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Abstract

Recently, Coquand and Palmgren considered systems of intuitionistic arith-

metic in all finite types together with various forms of the axiom of choice and
a numerical omniscience schema (NOS) which implies classical logic for arith-
metical formulas. Feferman subsequently observed that the proof theoretic
strength of such systems can be determined by functional interpretation based
on a non-constructive p-operator and his well-known results on the strength
of this operator from the 70’s.
In this note we consider a weaker form LINOS (lesser numerical omniscience
schema) of NOS which suffices to derive the strong form of binary Konig’s
lemma studied by Coquand/Palmgren and gives rise to a new and mathemat-
ically strong semi-classical system which, nevertheless, can proof theoretically
be reduced to primitive recursive arithmetic PRA. The proof of this fact re-
lies on functional interpretation and a majorization technique developed in a
previous paper.

*Basic Research in Computer Science, Centre of the Danish National Research Foundation.



In [6], systems of intuitionistic arithmetic in all finite types extended by various kinds
of the axiom of choice and the schema of numerical omnisience

NOS: ¥n(A(n) Vv -A(n)) — ¥Yn A(n) V In—A(n),
where n ranges over the natural numbers and A is any formula!, are studied.

In [5], Feferman noticed that the proof theoretic strength of such systems can be
determined by functional interpretation based using his non-constructive p-operator
and his classical results on the strength of systems based on this operator (see [1] for
a survey of those results).

In this note we show that a similar use of functional interpretation combined with
the majorization arguments which we developed in [8] can be used to determine the
strength of systems which instead of NOS are based on the weaker schema of lesser
numerical omnisience

VnO((A(n) V —=A(n)) A (B(n) V =B(n)))A
—(3InA(n) A InB(n)) — Yn—-A(n) VVn-B(n),

LNOS =

which generalizes the well-known ‘lesser limited principle of omniscience’ (see [2] for
various equivalent formulations of this principle)

LLOP :=VfY ¢°(=(3n(fn = 0) A In(gn = 0)) — Vn(fn # 0) V ¥n(gn # 0))
in the same way as NOS generalizes LPO.

We will define a system based on LNOS and the full axiom schema of choice

AC which allows to prove the version of Konig’s lemma studied in [6] and is TI3-
conservative over PRA.

In the following HA“ and HA" are the systems of arithmetic in all finite types

denoted by WE-HA® and WE-HA" in [1], where, however, the quantifier-free rule of
extensionality is defined as
Ay —s=,t
= Ay — rls] =, rlt],

where A is quantifier-free.? HA" contains only recursion on type 0 and induction

restricted to X0-formulas. I-/I\Awb is the still weaker system with quantifier-free in-
duction only.

! A may contain arbitrary parameters.

24-" indicates that further non-logical axioms are not allowed to be used in the proof of a premise
of that rule. This restriction is necessary for the deduction theorem to hold true which we will use
below.



E-HA¥ and E-HA" are the corresponding systems with full extensionality.

The axiom schema of choice is given by

ACPT : VaP3y  A(x,y) — FYP V2P Az, Yz), AC:=U {AC""}.
IXs

The axiom schema of unique choice is given by
ACYT ValIlyTA(z,y) — YTV Az, V).

Lemma 1 HA“+AC*4+LLOP + LNOS. Similarly for HA”) instead of HA®,

Proof: By intuitionistic logic and 0 # 1 one proves that
v (A(n) vV =A(n)) — Vn3k([k = 0 — A(n)] A [k # 0 — =A(n))).
By AC%° and the stability of =, this yields
Avn(f(n) = 0 — A(n)).

Likewise, we get a characteristic function for B(n). So by applying LLOP to f,g¢

we obtain LNOS. O

In the following, M*, IP{ denote the Markov principle resp. the independence-of-
premise principle from [11](3.5.10).

Theorem 2 1) HAY+AC+M“+IPg+LNOS is I19-conservative over HA.

2) }ﬁw—kAC—I—M“’—l—IP‘O"—i—LNOS is T19-conservative over PRA.

If AC is replaced by AC®™ plus AC!Y™ (with arbitrary 7) and M* and IPY are
restricted to instances containing only quantified variables of types < 1, then the
above conservation results also hold for the fully extensional systems E-HAY and

E-HA".
Proof: 1) By the lemma above it is sufficient to consider LLOP. So let
HA“+AC+MY+IP§ - LLOP — Vzdy R(z,y),

where Vz3y R(z,y) is a I13-sentence in L(HA).
Relative to HAY we can write LLOP equivalently as

Vn,n(fn A0V gn #0) — Jk < 1([k =0 = Vn(fn £ 0)] Ak #0— Vn(gn # 0)]).
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The latter is implied by

Jk < 1WVz(Vn,n < 2(fn#0Vgn#0) — ([k=0— fz2#0 Ak #0— gz #0])),

Ao(f,g,k,2):=

where Ay can be written as a quantifier-free formula.
Hence

(x) HAY+ACHMY+IPy -V f, g3k < 1Vz Ao(f, 9.k, 2) — VaTy R(z,y).

By a combination of functional interpretation and majorization as used in [8] one
can reduce the use of

to
Vi, g, 23k <1VZ < zAo(f, 9.k, 2).

For the sake of completeness we sketch the proof here: (x) implies
HA“+AC+M“+IP - VaVF <, 173f, g, 2,y(Ao(f, 9, F fg,2) — R(z,y)),

where p:=1— (1 — 0), <, is defined pointwise and 17 := A\f, g.1.
By functional interpretation (see [11](3.5.10)) one extracts a closed term ¢ of HAY
such that

HA® b VaVF < 1(Vf,g Ao(f. g, Ffg, ®Fx) — 3y R(z, y)).

By [7], ® has a majorizing functional ®* and hence (using basic properties of ma-
jorization in Howard’s sense)

HA” - VaVF < 1(tx := ®*1°2 > ®F'x).
Put together we get
HAY FVaVF < 1(Vf,gVz < txAo(f,9,Ffg,2) — Ty R(x,y))
and hence
HAY FVz3F < 1Vf,gVZ < 2z Ao(f,9,F fg,2) — VaIy R(z,y).
Since F' can be obtained by primitive recursive definition by cases this yields

HAY FVf g, 23k <1VZ < 2z Ao(f, 9, k, 2) — YoIy R(z,vy).
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However, Vf, g, 23k < 1VZ < z Ao(f, g, k, Z) can easily be verified in PA“ and hence
(using negative translation and the fact that this statement can be written as a
purely universal sentence) in HA“. Thus HAY + Vz3y R(x,y). The theorem now
follows by the well-known conservation of HA“ over HA.

2) The proof is analogous to 1) using that PA” has a negative translation into

HA“+M“ and the latter has a functional interpretation in I-/I\Awb which is TIS-
conservative over PRA.

The claim for the fully extensional systems follows by the well-known elimination of
extensionality technique (see [10] for details). O

In [6] an extension of the usual weak Konig’s lemma WKL to binary trees given by
arbitrary formulas ®(z, m) which are decidable in the variable m which defines the
tree, i.e. Ym(®(z,m)V =®(z,m)). Let’s call that schema DWKL (see [6] p.57 for
details).

Theorem 3 Both HA“+AC*°+LNOS and HA")+AC**+LNOS prove DWKL.

Proof: We show the theorem for HA” M-AC+LNOS. Analogously to the proof

of the lemma above one verifies that HA” M-AC? allows to reduce DWKL to the
usual weak Konig’s lemma WKL as defined in [12]:

WKL:= VY (T(f) AV2°In(ith(n) = x A fn = 0) — 3bV2°(f(bz) = 0)), where
Tf:=n,m(f(nsxm)=90— fn=00) AV 2%(f(n* () =0 0 — z <o 1).

Consider the formula?

) Va03n <o 1Vk > 0(3m < 1k(Ith(m) = k A f(x *m) = 0)
— Im < I(k =1)(Ith(m) = k <1 A f(z % (n) * m) = 0)).

We first show that I/’Zw[\ FT(f) — (4), where I/’th is the classical counterpart of
}ﬁwbz Let x be arbitrary but fixed.

Case 1: Vk > 03m < 1k(lth(m) = k A f(x xm) = 0).

Then classical logic yields
Vk > 03m < Tk(lth(m) = k A f(x % (0) xm) = 0)V
VEk > 03m < Tk(lth(m) = k A f(x = (1) xm) = 0).

3Here we use that our coding of finite sequences has the property that
Vn,m, f,g(n > m AVz(fx > gx) — fn > gm), which can be arranged.
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In the case the first disjunct is true, choose n = 0 and n = 1 otherwise.

Case 2: Ik > 0—-3Im < 1k(Ith(m) = k A f(z * m) = 0). By the quantifier-free least-
number-principle (hence by the schema QF-IA of quantifier-free induction) we find
the least such k. Call it k.

2.1: kg = 1: Choose n < 1 arbitrarily.

2.2: ko > 1: Then

Im < (ko ~1)(ith(m) = ko =1 A f(z +m) = 0).

choose n := (m)q for such an m. This finishes the proof of PA“) - T'(f) — (+). By
negative translation we get

HA" |\ FT(f) — (+)

where

() = Va0==3n <o 1Yk > 03m < Tk(ith(m) = k A f(x *m) = 0)
I Im < T(k =1)({th(m) =k <1 A f(z * (n) *m) = 0)).

But HA“)+LLOP + (+) — (+). Hence

HA") + LLOP + T(f) — (+).

Assume T'(f) AVz3n(lth(n) = x A fn=0).
By applying AC®? to (+) we get a function g such that

{ Vel (gz <o 1 AVE > 03m < Tk(lth(m) = k A f(z % m) = 0)

— Im < 1(k <1)(lth(m) = k =1 A f(z x (gz) * m) = 0))).
Define h(0) := (), h(n + 1) := h(n) * (g(h(n))).
Now take h(n) := (
(++) ¥n(h(n) = h(
n=0: h(0)={)=n(0).
n—n+l :E(m 1) = ﬁ(@ «(g(hn)) "E Tin % (g(hn))
h(n) x (hn) = h(n + 1).

+1)),,- By quantifier-free induction we show that

T ) (R + 1)) =



Let k£ be arbitrary but fixed. We now show — again by quantifier-free induction on n
— that
Vn < k3m < 1(k =n)(ith(m) = k=n A f(h(n) xm) = 0) :

n = 0: h(0)*m = m, hence the claim follows from T'(f) AVzIn(Iith(n) = xA fn = 0).
n — n+ 1: We may assume that n+1 < k£ : By [LH.

T < T(k =n)(ith(m) = k=n A f(R(n) *m) = 0).
Hence by g-definition

Im < T(k ~(n+ 1))(lth(m) = k ~(n + 1) A f(hn * (g(hn)) *m) = 0),

=h(n+1) (++)

which is the claim for n + 1.
So in total we have shown that T'(f) A Vz3n(lth(n) = x A fn = 0) implies

VEYn < k3Im < T(k=n)(Ith(m) = k=n A f(h(n) *m) = 0)

and hence

i.e. h satisfies WKL. O.

Corollary to the proof of the theorem: In the proof of the theorem above we

have only used elementary recursive functionals from I-/I\Awb So the argument also
applies to even weaker systems having the strength of Kalmar elementary arithmetic

EA.

Remark 4 By combining theorems 2 and 3 proved above, one concludes that the
strong version of (weak) Konig’s lemma from [6) DWKL may be added to the systems
in question without destroying the conservation results. Instead of the rather tedious
proof of weak Konig’s lemma from LLOP and AC® one could also more easily
directly apply the proof of theorem 2 to the situation where weak Konig’s lemma is
added and use the WKL-elimination from [8]. However, we preferred the first route
as an application of LLOP.

Remark 5 If one is not interested in proof theoretic reductions to systems of low
proof theoretic strength but in the more applied aspect of extracting algorithms or
bounds from proofs of semi-classical systems, then (at least in the absence of M* )4

4For a strong result in this direction in the presence of M“ see [9](thm.3.18).
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the much stronger results can be obtained as we have shown in [9]. E.g. consider the
comprehension principle for negated formulas in all types

CA_ : 307Vl (B(x) = 0 < -A(z))
(where A is an arbitrary formula) and the full double negation shift schema
DNS: Vz/=—=A — V2P A

and define T = HA“+AC+DNS+CA_. Then the provable® functions of T are
bounded by primitive recursive functions although T allows to interpret full classical

type theory wvia negative translation. For weak subsystems instead of I-/IKUJ, even
polynomial bounds are guaranteed.

Remark 6 Intuitionistically one can allow certain induction principles which classi-
cally would go beyond the strength of PRA and still obtain conservation over PRA.
E.g. [13] considered function parameter free forms of induction rules for fomulas like

AfVal Ay (with quantifier-free Ag). It seems likely that also in this context one may
add LNOS and still preserve PRA -reducibility.
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