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A New Trade-off for Deterministic Dictionaries

Rasmus Pagh
pagh@brics. dk

BRICS*

University of Aarhus
Denmark

Abstract

We consider dictionaries over the universe U = {0,1}" on a unit-
cost RAM with word size w and a standard instruction set. We present
a linear space deterministic dictionary with membership queries in
time (loglog n)°™M) and updates in time (log n)°(), where n is the size
of the set stored. This is the first such data structure to simultaneously
achieve query time (logn)°(!) and update time O(2V18™),

1 Introduction

Among the most fundamental data structures is the dictionary. A dictionary
stores a subset S of a universe U, offering membership queries of the form
“x € S77. The result of a membership query is either 'no’ or a piece of
satellite data associated with x. Updates of the set are supported via insertion
and deletion of single elements.

Several performance measures are of interest for dictionaries: The amount
of space used, the time needed to answer queries, and the time needed to per-
form updates. The most efficient dictionaries known depend on a source of
random bits (are randomized, as opposed to deterministic). However, being
randomized means that either: 1. There is a chance that the expected time
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bounds do not hold, or 2. There is a chance of the data structure returning a
wrong answer. In some situations, this may not be acceptable. Even if their
use is acceptable, random bits may be expensive or unavailable. Finally, an
understanding of the power of randomization is important from a theoretical
point of view. All this has led to an interest in derandomization of known
randomized algorithms and data structures. Several recent papers consider
deterministic dictionaries [4, 11, 12, 13, 14]. However, previous space-efficient
dictionaries with very fast lookups (time (logn)°™) have had update time
much larger than that of, say, binary search trees. Therefore these dictionar-
ies are of interest mainly when insertions are quite rare compared to lookups.
Our interest here lies in obtaining space-efficient deterministic dictionaries
which combine fast updates (time (logn)?M) with very fast lookups.

The model of computation used is a unit-cost word RAM, in which each
memory register contains a w-bit integer (a word). This model of compu-
tation, resembling modern computers, has been the object of much recent
research. Hagerup’s survey [10] contains a more detailed definition. We
adopt the multiplication model whose instruction set includes addition, bit-
wise boolean operations, shifts and multiplication. Note that all operations
can also be carried out in constant time on arguments spanning a constant
number of words. The universe considered is the set of machine words,
U = {0,1}". Such a RAM model, where a single unit of data fits into one
machine word, is often referred to as trans-dichotomous [9]. For simplicity,
we assume that each piece of satellite data occupies a single machine word
(this could be a pointer to more bulky data). Throughout this paper, S will
refer to an arbitrary set of n elements from U. All bounds will be indepen-
dent of w, unless explicitly stated. Note that the optimal space consumption
of a dictionary is ©(n) words.

1.1 Related Work

The seminal result of Fredman, Komlds and Szemerédi [7] is that a static dic-
tionary (i.e. without update operations) can have constant query time and
linear space consumption. Allowing randomization, the FKS static dictio-
nary can be made dynamic, supporting insertions and deletions in amortized
expected constant time [4]. Improving this, Dietzfelbinger and Meyer auf der
Heide [5] have constructed a dictionary in which all operations are done in
constant time with high probability (i.e. probability at least 1 —n~¢, where ¢
is any constant of our choice). A simpler dictionary with the same properties



was later developed [3]. As for randomized dictionaries, this leaves very little
to be improved.

Without a source of random bits, the task of simultaneously achieving
fast updates and constant query time seems considerably harder. The best
deterministic dictionary with constant query time supports updates in time
O(n®), for constant € > 0 [12]. The query time is O(1/€?). In fact, a range
of trade-offs between update time an query time is known. For query time
O(q(n)), where q(n) = O(y/logn), insertion time O(n'/?™) and deletion
time O(logo(l) n) can be achieved [13]. The best known result in the sit-
uation where update and query time are considered equally important, is
O(y/logn/loglogn) time per dictionary operation. It is a dynamization of
the static data structure of Beame and Fich [2] using the exponential search
trees of Andersson and Thorup [1].
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Figure 1: Overview of deterministic dictionaries using linear space.

The Beame-Fich-Andersson-Thorup (BFAT) data structure in fact sup-
ports predecessor queries of the form “What is the largest element of S not
greater than x?”. Its time bound improves significantly if the word length
is not too large compared to logn. For example, if w = logo(l) n, the time
per operation is O((loglogn)?/logloglogn). This will be a key component
in our construction.

An unpublished manuscript by Sundar [14] states an amortized lower
bound of time Q(bg)ig%) per operation for a deterministic dictionary in
Yao’s cell probe model [16], which in particular implies the same lower bound
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on the word RAM. Note that for w = log®® n, the BFAT data structure has
time per operation polynomially related to the lower bound. The challenge
therefore seems to be finding ways of dealing with large word length.

1.2 This Work

In this paper we obtain a dictionary with query time O((loglogn)?/
logloglogn) and amortized update time O(log®n) (we sketch how to make
the latter bound worst-case). We deal with the problem of large word lengths
by devising a dynamic universe reduction scheme, which reduces the problem
to one within a smaller universe, which is then handled by the BFAT data
structure. This is the first deterministic dictionary to simultaneously achieve
query time (logn)°® and update time O(21°6™)°) for a constant ¢ < 1. The
data structure is weakly non-uniform in that it needs access to a fixed num-
ber of word-size constants depending (only) on w. These constants may be
thought of as computed at “compile time”.

In the following we assume that w > log5 n. Smaller word sizes can be
handled using the BFAT data structure directly, and standard rebuilding
techniques can be used to change from one data structure to the other. Sim-
ilarly, we assume that n is larger than some fixed, sufficiently large constant,
since constant size dictionaries are trivial to handle. We will look at machine
words as binary numbers, with the most significant bits on the left and the
least significant bits on the right. Bit positions are numbered from right to
left, starting with zero.

2 Universe Reduction

Miltersen [12] has shown the utility of error-correcting codes to deterministic
universe reduction. A wniverse reduction function p : U — U’ translates
the dictionary problem from universe U to the reduced universe U’ (a search
for = becomes a search for p(z)). The advantage of this is that U’ may be
smaller and easier to handle. Previous universe reduction functions for the
static dictionary problem [7, 12, 13] have been 1-1 on S. In the dynamic case
this appears hard to combine with efficient updates, and in our construction
the reduction function is O(logn)-1. That is, O(logn) elements of S may
translate into the same element p(x). A search among the elements “attached
to p(z)” is then needed to establish whether x € S.



2.1 Error-correcting Codes and Distinguishing Bits

Miltersen’s approach plays a key role in our construction, so we review it here.
The basic idea is to employ an error-correcting code e : {0,1}* — {0, 1}*
and look at the dictionary problem for the transformed set {e(z) | x € S}.
For this it is possible to find a very simple function which is 1-1 on S, namely
a projection onto O(logn) bit positions.

The code must have relative minimum distance bounded from 0 by a fixed
positive constant, that is, there must exist a constant o > 0 such that any
two distinct codewords e(x) and e(y) have Hamming distance at least a - 4w
(the supremum of such constants is called the relative minimum distance of
the code). We can look at the transformed set without loss of generality, since
Miltersen has shown that such an error-correcting code can be computed in
constant time using multiplication: e(z) = ¢, -z, for suitable ¢, € {0,1}%".
The choice of ¢, is a source of weak non-uniformity. The relative minimum
distance for this code is greater than 1/11. In the following, o will denote
a constant strictly smaller than the relative minimum distance of the error-
correcting code (e.g. a = 1/11).

Lemma 1 (Miltersen) For any R C U x U there exists a discriminating bit
position i € {0,...,4w — 1} such that |[{(z,y) € R | x # vy, e(z); = e(y):}] <
(1 —-a)|R|.

Corollary 2 (Miltersen) Let T' be a set of m elements. There exists a set of
distinguishing bit positions D C {0, ..., 4w —1} with |D| < 2logm such that
for all pairs of distinct elements x,y € S, there is i € D where e(x); # e(y);.
The set D can be constructed deterministically in time O(mlogm), given a
deterministic O(m) time algorithm for finding a discriminating bit from the
equivalence classes of an equivalence relation over T.

Proof sketch. Elements of D may be found one by one, as discriminating
bits of the equivalence relation where z,y € T are equal iff e(z) and e(y) do
not differ on the bit positions already chosen. The number of pairs not dis-
tinguished decreases exponentially with the number of bit positions chosen.
O

Miltersen’s universe reduction function is simply = +— e(z) AND d, where
AND denotes bitwise conjunction and d is the incidence vector of D. The
reduced universe U’ consists of the 4w-bit vectors which are zero outside the
positions given by D.



Two problems remain: 1. We must show how to find discriminating
bit positions in time O(m). 2. We want the reduction function to map to
O(logm) consecutive bits, that is, to {0,1}°0°e™) The first problem was
solved by Hagerup [11]. We need the following slight extension of his result
to also solve the second problem:

Lemma 3 (Hagerup) Given a set T of m elements, divided into equiva-
lence classes, a discriminating bit position i can be found in time O(m)
by a deterministic, weakly non-uniform algorithm. Further, for any set
I C {0,...,4w — 1} of size O(log*n) (given as a bit vector), we can as-
sure that i & 1.

Proof sketch. It can be shown how to compute |{{z,y} CT |z # y, x =
y, e(x); = e(y);}| for all ¢« € {0,...,4w — 1} in time O(m). The algorithm
employs word-level parallelism, and the result vector spans O(logm) words,
since each number occupies O(logm) bits. Word-parallel binary search can
be used to find the smallest entry. To avoid entries in I, simply overwrite
the entries of I with the largest possible integer before finding the minimum.
This corresponds to changing the error-correcting code to be constant (i.e.
non-discriminating) on the bit positions of I. Since |I| = O(log* n) and the
length of codewords is 4w > 4log® n, the relative minimum distance of this
modified code is still > a (for n large enough). Hence, this procedure will
find a discriminating bit position. O

2.2 Multiple Set Universe Reduction

To accommodate efficient updates, we will not maintain a set of distinguish-
ing bit positions for S itself. Instead, we maintain & = [log(n + 1)] sets
of distinguishing bit positions Dy, ..., Dy_1 for subsets Sy, ..., S,_1 whose
(disjoint) union is S. A change of set ¢ and recomputation of D;, should take
time O(slogs), where s is the size of the new set. Further, the complete
set of distinguishing bit positions should be well separated, that is, no pair
of positions should differ by less than 2¢ log? n, where ¢ is a suitably large
constant. By the results of Sect. 2.1, this can indeed be achieved, in such a
way that |D;| = O(logn).

Since the distinguishing bit positions are well separated, we are able to
“collect” and order the distinguishing bits within O(log®n) consecutive bit
positions, such that the distinguishing bits of Sy are least significant, and the



distinguishing bits of Si_; are most significant. For each empty set S; we
will have O(log|S;|) zero-bits. The following lemma makes this precise.

Lemma 4 Given a list dy,...,d, of well separated bit positions, where p <
clog®n, there is a function f; : {0,1}* — {0,1}? such that for any «,
fi(z); = xq,. The function can be evaluated in constant time, and updated
under changes of bit positions in constant time.

Proof. We will show how to “move” bit d; of x € {0,1}* to bit u + i of a
u + p-bit string, where u > max; d; (the desired value can then be obtained
by shifting the word by u bits). We simply multiply = by mg =Y, 2474 (a
method adopted from [8, p. 428-429]). Omne can think of the multiplication
as p shifted versions of x being added. Note that if there are no carries in
this addition, we do indeed get the right bits moved tou+1,...,u+p+ 1.
However, since the bit positions are well separated, all carries occur either
left of the u 4 pth position (which is harmless) or right of position u — p
(which can never influence the values at positions greater than u, since there
are more than enough zeros in between to swallow all carries). Note that mg
can be updated in constant time when a bit position changes. O

We are now ready to describe how to update the dynamic universe re-
duction function under updates. We keep the invariant that |S;| € {0,2°}.
New elements are inserted in the lowest numbered empty set .S; together
with the elements of Sy, ..., S;_; (these sets are then empty). Note that the
work per element when constructing a new set of distinguishing positions is
O(logn). Since elements are always transferred to higher numbered sets, the
total amortized work for an insertion is O(klogn) = O(log®n). As we will
see in the next section, this cost will be dominant in the cost of an insertion
in the final dictionary.

The universe reduction function will not be updated during deletions.
Rather, deletions are implemented by simply marking deleted elements in
the dictionary. When more than half of the elements in the dictionary are
marked, a new dictionary containing the unmarked elements is constructed.
The cost of this is amortized over the deletions, which hence also have cost

O(log®n).



3 Using the Predecessor Data Structure

Recall that our universe reduction function, which we will call p, computes
the concatenation of functions fy, ..., fo which are 1-1 on Sy, ..., Sy, respec-
tively. The value p(z) after x is inserted in S; is used as key for accessing =
in the BFAT predecessor data structure. Functions fy, ..., fi_1 return zero
vectors at this time. However, these functions will change in the period until
the next update of S;, and specifically fy(x),..., fi_1(x) may change. When
a search for p(x) is conducted, the result will be either the BFAT key for
x, or that of a key y later inserted, whose BFAT key agrees with that of x
except possibly for some of the values of fy,..., fi_1. In this case we want
x to be present in y’s associated (sorted) list of elements. That is, for each
new key p(y) in the BFAT data structure, we want a list of elements which
includes z € S; iff © and y agree on f,..., f;.

A predecessor query on p(y) — 1 will return the BFAT key which has the
longest common prefix with y (if any). By invariant, the associated list of
this key contains all the elements needed, apart from y itself, so it is easy to
create the list associated with y. The crux is that, since fy,..., fo are 1-1,
an associated list can contain at most one element from each set.

Example. We go through figure 2. This example has 3, 4 and 5 distin-
guishing bit positions for Sy, S; and Ss, respectively. The keys inserted in
the BFAT data structure are annotated with their list of elements. At ¢t =4
the dictionary contains four elements, denoted a, b, ¢, d, all residing in Sy. At
t = 5 element e is inserted and put into Sy. The key for e coincides with
the key for ¢ on the first five bits, so the associated list contains ¢ and e. A
search for the key of ¢ at this time would in fact find 00111 0000 000, so c¢ is
not strictly necessary in the new list. However, at t = 6 element f enters,
and S is filled by e and f. After this, a search for the key of ¢ will find
001110010000, and ¢ can be found in the new list. At ¢ = 7 element ¢ is
inserted, and its key coincides with both the first five bits of ¢’s key and the
first nine bits of e’s key, so the associated list becomes ceg.

3.1 Time and Space

A search for x requires computation of p(z) in constant time, a predecessor
lookup in time O((loglogn)?/logloglogn) and finally search of an associated
list in time O(loglogn). That is, the total time is O((log log n)?/ log log logn).



t=4 t=5 t=6 t=7

00010 0000 000 a 00010 0000 100 00010 0001 000 00010 0001 010
00110 0000 000 b 00110 0000 110 00110 1000 000 00110 1000 000
00111 0000 000 c 00111 0000 001 00111 1100 000 00111 0101 011
11011 0000 000 d 11011 0000 110 11011 0010 000 11011 0010 001

00111 0010 000 ce 00111 0010 101

11111 1101000 f 11111 1101 100

S0 00111 0000 011 ce 10111 0010 011 ceg

Figure 2: Universe reduction function values for elements in S during three
insertions.

As for insertions, remember that the cost of maintaining the universe
reduction function is O(logn) for each element that is moved to a new set
(this happens O(logn) times per element). We only need to argue that the
cost of maintaining the associated lists is no larger. This is not hard to
see, since all that is needed is a single predecessor query and insertion of an
element in a sorted list of length O(logn).

The only part of the data structure which is not clearly in linear space
is the set of associated lists, where elements may occur logn times. To see
that their total length is O(n), note that there can be no more than n /2!
lists of length i, since such lists must have been created in connection with

insertion of elements in Sy, ..., Ski1--

4 Final Remarks

4.1 Speedups

If the requirement of linear space is abandoned, substituting van Emde Boas
trees [15] for the BFAT data structure gives membership queries in time
O(loglogn). The space usage then rises to n?(osn).

Updates can be sped up slightly, to time O(log®n/loglogn), by using
another strategy, in which there are O(logn) sets of each size, and only
O(logn/loglogn) different set sizes.



It can be noted that the predecessor data structure is used in such a
way that it essentially answers “longest common prefix” queries on strings of
length k4 1, where the characters are described by the bits corresponding to
sets Sk, ..., Sp, respectively. A plausible way of improving the query time to,
say, O(loglogn) is by designing a faster data structure which can find such
longest common prefixes.

4.2 Worst-case Bounds

We gave amortized bounds. The same worst-case bounds follow by standard
lazy rebuilding techniques, to be sketched below. Where the amortized in-
sertion algorithm would “build” S; and empty S;_1,...,Sp, the worst-case
insertion algorithm keeps S;_1,...,Sy in memory and starts building S; at
a pace of ¢ logn steps per insertion (for some sufficiently large constant c).
Only when S; is completed, we throw out the lower numbered sets.

More precisely, we now have sets S; ; for 0 < j < i < k, where |5; ;| €
{0,27}. The first index signifies that S; ; will next become part of a new set of
size 2!. Consider insertion number 2°d — 2%, where a < b (any positive integer
can be written like this for unique integers a, b and d). At this point we start
constructing Sy, from the new element and S, ¢, ..., Sqq—1. As the last stage
of the construction, we set S, = -+- = Sza-1 = 0. Constant ¢ above can
be chosen such that this is guaranteed to be finished before any of the sets
Si0,---,5:i—1 are to be reconstructed. The ordering of distinguishing bits is
with respect to primarily the first index, secondarily the second index.

Since we need associated element lists of length Q(log®n), we cannot
afford to use sorted lists as before (updates would become more expensive).
Instead, we use persistent balanced search trees [6], which support updates
and queries in time O(logt) for a sequence of trees of size at most ¢. One
technicality is that many instances of the algorithm finding distinguishing
bits have to run at the same time and must produce well separated bit
positions. However, since positions are chosen one by one, this poses no
problem. In addition to what is done in the amortized case, the worst-case
deletion algorithm inserts two elements of S in a new dictionary. When the
transfer of all elements in S is completed, the new dictionary takes the place
of the old one. Of course, transferred elements may be deleted before the
new dictionary takes over.
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5 Conclusion

We have seen a new lookup time vs insertion time trade-off for linear space
deterministic dictionaries. This presents progress towards closing the gap be-
tween known upper and lower bounds. It also shows that universe reduction
techniques have a place not only in the static setting.

The big open question is whether updates in such a dictionary can be
accommodated in time (logn)°™®. For example, time (loglogn)?® would
mean that Sundar’s lower bound is tight up to a polynomial. For w =
(logn)©®) this is achieved by the BFAT data structure. Thus, large word
length seems to be the main enemy, and new universe reduction schemes with
faster updates appear a promising approach.

Acknowledgments: The author would like to thank Rolf Fagerberg and
Jakob Pagter for useful feedback.
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