
B
R

IC
S

R
S

-00-2
I.W

alukiew
icz:

LocalLogics
for

Traces

BRICS
Basic Research in Computer Science

Local Logics for Traces

Igor Walukiewicz

BRICS Report Series RS-00-2

ISSN 0909-0878 January 2000

Copyright c© 2000, Igor Walukiewicz.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/2/

Local logics for traces

Igor Walukiewicz

BRICS∗

Abstract

A µ-calculus over dependence graph representation of traces
is considered. It is shown that the µ-calculus cannot express all
monadic second order (MSO) properties of dependence graphs.
Several extensions of the µ-calculus are presented and it is proved
that these extensions are equivalent in expressive power to MSO
logic. The satisfiability problem for these extensions is PSPACE
complete.

1 Introduction

Infinite words, which are linear orders on events, are often used to model
executions of systems. Infinite traces, which are partial orders on events,
are often used to model concurrent systems when we do not want to put
some arbitrary ordering on actions occurring concurrently. A state of a
system in the linear model is just a prefix of an infinite word; it represents
the actions that have already happened. A state of a system in the trace
model is a configuration, i.e., a finite downwards closed set of events that
already happened.

Temporal logics over traces come in two sorts: a local and a global one.
The truth of a formula in a local logic is evaluated in an event, the truth of
the formula in a global logic is evaluated in a configuration. Global logics
(as for example the one in [2]) have the advantage of talking directly
about configurations hence potentially it is easier to write specifications
in them. The disadvantage of global logics is the high complexity of

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

the satisfiability problem [11]. Here we are interested in local temporal
logics.

In this paper we present several local logics for traces and show that
they have two desirable properties. First, the satisfiability problem for
them is PSPACE complete. Next, these logics are able to express all the
trace properties expressible in monadic second order logic (MSOL).

We start from the observation that branching time program logics,
like mu-calculus, can be used to describe properties of traces. This is
because these logics talk about properties of labelled graphs and a trace
(represented by a dependence graph) is a labelled graph with some ad-
ditional properties. It is well known that mu-calculus is equivalent to
MSOL over binary trees but it is weaker than MSOL over all labelled
graphs. It turns out that the µ-calculus is weaker than MSOL also over
dependence graphs.

To obtain a temporal logic equivalent to MSOL over traces we con-
sider some extensions of the µ-calculus. The one which is easiest to
describe here is obtained by adding coa propositions. Such a proposition
holds in a event e if there is in a trace an even incomparable with e which
is labelled by a.

A first local temporal logic for traces was proposed by Ebinger [3].
This was an extension of LTL. He showed that over finite traces his logic is
equivalent in expressive power to first order logic. The logic that is most
closely related with the present work is the one proposed by Niebert [8].
This is an extension of the µ-calculus which captures the power of MSOL.
Unfortunately the syntax of the logic is rather heavy. The proof that that
the logics captures the power of MSOL uses some kind of decomposition
of traces and coding of asynchronous automata. The present work may
be seen as an attempt to find another trace decomposition that makes
the work easier, partly by allowing the use of standard facts about MSOL
on trees. We do not use here any kind of automata characterisation of
MSOL over traces or any other “difficult” result about traces.

Outline of the paper

In the next section we define traces as labelled graphs representing partial
orders on events. Such a representation is called dependence graph rep-
resentation of traces. Next we define MSO logic and the µ-calculus over
labelled graphs. We also recall results linking MSOL with the µ-calculus
and an automata characterisation of the later logic.

2

In Section 3 we describe a new representation of traces by trees
that we call lex-trees. These trees have the property that every trace
is uniquely represented by such a tree. The other important property
of lex-trees is that a lex-tree is MSOL definable in dependence graph
representation of a trace and dependence graph is MSOL definable in
lex-tree representation of a trace. Hence MSOL over dependence graphs
is equivalent to MSOL over lex-trees. This allows us to use an equiva-
lence of the µ-calculus and MSOL over trees to obtain an extension of the
µ-calculus equivalent to MSOL over dependence graphs. This extension
may not seem that natural as it is very much connected with particular
representation.

In Section 4 we consider some other extensions of the µ-calculus. One
is µ(co), an extension with coa propositions. Such a proposition holds in
a event e if in the trace there is an event incomparable with e which is
labelled by a. The other is µ(Before) which is an extension with Beforeab

propositions. Such a proposition holds in a event, roughly, when among
the events after it an a event occurs before the first b event.

In the same section we present the main result of the paper (Corol-
lary 19) which says that the two logics can express all MSOL definable
properties. The proof of this fact relies on existence of some automaton
that can reconstruct a lex-tree inside a dependence graph. This construc-
tion is given in the next two sections.

In Section 5 we give a characterisation of lex-trees in terms of some
local properties. Initially we define lex-trees using some formulas with
quantification over paths in dependence graph. Here we show that lex-
trees can be defined by existence of some marking of nodes satisfying
some local consistency conditions.

In Section 6 we describe the construction of an automaton recon-
structing lex-trees in dependence graphs. This construction uses the
local definition of lex-trees from the preceding section.

In Section 7 we give translations of our logics to automata over infinite
words. For a given formula we construct an exponential size automaton
accepting linearizations of traces satisfying the formula. From this we
deduce PSPACE-completeness of the satisfiability problem for our logics.

2 Preliminaries

A trace alphabet is a pair (Σ, D) where Σ is a finite set of actions and
D ⊆ Σ × Σ is a reflexive and symmetric dependence relation.

3

We shall view (Mazurkiewicz) trace as a special Σ-labelled acyclic
graph. Let 〈E,R, λ〉 be a Σ-labelled graph. In other words, (E,R) is a
graph and λ : E → Σ is a labelling function. A graph is acyclic if the
reflexive and transitive closure R∗ of R is a partial order.

Definition 1 A trace or dependence graph over alphabet (Σ, D) is a
Σ-labelled acyclic graph G = 〈E,R, λ〉 satisfying:

(T1) ∀e ∈ E. {e′ : R∗(e′, e)} is a finite set.
(T2) ∀e, e′ ∈ E. R(e, e′) ⇒ (λ(e), λ(e′)) ∈ D.
(T3) ∀e, e′ ∈ E. (λ(e), λ(e′)) ∈ D ⇒ R∗(e, e′) ∨R∗(e′, e).
(T4) ∀e, e′ ∈ e. R(e, e′) ⇒ ¬∃e′′. R(e, e′′) ∧R(e′′, e′).

The nodes of a dependence graph are called events. An a-event is an
event e ∈ E which is labelled by a, i.e., λ(e) = a. We say that e is before
e′ iff R∗(e, e′) holds. In this case we also say that e′ is after e. We say
that e′ is a successor of e if R(e, e′) holds.

The first condition of the definition of dependence graphs says that
the past of each event (the set of the events before the event) is finite. The
second one postulates that R relates only events labelled by dependent
letters. The third, says that every two events labelled by dependent
letters are related by R∗. The last condition requires that R has no
redundancies. In the literature sometimes a trace is defined in terms of
R∗ relation and R relation is obtained by taking a Hasse diagram of R∗

(cf. [5]).

Proviso: In the whole paper we fix a trace alphabet (Σ, D) and a linear
order <Σ on Σ. We also assume that we have a special letter ⊥ ∈ Σ such
that {⊥} × Σ ⊆ D. Finally we assume that in every trace there is the
least event (with respect to the partial order R∗) and it is labelled by ⊥.
We denote this least event also by ⊥.

The assumption that every trace has the least event will turn out to
be very useful for local temporal logics we consider in this paper. In
particular the definition of a set of traces definable by a formula becomes
unproblematic in this case.

In the sequel we will also need other representations of traces than
dependence graphs. Because of this the following definitions of logics are
formulated more generally for Γ-labelled graphs where Γ is an arbitrary
alphabet.

4

First, we define monadic second logic suitable to talk about Γ-labelled
graphs. The signature of the logic contains one binary relation R and a
monadic relation Pa for each a ∈ Γ. Let Var = {X, Y, . . . } be the set of
(second order) variables. The syntax of MSOL is given by the grammar:

X ⊆ Y | Pa(X) | R(X, Y) | ¬α | α ∨ β | ∃X. α

where X, Y range over variables in Var , a over letters in Γ, and α, β
over formulas.

Given a Γ-labelled graph M = 〈S,R ⊆ S × S, ρ : S → Γ〉 and
a valuation V : Var → P(S) the semantics is defined inductively as
follows:

• M,V � X ⊆ Y iff V (X) ⊆ V (Y),

• M,V � Pa(X) iff there is s ∈ S with V (X) = {s} and ρ(s) = a,

• M,V � R(X, Y) iff there are s, s′ ∈ S with V (X) = {s}, V (Y) =
{s′} and R(s, s′),

• M,V � ∃X.α iff there is S ′ ⊆ S such that M,V [S ′/X] � α,

• the meaning of boolean connectives is standard.

As usual, we write M � ϕ to mean that for every valuation V we have
M,V � ϕ. A MSOL formula ϕ defines a set of traces {G : G � ϕ}. In
the sequel we will sometimes use first order variables in MSOL formulas.
To denote them we will use small letters x, y, The intention is that
these variables range over nodes of a graph and not sets of nodes as
second order variables do. First order variables can be “simulated” with
second order variables because being a singleton set is expressible in our
variant of MSOL.

Next we define the µ-calculus over an alphabet Γ. For some fixed set
Var of variables the syntax is defined by the grammar:

X | Pa | ¬α | α ∨ β | 〈·〉α | µX.α

where X ranges over variables in Var , a over letters in Γ, and α, β
over formulas. In the construction µX.α we require that X appears only
positively in α (i.e., under even number of negations).

5

The meaning of a formula α in a Γ-labelled graph M = 〈S,R, ρ〉 with
a valuation V : Var → P(S) is a set of nodes [[α]]MV ⊆ S defined by:

[[Pa]]
M
V ={s ∈ V : ρ(s) = a}

[[X]]MV =V (X)

[[〈·〉α]]MV ={e ∈ E : ∃e′. R(e, e′) ∧ e′ ∈ [[α]]MV }
[[µX.α(X)]]MV =

⋂
{S ⊆ E : [[α(X)]]MV [S/X] ⊆ S}

The omitted clauses for boolean constructors are standard. We write
M,V, s � α if s ∈ [[α]]MV . If G is a trace which has the least event ⊥ then
we write G � α to mean that G, V,⊥ � α for all V . A µ-calculus formula
defines a set of traces {G : G � α}.

A Γ-labelled graph 〈S,R, ρ〉 is called deterministic tree if 〈S,R〉 is a
tree and for every v ∈ S and every a ∈ Γ there is at most one v′ ∈ S with
R(v, v′) and ρ(v′) = a. The following equivalence was shown by Niwinski
(cf. [9]).

Theorem 2
Over deterministic trees µ-calculus is equivalent to MSOL. In other words,
for every MSOL sentence ϕ there is a µ-calculus sentence αϕ such that:
M � ϕ iff M � αϕ. Also conversely, for every µ-calculus sentence α
there is an MSOL sentence ϕα such that: M � α iff M � ϕα.

Clearly µ-calculus cannot be equivalent to MSOL over all labelled
graphs or even trees because in MSOL we can say that there is some
fixed number of successors of the node and this is impossible in the µ-
calculus. Dependence graphs are deterministic acyclic graphs but usually
they are not trees. Later we will see that µ-calculus is weaker than MSOL
over dependence graphs.

Next we recall (from [6]) a characterisation of the µ-calculus in terms
of (alternating) automata. This will allow us to use automata instead of
µ-calculus which is easier for some constructions.

Definition 3 A µ-automaton over an alphabet Γ is a tuple

A = 〈Q,Γ, q0, δ, F,Ω〉
where: Q is a finite set of states, Γ is a finite alphabet, q0 ∈ Q is an
initial state, δ : Q × Γ → P(P(Q)) is a transition function, F ⊆ Q is a
set of final states and Ω : Q→ N defines a winning condition.

6

Let M = 〈E,R, ρ〉 be a Γ-labelled graph and v0 a vertex of M . A run
of A on M starting from a vertex v0 is a labelled tree r : S → E × Q;
where S is a tree and r is a labelling function. We require that the root
of S is labeled with (v0, q0) and for every node v with r(v) = (e, q) we
have that either q ∈ F or there is W ∈ δ(q, ρ(e)) satisfying:

• for every successor e′ of e there is a son of v labelled by (q′, e′) for
some q′ ∈W ;

• for every q′ ∈ W there is a son of v labelled by (q′, e′) for some
successor e′ of e.

An infinite sequence (e0, q0), (e1, q1), . . . satisfies a parity condition
given by Ω if the smallest number among those appearing infinitely often
in the sequence Ω(q0),Ω(q1), . . . is even. We call a run accepting if every
leaf of the run is labelled by a state from F and every infinite path
satisfies the parity condition. We say that A accepts M from v0 iff A
has an accepting run on M from v0. Automaton A defines a set of traces
L(A) = {G : A accepts G from ⊥}.
Theorem 4
µ-automata over Γ are equivalent to the µ-calculus over Γ. In other
words, for every automaton A there is a µ-calculus sentence αA such that
{G : G � αA} = L(A); and conversely; for every µ-calculus sentence α
there is an automaton Aα such that {G : G � α} = L(Aα).

Finally we will need a tool for defining one labelled graph inside an-
other one by means of MSOL formulas. Let ξ(x, y) be a MSOL formula
with two free first order variables x, y. In a given labelled graph M =
〈S,R, ρ〉 this formula defines a relation Rξ

M = {(v, v′) : M � ξ(v, v′)}. Let
M ξ = 〈S,Rξ

M , ρ〉 be a labelled graph obtained from M by using Rξ
M as

an edge relation. We will use the following straightforward observation.

Proposition 5 For every MSOL formula ϕ there is an MSOL formula
ϕξ such that M ξ � ϕ iff M � ϕξ.

Proof
Just replace every occurrence of R in ϕ by ξ(x, y). �

7

3 Lex-trees

In this section we describe a representation of traces by some kind of
trees which we call lex-trees. This will allow us to use the equivalence of
MSOL and the µ-calculus over trees.

Definition 6 (Lex-Tree) Let G = 〈E,R, λ〉 be a trace. A path of
events e1e2 . . . en inG determines a sequence of labels λ(e1)λ(e2) . . . λ(en).
So we can compare two such paths using the lexicographic ordering on Σ∗

obtained from our fixed ordering <Σ on Σ. We will denote this ordering
also by <Σ. For e ∈ E let lexp(e) be the smallest in lexicographical
ordering path from the least element of G to e.

Lex-tree of G, denoted Lex(G), is a Σ-labelled graph T = 〈E, Son, λ〉
where Son(e, e′) holds iff lexp(e′) = lexp(e)e′ (in words: if the lexico-
graphic path to e′ goes through e and e′ is a successor of e). In this case
we will call e′ a lex-son of e in G.

Definition of lex-tree gives a natural ordering on sons of a node which
then can be extended to an ordering between any two nodes of lex tree
which are not on the same path.

Definition 7 (“To the left” ordering) We define “to the lex-left” or-
dering on events of G: e 4 e′ iff lexp(e) <Σ lexp(e′) but lexp(e) is not a
prefix of lexp(e′). We say that e′ is to the right of e if e is to the left of
e′.

Lemma 8 For every dependence graph G, Lex (G), is a tree.

Proof
Every path in the lex-tree is a lex-path. There cannot be two lex-paths
to the same event. �

Lemma 9 There is a MSOL formula ξ defining Lex (G) in G (i.e., Gξ is
isomorphic to Lex(G)).

Proof
We write a formula ξ(x, y) such that G � ξ(e, e′) iff lexp(e′) = lexp(e)e′.
�

Lemma 10 There is a MSOL formula ξ−1 defining G from Lex (G).

8

Proof
Let G = 〈E,R, λ〉 be a dependence graph. First observation is that for a
pair of dependent letters (a, b) ∈ D an a-event ea is before a b-event eb in
G iff ea is an ancestor or to the right of eb in the tree Lex(G). Indeed if
ea is before eb in G then either lexp(ea) is a prefix of lexp(eb) or lexp(eb)
is lexicographically smaller than lexp(ea). For the other direction if ea

is to the right of eb in Lex (G) then ea is before eb in the trace ordering
because otherwise we could have a path to ea going through eb (as a and
b are dependent).

Let us define the relation H(e, e′) which holds if the two events are
labelled by dependent letters and e is an ancestor or to the right of
e′. Clearly H is definable in MSOL. The observation from the above
paragraph can be reformulated as: H(e, e′) iff R∗(e, e′) and (λ(e), λ(e′)) ∈
D. In particular H ⊆ R∗. On the other hand we have R ⊆ H but there
may be no equality as H may contain some redundancies. Anyway, we
have that the reflexive and transitive closure H∗ of H is exactly R∗.

Consider H ′ ≡ H∗(x, y) ∧ ¬∃z.H∗(x, z) ∧ H∗(z, y). We claim that
H ′ = R. By definition of a trace we have that R ⊆ H ′. To show that
H ′ ⊆ R assume conversely and take (e, e′) ∈ H ′\R. Then R∗(e, e′) holds.
If not R(e, e′) then there is an event e′′ labelled by a letter dependent on
λ(e) and satisfying R∗(e, e′′) ∧ R∗(e′′, e). Then H∗(e, e′′) and H∗(e′′, e′)
hold. A contradiction. �

Using Proposition 5 we immediately obtain.

Corollary 11 MSOL over dependence graphs and lex-trees has the same
expressive power. More precisely, for every MSOL formula ϕ there is
a MSOL formula ϕT such that for every dependence graph G we have:
G � ϕ iff Lex (G) � ϕT . Vice versa, for every MSOL formula ψ there is
a MSOL formula ψG such that for every graph G we have: G � ψG iff
Lex(G) � ψ.

Corollary 12 MSOL over dependence graphs is equivalent to µ-calculus
over lex-trees. More precisely, for every MSOL formula ϕ there is a µ-
calculus formula α such that for every dependence graph G we have:
G � ϕ iff Lex (G) � α. Moreover for every µ-calculus formula α there is
a MSOL formula ϕα such that for every dependence graph G we have:
G � ϕα iff Lex (G) � α.

9

4 Extended mu-calculi for traces

We are now going to introduce two new representations of dependence
graphs as labelled graphs. Before doing this we show that µ-calculus is
weaker than MSOL on traces when traces are represented as dependence
graphs.

Proposition 13 No µ-calculus sentence can distinguish between the fol-
lowing two dependence graphs:

⊥

c

a

⊥

c

a

d

b

d

b

d

d

c

c

...
...

In the left graph the dots stand for the sequence (dc)ω and in the
right graph for (cd)ω. These two dependence graphs are over trace al-
phabet ({⊥, a, b, c, d}, D) where D is the smallest symmetric and reflexive
relation containing {(a, c), (b, d), (c, d)} ∪ {⊥} × {a, b, c, d}
Proof
The two dependence graphs are bisimilar. Proposition follows from the
fact that no mu-calculus formula can distinguish between two bisimilar
graphs. �

The above proposition shows that we need to have more information
in order to recover the structure of a dependence graph. We will do this
by introducing more information into labels of events. First we define
some auxiliary relations.

Definition 14 Let G = 〈E,R, λ〉 be a dependence graph. Relation co is
the concurrency relation between events in the trace defined by co(e, e′)
iff neither R∗(e, e′) nor R∗(e′, e) hold. We define relation Beforea,b(e) for
every event e and every pair of dependent letters (a, b) ∈ D. The relation
holds if λ(e) depends on both a and b and moreover among events after
e there are a and b-events and some a-event appears before all b-events.
More formally Beforea,b(e) holds if λ(e) depends on a and b and there are
events ea, eb 6= e such that R∗(e, ea), R

∗(e, eb) and λ(ea) = a, λ(eb) = b.
Moreover for every e′b 6= e with R∗(e, e′b) and λ(e′b) = b we must have
R∗(ea, e

′
b).

10

Definition 15 Let G = 〈E,R, λ〉 be a dependence graph. We define
its two representations Mco(G) and MB(G). Let Mco(G) = 〈E,R, λco〉
be labelled graph over an alphabet Γco = Σ × P(Σ) where λco(e) =
(λ(e), {λ(e′) : co(e, e′)}). Let MB(G) = 〈E,R, λco〉 be a labelled graph
over an alphabet ΓB = Σ × P(Σ × Σ) where λB(e) = (λ(e), {(a, b) :
Beforeab(e)}).

Our goal is to show that the µ-calculus over Mco(G) as well as over
MB(G) is expressively complete. The first observation is that Mco(G)
representation gives at least as much information about G as MB(G).

Proposition 16 For every pair (a, b) ∈ D there is a µ-calculus formula
βab defining Beforeab in Mco(G); more formally for every G and e in G
we have: Mco(G), e � βab iff Beforeab(e) holds in G.

Proof
Suppose Beforeab holds in G then:

• e is labelled by a letter dependent on both a and b;

• there is a b-event after e;

• there is a path from e to an event ea labelled by a such that no
event on this path is a b-event or is concurrent with a b-event;

One can check that these three conditions are also sufficient for Beforeab(e)
to hold. The above conditions are expressed by the formula:

[∨
c∈Σab

Pc

] ∧ 〈·〉[µX.Pb ∨ 〈·〉X] ∧ 〈·〉[µY.Pa ∨ 〈·〉(¬cob ∧ ¬Pb ∧ Y)
]

where Σab is the set of all letters dependent on both b and c, i.e., Σab =
{c : (a, c) ∈ D ∧ (a, b) ∈ D}. In the above we use Pa to stand for a set of
events with a as the first component of the label and cob for the set of
events with b in the second component of the label. The proof that the
formula expresses the required conditions is routine. �

Our goal can be formulated as follows.

Theorem 17
For every MSOL sentence ϕ there is a µ-calculus sentence βϕ such that
for every dependence graph G: G � ϕ iff MB(G),⊥ � βϕ.

11

Proof
The line of the proof is as follows. By Corollary 12 from ϕ we construct
a µ-calculus formula αϕ such that G � ϕ iff Lex (G),⊥ � αϕ. By The-
orem 4 we get an equivalent automaton Aϕ working on lex-trees. Next
we construct an automaton C which “reconstructs” a lex-tree in MB(G).
Then we construct an automaton B which is a kind of product of Aϕ and
C. This is an automaton running on MB(G) and accepting iff Aϕ accepts
Lex(G). Using once again Theorem 4, automaton B can be translated
back to a µ-calculus formula βϕ.

The main difficulty in the proof is the construction of the automaton
C. Here we just state the lemma saying that it is possible. The proof
of this lemma will be given in the two following sections. Please observe
that MB(G) is a Γ-labelled graph where Γ = Σ × P(Σ × Σ). So our
automaton C will also use this alphabet. We will write ↓1 and ↓2 for
projections on the first and second component respectively.

Lemma 18 There is an automaton C = 〈Qc,Γ, q
0
c , δc, Fc,Ωc〉 which re-

constructs lexicographic trees, i.e., for every dependence graph G =
〈E,R, λ〉:

• C has unique accepting run r : S → E ×Qc on MB(G),

• there is a special state tt ∈ FC such that when we restrict r to
S ′ = {v : r(v)↓2 6= tt} then S ′ is a tree and r↓1: S

′ → E is a tree
isomorphism between S ′ and Lex(G).

Suppose we have such an automaton C as in the lemma and let us
proceed with the proof. Let Aϕ = 〈Qa,Σ, q

0
a, δa, Fa,Ωa〉 be an automaton

over alphabet Σ. We construct an automaton B:

B = 〈Qb,Γ, q
0
b , δb, Fb,Ωb〉

where:

• Qb = (Qa × (Qc \ {tt})) ∪Qc

• q0
b = (q0

a, q
0
c)

• for qa 6∈ Fa we have δb((qa, qc), l) =
⋃{Choice(Wa,Wc) : Wa ∈

δ(qa, l↓1), Wc ∈ δ(qc, l)} with Choice(Wa,Wc) consisting of all the
sets W such that:

{q′a : ∃q′c. (q′a, q
′
c) ∈W} = Wa

{q′c : ∃q′a. (q′a, q
′
c) ∈W} ∪ {tt : tt ∈W} = Wc

12

• for qa ∈ Fa we have δb((qa, qc), l) = δc(qc, l)

• Fb = (Fa × (Fc \ {tt})) ∪ {tt}
• Ωb((qa, qc)) = Ωa(qa) and Ωb(qc) = Ωc(qc)

We claim that for every dependence graph G:

MB(G) ∈ L(B) iff Lex(G) ∈ L(Aϕ)

First, let us show that if there is an accepting run ra : Sa → E ×Qa

of Aϕ on Lex(G) then there is accepting run rb : Sb → E × Qb of B on
MB(G). Let rc : Sc → E ×Qc be the unique run of C on G.

We construct a run rb : Sb → E×Q by induction on the distance of a
node from the root. The nodes of Sb will come from the set (Sa×Sc)∪Sc.
If a node of Sb will be of the form (va, vc) ∈ Sa × Sc then we will have:

rb(va, vc) = (e, (qa, qc))

with e = ra(va)↓1= rc(vc)↓1, qa = ra(va)↓2 and qc = rc(vc)↓2

(1)

If a node of Sb will be of the form vc ∈ Sc then we will have:

rb(vc) = rc(vc) (2)

The root of Sb is (⊥a,⊥c) where ⊥a, ⊥c are the roots of Sa and Sc

respectively. We put rb(⊥a,⊥c) = (⊥, (q0
a, q

0
c)), where ⊥ is the least event

of G.
Suppose we have a node (va, vc) of Sb and (1) holds. We have several

cases depending on whether va or vc have sons.
If vc has no sons in Sc then e is a leaf in Lex(G). So qa ∈ Fa as ra is

an accepting run of Aϕ on Lex (G). Hence (qa, qc) ∈ Fb as qc 6= tt .
If va has no sons and vc has sons w1

c , . . . , w
n
c then we know that

qa ∈ Fa. For each i = 1, . . . , n we make wi
c a son of (va, vc) and put

rb(w
i
c) = rc(w

i
c).

The last case is when both va and vc have sons. Let w1
a, . . . , w

m
a

and w1
c , . . . , w

n
c be sons of va and vc respectively. For each i, j such

that ra(w
i
a)↓1= rc(w

j
c)↓1 we create a son (wi

a, w
j
c) of (va, vc) labelled by

(ra(w
i
a)↓1, (ra(w

i
a)↓2, rc(w

j
c)↓2)). This way we have taken care of all the

events that are sons of e in Lex (G). For every event e′ which is a successor
of e but not a son of e in Lex (G) there is j with rc(w

j
c)↓1= (e′, tt). We

make wj
c a son of (va, vc) and label it with rc(w

j
c).

13

Finally we define rb for nodes of Sb of the form vc ∈ Sc. In this case
we know by (2) that rb(vc) = rc(vc) and we just copy the run of C. More
precisely for each son wc of vc in Sc we make wc also a son of vc in Sb

and put rb(wc) = rc(wc).
It is not difficult to check that rb is a locally consistent run. Clearly

every leaf is labelled by a state from Fb. So it remains to show that
every infinite path satisfies the parity condition of B. Suppose v0, v1, . . .
is an infinite path in Sb and vi ∈ Sa × Sc for all i. Let vi = (vi

a, v
i
c) for

all i. Recall that rb(v
i)↓2= (ra(v

i
a)↓2, ra(v

i
c)↓2). By definition of Ωb we

have that Ωb(ra(v
i
a)↓2, ra(v

i
c)↓2) = Ωa(ra(v

i
a)↓2). Hence v0, v1, . . . satisfies

the parity condition Ωb because by the assumption v0
a, v

1
a, . . . satisfies the

parity condition Ωa. The other case is when for an infinite path v0, v1, . . .
we have vi ∈ Sc for some i. Then vj ∈ Sc and rb(vj) = rc(vj) for all j ≥ i.
As Ωb(vj) = Ωc(vj) we get that this path satisfies the parity condition.

Now we want to show that whenever B accepts G then Aϕ accepts
Lex(G). Let rb : Sb → E × Qb be an accepting run of B on G. Let
rc : Sc → E × Qc be the unique accepting run of C on G. Let us define
f : G→ Qc by f(e) = q iff there is v ∈ Sc with rc(v) = (e, q) and q 6= tt .
This function is well defined by our assumption on C.

We claim that for every v ∈ Sb if rb(v) = (e, (qa, qc)) then qc = f(e).
This follows by an easy induction on the distance of v from the root.

Let Sa = {v ∈ Sb : rb↓2 (v) ∈ Qa × Qc}. Clearly Sa is a tree by the
definition of automaton B. We define ra : Sa → E×Qa by ra(v) = (e, qa)
whenever rb(v) = (e, (qa, qc)).

We want to show that ra is an accepting run of Aϕ on Lex (G). It
is easy to see that every infinite path in Sa satisfies the parity condition
given by Ωa. So it remains to check if ra is locally consistent. Let v ∈ Sa

with rb(v) = (e, (qa, qc)). As qc = f(e) we know that the sons of v which
are assigned state other than tt are labelled with lex-sons of e and every
lex-son of e is in a label of one of the sons of v. Then by the definition
of B we get that ra is locally consistent in v. �

We sum up the results of this section in the corollary below. This is
the main result of the paper.

Let µ(Before) stand for the extension of the µ-calculus over the al-
phabet Σ with propositions Beforeab for every (a, b) ∈ D. The meaning
of such a proposition is: G, e � Beforeab iff Beforeab(e) holds in G. It is
straightforward to see that µ(Before) over dependence graph represen-
tation of traces is equivalent to the plain µ-calculus over the alphabet
ΓB = Σ × P(Σ × Σ) and MB(G) representation of traces.

14

Similarly let µ(co) stand for the extension of the µ-calculus over the
alphabet Σ with propositions coa for every a ∈ Σ. The meaning of such
a proposition is: G, e � coa iff there is an event e′ in G labelled with a
and such that co(e, e′) holds. Once again µ(co) corresponds to the plain
µ-calculus over Mco(G) representations of traces.

Corollary 19 For every formula ϕ of MSOL there are equivalent for-
mulas αϕ and βϕ of µ(co) and µ(Before) calculi, i.e., formulas such that
for every dependence graph G: G � ϕ iff G � αϕ iff G � βϕ. For every
formula of µ(co) or µ(Before) µ-calculus there is an equivalent formula
of MSOL.

5 Local characterisation of lex-trees

We have defined lex-trees using some global properties of events. In this
section we would like to show that there is a labelling of events which
is defined by some local conditions and such that a label of an event
identifies which among the successors of the event are lex-sons (i.e., sons
in the lex-tree). We will use this labelling in the next section to construct
an automaton reconstructing the lex-tree in a given dependence graph.
For this section let us fix a dependence graph G = 〈E,R, λ〉.
Definition 20 A left split from e is an event e′ which is a son of an
ancestor of e and which is to the left of e (i.e., lexp(e′) <Σ lexp(e)).

Lemma 21 For every e there are no more than |Σ| left splits from e.

Proof
Let e be an event and let ea, eb be its two sons labelled a and b respec-
tively. Assume that a is smaller than b in our fixed ordering on Σ. The
lemma follows from the observation that there cannot be an a labelled
descendant of eb in the lex-tree. Suppose conversely that there is an a-
event e′a which is a lex-descendant of eb. Then lexp(e′a) goes through e
and eb but not through ea. So ea is after e′a in the trace ordering. Hence
ea cannot be a direct successor of e in the trace as we have a path to ea

going through eb and e′a. �

Definition 22 A lex-slice from an event e, denoted G(e), is the restric-
tion of G to the events:

{e′ : R∗(e, e′) or R∗(e′′, e′) for e′′ a left split from e}

15

In words, this is the set of events which are after e or after some left split
from e.

Next, we define a concept of a view. Intuitively a view from an event e
describes the dependencies one can see in lex-slice of e. As we want views
to be finite we just note the dependencies between first occurrences of
actions. A view is something that will be guessed so we define it without
a reference to a particular event or trace.

Definition 23 A view is a binary relation V on a set X ⊆ Σ such that
V relates two letters a, b ∈ X iff (a, b) ∈ D and such that a reflexive and
transitive closure V ∗ of V is a partial order. Let Views be the set of all
the views.

Definition 24 For a view V , let Alph(V) ⊆ Σ be the set of letters
the view relates. Let Min(V) be the set of minimal elements of V (i.e.,
minimal in the partial order V ∗). For a letter a ∈ Min(V) let Left(V, a) ⊆
Σ be the set of those letters from Alph(V) which are bigger than some
minimal element of V other than a (the name comes from the fact that
usually a will be the “rightmost” minimal element).

Definition 25 Let e be an event and let V be a view. By V ↓e we
denote the view obtained from V by possibly changing the relation of
λ(e) to letters a such that (a, λ(e)) ∈ D. We put (a, λ(e)) in V (e)↓e

if Beforeaλ(ek)(e) holds and we put (λ(e), a) in V (e)↓e if Beforeλ(ek)a(e)
holds. If none of these holds then λ(e) does not appear at all in G(e)\{e}.
In this last case V ↓e does not relate λ(e) at all and the domain of V ↓e

becomes Alph(V) \ {λ(e)}. If λ(e) 6∈ Alph(V) then V ↓e= V .

We define a projection from an event to be the correct view from the
event. This will be our intended labelling of the events.

Definition 26 (Projection from an event) Let G(e) be the lex-slice
for e. We define P (e), the projection from e. For every two letters
(a, b) ∈ D such that both of them appear in G(e) we put (a, b) ∈ P (e)
if in G(e) the fist a-event is before the first b-event; we put (b, a) ∈ P (e)
otherwise.

The lemmas below show what kind of information we can deduce from
a projection of an event.

Lemma 27 The minimal elements of P (e) are exactly the labels of the
minimal events in G(e), which are e and all left splits of e.

16

Proof
First, we want to show that if e′ is a left split of e then e′ is minimal in
G(e). Suppose not, then there is another event e′′ before e which is a
left split of e or e itself. Let e(3), e(4) be events on the lex-path to e of
which e′ and e′′ are respectively lex-sons. If e(3) is before e(4) then we get
a path from e(3) to e′ contradicting the fact that e′ is a successor of e(3)

in the Hasse diagram of G. If e(4) is before e(3) then e′ is not a left split
of e as the lex path to e′ does not go through e(3)

So if e′ is a left split from e then λ(e′) is minimal in P (e). If a is
minimal in P (e) then in G(e) there is no event above the first event
labelled a. Hence the first a-event must be e or the left split from e. �

Lemma 28 If b ∈ Left(P (e), λ(e)) then the first b event in G(e) is not
a lex-descendant of e in Lex (G).

Proof
By assumption there is a minimal element in c 6= λ(e) in P (e) with a
path from c to b in P (e). By induction on the length of this path we
show that there is a path in G(e) from the first event labelled ec to the
first event labelled eb. Then to get the statement of the lemma observe
that ec must be a left split of e by Lemma 27. �

Lemma 29 For every event e the set Min(P (e)↓e)\(Min(P (e))\{λ(e)})
is the set of labels of lex-sons of e.

Proof
If λ(e) ∈ Min(P (e)↓e) \ (Min(P (e)) \ {λ(e)}) then Beforeλ(e)a(e) holds
for every a dependent on λ(e). Hence there is the unique successor e′ of
e labelled by λ(e′) = λ(e). This successor is a lex-son because every path
to e′ goes through e.

For the other case suppose b ∈ Min(P (e)↓λ(e)) \ (Min(P (e)) \ {e})
with b 6= λ(e). In this case Beforebλ(e)(e) holds.

Let eb be the first b-event in G(e). We want to show that eb is a
lex-son of e. Suppose first that eb is not a successor of e. Then, as b
depends on λ(e), there is a path from e to eb and say e′ is just before
eb on it. We have that λ(e′) is dependent on b and λ(e′) 6= λ(e) hence
(λ(e′), b) ∈ P (e)↓e a contradiction with the minimality of b in P (e)↓e. To
see that eb is a lex-son of e observe that for a similar reason there cannot
be a path from some left split of e to eb.

17

Finally observe that every lex-son of e is labelled by some letter from
Min(P (e)↓e) \ (Min(P (e)) \ {λ(e)}). This is because whenever e′′ is a
lex-son of e then Beforeλ(e′′)a(e) holds for all a dependent on λ(e′′). So
λ(e′′) ∈ Min(P (e)↓e) and λ(e′′) 6∈ Min(P (e)). �

Definition 30 Consistent view assignment for a trace G is a pair of
functions (VL, V) each assigning a view to every event of G. For every
event e, these functions have to satisfy the following consistency condi-
tions.

1. If e is the root of G then V (e) = P (e) and VL(e) = ∅.
2. If Min(V (e)↓e) = Min(V (e))\{λ(e)} (intuitively e has no lex-sons)

then VL(e) = V (e)↓e.

3. If Min(V (e)↓e) = Min(V (e)) (intuitively e has a unique lex son
labelled by λ(e)) then there is a successor e′ of e labelled with λ(e)
and we must have V (e′) = V (e) and VL(e′) = VL(e).

4. If Min(V (e)↓e) = (Min(V (e)) \ {λ(e)}) ∪ {b1, . . . , bk} with b1 <Σ

· · · <Σ bk in our fixed ordering on Σ then there must be successors
e1, . . . , ek of e labelled by b1, . . . , bk respectively and we must have:

(a) V (ek) = V (e)↓e,

(b) Alph(VL(ei)) ⊆ Alph(V (ei)) and VL(ei) agrees with V (ei) on
Left(V (ei), λ(ei)) for i = 1, . . . , k,

(c) VL(e) = VL(e1) and V (ei−1) = VL(ei) for i = 2, . . . , k.

Proposition 31 For every dependence graph G there is a consistent
view assignment.

Proof
Define a view assignment by letting V (e) = P (e) and VL(e) = P (eL)
where eL is the biggest in “to the left” ordering split from e (we will call
it biggest left split for short). We put VL(e) = ∅ if there is no such eL.
We have several cases to consider.

Clearly the root condition of the definition of consistent assignment
is satisfied.

Suppose Min(V (e)↓e) = Min(V (e))\ {λ(e)} then by Lemma 29 there
are no lex-sons of e. We have that P (eL) = P (e)↓e.

18

Suppose Min(V (e)↓e) = Min(V (e)) then by Lemma 29 there is the
unique lex-son e′ of e labelled λ(e). We have that P (e′) = P (e) and that
eL is the biggest left split also for e′.

Finally suppose Min(V (e)↓e) = (Min(V (e)) \ {λ(e)}) ∪ {b1, . . . , bk}
with b1 <Σ · · · <Σ bk listed according to our ordering on Σ. By Lemma 29
there are lex-sons e1, . . . , ek of e labelled with b1, . . . , bk respectively and
these are the only lex-sons of e.

It is not difficult to check that P (ek) = P (e)↓e. To check the next
condition observe that eL is the biggest left split for e1 and ei−1 is the
biggest left split for ei (i = 2, . . . , k). This means that V (ei−1) = VL(ei)
and VL(e) = VL(e1). We have that Alph(P (ei−1)) ⊆ Alph(P (ei)) because
the slice G(ei−1) is a suffix of G(ei). Finally let us check that VL(ei)
and V (ei) agree on the letters from Left(V (ei), λ(ei)). We have that
VL(ei) = P (e′i) where e′i is the biggest left split of ei (i.e. e′i = ei−1 or
e′i = eL if i = 1). By Lemma 28 for every letter a ∈ Left(P (ei), λ(ei)) the
first a-event in G(ei) is also the first event in G(e′i). �

We finish this section with a proposition showing that there is exactly
one consistent view assignment.

Proposition 32 If (VL, V) is a consistent view assignment then for every
event e we have V (e) = P (e). (Consistency conditions imply that VL is
also determined)

Before proving the proposition we need some lemmas. For the rest of
this section let us fix a consistent view assignment (VL, V).

Definition 33 We say that an event e is good if V (e) = P (e) (it does
not matter what VL(e) is)

Lemma 34 If e is good and e′ is its rightmost lex-son then e′ is good.

Proof
This is because the only difference between V (e) and V (e′) is for pairs
containing letter λ(e). The correct pairs for V (e′) are calculated with
Beforeab(e) predicates. �

Lemma 35 Let e be a good event with lex-sons e1, . . . , ek listed in “to
the left” ordering (with ek rightmost). Suppose that ei and all descen-
dants of ei in Lex (G) are good then ei−1 is good.

19

Proof
There are two cases to consider.

Suppose there is a leftmost node, e′, in the subtree of the lex-tree
rooted in ei. As e′ is good we get V (e′) = P (e′). Then, by the consistency
conditions (1) and (4c) we have VL(e′) = P (e′)↓e′ and V (ei−1) = VL(e′).
Hence ei−1 is good as P (ei−1) = P (e′)↓e′.

The other case is when there is an infinite leftmost lex-path P =
e′1e

′
2 . . . from ei. To shorten the notation let us write Left(e′) for the set of

letters Left(V (e′), λ(e′)) and Right(e′) for Alph(V (e′)\Left(e′)). Observe
that the sequence Right(e′1),Right(e′2), . . . is not increasing. Hence it
stabilizes on some set Inf .

Let e′ be an event on P with Right(e′) = Inf . We claim that for every
letter a ∈ Inf the first a event in G(e′) is a descendant of e′ in Lex (G).
Suppose conversely that ea is to the left. As a ∈ Inf we also know that
ea is after e′. Going down the path P we show that ea is to the left and
after every event in P . But then we would have infinitely many events
before ea. This is impossible by the definition of traces.

This argument actually shows that there are no a events to the left
of e′. So no event labelled by a letter from Right(e′) can appear in
G(ei−1). By definition of consistent views V (e′) is consistent with VL(e′)
on Left(e′). Moreover, as no more event is going to get to the left, V (ei−1)
is just V (e′) restricted to Left(e′). �

Now we are ready to prove Proposition 32
Proof (of Proposition 32)
By definition, the root event is good. Assume that in tree Lex(G) there is
an event which is not good. Let us go down the tree always choosing the
rightmost son in which subtree there is a not good event. By Lemma 29
we know that the label of a good event determines the lex-sons of the
event. Finally we must get to a not good event e as we can make at most
|Σ| right turns. Let e1 be the father of e. By assumption e1 is good so
e cannot be the rightmost son of e1 by Lemma 34. Let e2 be the son
of e immediately to the right of e. By our choice of e all events in the
lex-subtree of e2 are good so e is good by Lemma 35. A contradiction.
�

20

6 Automaton reconstructing lex-trees

Recall that Views is the set of views over the alphabet Σ (cf. Defini-
tion 23). Before defining an automaton reconstructing lex-trees we will
need one auxiliary operation. Suppose V is a view, a is a minimal ele-
ment in V and B ⊆ (Σ × Σ) is a partial order relation on Σ. We define
updated view V ↓(B,a) to be the same as V on letters other than a and
to have (a, b) if (a, b) ∈ B and (b, a) if (b, a) ∈ B. If a is related to no
element in B then V ↓(B,a) is V without pairs containing a. The intention
is that we have a trace G and an event e with V = P (e), a = λ(e) and
B = {(b, c) : Beforeb,c(e)}. In this case V ↓(B,a) is P (e)↓e.

We define automaton C = 〈Q,Γ, q0, δ, F,Ω〉 as follows:

• Q = (Σ × Views × Views) ∪ {q0, tt},
• Γ = Σ × P(Σ × Σ),

• Ω(q) = 0 for every state q.

It remains to define F and the transition function. The set F contains tt
and all the pairs ((a, VL, V), (B, a)) such that Min(V ↓(B,a)) = Min(V) \
{a} and VL = V ↓(B,a). Intuitively in this case from V , B and a we can
determine that the current event has no lex sons.

For the transition function δ we define δ((a, VL, V), (b, B)) by cases:

• if Min(V ↓(B,a)) = Min(V) then
δ((a, VL, V), (a,B)) = {{(a, VL, V), tt}}

• If Min(V ↓(B,a)) = (Min(V)\{a})∪{b1, . . . , bk} (where b1, . . . , bk are
<Σ-ordered by our order on Σ) then δ((a, VL, V), (a,B)) contains
all the sets {(b1, V ′

1 , V1), . . . , (bkV
′
k, Vk), tt} such that:

– Vk = V ↓(B,a),

– Alph(V ′
i) ⊆ Alph(Vi) and V ′

i agrees with Vi on Left(Vi, bi)

– VL = V ′
1 and Vi−1 = V ′

i for i = 2, . . . , k.

• δ((a, VL, V), (b, B)) = ∅ otherwise.

Finally we let δ(q0, (⊥, B)) = δ((⊥, ∅, B), (⊥, B)) as we can consider B
to be a view. There are no tranistions from state tt .

The definition of transition relation directly reflects the definition of
consistent view assignment (cf. Definition 30). The idea of the construc-
tion is that a run of C on G corresponds to a consistent view assignment.

21

As there is exactly one consistent view assignmnet for every trace, au-
tomaton C will have exactly one accepting run on each trace.

Theorem 36
For every dependence graph G there is a unique accepting run of C on
MB(G). The restriction of this run to nodes having states other than tt
in their label is isomorphic to the lexicographic tree Lex(G).

Proof
First, let us show that there is a run of C on a dependence graph G. Let
S be a tree containing Lex (G) and moreover for every e ∈ Lex (G) and
every successor f of e which is not a son of e in Lex (G) let S contain a
new node ve

f which is a son of e. If there are successors of e but all of them
are sons of e in Lex(G) then we choose one such successor f arbitrary
put a new node ve

f which is a son of e into S. Define r : S → E ×Q by:

r(v) =




(⊥, q0) if v = ⊥
(e, (λ(a), PL(e), P (e)) for v ∈ Lex (G) \ {⊥}
(f, tt) if v = ve

f

Here PL(e) is the projection from the leftmost split from e or it is ∅ if
there is no such split. By Proposition 31 function r is a locally consistent
run of C on G. As Ω(q) = 0 for all states, every locally consistent run is
accepting.

Now assume that there is an accepting run of C on G. Let r : S →
E ×Q be the part of this run restricted to nodes such that the state in
the label is different from tt . In other words r is obtained from the run by
cutting of the leaves labelled with tt . We have a function (r↓1) : S → E.
We show that it is an isomorphism.

Lemma 37 Suppose v satisfies:

r(v) = (e, (λ(e), VL, P (e))) for some VL (3)

then r↓1 is a bijection between sons of v and sons of e in Lex(G).

Proof
From Lemma 31 we get that the sons of e in lex-tree are determined by
P (e). Similarly P (e) and the label of e determine the transition of the
automaton. �

22

For an event e define the set AR(e) of events which are ancestors or
to the right of e in Lex (G):

AR(e) ={e′ : lexp(e′) is a prefix of lexp(e)} ∪
{e′ : lexp(e) <Σ lexp(e′) and lexp(e) is not a prefix of lexp(e′)}

Suppose we have an event e such that:

1. (r ↓1)
−1(e′) is a singleton for every e′ ∈ AR(e). So we have a

function rr : AR(e) → S which is the reverse of r↓1.

2. For every AR(e′) we have rr(e′) satisfies (3).

3. r↓1 is not an isomorphism between the subtree of Lex (G) rooted in
e and the subtree of S rooted in rr(e)

We will show that if we have such e then we can find a son of e in Lex (G)
with the same properties.

By the above lemma r↓1 is a bijection between the sons of e and the
sons of rr(e). Let us extend rr to these sons. Clearly clause 1 is satisfied
for ek. By Lemma 34 we have that ek satisfies clause 2. If r↓1 is not a
bijection between the subtrees rooted in ek and rr(ek) then ek is the son
we were looking for. Otherwise ek−1 satisfies clause 1. From Lemma 35
we know that ek−1 satisfies clause 2. Continuing like this we must find
a son ei of e which satisfies all the clauses. Otherwise we would have
that r↓1 is a bijection between descendants of e and descendants of rr(e)
which is impossible by clause 3 of our assumption.

Let us iterate this construction to infinity. Let e′1, e
′
2, . . . be events

chosen in successive iterations of the construction. We have that these
events form a path in Lex (G). As every infinite path in Lex(G) is even-
tually leftmost there is an event e′i starting from which the path goes
only from a father to the leftmost son. But then r↓1 is an isomorphism
between descendants of e′i and descendants of rr(e′i) which was assumed
not to exist. This shows that e with the above properties cannot exist.

Take the least element ⊥ of G which is also the root of S. We have
r(⊥) = (⊥, q0). By definition of the automaton, its move from q0 on the
letter (⊥, P (⊥)) is exactly the same as from the state (λ(⊥), ∅, P (⊥))
on this letter. So we can pretend that the root of S is labelled with
(⊥, (λ(⊥), ∅, P (⊥))) and not (⊥, q0). But then ⊥ satisfies the clauses 1–
3 above. As this is impossible and clauses 1–2 hold we must have that 3
is not satisfied. So r↓1 is an isomorphism between S and E. �

23

7 Complexity issues

In this section we will show that the model checking problem for the
logics proposed in this paper is PSPACE-complete. For a given formula
α we will construct an automaton A(α) recognizing all linearisations of
all the traces satisfying α.

Definition 38 A linearization of a trace G = 〈E,R, λ〉 is a word w ∈ Σw

which corresponds to some linear order containing partial order R∗, i.e.,
w is the sequence of labels of events in the chosen linear order. Let
Lin(G) denote the set of all linearizations of G.

If w ∈ Lin(G) then it determines the linear order extending R∗. We
will use w(i) for i-th letter of w and ew(i) for the event it represents,
namely, the event which is on i-th position in the linear ordering deter-
mined by w.

First, we will deal with the µ-calculus over dependence graphs without
additional information in the labels. Later we will extend the construc-
tions to other µ-calculi.

A µ-calculus formula is positive if all the negations appear only before
propositional constants. To have equivalent positive formula for every
formula of the µ-calculus we have to extend the syntax, which is now
given by the grammar:

X | Pa | ¬Pa | α ∨ β | α ∧ β | 〈·〉α | [·]α | µX.α(X) | νX.α(X)

the meaning of the two new constructs is defined by:

[[[·]α]]GV ={e ∈ E : ∀e′. R(e, e′) ∧ e′ ∈ [[α]]GV }
[[νX.α(X)]]GV =

⋃
{S ⊆ E : S ⊆ [[α(X)]]GV [S/X]}

It is well known that every formula of the µ-calculus is equivalent to a
formula generated by the above grammar. We will use σ to denote either
µ or ν. So σX.α(X) can be either µX.α(X) or νX.α(X).

A formula is well-named if every variable is bound at most once in
the formula. Obviously every formula is equivalent to a well named one.

Definition 39 If X is bound in a well-named formula α then the binding
definition ofX in α is the (unique) fixpoint formula of the form σX.γ(X).
The definition list for α is the function Dα assigning to each fixpoint
variable in α its binding definition. A variable X is called µ-variable

24

if Dα(X) is a µ-formula; similarly we define ν-variables. Let lα be a
binary relation on variables bound in α defined by X lα Y iff X occurs
free in Dα(Y).

It is easy to check that the transitive closure of lα is a partial order.
This allows us to formulate the following definition.

Definition 40 A dependency order for a well named formula α is a linear
order ≤α that extends lα

Definition 41 A closure of a formula α, denoted cl(α), is the smallest
set of formulas containing α and closed under taking subformulas.

With these definitions we can define an alternating parity automaton
for a given positive and well-named formula α:

A(α) = 〈Q,Σ, q0 ∈ Q, δ : Q× (Σ ∪ {ε}) → P(P(Q)),Ω : Q→ N〉
where we define the components below. We put Q = cl(α) ∪ (cl(α) ×
Σ × P(Σ)); with the second component needed for checking formulas of
the form 〈·〉γ. The initial state q0 is α. For the acceptance condition Ω
we put

Ω(q) =




2i q = X is i-th in ≤α ordering and X is a ν-variable

2i+ 1 q = X is i-th in ≤α ordering and X is a µ-variable

2m+ 1 q is of the form (〈·〉γ, a, S)

2m+ 2 q is of the form ([·]γ, a, S)

2m+ 3 otherwise (where m is the length of ≤α)

Finally we need to define the transition function. Please notice that we
allow ε-moves in the automaton. For readability we will represent an
element Z ∈ P(P(Q)) by a DNF formula:

∨
Y ∈Z

(∧
q∈Y q

)
. So if Z is for

example {{q1, q2}, {q3}} we get (q1 ∧ q2) ∨ q3. To be consistent with this
convention we also write true for {∅} and false for ∅.

• δ(Pa, a) = true and δ(Pa, b) = false for b 6= a;

• δ(X, ε) = Dα(X);

• δ(α ∧ β, ε) = α ∧ β and δ(α ∨ β, ε) = α ∨ β;

• δ(σX.γ, ε) = γ;

25

• δ(〈·〉γ, a) = (〈·〉γ, a, ∅) and δ([·]γ, a) = ([·]γ, a, ∅)

• δ((〈·〉γ, a, S), b) =




(〈·〉γ, a, S ∪ {b}) if bDS

(〈·〉γ, a, S) if ¬[bD(S ∪ {a})]
γ ∨ (〈·〉γ, a, S ∪ {b}) if (a, b) ∈ D and ¬[bDS]

• δ(([·]γ, a, S), b) =




([·]γ, a, S ∪ {b}) if bDS

([·]γ, a, S) if ¬[bD(S ∪ {a})]
γ ∧ ([·]γ, a, S ∪ {b}) if (a, b) ∈ D and ¬[bDS]

In the above, for a set S ⊆ Σ we write bDS to mean that (b, c) ∈ D
for some c ∈ S.

The definition of a run of such an automaton is standard (cf. [7]). In
particular a run is a tree labelled with pairs consisting of a position in
w and a state of A. A run of A is accepting if on every path P of it the
number min{Ω(q) : q appears infinitely often on P} is even.

Most of the cases of the definition of transition function are standard.
The interesting part happens for formulas of the from 〈·〉γ or [·]γ. Sup-
pose we want to check 〈·〉γ from a position i of the word. In state 〈·〉γ
on letter a = w(i) there is only one transition which leads to a state
(〈·〉γ, a, ∅). For every position j > i if automaton is still in a state of the
form (〈·〉γ, a, S) for some S then S = {λ(ew(k)) : R∗(ew(i), ew(k)) k =
i, . . . , j}; in words S contains labels of those events represented by po-
sitions i, . . . , j of w which are after (in the trace ordering) the event
represented by position i. When reading letter w(j + 1) we know that
ew(j+1) is a successor of ew(i) iff w(j+1) depends on a and is indepen-
dent on all the letters in S. In this case A can start checking γ or skip
this successor. As the priority of states of the form (〈·〉γ, a, S) is odd the
automaton must finally decide to start checking γ from some successor.
The case for [·]γ is dual.

Proposition 42 For every formula α of the µ-calculus, every trace G
and every w ∈ Lin(G): G � α iff w ∈ L(A(α)).

The proof of this proposition follows standard lines of other transla-
tions of the µ-calculus to alternating automata [4, 10, 1].

The next step is to extend this construction to µ(Before) calcu-
lus. This is the µ-calculus over MB(G) representation of G. One can
equivalently see the µ(Before) calculus as the extension of the above µ-
calculus with propositions Beforeab with the meaning: G, e � Beforeab

26

iff Beforeab(e) holds in G. For a formula α ∈ µ(Before) we want to con-
struct an automaton Ab(α) which accepts all words w ∈ Σ∗ such that
w ∈ Lin(G) and MB(G) � α. For this we extend the construction of
A(α) from above by adding new states:

{Before i
ab,NBeforei

ab : i ∈ 0, 1, 2 a, b ∈ Σ}

We also add transitions which make the automaton accept from a state
Before0

ab at position i if w(i) depends both on a and b and in the suffix
of the word w(i)w(i+ 1) . . . the first a appears before the first b. This is
why we need states Before1

ab and Before2
ab. State Before1

ab waits for the
first a and makes sure it comes before any b. State Before2

ab makes sure
there is a b in the sequence. From the state NBefore0

ab we accept the
complement of the language accepted from Before0

ab. It should be clear
how to define transitions from these states. Let us denote the obtained
automaton by Ab(α).

Proposition 43 For every formula α of the µ(Before)-calculus, every
trace G and every w ∈ Lin(G): MB(G) � α iff w ∈ L(Ab(α)).

The final step is to consider µ(co) calculus, i.e., the µ-calculus over
Mco(G) representations of traces. One can think of µ(co) as the ex-
tension of the plain µ-calculus with propositions coa with the meaning:
G, e � coa iff there is e′ ∈ G such that λ(e′) = a and co(e, e′) holds
in G. The construction of an automaton for this extension is not that
straightforward. To check that coa holds in some position we need to
keep some information about what was already read. This information
comes in the form of past view. We assume that while reading a word w
in each position j we calculate the binary relation:

Cj = {(a, b) ∈ Σ2 : (a, b) ∈ D and in w[1, . . . , j]

the last a is before the last b} (4)

The other characterisation of Cj is that it is the set of pairs (a, b) ∈ D
such that the last a appears before the last b in the prefix of G determined
by the events ew(1), . . . , ew(j).

Given a C ⊆ Σ2 and b ∈ Σ we define Update(C, b) to be the relation
identical to C on all the pairs not containing b and containing:

{a : (a, b) ∈ D and a appears in C} × {b}

27

Clearly there is a deterministic automaton D which states are subsets of
Σ × Σ and such that after reading j-th letter from a word w it reaches
the state Cj. This automaton starts with the empty set as the initial
state and uses Update operation on each letter it reads.

To extend our construction of alternating automata to handle coa

propositions. We make the product of the previous automaton with D.
Then we add to the set of states the set P(Σ) × Σ. Finally we add the
transitions

• δ((C, coa), b) = true if a is incomparable with b in Update(C, b);

• δ((C, coa), b) = ({b}, a) if a is smaller than b in Update(C, a) or a
does not appear in C;

• δ((S, a), a) = true if a depends on no letter from S;

• δ((S, a), a) = false if a depends on some letter from S;

• δ((S, a), b) = (S ′, a) for b 6= a; where S ′ is S if b does not depend
on any of the letters from S and S ′ is S ∪ {b} otherwise.

Let us denote the obtained automaton by Ac(α). The behaviour of Ac(α)
is such that after reading j-th letter from w its first component is in a
sate Cj which is the relation as defined in (4). Being in a state (Cj , coa)
and reading a letter b at position j + 1 the automaton can decide that
there is a-event concurrent with ew(j + 1) if a is incomparable with b
in Update(Cj , b). If it is not the case then the automaton enters a state
({b}, a). From this state it accumulates, in the first component, labels
of all the events after ew(j + 1) in the trace. If, when reaching the first
a, we have that a is independent from all the letters accumulated in the
first component then we know that it represents an event incomparable
with ew(j + 1).

Theorem 44
For every formula α of the µ(co)-calculus, every trace G and every w ∈
Lin(G): Mco(G) � α iff w ∈ L(Ac(α)). The size of Ac(α) is O(|α| ×
2|Σ|2). There is a nondeterministic automaton equivalent to Ac(α) of size
2O(|Σ|2|α| log(|α|)).

The bound on the size of nondeterministic automaton is obtained by
observing that one can glue parts of the states of alternating automaton

28

that correspond to D automaton. One can also use D automaton to take
care of 〈·〉γ and [·]γ formulas.

By Proposition 16, µ(Before) calculus can be translated to µ(co)
calculus with only linear increase in the size of the formula. Using the
standard technique of calculating states of an automaton on demand we
obtain.

Corollary 45 The satisfiability problem for µ(Before) and µ(co) logics
is PSPACE complete. More precisely given a formula α of µ(Before) or
µ(co) logics one can decide in PSPACE if there is a trace G such that
MB(G) � α or Mco(G) � α respectively.

References

[1] O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. In CAV, volume 818 of
LNCS, pages 142–155, 1994.

[2] V. Diekert and P. Gastain. An expressively complete temporal logic
without past tense operators for mazurkiewicz traces. In CSL’99,
volume 1683 of LNCS, pages 188–203, 1999.

[3] W. Ebinger. Charakterisierung von Sprachklassen unendlicher
Spuren durch Logiken. PhD thesis, Institut für Informatik, Uni-
versität Stuttgart, 1994.

[4] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and
determinacy. In Proc. FOCS 91, pages 368–377, 1991.

[5] P. Gastin and A. Petit. The Book of Traces, chapter Infninite Traces.
World Scientific, 1995.

[6] D. Janin and I. Walukiewicz. Automata for the µ-calculus and re-
lated results. In MFCS ’95, volume 969 of LNCS, pages 552–562,
1995.

[7] D. Muller and P. Schupp. Alternating automata on infinite trees.
Theoretical Computer Science, 54:267–276, 1987.

[8] P. Niebert. A Temporal Logic for the Specification and Verifica-
tion of Distributed Behaviour. PhD thesis, Universität Hildesheim,

29

March 1998. Also available as Informatik-Bericht Nr. 99-02,Institut
für Software, Abteilung Programmierung, Technische Universität
Braunschweig, Gaußstraße 11, D-38092 Braunschweig/Germany.

[9] D. Niwiński. Fixed point characterization of infinite behaviour of
finite state systems. Theoretical Computer Science, 189:1–69, 1997.

[10] C. S. Stirling. Modal and temporal logics. In S.Abramsky,
D.Gabbay, and T.Maibaum, editors, Handbook of Logic in Comuter
Science, pages 477–563. Oxford University Press, 1991.

[11] I. Walukiewicz. Difficult configurations – on the complexity of LTrL.
In ICALP ’98, volume 1443 of LNCS, pages 140–151, 1998.

30

Recent BRICS Report Series Publications

RS-00-2 Igor Walukiewicz. Local Logics for Traces. January 2000.
30 pp.

RS-00-1 Rune B. Lyngsø and Christian N. S. Pedersen.Pseudoknots in
RNA Secondary Structures. January 2000. 15 pp. To appear
in Fourth Annual International Conference on Computational
Molecular Biology, RECOMB ’00 Proceedings, 2000.

RS-99-57 Peter D. Mosses.A Modular SOS for ML Concurrency Primi-
tives. December 1999. 22 pp.

RS-99-56 Peter D. Mosses.A Modular SOS for Action Notation. Decem-
ber 1999. 39 pp. Full version of paper appearing in Mosses
and Watt, editors, Second International Workshop on Action
Semantics, AS ’99 Proceedings, BRICS Notes Series NS-99-3,
1999, pages 131–142.

RS-99-55 Peter D. Mosses. Logical Specification of Operational Se-
mantics. December 1999. 18 pp. Invited paper. Appears in
Flum, Rodrı́guez-Artalejo and Mario, editors, European Asso-
ciation for Computer Science Logic: 13th International Work-
shop, CSL ’99 Proceedings, LNCS 1683, 1999, pages 32–49.

RS-99-54 Peter D. Mosses.Foundations of Modular SOS. December 1999.
17 pp. Full version of paper appearing in Kutyłowski, Pachol-
ski and Wierzbicki, editors, Mathematical Foundations of Com-
puter Science: 24th International Symposium, MFCS ’99 Pro-
ceedings, LNCS 1672, 1999, pages 70–80.

RS-99-53 Torsten K. Iversen, K̊are J. Kristoffersen, Kim G. Larsen,
Morten Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul
Pettersson, and Chris B. Thomasen. Model-Checking Real-
Time Control Programs — Verifying LEGO Mindstorms Systems
Using UPPAAL. December 1999. 9 pp.

RS-99-52 Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar,
and P. S. Thiagarajan.Towards a Theory of Regular MSC Lan-
guages. December 1999.

