
A
A
A
AU

�
�

���

�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
��

A
A
A
A
A
A
AU

C
C
C
C
C
C
C
C
C
C
C
C
C
CW

C
C
C
C
C
C
C
C
C
C
C
C
C
CW

A
A
A
A
A
A
AU�

�
���

A
A
A
A
A
A
AU�

�
���

�
�

���

A
A
A
A
A
A
AU

C
C
C
C
C
C
C
C
C
C
C
C
C
CW�

�
���

A
A
A
A
A
A
AU�

�
���

�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
��

�
�

���

c42
c38

c31

c26

c27

c24

c23

0

1

1 2 3 4 5

2

3

4

5

- step k

?s
t
a
t
e

Figure 28: The graphical expression of the backtracking development of
the cat behaviour

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
@

@@R
B
B
B
B
B
B
BN�

�
�
���

�
�
�
�
�
�
�
�
���

@
@@R

@
@@R

@
@@R

B
B
B
B
B
B
BN�
�
�
�
�
�
�
�
���

�
�
�
���

m0
5

m1
6

m2
4

m2
1

m3
5

m3
2

m4
3

m4
6

m5
4

m5
1

0

1

1 2 3 4 5 6

2

3

4

5

- step k
?

s
t
a
t
e

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
@

@@R

@
@@R

@
@@R

B
B
B
B
B
B
BN�
�
�
�
�
�
�
�
���

�
�
�
���@@@R

@
@@R

@
@@R

B
B
B
B
B
B
BN�
�
�
�
�
�
�
�
���

m0
2

m0
5

m1
3

m1
6

m2
1

m2
4

m3
2

m3
5

m4
3

m4
6

m5
4

0

1

1 2 3 4 5 6

2

3

4

5

- step k
?

s
t
a
t
e

Figure 29: The graphical expression of the straight-lined (on the left)
and the backtracking (on the right) development of the mouse behaviour

50

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a

�
���

�
���

A
A
A
AAU

A
A
A
AAU�

���
�

���

c33
c41

c52

�
�
�
�
�
�
��A

A
A
AAU�

�
�
���A

A
A
AAU�

���

c14 c28 c37
c48

c03

c11
c22

�
���C

C
C
C
C
C
C
C
CCW

c25 c36

0

1

1 2 3 4 5 6

2

3

4

5

- step k
?

s
t
a
t
e

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a

�
�
�
�
�
�
�
�
���

�
�
�
���

B
B
B
B
B
B
BN

@
@@R

@
@@R

@
@@R

@
@@R

B
B
B
B
B
B
BN�
�
�
�
�
�
�
�
���

m3
2
m4

3

m5
4

m1
6m

2
4 m4

6
m0

5

m2
1

m3
5

0

1

1 2 3 4 5 6

2

3

4

5

- step k
?

s
t
a
t
e

Figure 30: The independent 6-step solution of the cat control synthesis
problem and that of mouse

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a

�
���

�
���

A
A
A
AAU

A
A
A
AAU�

���
�

���

c33
c41

c52

�
�
�
�
�
�
��A

A
A
AAU�

�
�
���A

A
A
AAU�

���

c14 c28 c37
c48

c03

c11
c22

0

1

1 2 3 4 5 6

2

3

4

5

- step k
?

s
t
a
t
e

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a

�
�
�
�
�
�
�
�
���

B
B
B
B
B
B
BN

@
@@R

@
@@R

B
B
B
B
B
B
BN�
�
�
�
�
�
�
�
���

m5
4

m1
6m

2
4 m4

6
m0

5

m3
5

0

1

1 2 3 4 5 6

2

3

4

5

- step k
?

s
t
a
t
e

Figure 31: The final (mutually dependent) solution of the cat-and-mouse
control synthesis problem

51

To explain better the principle of the proposed approach to the control
synthesis, it is better to use the 5-step coincidence of the straight-lined
and backtracking development of the cat behaviour. The resulting 5-step
trajectory of the cat behaviour is single as follows

−1[cM] =

0 1 0 0 0 0
0 0 1 0 1 0
1 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0

This matrix can be obtained by means of shifting the matrix cM2 to the
left for one column with respect to the matrix cM1 before the intersection
of the overlapped columns. After shifting the matrix cM2 to the left
once more the intersection of the overlapped columns yields the 4-step
solution.

−2[cM] =

0 1 0 0 0
0 0 0 1 0
1 0 0 0 1
0 0 1 0 0
0 0 0 0 0

After further shifting to the left we have 3-step solution of the control
synthesis problem.

−3[cM] =

0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 0
0 0 0 0

Fig. 32 expresses graphically the 5- and 4-step solutions of the cat, while
the Fig. 33 expresses graphically the 3-step solution of both the cat and
the mouse (obtained analogically). The 5- and 4-step solutions of the
mouse do not exist.

3.3 Summary

By means of comparing both the 6-step straight-lined development of
the system and the 6-step backtracking one we are able to find three
6-step independent solutions of the cat control synthesis problem. In

52

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

�
���

A
A
A
AAU�

�
�
���

�
���

A
A
A
AAU

c03

c11

c42
c38

c27

0

1

1 2 3 4 5

2

3

4

5

- step k
?

s
t
a
t
e

a a a a a
a a a a a
a a a a a
a a a a a
a a a a a

�
���

A
A
A
AAU

�
�
�
�
�
�
��

A
A
A
AAU

c03

c14

c32

c28

0

1

1 2 3 4

2

3

4

5

- step k
?

s
t
a
t
e

Figure 32: The 5-step solution (on the left) and 4-step solution (on the
right)of the cat control synthesis problem

a a a a
a a a a
a a a a
a a a a
a a a a

�
���

�
���

A
A
A
AAU

c03

c11

c22

0

1

1 2 3

2

3

4

5

- step k
?

s
t
a
t
e

a a a a
a a a a
a a a a
a a a a
a a a a

�
�
�
�
�
�
�
�
���

B
B
B
B
B
B
BN

@
@@R

m1
6m

2
4

m0
5

0

1

1 2 3

2

3

4

5

- step k
?

s
t
a
t
e

Figure 33: The 3-step solution of the cat (on the left) and mouse(on the
right) control synthesis problem

addition to these in any step of the shifting we are able to find single
independent solution of the cat. In such a way we have further three
single independent solutions (5-, 4-, and 3-step ones). Analogically, two
6-step independent solutions and the single 3-step independent solution
of the mouse control synthesis problem were found.

In order to denote the elementary sections of the trajectories by the
corresponding transitions that have to be fired, the corresponding func-
tional adjacency matrices c∆k and m∆k are utilised. Namely, they store
information about the placement of the transitions.

To satisfy the prescribed control task specifications some of the in-
dependent solutions had to be eliminated and consequently, the final
solutions (dependent on the control task specifications) were found. Con-

53

sequently, we have to compare the 6-step solution of the cat and that of
the mouse and confront them with the control task specifications. The
same can be done with the 3-step solutions. Hence, the 6-step solution
of the cat-and-mouse problem given on Fig. 31 can be understood to be
more complex like the 3-step solution given on Fig. 33. In addition to
this we can see that the mouse solution is periodical with the period
equal to 3 steps.

The main aim of the dissection of the cat-and-mouse problem solving
into details was the endeavour to demonstrate the applicability of the
proposed approach. Although the control task specifications were given
only verbally, the approach makes possible to solve the control synthesis
problem in analytical terms. However, if we want to solve the problem
fully automatically knowledge about the control task specifications has
to be represent in appropriate form. It is very important at the choice of
the most suitable solution.

4 Conclusions

The problem of modelling and control of DEDS was solved in this report.
The determining priority was the endeavour to find such models and
control synthesis procedures that can be expressed in analytical terms.
Two main kinds of the analytical models were presented - the PN-based
models and the OG-based ones. While the PN-based models are suitable
for the class of DEDS that can be described by OPN, the OG-based
models are suitable only for state machines (i.e. special kind of PN).
Both of the kinds of models were utilised at the analytical approaches to
DEDS control synthesis.

Because the control task specifications are usually given verbally or in
another non-analytical form, the suitable rule-based knowledge represen-
tation was used in order to quantify them. LPN and FPN were used on
this way. Resulting KB was utilised in the proposed PN-based approach.
The graphical tools for the DEDS modelling, for the KB creation, and
even for the automatic knowledge-based control synthesis of DEDS were
developed and described.

Several illustrative examples were solved in order to demonstrate the
liveness of the proposed approaches.

54

Acknowledgement

I should like to thanks Prof. Mogens Nielsen, director of BRICS, for
creating very good conditions for my work. My thanks belong also to
Dr. Uffe Engberg for his help at solving practical problems connected
with finalisation of this report. Finally, I thank also to Mrs. Janne
Christensen for the efficient administrative help.

References

[1] Zoltán Bugár. Logical Petri nets and fuzzy Petri nets as the means
of knowledge representation (in Slovak). Master Thesis (Supervisor:
Čapkovič, F.). Department of Informatics, Faculty of Mathemat-
ics and Physics, Comenius University, Bratislava, Slovak Republic.
1998.

[2] Frantǐsek Čapkovič. A Petri nets-based approach to the maze prob-
lem solving. In Discrete Event Systems: Modelling and Control. (S.
Balemi, P. Kozák and R. Smedinga, editors). Birkhäuser Verlag,
Basel - Boston - Berlin. 1993. 173–179.

[3] Frantǐsek Čapkovič. Knowledge-based control of DEDS. In Proc. of
the 13th IFAC World Congress 1996, San Francisco, USA, June 30-
July 5, 1996 (J.J. Gertler, J.B. Cruz and M. Peshkin, editors). Vol.
J. Elsevier Science Ltd., Pergamon. paper J-3c-02.6. 1996. 347–352.
also on Compact Disc.

[4] Frantǐsek Čapkovič. Petri nets and oriented graphs in fuzzy knowl-
edge representation for DEDS control purposes. BUSEFAL. 69,
1997. 21–30.

[5] Frantǐsek Čapkovič. Fuzzy knowledge in DEDS control synthesis.
In Proc. of the 7th International Fuzzy Systems Association World
Congress - IFSA’97, Prague, Czech Republic, June 25-29, 1997. (M.
Mareš, R. Mesiar, V. Novák, J. Ramı́k, A. Stupňanová, editors).
Academia, Prague, Czech Republic. 1997. 550–554.

[6] Frantǐsek Čapkovič. An approach to knowledge-representation at
control of DEDS. In Advances in Intelligent Systems (F.C. Mora-
bito, editor). IOS Press, Ohmsha, Amsterdam-Berlin-Oxford-Tokyo-
Washington DC. 1997. 458–463.

55

[7] Frantǐsek Čapkovič. Representation of fuzzy knowledge about con-
trol task specifications. In IT & KNOWS Information Technologies
and Knowledge Systems. Proceedings of XV. IFIP World Computer
Congress, August 31-September 4, 1998, Vienna, Austria, and Bu-
dapest Hungary. (J. Cuena, editor). Riegelnik, Vienna. 1998. 215–
228. also on Compact Disc.

[8] Frantǐsek Čapkovič. Knowledge-based control synthesis of discrete
event dynamic systems. In Advances in Manufacturing Systems.
Decision, Control and Information Technology (S.G. Tzafestas,
editor). Chapter 19. Springer Verlag, London. 1998. 195–206.

[9] Frantǐsek Čapkovič. Knowledge-based control of production systems.
In Proc. of the 6th European Congress on Intelligent Techniques &
Computing - EUFIT’98, September 7-10, 1998, Aachen, Germany.
(H.J. Zimmermann, editor). ELITE Foundation, Aachen. Vol. 3.
1998. 1565-1569.

[10] Frantǐsek Čapkovič. Fuzzy knowledge in control of manufacturing
systems. BUSEFAL. 75, 1998. 4–17.

[11] Frantǐsek Čapkovič. Automated solving of the DEDS control prob-
lems. In Multiple Approaches to Intelligent Systems (I. Imam, Y. Ko-
dratoff, A. El-Dessouki and M. Ali, editors). Lecture Notes in Arti-
ficial Intelligence. Springer, Berlin-Heidelberg-New York-Barcelona-
Hong Kong-London-Milan-Paris-Singapore-Tokyo. Vol. 1611. 1999.
735–746.

[12] Peter Čapkovič. Algorithm of the DEDS control synthesis and
its program realization (in Slovak). Master Thesis (Supervisor:
Čapkovič, F.). Department of Informatics, Faculty of Electrical En-
gineering and Information Technology, Slovak University of Tech-
nology, Bratislava, Slovak Republic. 1999.

[13] Peter Čapkovič. Algorithm of the DEDS control synthesis and its
program realization. User Handbook (in Slovak). Department of In-
formatics, Faculty of Electrical Engineering and Information Tech-
nology, Slovak University of Technology, Bratislava, Slovak Repub-
lic. 1999.

[14] D.Y. Chao, M. C. Zhou and D.T. Wang. The knitting technique and
Petri nets synthesis. The Computer Journal. 37, 1994. 67-76.

56

[15] S.M. Chen, J.S. Ke and J.F. Chang. Knowledge representation us-
ing fuzzy Petri nets. IEEE Transactions on Knowledge and Data
Engineering. 2 No 3, 1990 311-319.

[16] Marián Csontos. Timed and time Petri nets in modelling discrete
event dynamic systems (in Slovak). Master Thesis (Supervisor:
Čapkovič, F.). Department of Informatics, Faculty of Mathemat-
ics and Physics, Comenius University, Bratislava, Slovak Republic.
2000.

[17] M. Diaz and P. Sènac. The stream Petri nets: A model for timed
multimedia information. In Proceedings of the 15th International
Conference on Application and Theory of Petri Nets 1994, Zaragoza,
Spain (R. Valette, editor). Lecture Notes in Computer Science. Vol.
815. Springer. 1994. 219-238.

[18] F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva and F.B. Vernadat.
Practice of Petri nets in Manufacturing. Chapman & Hall. 1993.

[19] R. Diestel. Graph Theory Springer-Verlag, New York. 1997.

[20] M. Fiedler. Special Matrices and their Using in Numerical Mathe-
matics (in Czech). SNTL Publishing House, Prague, Czechoslovakia.
1981.

[21] S. Kirkland, D.D. Olesky, and P. van den Driessche. Digraphs with
large exponent. The Electronics Journal of Linear Algebra. 7. 2000.
30–40.

[22] C.G. Looney, A.A., Alfize. Logical controls via boolean rule matrix
transformations. IEEE Trans. on Syst. Man and Cybern. SMC-17.
No 6. 1987. 1077–1081.

[23] C.G. Looney. Fuzzy Petri nets for rule-based decision-making. IEEE
Trans. Syst. Man Cybern. SMC-18. No 1. 1988. 178–183.

[24] Csaba Nemes. Graphical editor for the Petri nets creation (in Slo-
vak). Master Thesis (Supervisor: Čapkovič, F.). Department of
Informatics, Faculty of Mathematics and Physics, Comenius Uni-
versity, Bratislava, Slovak Republic. 1997.

[25] J.L. Peterson. Petri Net Theory and Modeling the Systems. Prentice
Hall, New York. 1981.

57

[26] J. Plesńık. Graph Algorithms (in Slovak). VEDA. Bratislava,
Czechoslovakia. 1983.

[27] F.P. Preparata, R.T. Yeh. Introduction to Discrete Structures.
Addison-Wesley Publ. Comp., Reading, USA. 1974.

[28] J. Sedláček. Introduction to Graph Theory (in Czech). Academia,
Prague, Czechoslovakia. 1977.

[29] S.G. Tzafestas, F. Čapkovič. Petri net-based approach to synthesis of
intelligent control for DEDS In Computer Assisted Management and
Control of Manufacturing Systems (S.G. Tzafestas, editor). Chapter
12. Springer Verlag, Berlin-Heidelberg-New York. 1996. 325–351.

[30] H. Wielandt. Indecomposable non-negative matrices (in German).
Math. Zeitschrift. 52. 1950. 642–648.

[31] W.M. Wonham, P.J. Ramadge. On the supremal controllable sub-
language of a given language. SIAM J. Control and Optimization.
25. 1987. 637–659.

58

Recent BRICS Report Series Publications

RS-00-26 Frantǐsek Čapkovič. Modelling and Control of Discrete Event
Dynamic Systems. October 2000. 58 pp.

RS-00-25 Zolt́an Ésik. Continuous Additive Algebras and Injective Simu-
lations of Synchronization Trees. September 2000. 41 pp.

RS-00-24 Claus Brabrand and Michael I. Schwartzbach.Growing Lan-
guages with Metamorphic Syntax Macros. September 2000.

RS-00-23 Luca Aceto, Anna Inǵolfsdóttir, Mikkel Lykke Pedersen, and
Jan Poulsen. Characteristic Formulae for Timed Automata.
September 2000. 23 pp.

RS-00-22 Thomas S. Hune and Anders B. Sandholm.Using Automata
in Control Synthesis — A Case Study. September 2000. 20 pp.
Appears in Maibaum, editor, Fundamental Approaches to Soft-
ware Engineering: First International Conference, FASE ’00
Proceedings, LNCS 1783, 2000, pages 349–362.

RS-00-21 M. Oliver Möller and Rajeev Alur. Heuristics for Hierarchical
Partitioning with Application to Model Checking. August 2000.
30 pp.

RS-00-20 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. 2-
Nested Simulation is not Finitely Equationally Axiomatizable.
August 2000. 13 pp.

RS-00-19 Vinodchandran N. Variyam. A Note onNP ∩ coNP/poly.
August 2000. 7 pp.

RS-00-18 Federico Crazzolara and Glynn Winskel.Language, Seman-
tics, and Methods for Cryptographic Protocols. August 2000.
ii+42 pp.

RS-00-17 Thomas S. Hune. Modeling a Language for Embedded Sys-
tems in Timed Automata. August 2000. 26 pp. Earlier version
entitled Modelling a Real-Time Languageappeared in Gnesi
and Latella, editors, Fourth International ERCIM Workshop
on Formal Methods for Industrial Critical Systems, FMICS ’99
Proceedings of the FLoC Workshop, 1999, pages 259–282.

