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A Modular SOS for

ML Concurrency Primitives ?

Peter D. Mosses

BRICS and Department of Computer Science, University of Aarhus
Ny Munkegade, bldg. 540, DK-8000 Aarhus C, Denmark

Home page: http://www.brics.dk/~pdm/

Abstract. Modularity is an important pragmatic aspect of semantic
descriptions. In denotational semantics, the issue of modularity has re-
ceived much attention, and appropriate abstractions have been intro-
duced, so that definitions of semantic functions may be independent of
the details of how computations are modelled. In structural operational
semantics (SOS), however, this issue has largely been neglected, and
SOS descriptions of programming languages typically exhibit rather poor
modularity—for instance, extending the described language may entail
a complete reformulation of the description of the original constructs.
A proposal has recently been made for a modular approach to SOS, called
MSOS. The basic definitions of the Modular SOS framework are recalled
here, but the reader is referred to other papers for a full introduction.
This paper focusses on illustrating the applicability of Modular SOS, by
using it to give a description of a sublanguage of Concurrent ML (CML);
the transition rules for the purely functional constructs do not have to be
reformulated at all when adding references and/or processes. The paper
concludes by comparing the MSOS description with previous operational
descriptions of similar languages.
The reader is assumed to be familiar with conventional SOS, with the
concepts of functional programming languages such as Standard ML, and
with fundamental notions of concurrency.

1 Conventional SOS

In the conventional SOS framework [23, 24] programs (and all their constituent
phrases) are generally modelled as labelled transition systems:

Definition 1. A labelled transition system (LTS) is a structure (Γ, T,A,−→),
where Γ is the set of configurations, T ⊆ Γ is the set of terminal configurations,
A is the set of labels, and −→ ⊆ Γ × A × Γ is the transition relation. For
configurations γ, γ′ ∈ Γ and label α ∈ A, the assertion that (γ, α, γ′) is in the
transition relation is written γ

α−→ γ′ (implying γ 6∈ T ).
A computation (from γ) is a sequence of transitions γ

α1−→ γ1
α2−→ . . . , which

is either infinite or finishes with a configuration γ′ ∈ T .
? Work done while visiting Computer Science Laboratory, SRI International, USA.



The main characteristic feature of SOS is that transition relations are spec-
ified inductively, according to the abstract syntax grammar, by giving sets of
inference rules where the syntactic components of the initial configurations in
the premises of a rule are generally components of that in the conclusion. Other
formulae, such as equations, may be used as side-conditions on rules (although
for notational convenience one may list them with the premises). The intended
transition relation is the least such relation that is closed under the given infer-
ence rules.1

There are two distinct styles of SOS. In so-called small-step SOS, each transi-
tion in a computation generally corresponds to an indivisible bit of information
processing, such as adding two computed numbers, or assigning a computed
number to a variable. In big-step SOS, also known as Natural Semantics [10],
a (terminating) computation is a single transition leading directly to a termi-
nal configuration, corresponding to the composition of the computations of its
constituent phrases. The big-step style can be formally regarded as a special
case of the small-step style. The two styles may also be mixed in the same de-
scription. e.g., big-step for expression evaluation and small-step for command
execution; alternatively, the transitive closure of the small-step transition rela-
tion can be used to represent the big-step relation [23]. (The small-step style
is generally regarded as preferable for describing concurrent processes involving
non-termination and interleaving, although a big-step treatment is also possible
[22].)

Intermediate configurations in small-step SOS generally involve an extension
of abstract syntax, allowing any sub-tree to be replaced by its computed value.
Let us refer to the extended syntax as value-added. In some languages, the com-
puted values can be identified with canonical terms of the original syntax, and
then no extension is needed.

Configurations often involve familiar semantic components, such as stores
that map variables to their assigned values. Environments (mapping identifiers
to their denoted values) are however usually treated as separate arguments of a
relative transition relation ρ ` γ

α−→ γ′ [10, 23]. Input, output, and synchroniza-
tion signals are all generally recorded in the labels on transitions.

For detailed explanations of the conventional SOS framework, the reader is
referred to [1, 8, 10, 21, 23–25, 28]. The lack of modularity in conventional SOS
may be observed in many papers in the literature (e.g., [2]), see also the discus-
sion in Sect. 5.

2 Modular SOS

Modular SOS (MSOS) [15, 14] is a particularly simple and uniform style of SOS.
The essential idea is to use the labels on transitions to represent general informa-
tion processing steps; the configurations merely keep track of the flow of control
and data, and are restricted to value-added syntax.
1 A more complicated definition is needed when negations of assertions of transitions

are allowed in premises [6].
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In a transition γ
α−→ γ′, the label α must itself determine the state of the

processed information both before and after the step. Two such transitions are
composable only when the state after the first and the state before the second
are identical. This intuition is conveniently represented by regarding the labels
as the arrows of a category, with the states as the objects of the category, and
by requiring adjacent labels in computations to be composable in the category.

Definition 2. A category consists of a set of arrows α ∈ A, a set of objects
o ∈ |A|, together with total operations pre, post : A → |A|, id : |A| → A, and a
partial composition operation · ; · : A×A→ A, such that:

– α1 ;α2 is defined iff post(α1) = pre(α2), and then pre(α1 ;α2) = pre(α1) and
post(α1 ; α2) = post(α2);

– · ; · is associative, that is α1 ; (α2 ; α3) = (α1 ; α2) ; α3 when defined;
– id(pre(α)) ; α = α = α ; id(post(α));
– pre(id(o)) = o = post(id(o)).

The objects o = pre(α) and o′ = post(α) are called the source and target of the
arrow α, and may be indicated by writing α : o → o′; the arrow id(o) is called
the identity arrow for the object o. The subset of identity arrows of A is written
I
A, or just I when A is evident; we let the variables ι, ι′, ι1, etc., range only

over I.

The foundations for MSOS are provided by arrow-labelled transition systems
(which, surprisingly, appears to be a novel combination of the familiar notions
of LTS and category):

Definition 3. An arrow-labelled transition system (ALTS) is a labelled transi-
tion system (Γ, T,A,−→), where A is a category. The objects o ∈ |A| are called
the states of the ALTS.

A computation in the ALTS (from γ) is a sequence of transitions γ
α1−→

γ1
α2−→ . . . , which is either infinite or finishes with a configuration γ′ ∈ T ,

and moreover such that all adjacent labels αi, αi+1 in it are composable in the
category A (i.e., the labels in a computation trace a path through A).

For a more detailed explanation of arrow-labelled transition systems, including
their reduction to conventional LTS and definition of bisimulation equivalence,
the reader is referred to [15].

3 Label Transformers

The label categories used in MSOS can be constructed by applications of three
fundamental label transformers, starting from a trivial category. Essentially, la-
bels obtained this way are tuples whose components can be set and accessed
independently; each label transformer lifts the setting and accessing operations,
as well as composition, to deal with the fresh component. The fundamental label
transformers, defined in App. A, are analogous to some of the simpler monad
transformers which are used in the monadic approach to denotational semantics.

The fundamental label transformers enjoy two important properties [15]:
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– Different orders of application of the label transformers yield the same cat-
egory (up to isomorphism).

– Applying a label transformer to a label category in an MSOS preserves com-
putations (provided that the side conditions on the transition rules are in-
sensitive to the transformation of labels).

Let Index be the set of indices i that may be used to refer to components
of labels; typical elements of Index are store and acts, and differently-spelled
indices are assumed to be distinct elements. Let Univ be the universe whose
elements u represent the information that may be processed; typical subsets of
Univ are Store2 and Act∗. The partial functions get(α, i) and set(α, i, u) are
everywhere undefined in the trivial category TrivCat , and the various label
transformers extend their domains of definition, as specified in App. A.

ContextInfo(i, E) adds an information component with values in E, in-
dexed by i. The value of this component is preserved by label composition.
Typically, E is a set of environments, mapping identifiers to denoted values.

MutableInfo(i, S) adds an information component with values in S, indexed
by i. Changes to this component are sequenced by label composition. Typically,
S is a set of stores, mapping addresses to assigned values. The following abbre-
viations (defined in App. A) are useful in connection with MutableInfo(i, S):
getpre(α, i) accesses the state of the mutable information indexed i before a
transition labelled α, and a transition labelled setpost(α, i, s′) determines that
its state is s′ after the transition.

Finally, EmittedInfo(i, A, f, τ) adds an information component with values
in A, indexed by i. Values of this component are composed by f , and τ determines
its value in identity labels ι ∈ I. Typically, (A, f, τ) is a free monoid, i.e., a set
of sequences with τ being the empty sequence.

The definitions of the trivial label category and the three fundamental label
transformers given in App. A are completely independent of the programming
language whose MSOS is to be described. The transformers are used in an MSOS
simply by mentioning their names and supplying the appropriate arguments. The
index arguments of label transformers used in the same MSOS are assumed to
be distinct. However, the same label transformer may be used more than once
(with different index arguments).

4 Application of MSOS to a Subset of CML

Reppy [26, 27] has defined the operational semantics of λcv, a small concur-
rent λ-calculus that models the main concurrency features of CML. He uses the
(non-structural) style of operational semantics based on reduction of evaluation
contexts, as developed by Felleisen et al. [4, 33].

Here, we describe the same language λcv using MSOS, thus illustrating the
applicability of our framework. To facilitate comparison with Reppy’s semantics,
we adhere closely to his choice of notation (despite some mild idiosyncrasies).2

2 A previous version of this paper adopted the notation of [2], and described a slightly
different language.
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We also follow him by using some of the abstract syntax trees as computed
values, by employing syntactic substitution rather than explicit environments
(although we also illustrate the use of environments, see Appendix B), and by
ignoring the types of expressions when giving the dynamic semantics of λcv.

The illustration of MSOS given below is in the small-step style. It is straight-
forward to reformulate the MSOS for expression evaluation in the big-step style
(although then one should also define a predicate corresponding to divergence
of expression evaluation). However, it seems best to keep to the small-step style
for process evaluation, since the big-step treatment of concurrency appears to
be relatively awkward [22].

Reppy’s static semantics for λcv is given as a conventional big-step SOS (natu-
ral semantics), and could easily be reformulated in MSOS, using the ContextInfo
label transformer to introduce type environments.

We first describe the purely functional part of λcv. Before extending it with
concurrent processes and channels, we show how to add ML-style references,
thus demonstrating the independence of the label transformers. (Reppy considers
instead the representation of references using processes and channels, following
Berry, Milner, and Turner [2].)

4.1 The Functional Fragment

The functional fragment of λcv described below is essentially Plotkin’s original
call-by-value language λv.

Abstract Syntax

x ∈ Var variables
c ∈ Const = BConst ∪FConst constants
b ∈ BConst = {(), true, false, 0, 1, . . .} base constants
f ∈ FConst = {+, -, fst, snd, . . .} function constants

Var ∩ Const = ∅
e ∈ Exp expressions
v ∈ Val values

e ::= v value
| x variable
| e1 e2 application
| (e1.e2) pair
| let x=e1 in e2 let

v ::= c constant
| (v1.v2) pair value
| λx(e) λ-abstraction

A pair of values (v1.v2) may always be regarded as a value, despite the fact
that it is also an expression according to the grammar.
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Configurations

γ ::= e arbitrary
τ ::= v terminal

The set of all configurations γ ∈ Γ thus consists of expressions e (including
values), and that of terminal configurations τ ∈ T consists simply of the values
v that can be computed by expressions.

Label Transformers No label transformers are needed here: the labels α are
completely arbitrary. For instance, the label categoryAmay be simply TrivCat .

In the absence of explicit environments, we need a meta-level notation for
the substitution of a value v for a variable x in an expression e. Let us adopt the
notation e[x 7→ v], as defined by Reppy [27] (avoiding capture of free variables
by use of Barendregt’s convention).

Transition Rules

e1
α−→ e′1

e1 e2
α−→ e′1 e2

e2
α−→ e′2

v1 e2
α−→ v1 e′2

(1)

λx(e) v
ι−→ e[x 7→ v] (2)

+ (0.1)
ι−→ 1 + (1.1)

ι−→ 2 . . . (3)

fst (v1.v2)
ι−→ v1 snd (v1.v2)

ι−→ v2 (4)

e1
α−→ e′1

(e1.e2)
α−→ (e′1.e2)

e2
α−→ e′2

(v1.e2)
α−→ (v1.e

′
2)

(5)

e1
α−→ e′1

let x=e1 in e2
α−→ let x=e′1 in e2

let x=v in e
ι−→

e[x 7→ v]
(6)

Notice that the transition rules given above insist on left-to-right evaluation,
as well as call by value. Static scopes for variable bindings are ensured by the
meta-level substitution notation. Complete programs are assumed to have no
free variables, and the transition rules ensure that all intermediate configurations
that can arise also have no free variables, hence there is no need for a rule giving
the value of a variable x that occurs as an expression.
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4.2 An Imperative Extension

The following extension of Sect. 4.1 provides ML-style references.

Abstract Syntax

f ∈ FConst = {. . . , ref, assign, deref} function constants

Configurations

l ∈ Loc locations

γ ::= e arbitrary
τ ::= v terminal
v ::= . . .

| l location

Label Transformers

MutableInfo(store,Store)

where:
store ∈ Index

s ∈ Store = Loc
fin→ Val

For stores, the notation s[l 7→ v] denotes the store that maps l to v, and oth-
erwise maps locations l′ to their values s(l′) according to s. (Stores cannot be
expressions in the described language, so there should be no danger of confusing
the notation s[l 7→ v] with Reppy’s notation for substitution e[x 7→ v]. Note
however that when l 6∈ dom(s), the store s[l 7→ v] is always different from s,
whereas when x does not occur in e, the expression resulting from e[x 7→ v] is
the same as e.)

Transition Rules

s = getpre(ι, store) l 6∈ dom(s) α = setpost(ι, store, s[l 7→ v])
ref v

α−→ l
(7)

s = getpre(ι, store) l ∈ dom(s) α = setpost(ι, store, s[l 7→ v])
assign (l.v)

α−→ ()
(8)

s = getpre(ι, store) v = s(l)
deref l

ι−→ v
(9)

An application ref v not only returns a fresh location l, it also assigns v to it.
Thus the domain of the store gives the set of locations that are in use.

The application deref l merely returns the value stored in l, the use of
the identity label ι in (9) above ensuring that there can be no side-effects. (To
describe the implicit dereferencing found in most imperative programming lan-
guages, one would give the rule for l instead of deref l.)
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4.3 Concurrent Processes

The following extension of Sect. 4.1 (or of Sect. 4.2) completes the MSOS of λcv.

Abstract Syntax

f ∈ FConst = { . . . , choose, guard, never,
receive, transmit,
wrap, wrapAbort}

function constants

p ∈ Procs processes

e ::= . . .
| chan x in e channel creation
| spawn e process creation
| sync e synchronization

p ::= e single process

Configurations

γ ::= e | p arbitrary
τ ::= v terminal

k ∈ Chan channel names
ev ∈ Event event values

v ::= . . .
| k channel name
| ev event value
| (G e) guarded event

ev ::= Λ never
| k!v channel output
| k? channel input
| (ev ⇒ v) wrapper
| (ev1 ⊕ ev2) choice
| (ev | v) abort wrapper

The above syntax and values are exactly as given by Reppy [26, 27]. Note that
all the values added here are intermediate values, and they are not allowed to
occur in the initial program.

p ::= . . .
| p1 ‖ p2 concurrent process

Our auxiliary syntax for concurrent processes above is similar to that of conven-
tional process algebra (ACP, CCS, etc.), differing somewhat from Reppy’s.

It would be straightforward to add a syntactic congruence on concurrent
processes, essentially turning them into multi-sets:

p ‖ (p′ ‖ p′′) = (p ‖ p′) ‖ p′′ p ‖ p′ = p′ ‖ p.
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Here, however, the congruence would only save us a single symmetric rule. A λcv

program starts out as a single expression, and concurrent processes are created
only by evaluation of spawn e.

Label Transformers

MutableInfo(chans,Chans)

where:
chans ∈ Index

K ∈ Chans = Pfin(Chan) channel sets

EmittedInfo(acts,Act∗, concat, [ ])

where:

acts ∈ Index
A ∈ Act∗ action sequences
a ∈ Act = Sync ∪ Spawn actions

(ev, e) ∈ Sync = Event × Exp synchronization possibilities
v ∈ Spawn = Val spawned processes

Act∗ is the set of finite sequences a1 . . . an of elements ai ∈ Act, with concate-
nation concat and the empty sequence [ ] forming a monoid.

Transition Rules

Expressions

never ()
ι−→ Λ (10)

transmit (k.v)
ι−→ k!v (11)

receive k
ι−→ k? (12)

wrap (ev.v)
ι−→ (ev ⇒ v) (13)

choose (ev1.ev2)
ι−→ (ev1 ⊕ ev2) (14)

wrapAbort (ev.v)
ι−→ (ev | v) (15)

The above applications all compute events ev ∈ Event, whereas those that fol-
low compute guarded events of the form (G e). (If one removes the function guard
from λcv, it becomes possible to regard all the remaining functional constants
for events as constructors, cf. [2].)

guard v
ι−→ (G (v ())) (16)

wrap ((G e).v) ι−→ (G (wrap (e.v))) (17)

choose ((G e1).ev2)
ι−→ (G (choose (e1.ev2))) (18)

choose (ev1.(G e2))
ι−→ (G (choose (ev1.e2))) (19)

choose ((G e1).(G e2))
ι−→ (G (choose (e1.e2))) (20)

wrapAbort ((G e).v) ι−→ (G (wrapAbort (e.v))) (21)
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The evaluation of e in a guarded event (G e) is delayed until the latter occurs
as the argument of sync. Once the argument of sync has been evaluated to an
(unguarded) event ev, it gives rise to a label α that indicates the possibility of a
synchronization:

sync (G e) ι−→ sync e
α = set(ι, acts, (ev, e))

sync ev
α−→ e

(22)

The nondeterministic choice of e in the right-hand rule in (22) above is resolved
by the matching of event values in (26) below. This nondeterminism could be
eliminated by using a place-holder (or fresh variable) instead of e above, then
changing (26) below so that the expressions determined by event matching are
substituted for the place-holders in the two processes.

K = getpre(ι, chans) k 6∈ K
α = setpost(ι, chans, K ∪ {k})
chan x in e

α−→ let x=k in e
(23)

The fresh channel k is recorded as having been allocated by adding it to the set
K of channels in use.

One could use e[x 7→ k] instead of the let-expression in (23) above. The
(slight) advantage of the formulation chosen here is that it is independent of
whether bindings have been described using substitution or environments (cf.
Appendix B).

α = set(ι, acts, v)
spawn v

α−→ ()
(24)

spawn v merely signals that a new process is to be started to evaluate the ap-
plication v (), cf. (27) below. (In a well-typed λcv program, v here is always a
λ-abstraction of type unit -> unit.)

Processes

p1
α−→ p′1

p1 ‖ p2
α−→ p′1 ‖ p2

p2
α−→ p′2

p1 ‖ p2
α−→ p1 ‖ p′2

(25)

The above rules allow the evaluation of each process to proceed independently,
in any order. (An expression e is a special case of a process p, and the labels for
expression transitions are here taken to be the same as for process transitions,
so there is no need to give a rule explicitly extending sequential evaluation to
concurrent evaluation.)

p1
α1−→ p′1 p2

α2−→ p′2
α1 = set(ι, acts, (ev1, e1)) α2 = set(ι, acts, (ev2, e2))

ev1
k� ev2 with (e1, e2)

p1 ‖ p2
ι−→ p′1 ‖ p′2

(26)
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The only possibility for a single transition to involve more than one process is
when two processes are both evaluating applications of sync to (unguarded)
events, say ev1 and ev2, and the two events match. The predicate:

ev1
k� ev2 with (e1, e2)

holds when the events ev1 and ev2 match (on channel k) with respective results
e1 and e2. For instance:

– k!v
k� k? with ((), v) holds; but

– k!v
k� k!v with (e1, e2)) does not hold for any e1, e2, and

– neither does k!v
k� k′? with (e1, e2) when k 6= k′.

Reppy’s definition of event matching [26, 27] is reproduced in Appendix C.
The labels α1 and α2 in (26) above are always identity ι apart from the acts

component, since a synchronization in the language considered here cannot arise
together with observable changes to the mutable information.

e
α−→ e′ α = set(ι, acts, v)

e
ι−→ e′ ‖ (v ())

(27)

The above rule deals with the spawning of processes. It is only applicable when
e is an entire process, since a term of the form e′ ‖ e′′ cannot occur as an
expression. (Generalizing e, e′ to p, p′ in (27) above would allow spawning to
be handled at any level of the process structure, but without any observable
differences.) As for synchronization in (26), the above rule relies on the fact that
process spawning cannot occur together with observable changes to the mutable
information.

p ‖ v
ι−→ p (28)

The above rule discards the values of spawned processes. The evaluation of
a complete program reaches a terminal configuration only after all spawned
processes have terminated and been discarded.

The only transitions allowed for complete programs are those whose label α
satisfies get(α, acts) = [ ].

That concludes the illustrative MSOS of λcv. Notice especially that with
MSOS, the extensions of the functional fragment with references and with con-
current processes are completely independent, and the order of making the ex-
tensions is irrelevant.

Following Reppy [26, 27], we should now eliminate unfair computations from
the specified transition system for complete programs, thus requiring implemen-
tations of λcv to let ready processes make progress, and not ignore possible
synchronizations on any particular channel indefinitely. It would also be useful
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to check that our MSOS could be extended to a description of the full CML lan-
guage. In a different direction, one might follow Ferreira, Hennessy, and Jeffrey
[5, 9] by trying to establish a theory of equivalence for λcv expressions. These
and other topics are left for future work, since our main purpose in the present
paper is merely to illustrate the applicability of MSOS to the description of ML
concurrency constructs.

5 Related Work

Here, we focus on comparing our MSOS for λcv with other published descriptions
of similar languages. A more general assessment of the relation of MSOS to other
work is provided elsewhere [15]; see also [16]

5.1 Using Evaluation Contexts

It is rather straightforward to compare the transition rules of our MSOS for
the functional fragment of λcv with the evaluation context reduction semantics
given by Reppy [26, 27]: those transition rules that merely propagate transitions
to enclosing constructs, e.g., (1) above, correspond to alternatives of his grammar
for evaluation contexts, and the axioms that make unobservable reductions, e.g.,
(4) above, correspond to his reduction rules.

Reppy does not consider the extension of the functional fragment with refer-
ences, but proposes the representation of references by processes, following [2].
Thus that part of his description is not directly comparable to our MSOS.

Instead of using a conventional binary combinator for concurrent processes
such as e1 ‖ e2, Reppy considers sets of processes tagged with identifiers, written
〈π1; e1〉 + . . . + 〈πn; en〉. The main difference, however, is that in MSOS we fol-
low process algebra descriptions by letting the labels carry synchronization and
spawning possibilities upwards through the syntactic structure, whereas with
evaluation contexts one looks downwards through the structure for the occur-
rences of particular values.

On the basis of these two descriptions of λcv, it seems that the evaluation-
context framework may have the edge over MSOS concerning conciseness: the
grammar for evaluation contexts is a much more compact description of the flow
of control than our rules for propagating transitions to enclosing constructs. On
the other hand, these same MSOS rules can be adapted straightforwardly to
describe the flow of processed information through constructs, which generally
requires separate reduction rules when using evaluation contexts. On the whole,
the modularity of the two descriptions of λcv appears to be equally good.

One significant advantage of MSOS over evaluation contexts concerns the
compositionality of the transition rules, as pointed out by Ferreira, Hennessy,
and Jeffrey [5, 9]. With MSOS, the transitions for a construct are determined
by the transitions for its components, together with the form of the construct
itself. This should allow us to provide a bisimulation and prove some useful
equivalences for λcv, following the work of Ferreira, Hennessy, and Jeffrey.
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5.2 Using Conventional SOS

A conventional SOS for a language µCMLcv, which corresponds closely to λcv,
has recently been published by Ferreira, Hennessy, and Jeffrey [5], see also Jeffrey
[9]. The authors provide a theory of weak bisimulation for their language; they
also extract an LTS from Reppy’s semantics, and prove that this LTS is bisimilar
to the LTS defined by their SOS.

There are some points of similarity between the SOS for µCMLcv and our
MSOS for λcv. In particular, Ferreira et al. also use a binary parallel composition
operator (e1 ‖→ e2) to record the configurations of spawned processes, and exploit
labels α to propagate synchronization possibilities upwards through the process
structure. However, their treatment of values and spawned processes is such that

in a transition e
√

v−→ e′, the computed value v is in the label and e′ then gives
the spawned process (or just the unit value () when there is none). This is
essentially the opposite of the treatment in the present paper where, in e

α−→ e′,
the label α holds any process to be spawned, and e′ may be a computed value.
The main motivation given for their somewhat surprising approach is that “a
CML process has a main thread of control, and only the main thread can return
a value” [5, p. 453]. However, Reppy himself abstracts from this rather incidental
detail of CML in his own semantics for λcv, and even considers letting terminated
processes “evaporate” [27, p. 84], so the cited motivation seems unconvincing.

Unfortunately, the treatment of computed values and spawned processes that
Ferreira et al. have adopted leads to rather awkward rules for transitions, e.g.
for pairs:

e1
α−→ e′1

(e1, e2)
α−→ (e′1, e2)

e1

√
v−→ e′1

(e1, e2)
α−→ e′1 ‖→ let x=v in 〈x, e2〉

(29)

and for let-expressions:

e1
τ−→ e′1

let x=e1 in e2
τ−→ let x=e′1 in e2

e1

√
v−→ e′1

let x=e1 in e2
τ−→ e′1 ‖→ e2[v/x]

(30)
The SOS rules given for the functional constructs of µCMLcv (as illustrated
above) are not what one would expect in the absence of the concurrency con-
structs, so the modularity of this conventional SOS is clearly quite poor; more-
over, when comparing µCMLcv with λcv, Ferreira et al. conjecture that the
description “would need to be considerably altered” to cope with guard and
wrapAbort, which are absent in µCMLcv. Jeffrey [9] also admits that “there are
some problems with this semantics”—but he uses this as a motivation to con-
sider a variant of µCMLcv (with computation types), rather than to re-engineer
the description of the existing language.

The development of a comparable theory of bisimulation for λcv based on
MSOS is left to future work.
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5.3 Mixing Evaluation Contexts and SOS

Berry, Milner, and Turner [2] have given a description of a language similar
to the languages considered by Reppy [26, 27] and by Ferreira et al. [5]. For
the functional fragment, they provide a simple conventional SOS, corresponding
closely to that given in the present paper (but omitting labels). All the rules for
the functional fragment undergo major (albeit systematic) reformulation when
concurrency constructs are added, demonstrating poor modularity—as previ-
ously noted by the present author and Musicante [19]. For example, the rules
for pairing become:

K, P [p : e1]
S−→ K ′, P ′[p : e′1]

K, P [p : (e1, e2)]
S−→ K ′, P ′[p : (e′1, e2)]

(31)

K, P [p : e2]
S−→ K ′, P ′[p : e′2]

K, P [p : (v1, e2)]
S−→ K ′, P ′[p : (v1, e

′
2)]

(32)

where [p : e] denotes a singleton process set, P [p : e] denotes P ∪ [p : e] (not
substitution into a context), K is the set of allocated channels, and S is the set
of processes involved in the transition that it labels. Notice that syntactic com-
ponents of the configuration in the premises of the rules are not components of
those of the conclusions, i.e., the transition relation is not defined inductively ac-
cording to the abstract syntax. The description of concurrent constructs is quite
comparable to Reppy’s, even though there are no explicit evaluation contexts
here.

Berry et al. also show how to extend the functional fragment with references:
by changing configurations from e to e, s, and reformulating all the previously-
given rules (thereby giving a particularly clear demonstration of the poor mod-
ularity of conventional SOS). The main contribution of their paper consists of
proofs that their extension of the functional fragment with concurrency con-
structs preserves the semantics of sequential expressions (corresponding to a
general result about label transformers in MSOS [15]) and in showing that a
particular representation of stores by processes corresponds to the direct intro-
duction of references.

The stated aim “to incorporate the semantics of this language with the se-
mantics of SML” [2, p. 119] has apparently not yet been achieved—perhaps
because of modularity problems, or because the definition of SML [11] uses the
big-step style of SOS? Interestingly, the recent alternative definition of SML
proposed by Harper and Stone [7] is based on a translation from SML into an
“internal language” whose operational semantics is given as a reduction system
for evaluation contexts; the integration of concurrency constructs in that defini-
tion seems more likely to be feasible. It appears that ML2000 [29] is to include
(an asynchronous version of) CML events.
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5.4 Using Enhanced Operational Semantics

The technique of incorporating all semantic information in the labels has been
proposed as a general principle for SOS by Degano and Priami [3], and exploited
to obtain parametricity in their Enhanced Operational Semantics (EOS). Priami
[25, Ch. 8] uses EOS to describe Facile (a language very similar to CML). Many
of the transition rules given for the Facile constructs are identical to our MSOS
rules for CML constructs, modulo minor notational details. Moreover, the EOS
description extends smoothly, without reformulation, from function expressions
to behaviour expressions, and finally to distributed behaviour expressions.

The main difference between EOS and MSOS lies in the set of labels: in EOS,
it is essentially the set of proof terms θ ∈ Θ for transitions. Such proof terms
are generated from elementary actions by operations that record the structure of
the process that executes them. Auxiliary functions are defined on proof terms
to extract various kinds of information, e.g., `(θ) returns the action of θ. (In the
Facile example, also a “quite technical” auxiliary relation is used in connection
with spawning processes on particular nodes, but this would not be needed in
connection with an EOS for CML.)

Another difference concerns computations: EOS is based on the ordinary LTS
framework, where the labels on adjacent transitions do not restrict computations.
In MSOS, however, labels that represent changes to a store can only be adjacent
in a computation when the store resulting from the first transition is the same
as that before the second transition. Perhaps an EOS dealing with an updatable
store would have to give an ad hoc definition of computations? EOS has good
modularity for describing concurrency at different levels of abstraction, but it
is difficult to assess its overall modularity in the absence of examples of the
treatment of side-effects.

It is debatable which of EOS and MSOS is the more general: EOS pro-
vides all possible information in the labels, and the relevant items are extracted
using auxiliary functions; MSOS provides just the information that has been
included using label transformers, together with fixed auxiliary operations to
set and get each item separately. It is any case straightforward to provide sup-
port for EOS in MSOS: all that is needed is to include the label transformer
EmittedInfo(proof, Θ), and to set this component of the label appropriately in
the conclusions of the relevant transition rules.

5.5 Using Action Semantics

The present author and Musicante [19] have given an action semantics [12, 13,
20, 32] for the same language as described by Berry et al. [2]. An action semantics
translates the described programming language into an action notation, which
has a fixed semantics, defined using (a notational variant of) small-step SOS
[12, Appendix C]—essentially the same technique as exploited by Harper and
Stone in their alternative definition of SML [7]. The design of action notation
is based on the notion of orthogonal facets of information processing (facets are
related to monad transformers, as shown by Wansbrough and Hamer [30, 31]);
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the use of the primitives and combinators of action notation in the description
of a construct is independent of which facets are needed for the description of
other constructs. In particular, the description of the functional fragment does
not require any reformulation, merely extension, when concurrent processes are
added. Thus the modularity of action semantics is just as good as that of MSOS.

One problem with action semantics has been that the original SOS of action
notation was not only expressed in an unconventional notational variant of SOS,
but also its modularity was rather poor. This has recently been remedied by
using MSOS to define the semantics of action notation [18].

So, which is better: to describe the operational semantics of a programming
language directly, using MSOS, or indirectly, using action semantics?

The main advantage of the action semantics approach is that the combina-
tors of action notation provide concise abbreviations for particular patterns of
transition rules. For instance, the combinator for sequential action performance
(written A1 then A2 in standard action notation) abbreviates the pattern of
transitions that occurs in the MSOS rules in Section 4.1 for left-to-right evalu-
ation of applications (1) and pairs (4). A further advantage would show up in
connection with the description of ML-style exceptions: action notation provides
a primitive for escaping from normal action performance (with a value), and a
combinator for trapping such escapes; in (small-step) MSOS, the propagation of
the exception value through all the syntactic constructs apart from the exception
handler has to be specified explicitly.

However, MSOS also has some advantages over action semantics. Perhaps the
main one is that the only new notation provided by the MSOS framework is that
for the label transformers, whereas the full standard action notation is quite rich,
and becoming familiar with it requires a significant initial investment of effort.
Another drawback of action semantics stems from the very generality of action
notation: its equational theory is too weak to be of much practical use. With
MSOS, one may be able to prove stronger properties, exploiting awareness of the
exact patterns of transitions and configurations that can arise in the semantics
of a particular programming language.

6 Conclusion

This paper has demonstrated that MSOS is applicable to languages such as
CML. It remains to be seen whether MSOS provides an appropriate basis for
proving properties of CML programs, and for establishing a satisfactory theory
of bisimulation (or testing) equivalence. In any case, the evident high degree of
modularity of MSOS descriptions allows their easy extension, modification, and
partial re-use, and thereby greatly facilitates the practical application of SOS for
documenting language design decisions—solving a problem left open by Plotkin
[23].
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A Fundamental Label Transformers

The label categories constructed by label transformers are product categories,
and the various components of the labels can be inspected and changed indepen-
dently of each other. To avoid dependence on the order in which transformers are
composed, particular components are referred to via symbolic indices i ∈ Index.
All components of labels are taken from some universe Univ.

In the trivial label category, the labels have no components at all:

Definition 4. The category TrivCat has a single object and a single arrow,
and the operations

get : TrivCat× Index → Univ

set : TrivCat× Index× Univ → TrivCat

are completely undefined.

Definition 5. Let B be a category, and i ∈ Index. Then the label transformer
LabTrans(i,B) maps any label category A to A×B, and extends the operations

get : A× Index → Univ

set : A× Index× Univ → A

from A to A×B by defining

get((α, u), j) =
{

u, if i = j
get(α, j), otherwise

set((α, u), j, u′) =
{

(α, u′), if i = j
(set(α, j, u′), u), otherwise.

For any A, B the projection from A × B to A is a functor. Moreover, for any
object b ∈ |B| the embedding that maps objects a ∈ |A| to (a, b) and arrows
α ∈ A to (α, id(b)) is also a functor.

The following label categories and their associated label transformers are of
fundamental significance:

Definition 6. For any set E let Discrete(E) be the discrete category having
the elements of E as objects (the only arrows being the identity arrows). Let
ContextInfo(i, E) be LabTrans(i,Discrete(E)).

Typically, E above is a set of environments, and the use of ContextInfo(i, E)
makes the current environment available in labels at index i.

Definition 7. For any set S let Pairs(S) be the category having the elements of
S as objects, where for s, s′ ∈ S the only arrow with source s and target s′ is rep-
resented by the pair (s, s′). Let MutableInfo(i, S) be LabTrans(i,Pairs(S)).

Typically, S above is a set of stores, and the use of MutableInfo(i, S) makes
pairs of stores available in labels. For inspecting the source store and setting the
target store of a label, the following auxiliary operations are convenient: when
get(α, i) = (s, s′), let getpre(α, i) = s and setpost (α, i, s′′) = set(α, i, (s, s′′)).
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Definition 8. For any monoid A with associative operation f : A×A → A and
unit τ , let Monoid(A, f, τ) be the category with just one object, and with the ele-
ments of A as its only arrows, composition being determined by f and the identity
arrow by τ . Let EmittedInfo(i, A, f, τ) be LabTrans(i,Monoid(A, f, τ)).

Typically, A above is the free monoid of sequences generated by some set of
signals, with f being sequence concatenation and τ being the empty sequence;
then the use of EmittedInfo(i, A, f, τ) makes sequences of signals available in
labels.

B Modular SOS Using Environments

B.1 A Functional Fragment
Abstract Syntax

x ∈ Var variables
c ∈ Const = BConst ∪FConst constants
b ∈ BConst = {(), true, false, 0, 1, . . .} base constants
f ∈ FConst = {+, -, fst, snd, . . .} function constants

Var ∩ Const = ∅
e ∈ Exp expressions
v ∈ Val values

e ::= v value
| x variable
| e1 e2 application
| (e1.e2) pair
| let x=e1 in e2 let
| λx(e) λ-abstraction

v ::= c constant
| (v1.v2) pair value

Configurations

γ ::= e arbitrary
τ ::= v terminal
e ::= . . .

| e with ρ expression closure
v ::= . . .

| (x,e,ρ) function closure

Notice that compared to Section 4.1, a λ-abstraction is no longer a value, and
both function and expression closures have been introduced—the former to hold
the static bindings ρ of λ-abstractions, the latter to keep hold of the bindings
while evaluating the bodies of λ-abstractions.3
3 Plotkin [23] was able to avoid introducing expression closures because there was

already a general form of local declaration in his example language; they are not
needed in big-step SOS either [10].
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Label Transformers

ContextInfo(env,Env)

where:
env ∈ Index

ρ ∈ Env = Var
fin→ Val

The notation ρ[x 7→ v] below denotes the environment that maps x to v, and
otherwise gives the same results as ρ.

Transition Rules

ρ = get(ι, env) v = ρ(x)
x

ι−→ v
(33)

e1
α−→ e′1

e1 e2
α−→ e′1 e2

e2
α−→ e′2

v1 e2
α−→ v1 e′2

(34)

ρ = get(ι, env)
λx(e)

ι−→ (x,e,ρ)
(35)

(x,e,ρ) v
ι−→ e with ρ[x 7→ v] (36)

α′ = set(α, env, ρ′) e
α′−→ e′

e with ρ′ α−→ e′ with ρ′
(37)

v with ρ′ ι−→ v (38)

+ (0.1)
ι−→ 1 + (1.1)

ι−→ 2 . . . (39)

fst (v1.v2)
ι−→ v1 snd (v1.v2)

ι−→ v2 (40)

e1
α−→ e′1

(e1.e2)
α−→ (e′1.e2)

e2
α−→ e′2

(v1.e2)
α−→ (v1.e′2)

(41)

e1
α−→ e′1

let x=e1 in e2
α−→ let x=e′1 in e2

(42)

ρ = get(α, env) α′ = set(α, env, ρ[x 7→ v]) e2
α′−→ e′2

let x=v in e2
α−→ let x=v in e′2

(43)

let x=v in v′ ι−→ v′ (44)

Notice that rules (34), (39)–(42) are as before. Moreover, no changes at all are
needed to Sections 4.2 and 4.3.
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C Event Matching

The matching of event values is written ‘ev1
k� ev2 with (e1, e2)’, and defined to

be the smallest relation satisfying the following inference rules, exactly as in [26,
27]:

k!v
k� k? with ((), v) (45)

ev1
k� ev2 with (e1, e2)

ev2
k� ev2 with (e2, e1)

(46)

ev1
k� ev2 with (e1, e2)

ev2
k� (ev2 ⇒ v) with (e1, v e2)

(47)

ev1
k� ev2 with (e1, e2) e3 = AbortAct(ev3)

ev2
k� (ev2 ⊕ ev3) with (e1, (e3; e2))

(48)

ev1
k� ev2 with (e1, e2) e3 = AbortAct(ev3)

ev2
k� (ev3 ⊕ ev2) with (e1, (e3; e2))

(49)

ev1
k� ev2 with (e1, e2)

ev2
k� (ev2 | v) with (e1, e2)

(50)

The syntax (e1; e2) represents sequencing, formally abbreviating the application
snd (e1.e2). The function AbortAct : Event → Exp used above is defined
inductively as follows:

AbortAct(Λ) = ()

AbortAct(k?) = ()

AbortAct(k!v) = ()

AbortAct(ev ⇒ e) = AbortAct(ev)
AbortAct(ev1 ⊕ ev2) = (AbortAct(ev1); AbortAct(ev2))

AbortAct(ev | v) = (AbortAct(ev); spawn v)
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